JP2017083414A - 欠陥検出装置及び欠陥検出方法 - Google Patents
欠陥検出装置及び欠陥検出方法 Download PDFInfo
- Publication number
- JP2017083414A JP2017083414A JP2015215236A JP2015215236A JP2017083414A JP 2017083414 A JP2017083414 A JP 2017083414A JP 2015215236 A JP2015215236 A JP 2015215236A JP 2015215236 A JP2015215236 A JP 2015215236A JP 2017083414 A JP2017083414 A JP 2017083414A
- Authority
- JP
- Japan
- Prior art keywords
- image
- thermal
- inter
- movement distance
- unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Radiation Pyrometers (AREA)
Abstract
【課題】熱画像に基づく欠陥の検出をより精度良く行うことができる欠陥検出装置及び欠陥検出方法を提供することである。
【解決手段】実施形態の欠陥検出装置は、熱画像取得部と、フレーム間移動距離取得部と、画像生成部と、欠陥判定部と、を持つ。熱画像取得部は、相対的に移動する検査対象が連続して撮像された複数の熱画像を取得する。フレーム間移動距離取得部は、連続する前記熱画像間での被写体の撮像位置のずれを示すフレーム間移動距離を取得する。画像生成部は、複数の前記熱画像と、前記フレーム間移動距離とに基づいて、前記熱画像取得部によって取得された複数の前記熱画像における同じ被写体が撮像された画素の画素値に基づいて取得される代表値によって表される第2の熱画像を生成する。欠陥判定部は、前記第2の熱画像における画素値の分布に基づいて、前記第2の熱画像から前記検査対象の欠陥部位を検出する。
【選択図】図3
【解決手段】実施形態の欠陥検出装置は、熱画像取得部と、フレーム間移動距離取得部と、画像生成部と、欠陥判定部と、を持つ。熱画像取得部は、相対的に移動する検査対象が連続して撮像された複数の熱画像を取得する。フレーム間移動距離取得部は、連続する前記熱画像間での被写体の撮像位置のずれを示すフレーム間移動距離を取得する。画像生成部は、複数の前記熱画像と、前記フレーム間移動距離とに基づいて、前記熱画像取得部によって取得された複数の前記熱画像における同じ被写体が撮像された画素の画素値に基づいて取得される代表値によって表される第2の熱画像を生成する。欠陥判定部は、前記第2の熱画像における画素値の分布に基づいて、前記第2の熱画像から前記検査対象の欠陥部位を検出する。
【選択図】図3
Description
本発明の実施形態は、欠陥検出装置及び欠陥検出方法に関する。
トンネルやビル等の構造物においてコンクリート等の内部空隙(以下、「欠陥」という。)を検査する方法の1つに打音検査がある。打音検査は、検査対象を叩くことにより発生する打撃音の特性に基づいて構造物の欠陥を検査する方法である。また、打音検査の他、検査対象の欠陥を非接触で検査することが可能なサーモグラフィ法等の検査方法も実用化されている。サーモグラフィ法は、正常部と欠陥部との熱伝導率の違いから欠陥の有無や位置を検査する方法である。具体的には、サーモグラフィ法では、検査対象が撮像された熱画像が示す検査対象表面の温度分布に基づいて欠陥の有無や位置が判定される。
一般に、熱画像は赤外線カメラを用いて取得されるが、取得された熱画像にはノイズが含まれる場合がある。また、熱画像には、検査対象以外の他の構造物が撮像される可能性もある。そのため、従来の欠陥検出装置では、このようなノイズや他の構造物が欠陥の被疑部位として誤検出される場合があった。
本発明が解決しようとする課題は、熱画像に基づく欠陥の検出をより精度良く行うことができる欠陥検出装置及び欠陥検出方法を提供することである。
実施形態の欠陥検出装置は、熱画像取得部と、フレーム間移動距離取得部と、画像生成部と、欠陥判定部と、を持つ。熱画像取得部は、相対的に移動する検査対象が連続して撮像された複数の熱画像を取得する。フレーム間移動距離取得部は、連続する前記熱画像間での被写体の撮像位置のずれを示すフレーム間移動距離を取得する。画像生成部は、前記熱画像取得部によって取得された複数の前記熱画像と、前記フレーム間移動距離取得部によって取得された前記フレーム間移動距離とに基づいて、前記熱画像取得部によって取得された複数の前記熱画像における同じ被写体が撮像された画素の画素値に基づいて取得される代表値によって表される第2の熱画像を生成する。欠陥判定部は、前記第2の熱画像における画素値の分布に基づいて、前記第2の熱画像から前記検査対象の欠陥部位を検出する。
以下、実施形態の欠陥検出装置及び欠陥検出方法を、図面を参照して説明する。
(第1の実施形態)
図1は、検査対象の熱画像を取得する方法の一例を示す図である。図1において、車両100は、検査対象となるトンネル200内を走行し、トンネル内部の壁面の熱画像を取得する車両である。車両100の上部には、赤外線カメラ110がトンネル上部の壁面を撮像する向きで設置されている。例えば、赤外線カメラ110は、1m四方程度の壁面が視野範囲となるように設定され、例えば、30フレーム/秒で検査対象を撮像する。また、車両100には車速計120が設置され、車両100の車速が連続的に計測される。
図1は、検査対象の熱画像を取得する方法の一例を示す図である。図1において、車両100は、検査対象となるトンネル200内を走行し、トンネル内部の壁面の熱画像を取得する車両である。車両100の上部には、赤外線カメラ110がトンネル上部の壁面を撮像する向きで設置されている。例えば、赤外線カメラ110は、1m四方程度の壁面が視野範囲となるように設定され、例えば、30フレーム/秒で検査対象を撮像する。また、車両100には車速計120が設置され、車両100の車速が連続的に計測される。
実施形態の欠陥検出装置は、赤外線カメラ110によって取得される熱画像と、車速計120によって取得される車両100の車速を時系列に示す情報(以下、「速度情報」という。)と、に基づいて、熱画像に基づく欠陥の検出をより精度良く行うことを実現する。速度情報は、換言すれば、検査対象に対する赤外線カメラ110の相対的な移動速度を示す情報である。具体的には、実施形態の欠陥検出装置は、連続的に撮像される複数の熱画像間で、同じ範囲の検査対象が撮像された領域の画素値の統計値をとることにより、欠陥の検出における熱画像内のノイズの影響を低減する。
