JP2017069550A - Powder-compact magnetic core, and coil part - Google Patents

Powder-compact magnetic core, and coil part Download PDF

Info

Publication number
JP2017069550A
JP2017069550A JP2016175870A JP2016175870A JP2017069550A JP 2017069550 A JP2017069550 A JP 2017069550A JP 2016175870 A JP2016175870 A JP 2016175870A JP 2016175870 A JP2016175870 A JP 2016175870A JP 2017069550 A JP2017069550 A JP 2017069550A
Authority
JP
Japan
Prior art keywords
powder
iron powder
mass
core
bare
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016175870A
Other languages
Japanese (ja)
Other versions
JP6702830B2 (en
Inventor
麻子 渡▲辺▼
Asako Watanabe
麻子 渡▲辺▼
友之 上野
Tomoyuki Ueno
友之 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Sintered Alloy Ltd
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Sintered Alloy Ltd
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Sintered Alloy Ltd, Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Sintered Alloy Ltd
Publication of JP2017069550A publication Critical patent/JP2017069550A/en
Application granted granted Critical
Publication of JP6702830B2 publication Critical patent/JP6702830B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide: a powder-compact magnetic core which enables the cutting of use of an expensive material in quantity, and having a requisite magnetic property; and a coil part with such a powder-compact magnetic core.SOLUTION: A powder-compact magnetic core having soft magnetic powder comprises: bare iron powder without insulative coating; and a powdery lubricant having a melting point of 120°C or higher. In the soft magnetic powder, the content of the bare iron powder is over 45 mass%. In the powder-compact magnetic core, the content of the lubricant is 0.05-0.5 mass%.SELECTED DRAWING: Figure 1

Description

本発明は、圧粉磁心、及びコイル部品に関する。   The present invention relates to a dust core and a coil component.

特許文献1には、絶縁被覆を備える被覆鉄粉を主体とし、極僅かな脂肪族系潤滑剤を含有する圧粉磁心が開示されている。この圧粉磁心は、被覆鉄粉と脂肪族系潤滑剤との混合粉末を加圧圧縮した後、脱型した圧縮成形体を熱処理することで得られる。   Patent Document 1 discloses a dust core mainly composed of coated iron powder having an insulating coating and containing a very small amount of an aliphatic lubricant. This powder magnetic core can be obtained by heat-pressing a compression molded body that has been demolded after pressurizing and compressing a mixed powder of coated iron powder and an aliphatic lubricant.

特開2015−70077号公報Japanese Patent Laying-Open No. 2015-70077

コイル部品などに利用される圧粉磁心に対して、低コスト化が望まれている。圧粉磁心の低コスト化の観点から、圧粉磁心の構成材料である被覆鉄粉の使用量を削減し、被覆鉄粉の代わりに絶縁被覆を備えていない安価な裸鉄粉を用いることが望まれている。   Cost reduction is desired for powder magnetic cores used for coil parts and the like. From the viewpoint of reducing the cost of dust cores, it is possible to reduce the amount of coated iron powder that is a constituent material of the dust core, and use cheap bare iron powder that does not have an insulation coating instead of coated iron powder. It is desired.

従来の圧粉磁心は、特許文献1に記載のように、被覆鉄粉を用いることで、絶縁被覆によって圧粉磁心の電気抵抗を高めて、渦電流損失といったコアロスを低減している。被覆鉄粉の代わりに裸鉄粉を用いると、裸鉄粉を構成する各々の鉄粒子同士が結合して大きな導通部分が生じて渦電流の増大を招き易く、コアロスが増大する虞がある。特に、圧粉磁心は、構成する鉄粉の大きさが大きいほど透磁率が向上するが、裸鉄粉の大きさが大きいと更にコアロスの増大を招き易い。   As described in Patent Document 1, the conventional dust core uses coated iron powder to increase the electrical resistance of the dust core by insulating coating and reduce core loss such as eddy current loss. When bare iron powder is used in place of the coated iron powder, the iron particles constituting the bare iron powder are combined with each other to form a large conduction portion, which tends to increase eddy current and increase core loss. In particular, in the dust core, the permeability increases as the size of the iron powder constituting it increases. However, if the size of the bare iron powder is large, the core loss tends to increase further.

そこで、高価な材料の使用量を削減でき、かつ必要な磁気特性を有する圧粉磁心を提供することを目的の一つとする。また、高価な材料の使用量を削減でき、かつ必要な磁気特性を有する圧粉磁心を備えるコイル部品を提供することを別の目的の一つとする。   Accordingly, an object of the present invention is to provide a dust core that can reduce the amount of expensive materials used and that has necessary magnetic properties. Another object is to provide a coil component including a dust core that can reduce the amount of expensive material used and has the necessary magnetic properties.

本開示に係る圧粉磁心は、
軟磁性粉末を有する圧粉磁心であって、
絶縁被覆を備えていない裸鉄粉と、
融点が120℃以上である粉末状の潤滑剤と、を備え、
前記軟磁性粉末における前記裸鉄粉の含有量が45質量%超であり、
前記圧粉磁心における前記潤滑剤の含有量が0.05質量%以上0.5質量%以下である。
The dust core according to the present disclosure is:
A dust core having soft magnetic powder,
Bare iron powder without insulation coating,
A powdery lubricant having a melting point of 120 ° C. or higher,
The content of the bare iron powder in the soft magnetic powder is more than 45% by mass,
The content of the lubricant in the dust core is 0.05% by mass or more and 0.5% by mass or less.

本開示に係るコイル部品は、
コイルと、磁性コアと、を備えるコイル部品であって、
前記磁性コアの少なくとも一部に上記本開示に係る圧粉磁心を備える。
The coil component according to the present disclosure is:
A coil component comprising a coil and a magnetic core,
At least a part of the magnetic core includes the dust core according to the present disclosure.

上記の圧粉磁心及び上記のコイル部品は、高価な材料の使用量を削減でき、かつ必要な磁気特性を有する。   The dust core and the coil component described above can reduce the amount of expensive materials used and have necessary magnetic properties.

実施形態の圧粉磁心の組織を模式的に示す説明図である。It is explanatory drawing which shows typically the structure | tissue of the powder magnetic core of embodiment. 実施形態の圧粉磁心を模式的に示す説明図である。It is explanatory drawing which shows typically the powder magnetic core of embodiment. 実施形態1のコイル部品を示す概略構成図である。FIG. 2 is a schematic configuration diagram illustrating a coil component according to the first embodiment. 実施形態2のコイル部品を示す概略構成図である。FIG. 6 is a schematic configuration diagram showing a coil component according to a second embodiment. 実施形態3のコイル部品を示す概略構成図である。FIG. 6 is a schematic configuration diagram illustrating a coil component according to a third embodiment.

[本発明の実施形態の説明]
本発明者らは、高価な材料の使用量を削減でき、かつ必要な磁気特性を有する圧粉磁心を製造するにあたり、絶縁被覆を備えていない裸鉄粉を用いて種々検討を行った。その結果、高融点の粉末状の潤滑剤を添加することで、裸鉄粉の含有量が多くても、裸鉄粉間に潤滑剤が介在されることになり、コアロスの増大が抑制され、かつ良好な磁気特性を有する圧粉磁心が得られる、との知見を得た。最初に本発明の実施形態の内容を列記して説明する。
[Description of Embodiment of the Present Invention]
The inventors of the present invention have made various studies using bare iron powder that does not have an insulating coating in order to manufacture a dust core that can reduce the amount of expensive material used and that has necessary magnetic properties. As a result, by adding a powdery lubricant with a high melting point, even if the content of bare iron powder is large, the lubricant will be interposed between the bare iron powder, and the increase in core loss is suppressed, And the knowledge that the powder magnetic core which has a favorable magnetic characteristic was obtained was acquired. First, the contents of the embodiment of the present invention will be listed and described.

(1)本発明の実施形態に係る圧粉磁心は、
軟磁性粉末を有する圧粉磁心であって、
絶縁被覆を備えていない裸鉄粉と、
融点が120℃以上である粉末状の潤滑剤と、を備え、
前記軟磁性粉末における前記裸鉄粉の含有量が45質量%超であり、
前記圧粉磁心における前記潤滑剤の含有量が0.05質量%以上0.5質量%以下である。
(1) A powder magnetic core according to an embodiment of the present invention includes:
A dust core having soft magnetic powder,
Bare iron powder without insulation coating,
A powdery lubricant having a melting point of 120 ° C. or higher,
The content of the bare iron powder in the soft magnetic powder is more than 45% by mass,
The content of the lubricant in the dust core is 0.05% by mass or more and 0.5% by mass or less.

上記の圧粉磁心は、裸鉄粉が軟磁性粉末中に45質量%超も含有されており、この裸鉄粉の含有量の分だけ、絶縁被覆を備える被覆鉄粉の使用量を削減できる。裸鉄粉は被覆鉄粉に比較して安価であるため、裸鉄粉の含有量が45質量%超である上記の圧粉磁心は、経済性に優れる。上記の圧粉磁心は、融点が120℃以上である粉末状の潤滑剤が特定の含有量で添加されていることで、この潤滑剤が裸鉄粉間で絶縁材の役割を果たし、裸鉄粉を構成する鉄粒子同士が結合して導通部分が生じることによる渦電流の増大を抑制でき、コアロスの増大を抑制できる。潤滑剤の融点が120℃以上の高融点であることで、圧粉磁心の製造条件や使用条件における高温においても、潤滑剤が溶解し液体化することを抑制でき、裸鉄粉間を安定して絶縁することができる。また、潤滑剤が粉末状であることで、鉄粒子同士の間に点状で絶縁材が存在することになり、被覆鉄粉のように鉄粒子同士の間に膜状で絶縁材が存在する場合に比較して磁束が通り易く、良好な透磁率を確保することができる。   In the above-mentioned dust core, bare iron powder is contained in the soft magnetic powder in an amount of more than 45% by mass, and the amount of coated iron powder provided with an insulating coating can be reduced by the amount of the bare iron powder content. . Since bare iron powder is less expensive than coated iron powder, the above-mentioned dust core having a bare iron powder content of more than 45% by mass is excellent in economic efficiency. The above powder magnetic core has a powdery lubricant having a melting point of 120 ° C. or higher added at a specific content, and this lubricant serves as an insulating material between the bare iron powders. It is possible to suppress an increase in eddy current due to the generation of a conductive portion by combining iron particles constituting the powder, and it is possible to suppress an increase in core loss. Since the melting point of the lubricant is a high melting point of 120 ° C. or higher, it is possible to suppress the dissolution and liquefaction of the lubricant even at high temperatures in the production conditions and usage conditions of the powder magnetic core, and to stabilize the space between the bare iron powders. Can be insulated. In addition, since the lubricant is in a powder form, an insulating material exists between the iron particles in the form of dots, and an insulating material exists in the form of a film between the iron particles like the coated iron powder. Compared with the case, the magnetic flux easily passes, and good magnetic permeability can be secured.

(2)上記の圧粉磁心の一例として、
前記圧粉磁心は、長尺片を有し、
前記長尺片の横断面又は縦断面において、前記裸鉄粉は、短径及び長径を有する扁平形状であり、その短径方向を圧縮方向とするとき、
前記長尺片は、その長手方向及び前記圧縮方向の双方に直交する方向の長さが前記裸鉄粉の平均粒径の80倍以下である細幅部を有する形態が挙げられる。
(2) As an example of the above powder magnetic core,
The dust core has a long piece,
In the transverse section or longitudinal section of the long piece, the bare iron powder is a flat shape having a minor axis and a major axis, and when the minor axis direction is a compression direction,
The said long piece has a form which has the narrow part whose length of the direction orthogonal to both the longitudinal direction and the said compression direction is 80 times or less of the average particle diameter of the said bare iron powder.

圧粉磁心の圧縮方向を判別する指標の一つとして、圧粉磁心の断面において、その断面に存在する裸鉄粉(鉄粒子)の伸び方向を見ること、が挙げられる。圧粉磁心は、原料粉末を加圧圧縮することから、原料粉末を構成する各鉄粒子は圧縮方向に押し潰されて(塑性変形して)、代表的には、圧縮方向と直交する方向に伸びた形状になる。つまり、裸鉄粉が短径及び長径を有する扁平形状である場合、短径方向が圧縮方向であると予想できる。そうすると、長尺片の長手方向及び圧縮方向の双方に直交する方向は、裸鉄粉が伸びた長径方向となる。上記の圧粉磁心は、長尺片が、その長手方向及び圧縮方向の双方に直交する方向の長さが裸鉄粉の平均粒径の80倍以下の細幅部を有する。   One of the indicators for discriminating the compression direction of the dust core is to look at the elongation direction of bare iron powder (iron particles) existing in the cross section of the dust core. Since the powder magnetic core compresses and compresses the raw material powder, each iron particle constituting the raw material powder is crushed in the compression direction (plastically deformed), typically in a direction orthogonal to the compression direction. It becomes an elongated shape. That is, when the bare iron powder has a flat shape having a minor axis and a major axis, it can be expected that the minor axis direction is the compression direction. If it does so, the direction orthogonal to both the longitudinal direction and compression direction of a long piece turns into the major axis direction which bare iron powder extended. In the powder magnetic core, the long piece has a narrow portion whose length in the direction orthogonal to both the longitudinal direction and the compression direction is 80 times or less the average particle diameter of the bare iron powder.

上記の形状及び寸法の圧粉磁心は、以下の二つの理由により、コアロスの増大を更に抑制し易い。一つ目は、裸鉄粉の短径方向は、各鉄粒子同士の粒界が多くなる傾向にあり、この鉄粒子間に潤滑剤が介在されるため、渦電流が流れ難い。二つ目は、裸鉄粉の長径方向は、各鉄粒子同士の粒界が少なくなる傾向にあり、渦電流が流れ易いが、長尺片の長手方向を磁束方向とした場合には、長尺片の長手方向以外における裸鉄粉の長径方向に沿った長尺片(圧粉磁心)の長さが小さいため、渦電流が流れる長さが小さくなる。以上より、上記の圧粉磁心は、裸鉄粉の長径方向に沿った長さを調整することによって、コアロスの増大を抑制し易い。   The powder magnetic core having the above shape and size is easy to further suppress an increase in core loss for the following two reasons. First, the short diameter direction of the bare iron powder tends to increase the grain boundary between the iron particles, and the lubricant is interposed between the iron particles, so that eddy currents hardly flow. Second, the major axis direction of bare iron powder tends to reduce the grain boundary between each iron particle, and eddy current tends to flow, but if the longitudinal direction of the long piece is the magnetic flux direction, it is long. Since the length of the long piece (powder magnetic core) along the major axis direction of the bare iron powder other than the lengthwise direction of the scale piece is small, the length in which the eddy current flows is small. From the above, the powder magnetic core can easily suppress an increase in core loss by adjusting the length of the bare iron powder along the major axis direction.