図2は、赤外線カメラ110によって取得される熱画像の具体例を示す図である。熱画像300は、複数の画素P(i、j)で構成される。熱画像300を構成する画素P(i、j)において、iは熱画像300の横方向(I方向)における画素数を表し、i=0、1、2、・・・、i_widthである。同様に、jは熱画像300の縦方向(J方向)における画素数を表し、j=0、1、2、・・・、j_heightである。J方向は、車両100の進行方向に対応する。すなわち、熱画像300は、i_width×j_height個の画素で構成される。以下では、本実施形態における熱画像300は、i_width=640、j_height=480と仮定する。
図3は、第1の実施形態の欠陥検出装置1の機能構成を示す機能ブロック図である。欠陥検出装置1は、バスで接続されたCPU(Central Processing Unit)やメモリや補助記憶装置などを備え、欠陥検出プログラムを実行する。欠陥検出装置1は、欠陥検出プログラムの実行によって記憶部11、熱画像取得部12、速度情報取得部13、フレーム間移動距離算出部14、平均画像取得部15、特徴量取得部16及び欠陥判定部17を備える装置として機能する。なお、欠陥検出装置1の各機能の全て又は一部は、ASIC(Application Specific Integrated Circuit)やPLD(Programmable Logic Device)やFPGA(Field Programmable Gate Array)等のハードウェアを用いて実現されてもよい。欠陥検出プログラムは、コンピュータ読み取り可能な記録媒体に記録されてもよい。コンピュータ読み取り可能な記録媒体とは、例えばフレキシブルディスク、光磁気ディスク、ROM、CD−ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置である。欠陥検出プログラムは、電気通信回線を介して送信されてもよい。
記憶部11は、磁気ハードディスク装置や半導体記憶装置などの記憶装置を用いて構成される。記憶部11は、赤外線カメラ110によって取得された熱画像と、車速計120によって取得された速度情報とを記憶する。
熱画像取得部12は、赤外線カメラ110によって取得された熱画像を取得し、記憶部11に記憶させる。例えば、熱画像取得部12は、通信インターフェースを含んで構成され、赤外線カメラ110との通信によって熱画像を取得するように構成されてもよい。また、熱画像取得部12は、CR−ROMやフラッシュメモリ等の記憶媒体から情報を読み出すメディアリーダを含んで構成され、記憶媒体に記憶された情報を読み出すことによって熱画像を取得するように構成されてもよい。
速度情報取得部13は、車速計120によって取得された速度情報を取得し、記憶部11に記憶させる。例えば、速度情報取得部13は、通信インターフェースを含んで構成され、車速計120との通信によって速度情報を取得するように構成されてもよい。また、速度情報取得部13は、CR−ROMやフラッシュメモリ等の記憶媒体から情報を読み出すメディアリーダを含んで構成され、記憶媒体に記憶された情報を読み出すことによって速度情報を取得するように構成されてもよい。
フレーム間移動距離算出部14は、熱画像取得部12によって取得された熱画像に基づいてフレーム間移動距離を算出する。フレーム間移動距離とは、車両100に対して相対的に移動する被写体の熱画像内での撮像位置が、各フレームの熱画像間で移動した距離のことである。フレーム間移動距離算出部14は、算出したフレーム間移動距離を平均画像取得部15に出力する。
平均画像取得部15(画像生成部)は、熱画像取得部12によって取得された複数の熱画像と、フレーム間移動距離算出部14によって算出されたフレーム間移動距離と、に基づいて平均画像(第2の熱画像)を取得する。平均画像とは、連続して撮像された熱画像において、同じ範囲の被写体が撮像された領域(以下、「共通領域」という。)の画素値の平均によって表される画像である。平均画像取得部15は、取得した平均画像を特徴量取得部16に出力する。
図4は、平均画像を取得する方法の概略を示す図である。図4の熱画像310及び熱画像320は、平均画像の生成に用いられる熱画像の例である。熱画像310及び熱画像320は、熱画像310、熱画像320の順に連続するフレームとして取得された熱画像である。部分領域311及び部分領域321は熱画像310及び熱画像320間の共通領域である。熱画像310の部分領域311に撮像された被写体は、熱画像320において、車両100の進行方向(J方向)とは逆方向にフレーム間移動距離mだけずれた位置の部分領域321に撮像される。例えば、フレーム間移動距離は次の式(1)によって算出される。
式(1)における数値480は熱画像のJ方向の画素数に対応する。Vは車速を表し、Tは各フレームの熱画像が撮像される周期(以下、「フレーム間隔」という。)を表す。熱画像が30フレーム/秒で撮像される場合、フレーム間隔T=1/30[秒]である。Hは、赤外線カメラ110の視野範囲を表す。
例えば、平均画像取得部15は、各熱画像の共通領域である部分領域311及び部分領域321の画像について、対応する画素値の平均を算出することによって平均画像を生成する。ここで、熱画像310をPk(i、j)、熱画像310に含まれる部分領域311の画像(以下、「部分画像」という。)をQk(i、j)と表す。図4は、熱画像310の部分画像Qk(i、j)を画素Pk(0、0)を基準として選択した例を示している。なお、部分画像Qk(i、j)は、熱画像310内のどの画素を基準として選択されてもよい。
同様に、熱画像320をPk+1(i、j)、熱画像320に含まれる部分領域321の部分画像をQk+1(i、j)と表す。この場合、平均画像Rk(i、j)は、次の式(2)によって表される。
なお、ここでは2つの部分画像に基づいて平均画像を生成する場合について説明しているが、平均画像は2つ以上の部分画像に基づいて生成されてもよい。
図3の説明に戻る。特徴量取得部16は、平均画像取得部15によって生成された平均画像から画素値の分布の特徴を示す特徴量を抽出する。具体的には、特徴量取得部16は、平均画像Rk(i、j)について濃度共起行列Mδ(a、b)を算出する。濃度共起行列とは、画像中の特定の相対的な位置関係にある2つの画素の濃度(画素値)対に関する統計量を示す行列である。濃度共起行列Mδ(a、b)は、平均画像内の画素Rk(i、j)と、画素Rk(i、j)に対してI方向にa画素分、J方向にb画素分だけ離れた画素Rk(i+a、j+b)とを対とした濃度共起行列を意味する。
図5は、画素値と濃度共起行列との関係の具体例を示す図である。図5(A)に示す画像400は、濃度共起行列を生成する対象の画像の例である。画像400は、I方向に4個、J方向に3個の画素を有し、全体として12個の画素からなる。画像400は、各画素の画素値が0又は1のいずれかの値で表される2階調の画像である。この場合、例えば、画像400の濃度共起行列Mδ(1、0)は図5(B)のように表される。
図5(B)の濃度共起行列Mδ(1、0)は、画像400の各画素と、各画素からI方向に1画素分、J方向に0画素分だけ離れた画素との画素対(すなわちI方向に隣り合う画素対)に関する濃度共起行列を表している。図5(B)の濃度共起行列Mδ(1、0)は、図5(A)の画像400の各画素を基準として、I方向に隣り合う画素対の画素値の組み合わせ([0、0]、[0、1]、[1、0]、[0、0]の4通り)の出現頻度を計数することによって得られる。濃度共起行列Mδ(1、0)の行数及び列数の組み合わせは、上記の画素値の組み合わせに対応している。すなわち、濃度共起行列は、画素値の階調数の二乗個の要素からなる正方行列となる。
例えば、濃度共起行列Mδ(1、0)の1行2列(すなわち、[0、1]の組み合わせに対応)の値“1”は、図5(A)に実線矢印で示した画素対の数を計数することによって得られる。これは、画像400の各画素をP(i、j)(i=0、1、2、3)(j=0、1、2)と表した場合、[0、1]の組み合わせが画素P(2、1)及び画素P(3、1)の1組に出現することを意味している。同様に、濃度共起行列Mδ(1、0)の2行2列(すなわち、[1、1]の組み合わせに対応)の値“7”は、図5(A)に破線矢印で示した画素対の数を計数することによって得られる。
このように生成される濃度共起行列では、画素値の分布の一様性が対角成分に現れ、非一様性が対角成分以外の成分に現れる。そのため、画像について濃度共起行列を求めることにより、その画像における画素値の分布の一様性を推定することができる。なお図5では、I方向の画素値の組み合わせで濃度共起行列を表したが、同様の方法によって、濃度共起行列を、J方向や斜め方向の画素値の組み合わせで表すことができる。
以上、濃度共起行列の概略を説明するため、1つの画像400について、画像全体の一様性を示す1つの濃度共起行列が算出される例を図5に示した。これに対し、特徴量取得部16は、上述した濃度共起行列を、平均画像を構成する所定の単位領域ごとに生成する。
図6は、複数の単位領域で構成される平均画像の具体例を示す図である。例えば、図6に示す平均画像500は、画素Rk(0、0)を基準として、6(=3×2)画素からなるN個の単位領域(単位領域501−1〜501−N)に分割された平均画像である。特徴量取得部16は、平均画像500を構成する単位領域ごとに、各単位領域を基準として、各単位領域の周辺の単位領域との間での画素値の統計量を示す濃度共起行列を生成する。ここでいう周辺の単位領域は、例えば、ある単位領域の右、下及び右斜め下の単位領域である。例えば、特徴量取得部16は、平均画像500において単位領域501−1を基準とする場合、単位領域501−2、単位領域501−3及び単位領域501−4との間での濃度共起行列を生成する。
図7は、平均画像の単位領域ごとに生成される濃度共起行列の具体例を説明する図である。平均画像510は、12個の単位領域(単位領域511−1〜511−12)からなり、各単位領域は、16000(=160×100)画素からなる。また、平均画像510は、第0階調値(例えば“0”)、第1階調値(例えば“1”)及び第2階調値(例えば“2”)の3階調で表され、単位領域511−6を構成する画素の画素値は第2階調値であり、それ以外の単位領域を構成する画素の画素値は第1階調値である。
この場合、単位領域511−1、単位領域511−2、単位領域511−3、単位領域511−5、単位領域511−6及び単位領域511−7の各濃度共起行列は、次の式(3)〜式(8)のように生成される。
式(3)〜式(8)におけるMn(160、100)は、単位領域511−n(nは1〜12の整数)の各画素からI方向に160画素分、J方向に100画素分の距離だけ離れた画素で構成される単位領域(すなわち単位領域511−nの右斜め下の単位領域)と、単位領域511−nとによって表される範囲の平均画像において、単位領域511−nを基準とする濃度共起行列を表す。例えばM1(160、100)は、単位領域511−2、単位領域511−5及び単位領域511−6と、単位領域511−1との間での、単位領域511−1を基準とした濃度共起行列である。
なお、濃度共起行列Mn(160、100)の行数及び列数の組み合わせは、図5で説明した濃度共起行列Mδと同様に、単位領域ごとに取り得る画素値の組み合わせに対応する。また、平均画像510が3階調で表されるため、濃度共起行列Mn(160、100)は3×3の正方行列となる。
この場合、単位領域511−6の画素値は第2階調値であり、それ以外の単位領域の画素値は第1階調値である。そのため、単位領域511−1を基準とする濃度共起行列M1(160、100)では、第1階調値及び第2階調値の組み合わせに対応する2行3列の値が16000(=160×100)となる。
式(3)〜式(8)は、説明を簡単にするために、各単位領域の画素値が全画素で同じ値であると仮定した場合の濃度共起行列を示したものである。そのため、実際には、濃度共起行列M1(160、100)の2行3列以外の値も0以上となる可能性がある。いずれにしても、各単位領域間の濃度差が小さい、すなわち濃度(画素値)が一様であれば、濃度共起行列Mnの対角成分が大きな値となり、各単位領域間の濃度差が大きい、すなわち濃度が非一様であれば、濃度共起行列Mnの対角成分以外の成分が大きな値となる。これは、図5で説明した濃度共起行列Mδと同様である。そのため、各単位領域を基準とした濃度共起行列を求めれば、平均画像において濃度変化が大きい箇所を特定することができる。すなわち、各単位領域を基準とした濃度共起行列が示す画素値の分布の一様性によって、欠陥の被疑部位を推定することができる。
図3の説明に戻る。欠陥判定部17は、特徴量取得部16によって取得された平均画像の特徴量に基づいて、平均画像から欠陥の被疑部位を検出する。具体的には、欠陥判定部17は、各単位領域を基準とする濃度共起行列と、それらの濃度共起行列を平均した行列(以下、「平均行列」という。)とに基づいて、平均画像における各単位領域の一様性を示す指標値を算出する。例えば、各単位領域の一様性を示す指標値は、式(9)によって表される。