(3)上記の圧粉磁心の一例として、
前記潤滑剤は、ステアリン酸金属塩を含む形態が挙げられる。
(3) As an example of the above powder magnetic core,
Examples of the lubricant include a form containing a metal stearate.

融点が120℃以上である潤滑剤として、ステアリン酸金属塩を好適に利用することができる。潤滑剤としてステアリン酸金属塩を含むことで、金型からの脱型時に、成形体と金型との擦れ合い(摩擦)などを低減することができ、脱型性に優れる。   As a lubricant having a melting point of 120 ° C. or higher, a metal stearate can be suitably used. By including a stearic acid metal salt as a lubricant, at the time of demolding from the mold, it is possible to reduce the friction (friction) between the molded body and the mold, and the demoldability is excellent.

(4)上記の圧粉磁心の一例として、
前記裸鉄粉は、平均粒径が40μm以上100μm以下であり、
前記裸鉄粉の構成粒子のうち粒径が200μm以上の粒子の割合が10質量%以下である形態が挙げられる。
(4) As an example of the above powder magnetic core,
The bare iron powder has an average particle size of 40 μm or more and 100 μm or less,
The form whose particle | grain ratio is 200 mass% or less among the constituent particles of the said bare iron powder is mentioned.

裸鉄粉は、平均粒径が100μm以下であり、かつ構成粒子(鉄粒子)の粒径が200μm以上の粒子の割合が10質量%以下であることで、鉄粒子同士が結合したとしても大きな導通部分が生じることによる渦電流の増大を抑制し易く、コアロスの増大を抑制し易い。一方、裸鉄粉の平均粒径が40μm以上であることで、製造過程で裸鉄粉を取り扱い易く、圧縮性にも優れる。   Bare iron powder has an average particle size of 100 μm or less, and the proportion of particles having a particle size of constituent particles (iron particles) of 200 μm or more is 10% by mass or less, which is large even when iron particles are bonded to each other. It is easy to suppress an increase in eddy current due to the occurrence of a conductive portion, and it is easy to suppress an increase in core loss. On the other hand, when the average particle size of the bare iron powder is 40 μm or more, it is easy to handle the bare iron powder in the manufacturing process, and the compressibility is excellent.

(5)上記の圧粉磁心の一例として、
更に、絶縁被覆を備える被覆鉄粉を備え、
前記軟磁性粉末における前記被覆鉄粉の含有量が30質量%以上55質量%未満である形態が挙げられる。
(5) As an example of the above powder magnetic core,
Furthermore, it comprises a coated iron powder with an insulating coating,
The form whose content of the said covering iron powder in the said soft-magnetic powder is 30 mass% or more and less than 55 mass% is mentioned.

圧粉磁心が被覆鉄粉を備えることで、裸鉄粉間に被覆鉄粉が存在することになる。よって、裸鉄粉の構成粒子の周囲に被覆鉄粉の絶縁被覆が存在することで、裸鉄粉の構成粒子同士が接触することを抑制し易く、渦電流の増大を抑制でき、コアロスの増大を抑制し易い。軟磁性粉末中の被覆鉄粉の含有量が30質量%以上であることで、絶縁被覆の介在によって絶縁性により優れて、コアロスの増大を抑制し易い。一方、軟磁性粉末中の被覆鉄粉の含有量が55質量%以下であることで、裸鉄粉の含有量を相対的に多くでき、高価な被覆鉄粉の含有量を削減できる。   When the dust core has the coated iron powder, the coated iron powder exists between the bare iron powders. Therefore, since the insulation coating of the coated iron powder exists around the constituent particles of the bare iron powder, it is easy to suppress contact between the constituent particles of the bare iron powder, the increase in eddy current can be suppressed, and the core loss is increased. It is easy to suppress. When the content of the coated iron powder in the soft magnetic powder is 30% by mass or more, the insulation is excellent due to the intervening insulating coating, and the increase in core loss is easily suppressed. On the other hand, when the content of the coated iron powder in the soft magnetic powder is 55% by mass or less, the content of the bare iron powder can be relatively increased, and the content of the expensive coated iron powder can be reduced.

(6)上記の圧粉磁心の一例として、
前記裸鉄粉は、酸素の含有量が0.1質量%未満であり、リン、クロム、マンガン、ニッケル、及び銅の合計含有量が0.2質量%未満である形態が挙げられる。
(6) As an example of the above powder magnetic core,
Examples of the bare iron powder include a form in which the oxygen content is less than 0.1 mass% and the total content of phosphorus, chromium, manganese, nickel, and copper is less than 0.2 mass%.

裸鉄粉は、酸素の含有量が0.1質量%未満(0質量%を含む)であり、かつリン、クロム、マンガン、ニッケル、及び銅の合計含有量が0.2質量%未満(0質量%を含む)であると、裸鉄粉内部の不純物が少ないため、ヒステリシス損を低減できる。特に、圧粉磁心の製造過程で圧縮後に熱処理を行わない場合、不純物が少ない裸鉄粉を用いることで、効果的にヒステリシス損を低減できる。更に、不純物が少ない裸鉄粉は変形性に優れるため、裸鉄粉間を隙間なく埋めることで、優れた透磁率の圧粉磁心を得ることができる。   The bare iron powder has an oxygen content of less than 0.1% by mass (including 0% by mass) and a total content of phosphorus, chromium, manganese, nickel, and copper of less than 0.2% by mass (0 Hysteresis loss can be reduced because there are few impurities inside bare iron powder. In particular, when heat treatment is not performed after compression in the manufacturing process of the powder magnetic core, hysteresis loss can be effectively reduced by using bare iron powder with less impurities. Furthermore, since bare iron powder with few impurities is excellent in a deformability, the powder magnetic core of the outstanding permeability can be obtained by filling between bare iron powders without a gap.

(7)本発明の実施形態に係るコイル部品は、
コイルと、磁性コアと、を備えるコイル部品であって、
前記磁性コアの少なくとも一部に上記(1)から(6)のいずれか1つに記載の圧粉磁心を備える。
(7) The coil component according to the embodiment of the present invention is
A coil component comprising a coil and a magnetic core,
At least a part of the magnetic core includes the dust core according to any one of (1) to (6).

上記のコイル部品は、高価な被覆鉄粉の使用量を削減でき、かつコアロスの増大を抑制でき、良好な透磁率を有する。   Said coil components can reduce the usage-amount of expensive covering iron powder, can suppress the increase in core loss, and have favorable magnetic permeability.

(8)上記のコイル部品の一例として、
前記圧粉磁心は、長尺片を有し、
前記長尺片の横断面において、前記裸鉄粉は、短径及び長径を有する扁平形状であり、
前記長尺片は、その長手方向が前記コイルの励磁に伴う磁束方向に沿った方向となるように配置されている形態が挙げられる。
(8) As an example of the above coil component,
The dust core has a long piece,
In the cross section of the long piece, the bare iron powder is a flat shape having a short diameter and a long diameter,
The said long piece has the form arrange | positioned so that the longitudinal direction may turn into the direction along the magnetic flux direction accompanying the excitation of the said coil.

圧粉磁心の圧縮方向によっては、圧粉磁心をその長手方向が磁束に沿った方向となるように配置することで、良好な透磁率を確保し易い。圧粉磁心の横断面において裸鉄粉が短径及び長径を有する扁平形状であるということは、圧粉磁心の長手方向に裸鉄粉の長径が沿うということになる。裸鉄粉の長径方向は、裸鉄粉の構成粒子(鉄粒子)同士の粒界が少なくなることで、磁束が通り易いため、圧粉磁心の長手方向に裸鉄粉の長径が沿うことで、良好な透磁率を確保できることになる。   Depending on the compression direction of the dust core, it is easy to ensure good magnetic permeability by arranging the dust core so that its longitudinal direction is along the magnetic flux. The fact that the bare iron powder has a flat shape having a short diameter and a long diameter in the cross section of the dust core means that the long diameter of the bare iron powder is along the longitudinal direction of the dust core. The major axis direction of bare iron powder is that the grain boundary between the bare iron powder constituent particles (iron particles) is reduced, and magnetic flux easily passes. Therefore, the major axis of the bare iron powder is along the longitudinal direction of the dust core. Thus, good magnetic permeability can be secured.

[本発明の実施形態の詳細]
本発明の実施形態の詳細を、以下に説明する。なお、本発明はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。図中の同一符号は、同一名称物を示す。
[Details of the embodiment of the present invention]
Details of the embodiment of the present invention will be described below. In addition, this invention is not limited to these illustrations, is shown by the claim, and intends that all the changes within the meaning and range equivalent to a claim are included. The same code | symbol in a figure shows the same name thing.

〔圧粉磁心〕
実施形態の圧粉磁心1は、軟磁性粉末を有する成形体であり、図1に示すように絶縁被覆を備えていない鉄粒子から構成される裸鉄粉20を比較的多量に含有する。圧粉磁心1は、更に潤滑剤30を備える。また、圧粉磁心1は、鉄粒子12の外周が絶縁被覆14で覆われた被覆鉄粒子から構成される被覆鉄粉10を備える。圧粉磁心1は、代表的には、原料粉末Pが圧縮成形されて、各粉末10,20を構成する各粉末粒子が塑性変形して潤滑剤30を介して相互に噛み合うなどして、形状が保持される。以下、各構成を詳細に説明する。
[Dust core]
The powder magnetic core 1 of the embodiment is a molded body having soft magnetic powder, and contains a relatively large amount of bare iron powder 20 composed of iron particles not provided with an insulating coating as shown in FIG. The dust core 1 further includes a lubricant 30. The dust core 1 also includes a coated iron powder 10 composed of coated iron particles in which the outer periphery of the iron particles 12 is covered with an insulating coating 14. Typically, the powder magnetic core 1 is formed by compressing the raw material powder P so that the powder particles constituting the powders 10 and 20 are plastically deformed and meshed with each other via the lubricant 30. Is retained. Hereinafter, each configuration will be described in detail.

・裸鉄粉(鉄粒子)
・・組成
実施形態の圧粉磁心1は、磁性成分を純鉄とすることを特徴の一つとする。鉄粒子を純鉄とすることで、圧粉磁心1は、透磁率や飽和磁束密度が高い。また、鉄粒子を純鉄とすることで、圧粉磁心1は、原料粉末Pの塑性変形性に優れて成形し易く製造性にも優れる、緻密化し易く磁気特性(特に透磁率)を高め易い、粉末粒子同士が潤滑剤30を介して十分に噛み合って機械的強度に優れる、という効果を奏する。更に、鉄粒子を純鉄とすることで、鉄合金と比較して安価であり、経済性にも優れる。実施形態の圧粉磁心1は、必須成分である裸鉄粉20、及び任意成分である被覆鉄粉10の鉄粒子12のいずれも純鉄とする。
・ Nude iron powder (iron particles)
.. Composition One feature of the dust core 1 of the embodiment is that the magnetic component is pure iron. By making the iron particles pure iron, the dust core 1 has high magnetic permeability and saturation magnetic flux density. Further, by making the iron particles pure iron, the powder magnetic core 1 is excellent in plastic deformability of the raw material powder P, is easy to mold, is excellent in manufacturability, is easily densified, and is easy to improve magnetic characteristics (especially magnetic permeability). The powder particles are sufficiently meshed with each other through the lubricant 30 and have an effect that the mechanical strength is excellent. Further, by using pure iron as the iron particles, it is cheaper than an iron alloy and is excellent in economic efficiency. In the dust core 1 of the embodiment, the bare iron powder 20 which is an essential component and the iron particles 12 of the coated iron powder 10 which is an optional component are both pure iron.

裸鉄粉20は、不純物量が少ないことを特徴の一つとする。裸鉄粉20の鉄粒子を構成する純鉄は、99質量%以上がFeであり、残部は不可避不純物とする。純鉄中の不可避不純物が少ないほど、ヒステリシス損を低減できる。裸鉄粉20は、酸素(O)の含有量が0.1質量%未満であり、かつリン(P)、クロム(Cr)、マンガン(Mn)、ニッケル(Ni)、銅(Cu)の合計含有量が0.2質量%未満であることが好ましい。この範囲であれば、不純物の含有に起因するヒステリシス損を低減し易く、透磁率を向上し易い。上記元素の含有量は少ないほど好ましく、Oの含有量は、0.08質量%以下、更に0.07質量%以下、特に0.06質量%以下であることが好ましい。P,Cr,Mn,Ni,Cuの合計含有量は、0.18質量%以下、更に0.17質量%以下、特に0.16質量%以下であることが好ましい。   One feature of the bare iron powder 20 is that the amount of impurities is small. 99 mass% or more of pure iron constituting the iron particles of the bare iron powder 20 is Fe, and the remainder is inevitable impurities. The smaller the inevitable impurities in pure iron, the lower the hysteresis loss. The bare iron powder 20 has an oxygen (O) content of less than 0.1% by mass, and the total of phosphorus (P), chromium (Cr), manganese (Mn), nickel (Ni), and copper (Cu). The content is preferably less than 0.2% by mass. If it is this range, it will be easy to reduce the hysteresis loss resulting from inclusion of an impurity, and it will be easy to improve magnetic permeability. The smaller the element content, the better. The O content is preferably 0.08% by mass or less, more preferably 0.07% by mass or less, and particularly preferably 0.06% by mass or less. The total content of P, Cr, Mn, Ni and Cu is preferably 0.18% by mass or less, more preferably 0.17% by mass or less, and particularly preferably 0.16% by mass or less.

不純物の含有量は、例えば、高周波誘導結合プラズマ(ICP)発光分光分析の他、熱分析や赤外線分光分析などを行って、総合的に判断することが挙げられる。これらの分析は、裸鉄粉20のみを対象として行う。圧粉磁心1に被覆鉄粉10を含む場合でも、圧粉磁心の製造過程で成形工程の後に熱処理を行わないため、圧粉磁心1を粉砕して裸鉄粉20と被覆鉄粉10とを取り出すことは容易であり、例えば、電子顕微鏡を用いて取り出した粉末の表面にエネルギー分散型X線分光法(EDX)を行い、被覆の有無を調べることで、裸鉄粉20を判別することができる。   For example, the content of impurities may be comprehensively determined by performing thermal analysis, infrared spectroscopy, or the like in addition to high frequency inductively coupled plasma (ICP) emission spectroscopy. These analyzes are performed only on the bare iron powder 20. Even when the dust core 1 includes the coated iron powder 10, since the heat treatment is not performed after the molding process in the manufacturing process of the dust core, the dust core 1 is pulverized to form the bare iron powder 20 and the coated iron powder 10. It is easy to take out, for example, it is possible to determine the bare iron powder 20 by performing energy dispersive X-ray spectroscopy (EDX) on the surface of the powder taken out using an electron microscope and examining the presence or absence of coating. it can.

圧粉磁心1における裸鉄粉20の組成、被覆鉄粉10の組成、潤滑剤30の組成は、製造過程で圧縮後に熱処理を行わないことで、原料粉末P(被覆鉄粉100、裸鉄粉200、潤滑剤300)の組成を実質的に維持する。   The composition of the bare iron powder 20, the composition of the coated iron powder 10, and the composition of the lubricant 30 in the powder magnetic core 1 are not subjected to heat treatment after compression in the manufacturing process, so that the raw material powder P (coated iron powder 100, bare iron powder) 200, substantially the composition of the lubricant 300).

・・含有量
軟磁性粉末における裸鉄粉20の含有量は、45質量%超であることを特徴の一つとする。裸鉄粉20の含有量が45質量%超であることで、相対的に後述する被覆鉄粉10の使用量を削減できる。裸鉄粉20の含有量が多いほど、相対的に被覆鉄粉10の使用量をより削減でき、低コスト化を実現できる。軟磁性粉末における裸鉄粉20の含有量は、50質量%以上、更に60質量%以上、65質量%以上、70質量%以上、80質量%以上、特に100質量%とすることができる。ただ、裸鉄粉20の含有量が多くなるほど、裸鉄粉20を構成する鉄粒子同士の結合による渦電流損(コアロス)が増加し易い。よって、鉄粒子同士の絶縁の確保が重要となる(詳細は後述する)。裸鉄粉20の含有量が100質量%未満の場合、軟磁性粉末の残部は、後述する被覆鉄粉10である。圧粉磁心1の軟磁性粉末の質量は、圧粉磁心1の質量から後述する潤滑剤30の質量(その他の添加材を含む場合には潤滑剤及び添加材の合計質量)を除した値とする。
.. Content One of the characteristics is that the content of the bare iron powder 20 in the soft magnetic powder is more than 45% by mass. When the content of the bare iron powder 20 is more than 45% by mass, the amount of the coated iron powder 10 described later can be relatively reduced. As the content of the bare iron powder 20 increases, the amount of the coated iron powder 10 used can be relatively reduced, and the cost can be reduced. The content of the bare iron powder 20 in the soft magnetic powder can be 50% by mass or more, further 60% by mass or more, 65% by mass or more, 70% by mass or more, 80% by mass or more, and particularly 100% by mass. However, as the content of the bare iron powder 20 increases, eddy current loss (core loss) due to the coupling between the iron particles constituting the bare iron powder 20 tends to increase. Therefore, it is important to secure insulation between the iron particles (details will be described later). When the content of the bare iron powder 20 is less than 100% by mass, the balance of the soft magnetic powder is the coated iron powder 10 described later. The mass of the soft magnetic powder of the dust core 1 is a value obtained by dividing the mass of the lubricant 30 described later from the mass of the dust core 1 (the total mass of the lubricant and additives when other additives are included). To do.

・・大きさ
裸鉄粉20は、比較的小さい鉄粒子を含むことを特徴の一つとする。具体的には、裸鉄粉20の平均粒径は、40μm以上100μm以下であることが好ましい。裸鉄粉20の平均粒径が100μm以下であることで、鉄粒子同士が結合したとしても大きな導通部分が生じることによる渦電流の増大を抑制でき、コアロスの増大を抑制できる。また、裸鉄粉20間に後述する潤滑剤30が介在し易く、潤滑剤30によって絶縁性を高めることができることからも、コアロスの増大を抑制できる。裸鉄粉20の平均粒径は、95μm以下、更に90μm以下、特に85μm以下とすることができる。
.. Size The bare iron powder 20 is characterized by containing relatively small iron particles. Specifically, the average particle diameter of the bare iron powder 20 is preferably 40 μm or more and 100 μm or less. When the average particle diameter of the bare iron powder 20 is 100 μm or less, an increase in eddy current due to the generation of a large conduction portion can be suppressed even when the iron particles are combined, and an increase in core loss can be suppressed. Moreover, since the lubricant 30 described later is easily interposed between the bare iron powders 20 and the insulating property can be enhanced by the lubricant 30, an increase in core loss can be suppressed. The average particle diameter of the bare iron powder 20 can be 95 μm or less, more preferably 90 μm or less, and particularly 85 μm or less.

裸鉄粉20の平均粒径は、40μm以上であることで、製造過程で裸鉄粉200を取り扱い易く、流動性に優れる上に変形性に優れる。そのため、変形によって強度を高め易い上に、製造性にも優れる。また、圧縮性に優れるため、圧粉磁心1の密度を高め易く、透磁率などの磁気特性にも優れる。裸鉄粉20の平均粒径は、50μm以上、更に60μm以上、特に70μm以上とすることができる。   When the average particle size of the bare iron powder 20 is 40 μm or more, it is easy to handle the bare iron powder 200 in the manufacturing process, and it has excellent fluidity and excellent deformability. Therefore, it is easy to increase the strength by deformation, and it is excellent in manufacturability. Moreover, since it is excellent in compressibility, it is easy to raise the density of the powder magnetic core 1, and it is excellent also in magnetic characteristics, such as a magnetic permeability. The average particle diameter of the bare iron powder 20 can be 50 μm or more, more preferably 60 μm or more, and particularly preferably 70 μm or more.

裸鉄粉20は、大き過ぎる粉末粒子が少ないことが好ましい。具体的には、裸鉄粉20を100質量%として、粒径が200μm以上である裸鉄粉20を構成する鉄粒子の割合が10質量%以下であることが好ましい。更に、裸鉄粉20のうち、粒径が180μm以上である鉄粒子の割合が10質量%以下、特に、粒径が150μm以上である鉄粒子の割合が10質量%以下であることが好ましい。上記の大き過ぎる鉄粒子が少ない圧粉磁心1は、粗大粒の存在に伴う渦電流の増大を抑制でき、コアロスの増大を抑制できる。この点から、圧粉磁心1における裸鉄粉20のうち、粒径が200μm以上(好ましくは180μm以上、150μm以上)である鉄粒子の割合は、5質量%以下、更に3質量%以下、2質量%以下、1質量%以下、特に実質的に存在しないことが好ましい。なお、上記の大き過ぎる粉末粒子が少ない圧粉磁心1は、代表的には、粒径が200μm以上(好ましくは180μm以上、150μm以上)の鉄粒子が少ない裸鉄粉200を原料粉末Pに用いることで製造できる。このような裸鉄粉200は、粒度分布の幅が狭くなるため、製造過程で金型内における裸鉄粉200の移動や原料粉末Pの圧縮を均一的に行い易い。   The bare iron powder 20 preferably has too few powder particles. Specifically, it is preferable that the ratio of the iron particles constituting the bare iron powder 20 having a particle diameter of 200 μm or more is 10% by mass or less, with the bare iron powder 20 being 100% by mass. Further, in the bare iron powder 20, the ratio of iron particles having a particle size of 180 μm or more is preferably 10% by mass or less, and particularly the ratio of iron particles having a particle size of 150 μm or more is preferably 10% by mass or less. The dust core 1 having a small number of iron particles that are too large can suppress an increase in eddy current due to the presence of coarse particles and suppress an increase in core loss. From this point, the ratio of the iron particles having a particle size of 200 μm or more (preferably 180 μm or more, 150 μm or more) in the bare iron powder 20 in the dust core 1 is 5 mass% or less, and further 3 mass% or less, 2 It is preferable that it is not more than 1% by mass, particularly not substantially present. The powder magnetic core 1 having a small number of powder particles that are too large typically uses the bare iron powder 200 having a small particle size of 200 μm or more (preferably 180 μm or more, preferably 150 μm or more) as the raw material powder P. Can be manufactured. Since such a bare iron powder 200 has a narrow particle size distribution, it is easy to uniformly move the bare iron powder 200 and compress the raw material powder P in the mold during the manufacturing process.

・潤滑剤
実施形態の圧粉磁心1は、高融点の粉末状の潤滑剤30を含むことを特徴の一つとする。圧粉磁心1における潤滑剤30は、主として、上述した裸鉄粉20間に介在することで、裸鉄粉20を構成する鉄粒子同士を絶縁する絶縁材(例えば、体積固有抵抗が1kΩ・cm以上)として機能する。また、製造過程における原料粉末Pを構成する粉末粒子同士の擦れ合い、脱型時の成形体と金型との擦れ合い(摩擦)などを低減する機能も有する。
Lubricant The powder magnetic core 1 according to the embodiment includes a powdery lubricant 30 having a high melting point. The lubricant 30 in the powder magnetic core 1 is mainly interposed between the bare iron powders 20 described above to insulate the iron particles constituting the bare iron powders 20 (for example, a volume specific resistance of 1 kΩ · cm Above). It also has a function of reducing friction between the powder particles constituting the raw material powder P in the manufacturing process, friction between the molded body and the mold during demolding, and the like.

・・組成
潤滑剤30は、融点が120℃以上であることを特徴の一つとする。潤滑剤30が、融点120℃以上と高融点であることで、圧粉磁心1の製造条件や使用条件における高温においても、潤滑剤30が溶解し液体化することを抑制でき、裸鉄粉20の鉄粒子間に粉末状で存在することができる。よって、安定して各鉄粒子間を絶縁することができる。潤滑剤30が粉末状で各鉄粒子間に存在することで、鉄粒子同士の間に点状で絶縁材が存在することになり、後述する被覆鉄粉10のように鉄粒子同士の間に膜状で絶縁材が存在する場合に比較して磁束が通り易く、良好な透磁率を確保することができる。
-Composition The lubricant 30 has a melting point of 120 ° C or higher. Since the lubricant 30 has a high melting point of 120 ° C. or higher, the lubricant 30 can be prevented from being dissolved and liquefied even at a high temperature in the production conditions and use conditions of the powder magnetic core 1. It can exist in a powder form between the iron particles. Therefore, each iron particle can be insulated stably. Since the lubricant 30 is in the form of powder and is present between the iron particles, an insulating material is present in the form of dots between the iron particles, and between the iron particles as in the coated iron powder 10 described later. Compared with the case where an insulating material is present in the form of a film, it is easier for magnetic flux to pass through, and good magnetic permeability can be ensured.

融点が120℃以上である潤滑剤30として、例えば、ステアリン酸金属塩を利用することができる。具体的なステアリン酸金属塩は、ステアリン酸亜鉛(融点120℃〜125℃程度)、ステアリン酸リチウム(融点210℃〜220℃程度)などが挙げられる。潤滑剤30としてステアリン酸金属塩を含有する場合、一種又は複数種含むことができる。   As the lubricant 30 having a melting point of 120 ° C. or higher, for example, a stearic acid metal salt can be used. Specific examples of the metal stearate include zinc stearate (melting point: about 120 ° C. to 125 ° C.), lithium stearate (melting point: about 210 ° C. to about 220 ° C.), and the like. When the metal salt of stearic acid is contained as the lubricant 30, one or more kinds can be included.

潤滑剤30として、更に脂肪酸アミドを含むことができる。脂肪酸アミドは、代表的には融点が70℃以上150℃以下程度、更に90℃以上120℃以下程度である。潤滑剤30として比較的融点が低い脂肪酸アミドを含むことで、溶解して液体化した脂肪酸アミドは粉末間に均一的に配置され易い。よって、圧縮性及び脱型性に優れる上に、上記粉末状の高融点の潤滑剤に加えて更に絶縁性を高めることができる。具体的な脂肪酸アミドは、ステアリン酸アミド(融点100℃程度)、パルミチン酸アミドなどが挙げられる。   The lubricant 30 can further contain a fatty acid amide. The fatty acid amide typically has a melting point of about 70 ° C to 150 ° C, and more preferably about 90 ° C to 120 ° C. By including a fatty acid amide having a relatively low melting point as the lubricant 30, the fatty acid amide that has been dissolved and liquefied is easily arranged uniformly between the powders. Therefore, in addition to being excellent in compressibility and demoldability, in addition to the powdery high melting point lubricant, the insulation can be further improved. Specific fatty acid amides include stearic acid amide (melting point of about 100 ° C.), palmitic acid amide, and the like.

潤滑剤30は、複数種の潤滑剤を含有する場合、ステアリン酸金属塩の含有割合が高い方が好ましい。ステアリン酸金属塩は、融点が高いため溶解し液体化することを抑制でき、裸鉄粉20の鉄粒子間に粉末状で存在し易いからである。複数種の潤滑剤を含有する場合には、潤滑剤の合計含有量を100質量%として、ステアリン酸金属塩の含有量を25質量%以上100質量%以下とすることが挙げられる。圧粉磁心1における潤滑剤30が特定の成分となるように、原料粉末Pにおける潤滑剤300の成分を調整するとよい。   When the lubricant 30 contains a plurality of types of lubricants, it is preferable that the content ratio of the metal stearate is higher. This is because the metal stearate has a high melting point, so that it can be suppressed from being dissolved and liquefied, and is easily present in powder form between the iron particles of the bare iron powder 20. In the case where a plurality of types of lubricants are contained, the total content of the lubricant is 100% by mass, and the content of the stearic acid metal salt is 25% by mass or more and 100% by mass or less. The components of the lubricant 300 in the raw material powder P may be adjusted so that the lubricant 30 in the dust core 1 becomes a specific component.