式(9)において、Lnは単位領域511−nについての一様性を示す指標値である。Mnは単位領域511−nを基準とした濃度共起行列を表し、Mavgは平均行列を表す。例えば図6に示した平均画像500の場合、平均行列及び各単位領域の一様性を示す指標値は、次の式(10)〜式(16)のように求められる。
欠陥判定部17は、このように求められる各単位領域の一様性を示す指標値を、所定の閾値と比較することによって平均画像から欠陥被疑部位を推定する。例えば、式(11)〜式(16)で求められた指標値Lnに対して閾値T=100000と設定した場合、欠陥判定部17は、単位領域511−1及び単位領域511−5を被疑部位の候補として抽出する。欠陥判定部17は、抽出された各候補の単位領域のうち、画素値が他の領域と大きく異なる方の単位領域を欠陥部位として検出する。
例えば、欠陥判定部17は、平均画像全体での画素値の平均値(以下、「全体平均値」という。)と、被疑部位の候補として抽出された単位領域511−1及び単位領域511−5のそれぞれでの画素値の平均値(以下、「単位平均値」という。)と、を算出する。欠陥判定部17は、単位領域511−1及び単位領域511−5のうち、単位平均値と全体平均値との差が大きい方の単位領域を欠陥被疑部位として特定する。一般に、検査対象において、欠陥部が占める割合は正常部よりも小さい。そのため、図6に示した平均画像500では、欠陥部である単位用域511−5の方が単位平均値と全体平均値との差が大きくなる。そのため、平均画像500からは、単位用域511−5が欠陥部位として検出される。
図8は、第1の実施形態の欠陥検出装置1が検査対象の欠陥部位を検出する処理の流れを示すフローチャートである。まず、熱画像取得部12が、車両100の走行中に撮像された検査対象(例えばトンネル)の熱画像を取得する(ステップS101)。なお以下では、熱画像取得部12によって取得される熱画像は、赤外線カメラ110によって30フレーム/秒で撮像された熱画像であると仮定して説明する。さらに以下では、熱画像取得部12によって取得される熱画像は、640画素(I方向)×480画素(J方向)で構成されると仮定する。
一方で、速度情報取得部13は、上記熱画像の撮像時における車両100の速度を示す速度情報を取得する(ステップS102)。フレーム間移動距離算出部14は、速度情報取得部13によって取得された速度情報に基づいて、各フレーム間でのフレーム間移動距離を算出する(ステップS103)。なお、以下の説明を簡単にするため、車両100は熱画像の撮像が行われている間、等速で走行したと仮定する。この仮定の下では、各フレーム間でのフレーム間移動距離は同じ距離となる。
続いて、平均画像取得部15が、フレーム間移動距離算出部14によって算出されたフレーム間移動距離と、熱画像取得部12によって取得された各フレームの熱画像と、に基づいて平均画像を取得する。具体的には、平均画像取得部15は、まず、各フレームの熱画像から、平均画像の生成に用いる部分画像を抽出する(ステップS104)。上述したとおり、ここで取得される複数の部分画像は、各熱画像からそれぞれ同じ範囲の被写体が撮像された共通領域が抽出されたものである。平均画像取得部15は、抽出した複数の部分画像に基づいて、平均画像を生成する(ステップS105)。
続いて、特徴量取得部16が、平均画像取得部15によって生成された平均画像から特徴量を抽出する。具体的には、特徴量取得部16は、平均画像を所定の単位領域に分割し、各単位領域を基準とする他の単位領域との間での画素値の統計量を示す濃度共起行列を生成する(ステップS106)。
続いて、欠陥判定部17が、特徴量取得部16によって抽出された平均画像の特徴量(すなわち濃度共起行列)に基づいて、平均画像から欠陥部位を検出する。具体的には、欠陥判定部17は、特徴量取得部16によって生成された単位領域ごとの濃度共起行列に基づいて、各単位領域の一様性を示す指標値を算出する(ステップS107)。欠陥判定部17は、算出した各領域の一様性を示す指標値に基づいて欠陥部位を有する単位領域を特定する(ステップS108)。
図9は、平均画像によるノイズ低減の効果の具体例を示す図である。熱画像330−1〜330−4は、熱画像330−1、熱画像330−2、熱画像330−3、熱画像330−4の順に連続して撮像された熱画像の例である。熱画像330−1〜330−4が有する欠陥領域331は、検査対象が有する同一の欠陥部位を表す。車両100の進行方向は熱画像のJ方向に一致するため、熱画像内の欠陥領域331の位置は、車両100の進行に伴ってJ方向とは逆の方向(以下、「−J方向」という。)に移動している。
また、熱画像330−1〜330−4が有するノイズ領域332−1〜332−8は、熱画像の撮像時に発生したノイズを表す。これらのノイズのうち、ノイズ領域332−1、ノイズ領域332−3及びノイズ領域332−5は、熱画像内の同じ位置に現れたノイズを表している。同様に、ノイズ領域332−2、ノイズ領域332−4及びノイズ領域332−6は、熱画像内の同じ位置に現れたノイズを表している。このように、画像内のノイズは、撮像装置が同じであれば、異なる画像の同じ位置に現れる可能性が比較的高いと考えられる。
この場合、例えば、平均画像取得部15は、熱画像330−3から部分画像333−3を抽出し、熱画像330−4から部分画像333−4を抽出する。ここで、部分画像333−4は、部分画像333−3が抽出された位置から、−J方向にフレーム間移動距離だけずらした位置から抽出される。平均画像取得部15は、抽出した部分画像333−3及び部分画像333−4に基づいて、平均画像520−1を生成する。平均画像520−1に生成に用いられた部分画像333−3及び部分画像333−4は、画像内の同じ位置に欠陥領域331を有し、画像内の異なる位置にノイズ領域332−5〜332−8を有する。そのため、平均画像520−1では、欠陥領域331の画素値は維持されるが、ノイズ領域332−5〜332−8の画素値は、各ノイズ領域周辺の画素値との平均となる。すなわち、平均画像の生成によって、熱画像に含まれるノイズの影響が低減される。