・・含有量
圧粉磁心1における潤滑剤30の含有量は、0.05質量%以上0.5質量%以下であることを特徴の一つとする。潤滑剤30の含有量が0.05質量%以上であることで、裸鉄粉20の鉄粒子間に十分に介在できる。よって、鉄粒子同士が結合して導通部分が生じることによる渦電流の増大を抑制でき、コアロスの増大を抑制できる。圧粉磁心1における潤滑剤30の含有量は、0.1質量%以上、更に0.2質量%以上とすることができる。潤滑剤30の含有量は、裸鉄粉20の含有量と実質的に相関関係にある。例えば、裸鉄粉20の含有量が多くなると、鉄粒子間の絶縁箇所が多くなるため、潤滑剤30の含有量を多くすることで、コアロスの増大を抑制できる。一方、裸鉄粉20の含有量が少ないと、鉄粒子間の絶縁箇所が少なくなるため、潤滑剤30の含有量を少なくすることで、圧粉磁心1の軟磁性粉末の割合の低下を抑制できる。
.. Content One content is that the content of the lubricant 30 in the dust core 1 is 0.05% by mass or more and 0.5% by mass or less. When the content of the lubricant 30 is 0.05% by mass or more, it can be sufficiently interposed between the iron particles of the bare iron powder 20. Therefore, it is possible to suppress an increase in eddy current due to a combination of iron particles and the generation of a conductive portion, and it is possible to suppress an increase in core loss. The content of the lubricant 30 in the dust core 1 can be 0.1% by mass or more, and further 0.2% by mass or more. The content of the lubricant 30 is substantially correlated with the content of the bare iron powder 20. For example, when the content of the bare iron powder 20 is increased, the number of insulating portions between the iron particles is increased. Therefore, by increasing the content of the lubricant 30, an increase in core loss can be suppressed. On the other hand, when the content of the bare iron powder 20 is small, the number of insulating portions between the iron particles is reduced. Therefore, by reducing the content of the lubricant 30, a decrease in the ratio of the soft magnetic powder of the dust core 1 is suppressed. it can.

圧粉磁心1における潤滑剤30の含有量は、0.5質量%以下であることで、潤滑剤30の過多による軟磁性粉末の割合の低下を抑制でき、磁気特性の低下を抑制できる。例えば、軟磁性粉末における裸鉄粉20の含有割合が100質量%(軟磁性粉末の全量が裸鉄粉20)であった場合、圧粉磁心1における潤滑剤30の含有量は上限の0.5質量%とすることが挙げられる。圧粉磁心1における潤滑剤30の含有量は、0.45質量%以下、更に0.40質量%以下とすることができる。   When the content of the lubricant 30 in the dust core 1 is 0.5% by mass or less, a decrease in the ratio of the soft magnetic powder due to an excess of the lubricant 30 can be suppressed, and a decrease in magnetic characteristics can be suppressed. For example, when the content ratio of the bare iron powder 20 in the soft magnetic powder is 100% by mass (the total amount of the soft magnetic powder is the bare iron powder 20), the content of the lubricant 30 in the dust core 1 is the upper limit of 0.00. It is mentioned that it is 5 mass%. The content of the lubricant 30 in the dust core 1 can be 0.45% by mass or less, and further 0.40% by mass or less.

・・大きさ
潤滑剤30は、粉末状として存在する。原料粉末Pの潤滑剤300として粉末状のものを利用すれば、圧縮成形後にも潤滑剤30は粉末状で存在し得る。潤滑剤30は、裸鉄粉20よりも小さいことが好ましい。具体的には、潤滑剤30の平均粒径は、1μm以上50μm以下が好ましい。潤滑剤30の平均粒径が1μm以上であることで、裸鉄粉20の各鉄粒子同士を十分に絶縁することができる。また、製造過程で潤滑剤30を取り扱い易い。
.. Size The lubricant 30 exists as a powder. If a powdery material is used as the lubricant 300 of the raw material powder P, the lubricant 30 may exist in a powder form even after compression molding. The lubricant 30 is preferably smaller than the bare iron powder 20. Specifically, the average particle size of the lubricant 30 is preferably 1 μm or more and 50 μm or less. When the average particle diameter of the lubricant 30 is 1 μm or more, the iron particles of the bare iron powder 20 can be sufficiently insulated. Moreover, it is easy to handle the lubricant 30 during the manufacturing process.

潤滑剤30の平均粒径が50μm以下であることで、各鉄粒子間に介在され易く、各鉄粒子の周囲に実質的に均一に配され易い。潤滑剤30は、各鉄粒子の周囲に実質的に均一に配されていることで、コアロスの増加を抑制し易い。潤滑剤30の平均粒径は、40μm以下、更に30μm以下とすることができる。   When the average particle diameter of the lubricant 30 is 50 μm or less, the lubricant 30 is easily interposed between the iron particles, and is easily disposed substantially uniformly around the iron particles. Since the lubricant 30 is substantially uniformly disposed around each iron particle, it is easy to suppress an increase in core loss. The average particle diameter of the lubricant 30 can be set to 40 μm or less, and further to 30 μm or less.

潤滑剤30は、圧縮成形時に変形して、裸鉄粉20の鉄粒子や後述する被覆鉄粉10の被覆鉄粒子に沿った任意の形状で存在したり、分割されてより小さな粉末状になったり、潤滑剤の他の粒子と結合してより大きな粉末状になって存在したりする。   The lubricant 30 is deformed at the time of compression molding and exists in an arbitrary shape along the iron particles of the bare iron powder 20 or the coated iron particles of the coated iron powder 10 described later, or is divided into smaller powders. Or may be combined with other particles of lubricant to form a larger powder.

・被覆鉄粉
被覆鉄粉10は、上述した裸鉄粉20の鉄粒子と同様の鉄粒子12の外周が絶縁被覆14で覆われた被覆鉄粒子から構成される。絶縁被覆14は、主として、鉄粒子12同士の直接接触を妨げて、圧粉磁心1の電気抵抗を高める絶縁材として機能する。絶縁被覆14は、鉄粒子12間や鉄粒子12と裸鉄粉20の鉄粒子との間を絶縁できれば、鉄粒子12の全表面を覆っていなくてもよく、鉄粒子12の一部が露出されるような存在状態を許容する。
-Coated iron powder The coated iron powder 10 is comprised from the coated iron particle by which the outer periphery of the iron particle 12 similar to the iron particle of the bare iron powder 20 mentioned above was covered by the insulation coating 14. FIG. The insulating coating 14 mainly functions as an insulating material that prevents direct contact between the iron particles 12 and increases the electrical resistance of the dust core 1. As long as the insulation coating 14 can insulate between the iron particles 12 or between the iron particles 12 and the iron particles of the bare iron powder 20, the entire surface of the iron particles 12 may not be covered, and a part of the iron particles 12 is exposed. The existence state is allowed.

絶縁被覆14の構成材料は、種々の絶縁材料をとり得る。例えば、金属元素を含む化合物や非金属元素を含む化合物が挙げられる。前者は、Fe,Al,Ca,Mn,Zn,Mg,V,Cr,Y,Ba,Sr,及び希土類元素(Yを除く)などから選択された1種以上の金属元素と、酸素、窒素、及び炭素から選択された1種以上の化合物(例えば、金属酸化物、金属窒化物、金属炭化物)、ジルコニウム化合物、アルミニウム化合物などが挙げられる。後者は、燐化合物、珪素化合物などが挙げられる。その他、燐酸金属塩化合物(代表的には、燐酸鉄や燐酸マンガン、燐酸亜鉛、燐酸カルシウムなど)、硼酸金属塩化合物、珪酸金属塩化合物、チタン酸金属塩化合物などの金属塩化合物が挙げられる。燐酸金属塩化合物を絶縁被覆14として備える圧粉磁心1は、絶縁被覆14を良好に備えて絶縁性に優れ、渦電流損が低く、ひいてはコアロスが低い。燐酸金属塩化合物は変形性に優れるため、燐酸金属塩化合物の絶縁被覆140を備える被覆鉄粉100を原料粉末Pに用いた場合、燐酸金属塩化合物は、成形時に鉄粒子120の変形に追従して容易に変形して損傷し難い上に、鉄に対する密着性が高いため、成形時などで鉄粒子120の表面から脱落し難いからである。一方、燐酸金属塩化合物に含まれるリンが鉄粒子12に拡散することで、コアロスが増大する恐れがある。そのため、圧粉磁心1全体に含まれるリンの含有量は1000質量ppm以下、更に600質量ppm以下が好ましいと考えられる。リン量が所望の値となるように鉄粒子120の成分や、絶縁被覆140の成分、厚さを調整するとよい。   The constituent material of the insulating coating 14 can take various insulating materials. For example, a compound containing a metal element or a compound containing a nonmetallic element can be given. The former includes one or more metal elements selected from Fe, Al, Ca, Mn, Zn, Mg, V, Cr, Y, Ba, Sr, and rare earth elements (excluding Y), oxygen, nitrogen, And one or more compounds selected from carbon (for example, metal oxides, metal nitrides, metal carbides), zirconium compounds, aluminum compounds, and the like. Examples of the latter include phosphorus compounds and silicon compounds. Other examples include metal phosphate compounds (typically iron phosphate, manganese phosphate, zinc phosphate, calcium phosphate, etc.), metal salt compounds such as borate metal salt compounds, silicate metal salt compounds, and titanate metal salt compounds. The powder magnetic core 1 including the metal phosphate compound as the insulating coating 14 has the insulating coating 14 in an excellent manner and has excellent insulating properties, and has low eddy current loss and consequently low core loss. Since the metal phosphate compound is excellent in deformability, when the coated iron powder 100 provided with the insulating coating 140 of the metal phosphate compound is used as the raw material powder P, the metal phosphate compound follows the deformation of the iron particles 120 during molding. This is because it easily deforms and is not easily damaged, and has high adhesion to iron, so that it is difficult to drop off from the surface of the iron particles 120 during molding or the like. On the other hand, phosphorus contained in the metal phosphate compound diffuses into the iron particles 12, which may increase core loss. Therefore, it is considered that the content of phosphorus contained in the entire powder magnetic core 1 is preferably 1000 mass ppm or less, and more preferably 600 mass ppm or less. The components of the iron particles 120, the components of the insulating coating 140, and the thickness may be adjusted so that the phosphorus amount becomes a desired value.

その他の絶縁被覆14の構成材料として、例えば、種々の樹脂や、高級脂肪酸塩などが挙げられる。具体的な樹脂は、ポリアミド系樹脂、シリコーン樹脂などが挙げられる。ポリアミド系樹脂は、ナイロン6、ナイロン66などが挙げられる。   Examples of other constituent materials of the insulating coating 14 include various resins and higher fatty acid salts. Specific examples of the resin include polyamide resins and silicone resins. Examples of polyamide resins include nylon 6 and nylon 66.

絶縁被覆14の厚さは、例えば、10nm以上1μm以下が挙げられる。上記厚さが10nm以上であれば、鉄粒子間(被覆鉄粉10の鉄粒子12間や、鉄粒子12と裸鉄粉20の鉄粒子との間)の絶縁を良好に確保できる。上記厚さが1μm以下であれば、絶縁被覆14が少なく、圧粉磁心1中の磁性成分の割合の低下を抑制でき、透磁率を高め易い。より好ましい厚さは20nm以上100nm以下である。圧粉磁心1中の絶縁被覆14の厚さは、組成分析(透過型電子顕微鏡及びエネルギー分散型X線分光法を利用した分析装置(TEM−EDX))により得られる膜組成と、誘導結合プラズマ質量分析装置(ICP−MS)により得られる元素量とを鑑みて相当厚さを導出し、更に、TEM写真によって絶縁被覆14を直接観察して、先に導出された相当厚さのオーダーが適正な値であることを確認して決定される平均的な厚さとする。絶縁被覆14の厚さは、原料粉末Pの絶縁被覆140の厚さを概ね維持する。   As for the thickness of the insulation coating 14, 10 nm or more and 1 micrometer or less are mentioned, for example. If the thickness is 10 nm or more, good insulation between the iron particles (between the iron particles 12 of the coated iron powder 10 and between the iron particles 12 and the iron particles of the bare iron powder 20) can be secured satisfactorily. If the said thickness is 1 micrometer or less, there are few insulation coatings 14, the fall of the ratio of the magnetic component in the dust core 1 can be suppressed, and it is easy to raise a magnetic permeability. A more preferable thickness is 20 nm or more and 100 nm or less. The thickness of the insulating coating 14 in the dust core 1 depends on the composition of the film obtained by composition analysis (analyzer using transmission electron microscope and energy dispersive X-ray spectroscopy (TEM-EDX)), and inductively coupled plasma. Considering the amount of element obtained by the mass spectrometer (ICP-MS), the equivalent thickness is derived, and further, the insulation coating 14 is directly observed by the TEM photograph, and the order of the equivalent thickness derived earlier is appropriate. The average thickness is determined by confirming that the value is correct. The thickness of the insulating coating 14 generally maintains the thickness of the insulating coating 140 of the raw material powder P.

・・含有量
軟磁性粉末における被覆鉄粉10の含有量は、30質量%以上55質量%未満とすることが挙げられる。軟磁性粉末中の被覆鉄粉の含有量が30質量%以上であることで、絶縁被覆14の介在によって絶縁性により優れて、コアロスの増大を抑制し易い。軟磁性粉末における被覆鉄粉10の含有量は、35質量%以上、更に40質量%以上とすることができる。一方、軟磁性粉末中の被覆鉄粉の含有量が55質量%未満であることで、裸鉄粉の含有量を相対的に多くでき、被覆鉄粉の含有量を削減できる。よって、軟磁性粉末における被覆鉄粉10の含有量は、50質量%以下、更に45質量%以下とすることができる。
-Content The content of the coated iron powder 10 in the soft magnetic powder is 30% by mass or more and less than 55% by mass. When the content of the coated iron powder in the soft magnetic powder is 30% by mass or more, the insulation is excellent due to the presence of the insulating coating 14, and an increase in core loss is easily suppressed. The content of the coated iron powder 10 in the soft magnetic powder can be 35% by mass or more, and further 40% by mass or more. On the other hand, when the content of the coated iron powder in the soft magnetic powder is less than 55% by mass, the content of the bare iron powder can be relatively increased, and the content of the coated iron powder can be reduced. Therefore, the content of the coated iron powder 10 in the soft magnetic powder can be 50% by mass or less, and further 45% by mass or less.

・・大きさ
被覆鉄粉10は、比較的大きい粉末粒子を含む。被覆鉄粉10が大きいことで、圧粉磁心1は、磁路を十分に確保できて高い透磁率を有することができる。具体的には、被覆鉄粉10の平均粒径は150μm以上400μm以下が好ましい。被覆鉄粉10の平均粒径が150μm以上であることで、高透磁率に加えて、コアロスを低くし易い。被覆鉄粉10の平均粒径は、180μm以上、更に200μm以上とすることができる。
-Size The coated iron powder 10 includes relatively large powder particles. Since the coated iron powder 10 is large, the dust core 1 can sufficiently secure a magnetic path and have high magnetic permeability. Specifically, the average particle diameter of the coated iron powder 10 is preferably 150 μm or more and 400 μm or less. When the average particle size of the coated iron powder 10 is 150 μm or more, it is easy to reduce the core loss in addition to the high magnetic permeability. The average particle diameter of the coated iron powder 10 can be 180 μm or more, and further 200 μm or more.

被覆鉄粉10の平均粒径は、400μm以下であることで、鉄粒子12の大径化による鉄粒子12内に生じる渦電流損の増大を招き難く、コアロスを低くできる。被覆鉄粉10の平均粒径は、350μm以下、更に300μm以下とすることができる。   When the average particle diameter of the coated iron powder 10 is 400 μm or less, it is difficult to increase the eddy current loss generated in the iron particles 12 due to the increase in the diameter of the iron particles 12, and the core loss can be reduced. The average particle diameter of the coated iron powder 10 can be 350 μm or less, and further 300 μm or less.

・その他の含有物
圧粉磁心1は、その他の添加材として、樹脂などを含有することができる。具体的には、ポリアセタール(POM)、ポリアミド(PA)、ポリカーボネート(PC)、ポリブチレンテレフタレート(PBT)、変性ポリフェニレンエーテル(m−PPE)、ポリフェニレンスルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)、ポリエーテルイミド(PEI)などのエンジニアリングプラスチックが挙げられる。添加材の含有量は、圧粉磁心1を100質量%として、0超0.5質量%以下が好ましい。この範囲で樹脂などを含むことで、成形性や保形性を高められ、かつ樹脂の含有による磁性成分の割合の低下を防止できる。特に、ポリアミド系樹脂は、裸鉄粉20の鉄粒子同士を絶縁する絶縁材として機能することができる。ポリアミド系樹脂は、潤滑剤30と同様に各粉末粒子間に粉末状に存在する形態や、被覆鉄粉10の絶縁被覆14として存在する形態などが挙げられる。粉末の場合には、原料粉末Pに樹脂粉末を混合するとよい。
-Other inclusions The powder magnetic core 1 can contain resin etc. as another additive. Specifically, polyacetal (POM), polyamide (PA), polycarbonate (PC), polybutylene terephthalate (PBT), modified polyphenylene ether (m-PPE), polyphenylene sulfide (PPS), polyether ether ketone (PEEK) Engineering plastics such as polyetherimide (PEI). The content of the additive is preferably more than 0 and 0.5% by mass or less, with the dust core 1 being 100% by mass. By including a resin or the like within this range, the moldability and shape retention can be improved, and a decrease in the proportion of the magnetic component due to the inclusion of the resin can be prevented. In particular, the polyamide-based resin can function as an insulating material that insulates the iron particles of the bare iron powder 20. The polyamide-based resin may be in the form of a powder between the powder particles as in the case of the lubricant 30 or in the form of the insulating coating 14 of the coated iron powder 10. In the case of powder, resin powder may be mixed with the raw material powder P.

・形状
実施形態の圧粉磁心1は、種々の形状の金型を用いることで、種々の形状をとり得る。代表的には、対向する二面を端面とする柱状体、両端面を貫通する貫通孔を有する筒状体が挙げられる。より具体的には、円柱、円筒、円環(厚さが薄いもの)、直方体などの角柱、端面が枠状の角筒などが挙げられる。その他、一つ又は複数の段差を有する形状や、端部に一つ又は複数のフランジ部を備える形状といった外形が凹凸形状の異形の柱状体や筒状体などとすることができる。
-Shape The powder magnetic core 1 of the embodiment can take various shapes by using various shapes of molds. Typically, a columnar body having two opposing surfaces as end faces and a cylindrical body having through holes penetrating both end faces are exemplified. More specifically, a cylinder, a cylinder, a ring (thickness is thin), a rectangular column such as a rectangular parallelepiped, a square cylinder whose end face is a frame shape, and the like can be given. In addition, the outer shape such as a shape having one or a plurality of steps or a shape including one or a plurality of flange portions at the end portion may be an irregular columnar body or cylindrical body having an uneven shape.

具体的な形状として、圧粉磁心1は、長尺片1L(図2)を有するものが挙げられる。この長尺片1Lは、長さLと幅Wとの比L/Wが10以上であるものが挙げられる。つまり、圧粉磁心1は細長い形状である。長尺片1Lは、その横断面又は縦断面において、裸鉄粉20を構成する鉄粒子が短径及び長径を有する扁平形状である。この鉄粒子を観察することによって、長尺片1L(圧粉磁心1)の圧縮方向を判別することができる。圧粉磁心1は、原料粉末Pを加圧圧縮することから、原料粉末Pを構成する各粉末粒子は圧縮方向に押し潰されて(塑性変形して)、代表的には、圧縮方向と直交方向に伸びた形状になる。よって、鉄粒子が短径及び長径を有する扁平形状である場合、短径方向(伸びた方向と直交する方向)が圧縮方向であると予想できる。   As a specific shape, the powder magnetic core 1 may have a long piece 1L (FIG. 2). As this long piece 1L, the ratio L / W of the length L to the width W is 10 or more. That is, the dust core 1 has an elongated shape. The long piece 1L has a flat shape in which the iron particles constituting the bare iron powder 20 have a short diameter and a long diameter in the transverse section or the longitudinal section. By observing the iron particles, the compression direction of the long piece 1L (the dust core 1) can be determined. Since the powder magnetic core 1 compresses and compresses the raw material powder P, each powder particle constituting the raw material powder P is crushed (plastically deformed) in the compression direction, and is typically orthogonal to the compression direction. It becomes the shape extended in the direction. Therefore, when the iron particles have a flat shape having a minor axis and a major axis, the minor axis direction (direction orthogonal to the extending direction) can be expected to be the compression direction.

図2に示す長尺片1Lでは、横断面及び縦断面において、裸鉄粉20は、各鉄粒子が短径及び長径を有する横方向に延びた形状(図2の下側に示す拡大図)となった例を示す。つまり、図2に示す長尺片1Lは、上下方向に圧縮された圧縮成形体である。よって、長尺片1Lは、上下面に沿った切断面(水平断面)においては、各鉄粒子は上記長径を有するほぼ円形(図2の上側に示す拡大図)となっている。つまり、裸鉄粉20の各鉄粒子は、長尺片1Lの長さL方向及び幅W方向に長径を有し、高さH方向に短径を有する。   In the long piece 1L shown in FIG. 2, the bare iron powder 20 has a shape in which each iron particle extends in the transverse direction having a short diameter and a long diameter (enlarged view shown on the lower side of FIG. 2). Here is an example. That is, the long piece 1L shown in FIG. 2 is a compression molded body compressed in the vertical direction. Therefore, in the long piece 1L, each iron particle has a substantially circular shape (enlarged view shown in the upper side of FIG. 2) having the above-mentioned major axis in a cut surface (horizontal cross section) along the upper and lower surfaces. That is, each iron particle of the bare iron powder 20 has a major axis in the length L direction and the width W direction of the long piece 1L, and a minor axis in the height H direction.

圧粉磁心1は、長尺片1Lの長手方向が圧縮方向と直交する方向となる細長い形状であることが好ましい。この圧粉磁心1を後述するコイル部品とするとき、長尺片1Lの長手方向がコイルの励磁に伴う磁束方向に沿った方向となるように配置することが好ましい。裸鉄粉20を構成する鉄粒子の長径方向は、鉄粒子同士の粒界が少ないために磁束が通り易い。よって、上記磁束方向が長いことで、より良好な透磁率を確保できる。   The dust core 1 preferably has an elongated shape in which the longitudinal direction of the long piece 1L is a direction orthogonal to the compression direction. When the dust core 1 is a coil component to be described later, it is preferable that the long piece 1L is arranged so that the longitudinal direction thereof is in the direction along the direction of magnetic flux accompanying excitation of the coil. The major axis direction of the iron particles constituting the bare iron powder 20 is easy to pass magnetic flux because there are few grain boundaries between the iron particles. Therefore, a better magnetic permeability can be ensured by the long magnetic flux direction.

また、圧粉磁心1は、長尺片1Lの長手方向と圧縮方向の双方に直交する方向の長さWが短い細幅部を有することが好ましい。この細幅部の長さWは、裸鉄粉20の平均粒径の80倍以下である。裸鉄粉20を構成する鉄粒子は扁平形状であるため、この裸鉄粉20の平均粒径は、各面積の円相当径とする。鉄粒子の長径方向は、鉄粒子同士の粒界が少ないために渦電流が流れ易いという問題があるが、渦電流が流れる長さ自体が小さいことで、コアロスの増大を抑制できる。鉄粒子の短径方向は、鉄粒子同士の粒界が多くなる傾向にあり、この鉄粒子間に潤滑剤30が介在されるため、渦電流は流れ難い。   Moreover, it is preferable that the powder magnetic core 1 has a narrow part with a short length W in a direction orthogonal to both the longitudinal direction and the compression direction of the long piece 1L. The length W of the narrow portion is not more than 80 times the average particle size of the bare iron powder 20. Since the iron particles constituting the bare iron powder 20 have a flat shape, the average particle diameter of the bare iron powder 20 is the equivalent circle diameter of each area. In the major axis direction of the iron particles, there is a problem that eddy currents easily flow because there are few grain boundaries between the iron particles, but an increase in core loss can be suppressed because the length of the eddy currents flowing is small. In the minor axis direction of the iron particles, grain boundaries between the iron particles tend to increase, and the lubricant 30 is interposed between the iron particles, so that the eddy current hardly flows.

その他に、長尺片1L(圧粉磁心1)の圧縮方向は、長手方向に沿った方向(図2の長さLの方向)であってもよい。この場合、裸鉄粉20を構成する鉄粒子は、長尺片1Lの長手方向に短径を有し、長手方向に直交する方向に長径を有する。よって、圧粉磁心1は、圧縮方向と直交する方向の長さ(例えば、図2の幅Wや高さH、横断面の対角線の少なくとも一つ)が裸鉄粉20の平均粒径の80倍以下であることが好ましい。   In addition, the compression direction of the long piece 1L (the dust core 1) may be a direction along the longitudinal direction (the direction of the length L in FIG. 2). In this case, the iron particles constituting the bare iron powder 20 have a short diameter in the longitudinal direction of the long piece 1L and a long diameter in a direction orthogonal to the longitudinal direction. Therefore, the powder magnetic core 1 has a length in the direction orthogonal to the compression direction (for example, at least one of the width W and height H in FIG. It is preferable that it is less than 2 times.

圧粉磁心1の圧縮方向を判別する指標の一つとして、裸鉄粉20(鉄粒子)の伸び方向以外に、外形が挙げられる。圧粉磁心1は、代表的には一軸型の金型を用いた成形体であることから、その外形は、上記金型から抜出可能な形状に限られる。例えば、貫通孔を有する圧粉磁心(図3のコア片10fなど)であれば、貫通孔の軸方向が圧縮方向であると予想できる。更に、圧粉磁心1の圧縮方向を判別する指標の一つとして、例えば、摺接痕の有無が挙げられる。圧粉磁心1の外周面を形成するダイとの接触面や、貫通孔を有する場合には圧粉磁心の内周面を形成するロッドとの接触面に、ダイからの成形体の抜き取り時やロッドの抜き取り時に成形体とダイやロッドとが摺接して、摺接痕が残存し得る。つまり、摺接痕がある面は、ダイやロッドによって形成された面、摺接痕が無い面がパンチによって形成された端面、と予想できる。そして、対向配置される一対の端面に直交する方向が圧縮方向であると予想できる。   As one of the indexes for determining the compression direction of the dust core 1, there is an outer shape in addition to the extending direction of the bare iron powder 20 (iron particles). Since the dust core 1 is typically a molded body using a uniaxial mold, its outer shape is limited to a shape that can be extracted from the mold. For example, in the case of a dust core having a through hole (such as the core piece 10f in FIG. 3), the axial direction of the through hole can be expected to be the compression direction. Furthermore, as one of the indexes for determining the compression direction of the powder magnetic core 1, for example, the presence or absence of a sliding contact mark can be mentioned. When the molded body is extracted from the die on the contact surface with the die that forms the outer peripheral surface of the dust core 1 or the contact surface with the rod that forms the inner peripheral surface of the dust core when there is a through hole, When the rod is withdrawn, the molded body and the die or the rod are in sliding contact, and a sliding contact mark may remain. That is, it can be expected that the surface having the sliding contact mark is a surface formed by a die or a rod, and the surface having no sliding contact mark is an end surface formed by a punch. Then, it can be expected that the direction orthogonal to the pair of end faces opposed to each other is the compression direction.