同様に、平均画像取得部15は、熱画像330−1から抽出された部分画像333−1と、熱画像330−2から抽出された部分画像333−2とに基づいて、平均画像520−2を生成する。この場合、部分画像は、各熱画像間でフレーム間移動距離だけずれた位置から抽出されるため、熱画像内では同じ位置にあったノイズ領域332−1〜332−4は、部分画像内では異なる位置となる。そのため、平均画像の生成によって、熱画像内の同じ位置に現れるノイズの影響が低減される。
このように構成された第1の実施形態の欠陥検出装置1は、複数の熱画像から被写体の同じ部位が撮像された部分領域を抽出し、抽出した複数の部分領域の画像から平均画像を生成する。このような機能を備えることにより、欠陥検出装置1は、熱画像に含まれるノイズの影響を低減させることができる。このようにノイズの影響が低減された平均画像に基づいて欠陥検出処理を行うことによって、欠陥検出装置1は、熱画像に基づく欠陥の検出をより精度良く行うことが可能となる。
(第2の実施形態)
第1の実施形態の欠陥検出装置1が速度情報に基づいてフレーム間移動距離を算出したのに対し、第2の実施形態の欠陥検出装置1aは、車両100の走行中に撮像された可視画像に基づいてフレーム間移動距離を算出する。なお、ここでいう可視画像とは、赤外線カメラ110によって取得される熱画像と異なり、一般的なカメラで撮像される画像のように、被写体の色や明るさなどを識別可能な画像を意味する。この場合、車両100には、車速計120に代えて可視画像を撮像する可視カメラ130(図示せず)が設置される。
第1の実施形態の欠陥検出装置1が速度情報に基づいてフレーム間移動距離を算出したのに対し、第2の実施形態の欠陥検出装置1aは、車両100の走行中に撮像された可視画像に基づいてフレーム間移動距離を算出する。なお、ここでいう可視画像とは、赤外線カメラ110によって取得される熱画像と異なり、一般的なカメラで撮像される画像のように、被写体の色や明るさなどを識別可能な画像を意味する。この場合、車両100には、車速計120に代えて可視画像を撮像する可視カメラ130(図示せず)が設置される。
図10は、赤外線カメラ110及び可視カメラ130の視野の具体例を示す図である。図10に示された矢印は、車両100に対する被写体の相対的な移動方向を表している。視野範囲111は赤外線カメラ110の視野範囲を表し、視野範囲131は可視カメラ130の視野範囲を表す。赤外線カメラ110及び可視カメラ130は、例えば図10に示されるように、被写体の移動方向に平行して並設される。
図11は、第2の実施形態の欠陥検出装置1aの機能構成を示す機能ブロック図である。第2の実施形態の欠陥検出装置1aは、速度情報取得部13に代えて可視画像取得部18を備える点、フレーム間移動距離算出部14に代えてフレーム間移動距離算出部14aを備える点で第1の実施形態の欠陥検出装置1と異なる。
可視画像取得部18(画像取得部)は、可視カメラ130によって取得された可視画像を取得し、記憶部11に記憶させる。例えば、可視画像取得部18は、通信インターフェースを含んで構成され、可視カメラ130との通信によって可視画像を取得するように構成されてもよい。また、可視画像取得部18は、CR−ROMやフラッシュメモリ等の記憶媒体から情報を読み出すメディアリーダを含んで構成され、記憶媒体に記憶された情報を読み出すことによって可視画像を取得するように構成されてもよい。
フレーム間移動距離算出部14aは、連続する熱画像から部分画像を抽出するために必要なフレーム間移動距離を可視画像取得部18によって取得された可視画像に基づいて算出する点でフレーム間移動距離算出部14と異なる。
図12は、フレーム間移動距離算出部14aが可視画像に基づいてフレーム間移動距離を算出する処理の流れを示すフローチャートである。まず、フレーム間移動距離算出部14aは、記憶部11から可視画像を取得して、可視画像を二値化した二値化画像を生成する(ステップS201)。
図13は、二値化画像の具体例を示す図である。図13(A)の可視画像610及び620は、可視画像610、可視画像620の順に連続するフレームとして撮像された可視画像の例である。可視画像610は、被写体領域611及び612を有する。被写体領域611及び612は、可視画像610において被写体が撮像された領域である。同様に、可視画像620は、被写体領域621及び622を有する。被写体領域621及び622は、可視画像620において被写体が撮像された領域である。可視画像610及び620における被写体領域以外の領域は被写体の背景が撮像された領域(以下、「背景領域」という。)である。
図13(B)の二値化画像710及び720は、それぞれ可視画像610及び620から生成された二値化画像の例である。図13(B)の二値化画像710及び720は、可視画像610及び620が、被写体領域に対応する領域と、背景領域に対応する領域とに二値化された場合の例である。例えば、フレーム間移動距離算出部14aは、可視画像610及び620の各画素値に、次の式(17)を適用することによって二値化画像Bk(i、j)を生成する。なお、式(17)におけるTは二値化の閾値を表し、Vk(i、j)は可視画像を表す。
図12の説明に戻る。続いて、フレーム間移動距離算出部14aは、生成した二値化画像に基づいて、車両100の進行方向(J方向)における二値化画像の特徴量を取得する。具体的には、フレーム間移動距離算出部14aは、車両100の進行方向と直交する方向(すなわちI方向)に、二値化画像の各画素値を足し合わせる(すなわち射影する)ことによって得られる波形(以下、「特徴波形」という。)を特徴量として取得する(ステップS202)。例えば、二値化画像の射影によって得られる特徴波形f(j)は、次の式(18)で表される。
図14は、特徴波形の具体例を示す図である。図14の特徴波形810は、二値化画像710に基づいて取得された特徴波形の例であり、特徴波形820は二値化画像720に基づいて取得された特徴波形の例である。図14に示す特徴波形の横軸は、二値化画像の特徴量(I方向における画素値の総和)を表し、縦軸はJ方向の画素の位置を表す。
このように取得される特徴波形は、同じ被写体が撮像された領域について同じ値を示す。すなわち、相対的に移動する同じ被写体が連続して撮像される場合、連続する各可視画像に基づく特徴波形は相関を持つ。具体的には、連続する可視画像に基づいて取得されるそれぞれの特徴波形は、車両100の走行距離に応じた位相差を持つ同じ特徴波形となる。
図12の説明に戻る。続いて、フレーム間移動距離算出部14aは、連続する可視画像に基づいて取得された特徴波形に基づいてフレーム間移動距離を算出する(ステップS203)。具体的には、フレーム間移動距離算出部14aは、次の式(19)で表される波形相関S(m)が最大となるmをフレーム間移動距離として推定する。