・密度
実施形態の圧粉磁心1の一例として、密度が7.3g/cm以上7.7g/cm以下を満たすものが挙げられる。密度が7.3g/cm以上であれば、相対密度((見掛け密度/真密度)×100。真密度=純鉄粉の密度)が92%以上と緻密であり、透磁率が高く、強度に優れる。密度が高いほど、透磁率や強度が高まることから、圧粉磁心1の密度は、7.35g/cm以上、更に7.4g/cm以上を満たすことが好ましい。一方、圧粉磁心1の密度が7.7g/cm以下であれば、比較的低い成形圧力で製造されて、被覆鉄粉を含有する場合には成形時の絶縁被覆の損傷が低減されているといえ、コアロスを低くできる。従って、圧粉磁心1の密度は、7.65g/cm以下、更に7.6g/cm以下とすることができる。
- An example of a dust core 1 density embodiment include those having a density satisfies the 7.3 g / cm 3 or more 7.7 g / cm 3 or less. If the density is 7.3 g / cm 3 or more, the relative density ((apparent density / true density) × 100. The true density = the density of the pure iron powder) is 92% or more, the magnetic permeability is high, and the strength is high. Excellent. Since the magnetic permeability and strength increase as the density increases, the density of the dust core 1 preferably satisfies 7.35 g / cm 3 or more, and more preferably 7.4 g / cm 3 or more. On the other hand, if the density of the powder magnetic core 1 is 7.7 g / cm 3 or less, it is manufactured at a relatively low molding pressure, and when the coated iron powder is contained, damage to the insulating coating during molding is reduced. Even so, the core loss can be reduced. Thus, the density of the dust core 1, 7.65 g / cm 3 or less, it is possible to further 7.6 g / cm 3 or less.

・特性
実施形態の圧粉磁心1は、コイルに組み付けてコイル部品としたとき、そのコイル部品として必要な磁気特性を有する。例えば、圧粉磁心1の交流透磁率は、測定条件を1.0T/1kHzとするとき、350以上、更に400以上、特に420以上が挙げられる。また、コアロスは、300W/kg以下、更に280W/kg以下、特に250W/kg以下が挙げられる。
-Characteristics When the dust core 1 of the embodiment is assembled into a coil to form a coil component, the powder magnetic core 1 has magnetic characteristics necessary for the coil component. For example, the AC magnetic permeability of the dust core 1 is 350 or more, further 400 or more, particularly 420 or more when the measurement condition is 1.0 T / 1 kHz. Further, the core loss is 300 W / kg or less, further 280 W / kg or less, particularly 250 W / kg or less.

〔コイル部品〕
実施形態の圧粉磁心1は、磁路の構成部材として利用できる。例えば、巻線を螺旋状に巻回してなるコイルと、このコイルが配置されて磁路を構成する磁性コアと、を備えるコイル部品において、磁性コアの少なくとも一部に圧粉磁心1を利用できる。図3〜図5は、コイル部品の一例を示す。図中、同一符号は同一名称物を示す。
[Coil parts]
The dust core 1 of the embodiment can be used as a constituent member of a magnetic path. For example, in a coil component including a coil formed by spirally winding a winding and a magnetic core in which the coil is arranged to form a magnetic path, the dust core 1 can be used for at least a part of the magnetic core. . 3-5 shows an example of a coil component. In the figure, the same reference numerals indicate the same names.

図3に示す実施形態1のコイル部品1Aは、磁性コア10Aとして、貫通孔10hを有する枠状のコア片10fと、このコア片10fの内側に配置されるI字状のコア片10iと、を備える。枠状は、正方形の枠状であってもよいし、長方形の枠状であってもよい。磁性コア10Aは、I字状のコア片10iの各端面が、枠状のコア片10fの対向する二つの内面に対向するように組み合わせて、図3の左図に二点鎖線で示すような閉磁路を構成する。ここでは、I字状のコア片10iの一方の端面と、枠状のコア片10fと、の間にギャップGを備えると共に、I字状のコア片10iの外周にコイルCが嵌め込まれる例を示す。   A coil component 1A according to the first embodiment shown in FIG. 3 includes, as a magnetic core 10A, a frame-shaped core piece 10f having a through hole 10h, an I-shaped core piece 10i disposed inside the core piece 10f, Is provided. The frame shape may be a square frame shape or a rectangular frame shape. The magnetic core 10A is combined such that each end face of the I-shaped core piece 10i faces two opposing inner faces of the frame-like core piece 10f, as shown by a two-dot chain line in the left diagram of FIG. Constructs a closed magnetic circuit. In this example, a gap G is provided between one end face of the I-shaped core piece 10i and the frame-shaped core piece 10f, and the coil C is fitted on the outer periphery of the I-shaped core piece 10i. Show.

磁性コア10Aの一部、例えばコイルCが配置されない枠状のコア片10fを実施形態の圧粉磁心1とすることができる。つまり、枠状のコア片10fは、4つの角棒片を有することになる。4つの角棒片の各々が圧粉磁心1の長尺片1Lに対応する。枠状のコア片10fは、貫通孔10hの軸方向が圧縮方向となるため、裸鉄粉20を構成する鉄粒子の長径方向が磁束方向に沿って配置されることになる。よって、枠状のコア片10fには磁束が通り易いため、良好な透磁率を確保できる。また、枠状のコア片10fは、長手方向及び圧縮方向の双方に直交する方向の長さ(枠状のコア片10fの内面から外面に亘る長さ)が、比較的小さい(裸鉄粉20の平均粒径の80倍以下である)ことが好ましい。そうすることで、コアロスの増大を抑制することもできる。I字状のコア片10iは、従来のように被覆鉄粉で構成される(裸鉄粉を0質量%超45質量%以下の範囲で含有していてもよい)圧粉磁心とすることが好ましい。もちろんI字状のコア片10iを実施形態の圧粉磁心1としてもよい。   A part of the magnetic core 10A, for example, a frame-shaped core piece 10f on which the coil C is not disposed can be used as the dust core 1 of the embodiment. That is, the frame-shaped core piece 10f has four square bar pieces. Each of the four square bar pieces corresponds to the long piece 1L of the dust core 1. In the frame-shaped core piece 10f, the axial direction of the through hole 10h is the compression direction, and thus the major axis direction of the iron particles constituting the bare iron powder 20 is arranged along the magnetic flux direction. Therefore, since the magnetic flux easily passes through the frame-shaped core piece 10f, a good magnetic permeability can be ensured. The frame-shaped core piece 10f has a relatively small length in the direction orthogonal to both the longitudinal direction and the compression direction (the length extending from the inner surface to the outer surface of the frame-shaped core piece 10f) (bare iron powder 20 It is preferable that the average particle size is 80 times or less. By doing so, an increase in core loss can also be suppressed. The I-shaped core piece 10i may be formed of a coated iron powder as in the past (bare iron powder may be contained in a range of more than 0% by mass and 45% by mass or less) as a dust core. preferable. Of course, the I-shaped core piece 10i may be the dust core 1 of the embodiment.

図4に示す実施形態2のコイル部品1Bは、磁性コア10Bとして、I字状のコア片10iと、U状のコア片10pと、を備える。この磁性コア10Bは、両コア片10i,10pを組み合わせて枠状の閉磁路を構成するO字型の磁性コアである(図4の左図)。ここでは、両コア片10i,10p間にギャップGを備えると共に、I字状のコア片10iにコイルCが配置される例を示す。この例では、U状のコア片10pを実施形態の圧粉磁心1とすることが好ましい。もちろんI字状のコア片10iを実施形態の圧粉磁心1としてもよい。   A coil component 1B according to the second embodiment illustrated in FIG. 4 includes an I-shaped core piece 10i and a U-shaped core piece 10p as the magnetic core 10B. This magnetic core 10B is an O-shaped magnetic core that constitutes a frame-shaped closed magnetic path by combining both core pieces 10i and 10p (the left diagram in FIG. 4). Here, an example is shown in which a gap G is provided between both core pieces 10i and 10p, and a coil C is arranged on the I-shaped core piece 10i. In this example, it is preferable that the U-shaped core piece 10p be the dust core 1 of the embodiment. Of course, the I-shaped core piece 10i may be the dust core 1 of the embodiment.

図5に示す実施形態3のコイル部品1Cは、磁性コア10Cとして、四つのI字状のコア片10i〜10iを備える。磁性コア10Cは、これら四つのコア片10i〜10iを組み合わせて枠状の閉磁路を構成するO字型の磁性コアである(図5の左図)。ここでは、図5の左右方向に並列される二つのコア片10i,10iと、これら二つのコア片10i,10iの端部同士を連結する別の一つのコア片10iとの間にギャップGを備えると共に、上述の並列される二つのコア片10i,10iにコイルC,Cがそれぞれ配置される例を示す。実施形態2のコイル部品1Bのように、いずれか一つのコア片10iにのみコイルCを備えることもできる。この例では、コイルCが配置されないI字状のコア片10iを実施形態の圧粉磁心1とすることが好ましい。もちろん全てのI字状のコア片10iを実施形態の圧粉磁心1としてもよい。   A coil component 1C of the third embodiment shown in FIG. 5 includes four I-shaped core pieces 10i to 10i as the magnetic core 10C. The magnetic core 10C is an O-shaped magnetic core that constitutes a frame-like closed magnetic path by combining these four core pieces 10i to 10i (the left diagram in FIG. 5). Here, a gap G is formed between the two core pieces 10i, 10i arranged in parallel in the left-right direction in FIG. 5 and another core piece 10i that connects the ends of the two core pieces 10i, 10i. An example is shown in which coils C and C are respectively disposed on the two core pieces 10i and 10i arranged in parallel. As in the coil component 1B of the second embodiment, only one of the core pieces 10i can include the coil C. In this example, it is preferable that the I-shaped core piece 10 i in which the coil C is not disposed is the dust core 1 of the embodiment. Of course, all the I-shaped core pieces 10i may be used as the dust core 1 of the embodiment.

図3〜図5に示す磁性コア10A〜10C、コア片10i,10f,10pの形状は例示であり、公知の形状に適宜変更できる。例えば、角部を丸めた湾曲面を有する形状などが挙げられる。また、図3〜図5に示すような単純な形状ではなく、一つ又は複数の段差を有する形状や、端部に一つ又は複数のフランジ部を備える形状、などのように凹凸のある外形を有する異形の立体とすることができる。コイル部品に備えるコア片数は適宜変更でき、図3〜図5は例示である。   The shapes of the magnetic cores 10A to 10C and the core pieces 10i, 10f, and 10p shown in FIGS. 3 to 5 are examples, and can be appropriately changed to known shapes. For example, the shape etc. which have the curved surface which rounded the corner | angular part are mentioned. In addition, it is not a simple shape as shown in FIG. 3 to FIG. 5, but an outer shape with irregularities such as a shape having one or a plurality of steps, a shape having one or a plurality of flange portions at the end, and the like. It can be an irregular solid having The number of core pieces provided in the coil component can be appropriately changed, and FIGS. 3 to 5 are examples.

コイルCを構成する巻線は、導体の外周に絶縁層を備える被覆線が挙げられる。導体は、銅、銅合金、アルミニウム、アルミニウム合金などの導電性材料から構成される線材が挙げられる。線材は、断面円形状の丸線や断面矩形状の平角線などが挙げられる。絶縁層の構成材料は、エナメルや、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)樹脂、ポリテトラフルオロエチレン(PTFE)樹脂、シリコーンゴムなどが挙げられる。公知の巻線を利用できる。コイル部品に備えるコイルCの数は適宜変更でき、図3〜図5は例示である。   As for the winding wire constituting the coil C, a covered wire having an insulating layer on the outer periphery of the conductor can be mentioned. Examples of the conductor include a wire made of a conductive material such as copper, copper alloy, aluminum, and aluminum alloy. Examples of the wire include a round wire having a circular cross section and a rectangular wire having a rectangular cross section. Examples of the constituent material of the insulating layer include enamel, tetrafluoroethylene-hexafluoropropylene copolymer (FEP) resin, polytetrafluoroethylene (PTFE) resin, and silicone rubber. Known windings can be used. The number of coils C provided in the coil component can be changed as appropriate, and FIGS. 3 to 5 are merely examples.

ギャップGは、所望の磁気特性が得られるように、適宜設けることができる。例えば、ギャップGを備えていない形態とすることができる。また、ギャップGは、非磁性材料からなるギャップ材を用いた形態の他、エアギャップとすることができる。   The gap G can be appropriately provided so as to obtain desired magnetic characteristics. For example, it can be set as the form which is not provided with the gap G. The gap G can be an air gap in addition to a form using a gap material made of a nonmagnetic material.

〔圧粉磁心の製造方法〕
実施形態の圧粉磁心1は、例えば、以下の準備工程と、成形工程と、を備え、成形工程後に熱処理を行わない製造方法によって製造できる(図1)。
[Production method of dust core]
The powder magnetic core 1 of the embodiment can be manufactured by a manufacturing method that includes, for example, the following preparation process and a molding process, and does not perform heat treatment after the molding process (FIG. 1).

・準備工程
準備工程では、裸鉄粉200と、潤滑剤300と、を準備する。裸鉄粉200は、平均粒径が40μm以上100μm以下であり、粒径が200μm以上の鉄粒子の割合が10質量%以下である粉末とする。潤滑剤300は、平均粒径が1μm以上50μm以下である融点が120℃以上(例えば、ステアリン酸金属塩)の粉末とする。被覆鉄粉10を含む圧粉磁心1を製造する場合には、平均粒径が150μm以上400μm以下であり、粒径が75μm以下の粉末粒子の割合が10質量%以下である被覆鉄粉100を準備する。
-Preparation process In a preparation process, the bare iron powder 200 and the lubricant 300 are prepared. The bare iron powder 200 is a powder having an average particle size of 40 μm or more and 100 μm or less, and a ratio of iron particles having a particle size of 200 μm or more is 10% by mass or less. The lubricant 300 is a powder having an average particle diameter of 1 μm or more and 50 μm or less and a melting point of 120 ° C. or more (for example, metal stearate). When the powder magnetic core 1 including the coated iron powder 10 is manufactured, the coated iron powder 100 having an average particle diameter of 150 μm or more and 400 μm or less and a ratio of powder particles having a particle diameter of 75 μm or less is 10% by mass or less. prepare.