なお、熱画像及び可視画像の1画素に対応する実空間での距離(以下、「実距離」という。)が同じであれば、フレーム間移動距離算出部14aは、上記の推定によって得られたフレーム間移動距離mを用いて、第1の実施形態同様に平均画像を生成することができる。仮に、可視画像の1画素に対応する実距離が、熱画像の実距離のc倍である場合には、上記推定によって得られたmを1/n倍したm/nをフレーム間移動距離とすればよい。
このように構成された第2の実施形態の欠陥検出装置1aは、熱画像の撮像に合わせて取得される可視画像に基づいてフレーム間移動距離を算出する。このような機能を備えることにより、第1の実施形態の欠陥検出装置1を、車速計120に代えて可視カメラ130を備える装置として構成することができる。これにより、実施形態の欠陥検出装置をより安価に実現することが可能となる。
(第3の実施形態)
第1の実施形態の欠陥検出装置1が平均画像を生成することによって、熱画像に含まれるノイズの影響を低減したのに対し、第3の実施形態の欠陥検出装置1bは、複数の熱画像の差分によって表される差分画像を生成することによってノイズの影響を低減する。
第1の実施形態の欠陥検出装置1が平均画像を生成することによって、熱画像に含まれるノイズの影響を低減したのに対し、第3の実施形態の欠陥検出装置1bは、複数の熱画像の差分によって表される差分画像を生成することによってノイズの影響を低減する。
図15は、第3の実施形態の欠陥検出装置1bの機能構成を示す機能ブロック図である。第3の実施形態の欠陥検出装置1bは、平均画像取得部15に代えて差分画像取得部19を備える点、特徴量取得部16を備えない点、欠陥判定部17に代えて欠陥判定部17bを備える点で第1の実施形態の欠陥検出装置1と異なる。
差分画像取得部19(差分画像生成部)は、熱画像取得部12によって取得された複数の熱画像に基づいて差分画像を取得する。差分画像取得部19は、取得した差分画像を欠陥判定部17bに出力する。
欠陥判定部17bは、差分画像取得部19によって取得された差分画像から欠陥部位を検出する。
図16は、差分画像の第1の具体例を示す図である。図16の熱画像350及び360は、差分画像の生成に用いられる熱画像の例である。熱画像350は、欠陥領域351、ノイズ領域352及び353を有する。熱画像360は、欠陥領域361、ノイズ領域362及び363を有する。
差分画像900は、熱画像350及び360に基づいて生成された差分画像である。差分画像900には、熱画像350における欠陥領域351、ノイズ領域352及び353が、それぞれ欠陥領域911、ノイズ領域912及び913として現れている。同様に、差分画像900には、熱画像360における欠陥領域361、ノイズ領域362及び463が、それぞれ欠陥領域921、ノイズ領域922及び923として現れている。
この場合、差分画像900に現れる欠陥領域911及び921は、J方向にフレーム間移動距離mだけ離れた位置に逆符号となって現れる。一方、差分画像900に現れるノイズ領域は車両100の走行とは相関しないため、各ノイズ領域間の位置関係に相関はない。
そのため、欠陥判定部17bは、差分画像900から、フレーム間移動距離mだけ離れた逆符号の領域の対を検出することによって、差分画像から欠陥部位を検出する。
そのため、欠陥判定部17bは、差分画像900から、フレーム間移動距離mだけ離れた逆符号の領域の対を検出することによって、差分画像から欠陥部位を検出する。
図17は、差分画像の第2の具体例を示す図である。図17の熱画像370及び380は、差分画像の生成に用いられる熱画像の例である。熱画像370及び380は、それぞれ、図15の熱画像350及び360に濃度のむらが現れた場合の熱画像を表している。このような濃度むらも熱画像に現れるノイズの一種である。赤外線カメラ110によって撮像される熱画像には、図17のように画像中央部の濃度が高くなる傾向がある。図17の差分画像910は、このような濃度むらを持つ熱画像370及び380に基づいて生成された差分画像である。差分画像では、このような同様のパターンで現れる濃度むらが相殺される。そのため、差分画像を用いることによって、熱画像に基づく欠陥検出におけるノイズの影響を低減することができる。
このように構成された第3の実施形態の欠陥検出装置1bは、連続して撮像された熱画像の差分で表される差分画像に基づいて、検査対象の欠陥部位を検出する。このような構成を備えることにより、欠陥検出装置1bは、熱画像に基づく欠陥検出において、ノイズによる欠陥部位の誤検出を抑制することが可能となる。
以下、実施形態の欠陥検出装置の変形例について説明する。
欠陥検出装置1の欠陥判定部17は、熱画像が示す温度分布に基づいて検出された被疑部位が欠陥であるか否かを、予め登録された例外情報(位置情報)に基づいて判定するように構成されてもよい。例外情報は、検査対象とは異なる被写体の位置を示す情報である。欠陥判定部17は、温度分布に基づいて検出された被疑部位の位置が、例外情報の示す被写体の位置に一致した場合、その被疑部位を欠陥の検出結果から除外する。例えば、トンネル内の照明を欠陥の検出結果から除外する場合、トンネルの入口から照明装置までの距離を予め例外情報として登録しておく。この場合、欠陥判定部17は、照明装置の撮像領域が欠陥の被疑部位として検出された熱画像のフレーム数Fと、熱画像間のフレーム間移動距離mとに基づいて、トンネルの入口から被疑部位までの距離F×mを算出する。欠陥判定部17は、算出したトンネルの入口から被疑部位までの距離が例外情報に登録されている場合、その被疑部位を欠陥の検出結果から除外する。このように、欠陥判定部17が、熱画像に基づく欠陥の検出結果に対してさらなる判定を行うことにより、欠陥検出装置1は、より精度良く欠陥を検出することができる。
第1の実施形態の欠陥検出装置1は、複数の熱画像に基づく平均画像を生成することによって、熱画像に基づく欠陥検出におけるノイズの影響を低減したが、平均画像は、複数の熱画像の画素値に基づいて取得される代表値によって表される画像であれば他のどのような画像であってもよい。例えば、欠陥検出装置1は、平均画像に代えて、画素値の最頻値などで表される画像を生成してもよい。
以上説明した少なくともひとつの実施形態によれば、撮像部によって撮像される被写体の撮像位置が連続する熱画像間で移動した距離を示すフレーム間移動距離を取得するフレーム間移動距離取得部と、複数の熱画像に基づいて同じ範囲の被写体が撮像された領域の平均画像を生成する平均画像生成部と、を持つことにより、熱画像に基づく欠陥の検出をより精度良く行うことができる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