上記の製造方法では成形後に熱処理を行わないため、得られた成形体(圧粉磁心1)の構成成分は、上述のように原料粉末Pの構成成分を実質的に維持する。また、原料粉末Pは成形によって若干変形するものの、圧粉磁心1を構成する粉末粒子の大きさ及び配合割合は、原料粉末Pに含まれる粉末粒子の大きさ及び配合割合に依存し、概ね維持する傾向にある。そのため、原料粉末Pの成分、大きさ、配合割合などの詳細な説明は省略する。圧粉磁心1に含む被覆鉄粉10、潤滑剤30、裸鉄粉20について述べた各事項は、原料粉末Pに含む被覆鉄粉100、潤滑剤300、裸鉄粉200にそれぞれ適用できる。その他の事項を以下に述べる。   In the manufacturing method described above, since heat treatment is not performed after molding, the constituent components of the obtained molded body (dust core 1) substantially maintain the constituent components of the raw material powder P as described above. In addition, although the raw material powder P is slightly deformed by molding, the size and the mixing ratio of the powder particles constituting the powder magnetic core 1 depend on the size and the mixing ratio of the powder particles included in the raw material powder P and are generally maintained. Tend to. Therefore, detailed description of the component, size, blending ratio, etc. of the raw material powder P is omitted. The matters described regarding the coated iron powder 10, the lubricant 30, and the bare iron powder 20 included in the dust core 1 can be applied to the coated iron powder 100, the lubricant 300, and the bare iron powder 200 included in the raw material powder P, respectively. Other matters are described below.

裸鉄粉200及び被覆鉄粉100に用いる純鉄粉は、ガスアトマイズ法や水アトマイズ法といったアトマイズ法などの公知の方法によって製造できる。被覆鉄粉100の絶縁被覆140の形成には、例えば、燐酸塩化成処理といった化成処理、溶剤の吹きつけ、前駆体を用いたゾルゲル処理などが利用できる。シリコーン系有機化合物の被覆を形成する場合、有機溶剤を用いた湿式被覆処理や、ミキサーによる直接被覆処理などを利用できる。被覆鉄粉100として、市販の被覆鉄粉を利用できる。裸鉄粉200の大きさや被覆鉄粉100の大きさは、純鉄粉を粉砕するなどしてその大きさを調整したり、裸鉄粉200や被覆鉄粉100を篩法などによって分級したりすることで調整できる。   The pure iron powder used for the bare iron powder 200 and the coated iron powder 100 can be produced by a known method such as an atomizing method such as a gas atomizing method or a water atomizing method. For forming the insulating coating 140 of the coated iron powder 100, for example, chemical conversion treatment such as phosphate chemical conversion treatment, spraying of a solvent, sol-gel treatment using a precursor, or the like can be used. When forming a coating of a silicone organic compound, wet coating using an organic solvent, direct coating using a mixer, or the like can be used. As the coated iron powder 100, commercially available coated iron powder can be used. The size of the bare iron powder 200 and the size of the coated iron powder 100 are adjusted by pulverizing the pure iron powder, or the bare iron powder 200 and the coated iron powder 100 are classified by a sieving method or the like. You can adjust it.

原料粉末Pにおける裸鉄粉200及び被覆鉄粉100について、大きさや特定の粒径の質量割合は、市販の粒度測定装置を用いることで測定できる。簡易的な測定として、特定の粒径の質量割合は、篩を用いて分級すると共に、選別した特定の粒径の粉末粒子の質量を測定することが挙げられる。   About the bare iron powder 200 and the covering iron powder 100 in the raw material powder P, the size and the mass ratio of the specific particle size can be measured by using a commercially available particle size measuring device. As a simple measurement, the mass ratio of the specific particle size is classified using a sieve and the mass of the selected powder particles having the specific particle size is measured.

原料粉末Pの混合には、V型ミキサーやダブルコーンミキサーといった適宜な混合機を利用できる。この混合は、被覆鉄粉100の絶縁被覆140を損傷しない程度に行うことが好ましい。   For mixing the raw material powder P, an appropriate mixer such as a V-type mixer or a double cone mixer can be used. This mixing is preferably performed to such an extent that the insulating coating 140 of the coated iron powder 100 is not damaged.

・成形工程
成形工程では、準備工程で準備した原料粉末Pを金型に充填して加圧圧縮し、圧粉磁心1を製造する。
-Molding process In the molding process, the raw material powder P prepared in the preparation process is filled in a mold and compressed by pressure to produce a dust core 1.

金型は、代表的には、貫通孔を有するダイと、原料粉末Pを加圧圧縮する一対のパンチと、を備えるものが挙げられる。詳しくは、ダイの内周面の一部と、一方のパンチの一面(他方のパンチとの対向面)とで有底筒状を形成し、この有底筒状内の空間に原料粉末Pを充填して両パンチによって加圧圧縮して、所望の形状に成形する。そして、ダイから抜き出した成形体が圧粉磁心1である。貫通孔を有する筒状や環状の圧粉磁心(図3のコア片10fなど)を製造する場合には、金型として、ダイの貫通孔に挿通配置されて、成形体の貫通孔を形成するロッドを備えるものを利用するとよい。段差を有する形状の成形体を成形する場合には、一対のパンチをそれぞれ、複数に分割した組物を利用することができる。金型の構成は、公知の構成を利用できる。   The mold typically includes a die having a die having a through hole and a pair of punches for compressing and compressing the raw material powder P. Specifically, a bottomed cylindrical shape is formed by a part of the inner peripheral surface of the die and one surface of one punch (the surface facing the other punch), and the raw material powder P is placed in the space in the bottomed cylindrical shape. Fill and press and compress with both punches to form the desired shape. The molded body extracted from the die is the dust core 1. When manufacturing a cylindrical or annular powder magnetic core (such as the core piece 10f in FIG. 3) having a through hole, the through hole of the molded body is formed by being inserted into the through hole of the die as a mold. A thing provided with a rod should be used. When molding a shaped body having a step, a pair of punches each divided into a plurality of punches can be used. A known configuration can be used as the configuration of the mold.

成形圧力は、例えば、1200MPa未満、更に1000MPa以下、更には800MPa以下とすることができる。上述のように原料粉末Pが圧縮変形性に優れるため、成形圧力を500MPa以上、更に550MPa以上、更には600MPa以上とすることで、緻密化、高密度化を図れる。   The molding pressure can be, for example, less than 1200 MPa, further 1000 MPa or less, and further 800 MPa or less. Since the raw material powder P is excellent in compressive deformability as described above, densification and densification can be achieved by setting the molding pressure to 500 MPa or more, further 550 MPa or more, and further 600 MPa or more.

金型をある程度加熱した状態(連続成形に起因する加工熱でもよい)で成形することができる。この場合、被覆鉄粉100や裸鉄粉200の成形性を高めたり、潤滑剤300をある程度軟化して流動し易くしたりして、圧縮成形性を高められる。そのため、成形圧力をより低くできる。金型を加熱する場合には、金型温度は、潤滑剤の融点をTとするとき、例えば、(T/2)℃以上T℃未満が挙げられる。例えば、融点Tが120℃〜200℃であれば、60℃〜100℃程度が挙げられる。この範囲であれば、成形性に優れる上に、潤滑剤300が溶解し液体化することを抑制でき、圧粉磁心1の潤滑剤30が裸鉄粉20間に粉末状で介在することができる。 Molding can be performed in a state in which the mold is heated to some extent (the processing heat resulting from continuous molding may be sufficient). In this case, the moldability of the coated iron powder 100 or the bare iron powder 200 can be improved, or the lubricant 300 can be softened to some extent to facilitate flow, thereby improving the compression moldability. Therefore, the molding pressure can be further reduced. When the mold is heated, the mold temperature is, for example, (T M / 2) ° C. or more and less than T M ° C. when the melting point of the lubricant is T M. For example, the melting point T M is if 120 ° C. to 200 DEG ° C., include about 60 ° C. to 100 ° C.. If it is this range, it is excellent in a moldability, and it can suppress that the lubricant 300 melt | dissolves and liquefies, and the lubricant 30 of the powder magnetic core 1 can be interposed between the bare iron powder 20 in a powder form. .

水冷装置などを用いて金型をより低い温度(例えば、室温以下)に保持することができる。この場合、寸法精度に優れる成形体を得易い。   The mold can be held at a lower temperature (for example, room temperature or lower) using a water cooling device or the like. In this case, it is easy to obtain a molded body having excellent dimensional accuracy.

成形時の雰囲気は、例えば、大気雰囲気が挙げられる。裸鉄粉200は潤滑剤300に接することで、酸素を含む雰囲気としても、鉄成分の酸化を相当程度防止できる。大気雰囲気は、制御が容易であるため、作業性に優れる。   The atmosphere at the time of molding includes, for example, an air atmosphere. Bare iron powder 200 is in contact with lubricant 300, so that oxidation of the iron component can be considerably prevented even in an atmosphere containing oxygen. The atmosphere is excellent in workability because it is easy to control.

金型において、原料粉末Pや成形体と接触する領域に離型コーティングを施すことができる。離型コーティングは、例えば、DLC、TiN、TiC、CrN、及びTi−X−N(但しXは、C,Al,Cr,Mo,及びWから選択される少なくとも1種の元素)から選択される少なくとも1種が挙げられる。離型コーティングの形成には、公知の物理蒸着法、化学蒸着法、アーク法などを利用でき、特にスパッタリング法を好適に利用できる。離型コーティングを行うことで、脱型性をより向上できる。   In the mold, a release coating can be applied to a region in contact with the raw material powder P and the molded body. The release coating is selected from, for example, DLC, TiN, TiC, CrN, and Ti-XN (where X is at least one element selected from C, Al, Cr, Mo, and W). There is at least one kind. For forming the release coating, a known physical vapor deposition method, chemical vapor deposition method, arc method or the like can be used, and in particular, a sputtering method can be suitably used. By performing the release coating, it is possible to further improve the demoldability.

〔用途〕
実施形態の圧粉磁心1は、各種のコイル部品(例えば、リアクトル、トランス、モータ、チョークコイル、アンテナ、燃料インジェクタ、点火コイルなど)の磁性コアに利用することができる。実施形態のコイル部品1A,1B,1Cは、リアクトル、トランス、モータ、チョークコイル、アンテナ、燃料インジェクタ、点火コイルなどに利用することができる。
[Use]
The dust core 1 of the embodiment can be used for a magnetic core of various coil components (for example, a reactor, a transformer, a motor, a choke coil, an antenna, a fuel injector, an ignition coil, etc.). The coil components 1A, 1B, and 1C of the embodiment can be used for a reactor, a transformer, a motor, a choke coil, an antenna, a fuel injector, an ignition coil, and the like.

[試験例1]
裸鉄粉を含む混合粉末を圧縮成形してなる圧粉磁心を作製し、得られた各圧粉磁心の透磁率及びコアロスを調べた。
[Test Example 1]
A dust core formed by compression-molding a mixed powder containing bare iron powder was produced, and the permeability and core loss of each obtained dust core were examined.

・試料No.1−1〜1−6
各試料の原料粉末として、裸鉄粉と潤滑剤とを含む混合粉末を用いる。試料No.1−4以外の試料は、原料粉末として、更に被覆鉄粉を含む。裸鉄粉は、純鉄から構成される鉄粒子(Feが99質量%以上、残部が不可避不純物)の集まりである。この裸鉄粉は、分級した。裸鉄粉の平均粒径(μm)と、裸鉄粉を構成する鉄粒子が200μm以上の粒子の割合(質量%)を測定した。特定の粒径の鉄粒子の割合は、分級前の鉄粒子の総重量を100質量%とした場合の各粒度の割合を示す。粒度分布は、市販のレーザ回折・散乱式粒子径・粒度分布測定装置を用いて測定した。裸鉄粉の平均粒径は、上記粒度分布測定装置で測定し、積算重量(質量)が50%となる粒径、すなわち50%粒径(質量)とする。その結果、裸鉄粉の平均粒径は、73μmであり、鉄粒子が200μm以上の粒子の割合は1質量%以下であった。
・ Sample No. 1-1 to 1-6
As a raw material powder of each sample, a mixed powder containing bare iron powder and a lubricant is used. Sample No. Samples other than 1-4 further contain coated iron powder as a raw material powder. Bare iron powder is a collection of iron particles composed of pure iron (Fe is 99% by mass or more and the balance is inevitable impurities). This bare iron powder was classified. The average particle diameter (μm) of the bare iron powder and the ratio (mass%) of particles in which the iron particles constituting the bare iron powder were 200 μm or more were measured. The ratio of the iron particles having a specific particle diameter indicates the ratio of each particle size when the total weight of the iron particles before classification is 100% by mass. The particle size distribution was measured using a commercially available laser diffraction / scattering particle size / particle size distribution measuring apparatus. The average particle size of the bare iron powder is measured with the above particle size distribution measuring apparatus, and the particle size at which the integrated weight (mass) is 50%, that is, 50% particle size (mass). As a result, the average particle size of the bare iron powder was 73 μm, and the ratio of the particles having iron particles of 200 μm or more was 1% by mass or less.

被覆鉄粉は、純鉄から構成される鉄粒子(Feが99質量%以上、残部が不可避不純物)の周囲に、燐酸鉄から構成される絶縁被覆(平均厚さ約20nm〜100nm)を備える被覆鉄粒子の集まりである。被覆鉄粉も、上述の裸鉄粉と同様に分級すると共に、平均粒径(μm)と、被覆鉄粉を構成する粒子の粒径が75μm以下の粒子の割合(質量%)を測定した。その結果、被覆鉄粉の平均粒径は、240μmであり、粒子が75μm以下の粒子の割合は7質量%以下であった。   The coated iron powder is a coating provided with an insulating coating (average thickness of about 20 nm to 100 nm) made of iron phosphate around iron particles made of pure iron (99% by mass or more of Fe, the remainder being inevitable impurities). A collection of iron particles. The coated iron powder was classified in the same manner as the bare iron powder described above, and the average particle diameter (μm) and the ratio (mass%) of particles having a particle diameter of 75 μm or less constituting the coated iron powder were measured. As a result, the average particle size of the coated iron powder was 240 μm, and the proportion of particles having a particle size of 75 μm or less was 7% by mass or less.

裸鉄粉と被覆鉄粉との配合割合は、両粉末の合計量(軟磁性粉末の全量)を100質量%とした場合に、裸鉄粉及び被覆鉄粉を表1に示す含有量とした。   The blending ratio of the bare iron powder and the coated iron powder is the content shown in Table 1 for the bare iron powder and the coated iron powder when the total amount of both powders (the total amount of the soft magnetic powder) is 100% by mass. .