1,1a,1b…欠陥検出装置、11…記憶部、12…熱画像取得部、13…速度情報取得部、14,14a…フレーム間移動距離算出部、15…平均画像取得部、16…特徴量取得部、17,17b…欠陥判定部、18…可視画像取得部、19…差分画像取得部、100…車両、110…赤外線カメラ、111…視野範囲、120…車速計、130…可視カメラ、131…視野範囲、200…トンネル、300,310,320,330−1〜330−4,350,360,370…熱画像、333−1〜333−4…部分画像、311,321,331,351,361…欠陥領域、332−1〜332−8,352,362…ノイズ領域、400…画像、500,510,520−1,520−2…平均画像、501−1〜501−4,511−1〜511−n…単位領域、610,620…可視画像、611,621…被写体領域、710,720…二値化画像、810,820…特徴波形、900,910…差分画像、911,921…欠陥領域、912,913,922,923…ノイズ領域
Claims (12)
- 相対的に移動する検査対象が連続して撮像された複数の熱画像を取得する熱画像取得部と、
連続する前記熱画像間での被写体の撮像位置のずれを示すフレーム間移動距離を取得するフレーム間移動距離取得部と、
前記熱画像取得部によって取得された複数の前記熱画像と、前記フレーム間移動距離取得部によって取得された前記フレーム間移動距離とに基づいて、前記熱画像取得部によって取得された複数の前記熱画像における同じ被写体が撮像された画素の画素値に基づいて取得される代表値によって表される第2の熱画像を生成する画像生成部と、
前記第2の熱画像における画素値の分布に基づいて、前記第2の熱画像から前記検査対象の欠陥部位を検出する欠陥判定部と、
を備える欠陥検出装置。 - 前記第2の熱画像は、複数の前記熱画像における同じ被写体が撮像された画素の画素値の平均値によって表される画像である、
請求項1に記載の欠陥検出装置。 - 相対的に移動する検査対象が連続して撮像された複数の熱画像を取得する熱画像取得部と、
連続する前記熱画像間での被写体の撮像位置のずれを示すフレーム間移動距離を取得するフレーム間移動距離取得部と、
前記熱画像取得部によって取得された複数の前記熱画像に基づいて、前記熱画像の画素値の差分によって表される差分画像を生成する差分画像生成部と、
前記フレーム間移動距離取得部によって取得された前記フレーム間移動距離と、前記差分画像生成部によって生成された前記差分画像における画素値の分布と、に基づいて前記差分画像から前記検査対象の欠陥部位を検出する欠陥判定部と、
を備える欠陥検出装置。 - 前記検査対象に対する前記撮像部の相対的な移動の速度を示す速度情報を取得する速度情報取得部をさらに備え、
前記フレーム間移動距離取得部は、前記速度情報取得部によって取得された前記速度情報に基づいて前記フレーム間移動距離を取得する、
請求項1又は3に記載の欠陥検出装置。 - 相対的に移動する被写体が連続して撮像された複数の画像を取得する画像取得部をさらに備え、
前記フレーム間移動距離取得部は、前記画像取得部によって取得された複数の前記画像に基づいて前記フレーム間移動距離を取得する、
請求項1又は3に記載の欠陥検出装置。 - 前記熱画像に撮像される前記検査対象と異なる被写体の位置を示す位置情報を記憶する記憶部をさらに備え、
前記欠陥判定部は、前記記憶部に記憶された前記位置情報が、前記熱画像に基づいて検出された欠陥部位の位置を示す場合、前記欠陥部位を欠陥でないと判定する、
請求項1又は3に記載の欠陥検出装置。 - 相対的に移動する検査対象が連続して撮像された複数の熱画像を取得する熱画像取得ステップと、
連続する前記熱画像間での被写体の撮像位置のずれを示すフレーム間移動距離を取得するフレーム間移動距離取得ステップと、
前記熱画像取得ステップにおいて取得された複数の前記熱画像と、前記フレーム間移動距離取得ステップにおいて取得された前記フレーム間移動距離とに基づいて、前記熱画像取得部によって取得された複数の前記熱画像における同じ被写体が撮像された画素の画素値に基づいて取得される代表値によって表される第2の熱画像を生成する画像生成ステップと、
前記第2の熱画像における画素値の分布に基づいて、前記第2の熱画像から前記検査対象の欠陥部位を検出する欠陥判定ステップと、
を有する欠陥検出方法。 - 前記第2の熱画像は、複数の前記熱画像における同じ被写体が撮像された画素の画素値の平均値によって表される画像である、
請求項7に記載の欠陥検出方法。 - 相対的に移動する検査対象が連続して撮像された複数の熱画像を取得する熱画像取得ステップと、
連続する前記熱画像間での被写体の撮像位置のずれを示すフレーム間移動距離を取得するフレーム間移動距離取得ステップと、
前記熱画像取得ステップにおいて取得された複数の前記熱画像に基づいて、前記熱画像の画素値の差分によって表される差分画像を生成する差分画像生成ステップと、
前記フレーム間移動距離取得ステップにおいて取得された前記フレーム間移動距離と、前記差分画像生成ステップによって生成された前記差分画像における画素値の分布と、に基づいて前記差分画像から前記検査対象の欠陥部位を検出する欠陥判定ステップと、
を有する欠陥検出方法。 - 前記検査対象に対する前記撮像部の相対的な移動の速度を示す速度情報を取得する速度情報取得ステップをさらに有し、
前記フレーム間移動距離取得ステップでは、前記速度情報取得ステップにおいて取得された前記速度情報に基づいて前記フレーム間移動距離を取得する、
請求項7又は9に記載の欠陥検出方法。 - 相対的に移動する検査対象が連続して撮像された複数の画像を取得する画像取得ステップをさらに有し、
前記フレーム間移動距離取得ステップでは、前記画像取得ステップにおいて取得された複数の前記画像に基づいて前記フレーム間移動距離を取得する、
請求項7又は9に記載の欠陥検出方法。 - 前記欠陥判定ステップでは、前記熱画像に撮像される前記検査対象と異なる被写体の位置を示す位置情報が、前記熱画像に基づいて検出された欠陥部位の位置を示す場合、前記欠陥部位を欠陥でないと判定する、
請求項7又は9に記載の欠陥検出方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015215236A JP2017083414A (ja) | 2015-10-30 | 2015-10-30 | 欠陥検出装置及び欠陥検出方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015215236A JP2017083414A (ja) | 2015-10-30 | 2015-10-30 | 欠陥検出装置及び欠陥検出方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2017083414A true JP2017083414A (ja) | 2017-05-18 |
Family
ID=58712918
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015215236A Pending JP2017083414A (ja) | 2015-10-30 | 2015-10-30 | 欠陥検出装置及び欠陥検出方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2017083414A (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021085788A (ja) * | 2019-11-28 | 2021-06-03 | 株式会社リコー | 評価装置、評価方法 |
CN114088726A (zh) * | 2021-12-08 | 2022-02-25 | 西安石油大学 | 管道焊缝表面缺陷检测平台 |
CN114219765A (zh) * | 2021-11-18 | 2022-03-22 | 电子科技大学 | 一种基于相位特征自适应提取红外热图像缺陷的方法 |
-
2015
- 2015-10-30 JP JP2015215236A patent/JP2017083414A/ja active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021085788A (ja) * | 2019-11-28 | 2021-06-03 | 株式会社リコー | 評価装置、評価方法 |
CN112964720A (zh) * | 2019-11-28 | 2021-06-15 | 株式会社理光 | 评价装置、评价方法、存储介质以及计算机装置 |
CN114219765A (zh) * | 2021-11-18 | 2022-03-22 | 电子科技大学 | 一种基于相位特征自适应提取红外热图像缺陷的方法 |
CN114219765B (zh) * | 2021-11-18 | 2023-03-10 | 电子科技大学 | 一种基于相位特征自适应提取红外热图像缺陷的方法 |
CN114088726A (zh) * | 2021-12-08 | 2022-02-25 | 西安石油大学 | 管道焊缝表面缺陷检测平台 |
CN114088726B (zh) * | 2021-12-08 | 2024-04-02 | 西安石油大学 | 管道焊缝表面缺陷检测平台 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109816673B (zh) | 一种非极大值抑制、动态阈值计算及图像边缘检测方法 | |
CN103994724B (zh) | 基于数字图像处理技术的结构二维位移及应变监测方法 | |
US20200051266A1 (en) | A device and method for obtaining distance information from views | |
CN103927750A (zh) | 棋盘格图像角点亚像素的检测方法 | |
JP2017083414A (ja) | 欠陥検出装置及び欠陥検出方法 | |
US9147257B2 (en) | Consecutive thin edge detection system and method for enhancing a color filter array image | |
JP2017227606A (ja) | 欠陥検出装置及び欠陥検出方法 | |
US11776137B2 (en) | Systems and methods for detecting motion during 3D data reconstruction | |
JP6278880B2 (ja) | 水位計測装置 | |
JP5274173B2 (ja) | 車両検査装置 | |
CN109242895B (zh) | 一种基于多相机系统实时三维测量的自适应深度约束方法 | |
JP2015215199A (ja) | 自発光材料画像処理装置及び自発光材料画像処理方法 | |
KR20180088596A (ko) | 모션 인코더 | |
JP2011233060A (ja) | 物体認識装置、物体認識方法、及びコンピュータプログラム | |
JP2004077290A (ja) | 3次元形状計測装置および方法 | |
US7257248B2 (en) | Non-contact measurement system and method | |
US10062155B2 (en) | Apparatus and method for detecting defect of image having periodic pattern | |
CN109064496A (zh) | 一种遥感图像对象层次的变化检测方法 | |
KR101294967B1 (ko) | 원형 선재의 표면 결함 검출 방법 및 장치 | |
CN101859384B (zh) | 目标图像序列度量方法 | |
CN111473944B (zh) | 观测流场中存在复杂壁面的piv数据修正方法、装置 | |
Chen et al. | Fast quality-guided phase unwrapping algorithm for 3D profilometry based on object image edge detection | |
JP7325020B2 (ja) | 検査装置及び検査方法 | |
JP2009032284A (ja) | 移動物体検出装置 | |
CN104751431A (zh) | 一种基于图像处理的方法和装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20170912 Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20170912 |