潤滑剤は、ステアリン酸亜鉛(融点120℃〜125℃)の粉末を用いた。ステアリン酸亜鉛は、原料粉末(軟磁性粉末と潤滑剤との合計)を100質量%とするとき、表1に示す含有量とした。試料No.4以外の試料は、ステアリン酸亜鉛に加えて、更にステアリン酸アミド(融点:約100℃)の粉末を含有した。ステアリン酸アミドは、原料粉末(軟磁性粉末と潤滑剤との合計)を100質量%とするとき、表1に示す含有量とした。各潤滑剤の平均粒径は、上述の裸鉄粉と同様に粒度分布測定装置で測定した。その結果、ステアリン酸亜鉛(市販品)は、平均粒径が30μmであり、ステアリン酸アミド(市販品)は、平均粒径が45μmであった。   As the lubricant, powder of zinc stearate (melting point: 120 ° C. to 125 ° C.) was used. The content of zinc stearate was shown in Table 1 when the raw material powder (the total of the soft magnetic powder and the lubricant) was 100% by mass. Sample No. Samples other than 4 contained a powder of stearamide (melting point: about 100 ° C.) in addition to zinc stearate. The content of stearamide was shown in Table 1 when the raw material powder (the total of the soft magnetic powder and the lubricant) was 100% by mass. The average particle size of each lubricant was measured with a particle size distribution measuring device in the same manner as the bare iron powder described above. As a result, zinc stearate (commercial product) had an average particle size of 30 μm, and stearic acid amide (commercial product) had an average particle size of 45 μm.

金型に混合粉末を充填して加圧圧縮し、角柱状の成形体(図2を参照)を成形した。試料No.1−1〜1−4は、長さL:30mm、幅W:3mm、高さH:5mmの成形体となるように、高さH方向に沿って圧縮した。試料No.1−5は、長さL:30mm、幅W:3mm、高さH:5mmの成形体となるように、長さL方向に沿って圧縮した。試料No.1−6は、長さL:30mm、幅W:7.3mm、高さH:5mmの成形体となるように、高さH方向に沿って圧縮した。成形条件は、雰囲気を大気雰囲気とし、成形圧力は686MPa〜882MPa(7ton/cm〜9ton/cm)から選択し、金型温度は50℃〜60℃から選択した。得られた成形体には、熱処理を施していない。 The mold was filled with the mixed powder and pressurized and compressed to form a prismatic shaped body (see FIG. 2). Sample No. 1-1 to 1-4 were compressed along the height H direction so as to form a molded body having a length L of 30 mm, a width W of 3 mm, and a height H of 5 mm. Sample No. 1-5 compressed along the length L direction so that it might become a molded object of length L: 30mm, width W: 3mm, and height H: 5mm. Sample No. 1-6 compressed along the height H direction so that it might become a molded object of length L: 30mm, width W: 7.3mm, and height H: 5mm. The molding conditions were an atmospheric atmosphere, a molding pressure was selected from 686 MPa to 882 MPa ( 7 ton / cm 2 to 9 ton / cm 2 ), and a mold temperature was selected from 50 ° C. to 60 ° C. The obtained molded body was not subjected to heat treatment.

・試料No.1−11
原料粉末として、被覆鉄粉と潤滑剤とを含み、裸鉄粉を含まない混合粉末を用いた試料である。つまり、全軟磁性粉末が被覆鉄粉である。潤滑剤は、ステアリン酸アミドを0.3質量%含有し、高融点の潤滑剤は含有していない。その他の条件については、試料No.1−1と同様である。
・ Sample No. 1-11
This is a sample using a mixed powder containing coated iron powder and a lubricant and not containing bare iron powder as raw material powder. That is, the total soft magnetic powder is the coated iron powder. The lubricant contains 0.3% by mass of stearamide and does not contain a high melting point lubricant. For other conditions, sample no. It is the same as 1-1.

・試料No.1−12,1−13
原料粉末として、裸鉄粉と被覆鉄粉と潤滑剤とを含む混合粉末を用いた試料である。裸鉄粉と被覆鉄粉との配合割合は、両粉末の合計量(軟磁性粉末の全量)を100質量%とした場合に、裸鉄粉を表1に示す含有量とした。潤滑剤は、ステアリン酸アミドを0.3質量%含有し、高融点の潤滑剤は含有していない。その他の条件については、試料No.1−1と同様である。
・ Sample No. 1-12, 1-13
It is a sample using a mixed powder containing bare iron powder, coated iron powder and a lubricant as raw material powder. The blending ratio of the bare iron powder and the coated iron powder was the content shown in Table 1 when the total amount of both powders (the total amount of the soft magnetic powder) was 100% by mass. The lubricant contains 0.3% by mass of stearamide and does not contain a high melting point lubricant. For other conditions, sample no. It is the same as 1-1.

作製した試料No.1−1〜1−6,1−11〜1−13の成形体(圧粉磁心)について、潤滑剤量を以下のようにして測定した。成形体をそれぞれ、粉砕機によって粉砕し(大気雰囲気)、原料に用いた粉末程度の大きさにした粉末を1g秤量する。秤量した1gの粉末にアセトンを添加した混合液を得る。この混合液から、超音波抽出によって潤滑剤(ここではステアリン酸亜鉛、ステアリン酸アミド)を溶解して回収する。回収した潤滑剤をガスクロマトグラフによって、定性・定量を行った。即ち、粉砕粉末1gあたりの潤滑剤量x(g)を求め、成形体の質量y(g)を用いて、成形体の質量に占める潤滑剤の質量割合((x×y)/y)×100を求めた。この潤滑剤量は、成形体を100質量%とする割合である。その結果、いずれの成形体も、原料粉末と同等の含有量の潤滑剤(ステアリン酸亜鉛やステアリン酸アミド)を含んでいた。   The prepared sample No. For the molded bodies (dust cores) 1-1 to 1-6 and 1-11 to 1-13, the amount of lubricant was measured as follows. Each of the compacts is pulverized by a pulverizer (atmosphere), and 1 g of the powder having the same size as that of the raw material is weighed. A liquid mixture obtained by adding acetone to 1 g of the weighed powder is obtained. From this mixed solution, a lubricant (here, zinc stearate, stearamide) is dissolved and recovered by ultrasonic extraction. The recovered lubricant was qualitatively and quantitatively analyzed by gas chromatography. That is, the lubricant amount x (g) per 1 g of the pulverized powder is obtained, and the mass ratio of the lubricant to the mass of the molded body ((xx) / y) × using the mass y (g) of the molded body. 100 was determined. This amount of lubricant is a ratio which makes a molded object 100 mass%. As a result, each of the molded bodies contained a lubricant (zinc stearate or stearamide) having a content equivalent to that of the raw material powder.

試料No.1−1〜1−6,1−11〜1−13の成形体(圧粉磁心)4個を四角枠状(図3に示す枠状のコア片10fと同等の形状)に組み合わせ、この四角枠状部材の内側にI字状のコア片を配置し、I字状のコア片に同一の巻線を巻回して測定用部材(コイル部品)を作製する(図3のコイル部品1Aを参照)。作製した測定用部材及びAC−BHカーブトレーサを用いて、励起磁束密度Bmを1T、測定周波数を1kHzとしたときについて、AC−BHカーブの傾きから試料の交流透磁率を求めると共に、試料の渦電流損(渦損)とヒステリシス損(ヒス損)とを求めた。渦損とヒス損との合計である鉄損をコアロスとする。測定結果を表1に併せて示す。   Sample No. Four compacts (powder magnetic cores) 1-1 to 1-6 and 1-11 to 1-13 are combined into a square frame (a shape equivalent to the frame-shaped core piece 10f shown in FIG. 3). An I-shaped core piece is placed inside the frame-shaped member, and the same winding is wound around the I-shaped core piece to produce a measurement member (coil component) (see coil component 1A in FIG. 3). ). Using the produced measurement member and AC-BH curve tracer, when the excitation magnetic flux density Bm is 1T and the measurement frequency is 1 kHz, the AC permeability of the sample is obtained from the slope of the AC-BH curve, and the vortex of the sample Current loss (eddy loss) and hysteresis loss (his loss) were determined. The core loss, which is the sum of eddy loss and hiss loss, is defined as core loss. The measurement results are also shown in Table 1.

表1における「圧縮方向・磁束方向」とは、圧縮方向と磁束方向との関係を示しており、圧縮方向と磁束方向とが直交している場合には「直交」、圧縮方向と磁束方向とが同方向である場合には「平行」としている。表1における「幅/粒径」とは、圧粉磁心の幅W(図2を参照)を裸鉄粉の平均粒径で除した値である。裸鉄粉の平均粒径は、圧粉磁心の横断面又は縦断面に存在する裸鉄粉を構成する鉄粒子の短径及び長径を測定し、この鉄粒子の面積の円相当径とする。   “Compression direction / magnetic flux direction” in Table 1 indicates the relationship between the compression direction and the magnetic flux direction. When the compression direction and the magnetic flux direction are orthogonal to each other, it is “orthogonal”. Are in the same direction, it is “parallel”. “Width / particle diameter” in Table 1 is a value obtained by dividing the width W (see FIG. 2) of the powder magnetic core by the average particle diameter of the bare iron powder. The average particle diameter of the bare iron powder is determined by measuring the short diameter and the long diameter of the iron particles constituting the bare iron powder present in the transverse section or the longitudinal section of the dust core, and taking the equivalent circle diameter of the area of the iron particles.

Figure 2017069550
Figure 2017069550

表1に示すように、裸鉄粉を比較的多量に含む試料No.1−1〜1−6の圧粉磁心は、いずれも透磁率が350以上、かつコアロスが300W/kg以下であり、全軟磁性粉末が被覆鉄粉で構成された試料No.1−11と同等程度であることがわかった。つまり、軟磁性粉末として、被覆鉄粉の代わりに絶縁被覆を備えていない裸鉄粉を用いたとしても、潤滑剤として高融点の潤滑剤を含有することで必要な磁気特性を有する圧粉磁心とできることがわかった。これは、高融点の潤滑剤を含有することで、圧粉磁心の製造条件や使用条件における高温においても、潤滑剤が溶解し液体化することなく、裸鉄粉間に介在することで、裸鉄粉間を絶縁しているからと考えられる。例えば、高融点の潤滑剤を含有した試料No.1−2は、高融点の潤滑剤を含有していない試料No.1−13と比較して、透磁率も高く、コアロスも低減している。試料No.1−13では、裸鉄粉間に絶縁材として潤滑剤が介在していないため、裸鉄粉を構成する鉄粒子同士が結合して導通部分が生じてしまい、渦電流が増大したと考えられる。   As shown in Table 1, Sample No. containing a relatively large amount of bare iron powder. In each of the dust cores 1-1 to 1-6, the magnetic permeability is 350 or more, the core loss is 300 W / kg or less, and all soft magnetic powders are composed of coated iron powder. It was found to be equivalent to 1-11. That is, even if bare iron powder without an insulating coating is used instead of coated iron powder as a soft magnetic powder, a dust core having necessary magnetic properties by containing a high melting point lubricant as a lubricant I understood that I can do it. This is because the high melting point lubricant is contained, and even when the powder core is manufactured or used at high temperatures, the lubricant does not dissolve and liquefy, and is interposed between the bare iron powders. This is probably because the iron powder is insulated. For example, Sample No. containing a high melting point lubricant. Sample No. 1-2 which does not contain a high melting point lubricant. Compared with 1-13, the magnetic permeability is high and the core loss is also reduced. Sample No. In No. 1-13, since no lubricant is interposed as an insulating material between the bare iron powders, the iron particles constituting the bare iron powders are combined to produce a conductive portion, which is thought to increase the eddy current. .

特に、圧粉磁心の圧縮方向と、コイルの励磁に伴う磁束方向とが直交方向である試料No.1−1〜1−4,1−6は、透磁率が高い傾向にあることがわかる。これは、裸鉄粉を構成する鉄粒子の長径方向は鉄粒子同士の粒界が少ないが、この長径方向が上記磁束方向と平行であることで、磁束が通り易くなったためと考えられる。   In particular, Sample No. in which the compression direction of the dust core and the direction of magnetic flux accompanying excitation of the coil are orthogonal. It can be seen that 1-1 to 1-4 and 1-6 tend to have high magnetic permeability. This is presumably because the major axis direction of the iron particles constituting the bare iron powder has few grain boundaries between the iron particles, but the major axis direction is parallel to the magnetic flux direction, so that the magnetic flux easily passes.

[試験例2]
裸鉄粉に含有される不純物の含有量の違いによる透磁率及びコアロスを調べた。
[Test Example 2]
The permeability and core loss due to the difference in the content of impurities contained in the bare iron powder were investigated.

・試料No.2−1〜2−4
表2に示す不純物を含む裸鉄粉を準備した。この不純物は、O,P,Cr,Mn,Ni,Cuである。裸鉄粉と被覆鉄粉との配合割合は、両粉末の合計量(軟磁性粉末の全量)を100質量%とした場合に、裸鉄粉:50質量%、被覆鉄粉:50質量%とした。潤滑剤の含有量は、原料粉末(軟磁性粉末と潤滑剤との合計)を100質量%とした場合に、ステアリン酸亜鉛:0.2質量%、ステアリン酸アミド:0.1質量%とした。その他の条件(粉末の粒径、被覆鉄粉の絶縁被覆の厚さ、成形条件など)は、試料No.1−1と同様とした。
・ Sample No. 2-1 to 2-4
Bare iron powder containing impurities shown in Table 2 was prepared. These impurities are O, P, Cr, Mn, Ni, and Cu. The blending ratio of the bare iron powder and the coated iron powder is as follows: when the total amount of both powders (the total amount of the soft magnetic powder) is 100 mass%, the naked iron powder is 50 mass% and the coated iron powder is 50 mass%. did. The content of the lubricant was set to zinc stearate: 0.2% by mass and stearamide: 0.1% by mass when the raw material powder (total of soft magnetic powder and lubricant) was 100% by mass. . Other conditions (powder particle size, coated iron powder insulation coating thickness, molding conditions, etc.) are as follows. It was the same as 1-1.

試料No.2−1〜2−4の成形体(圧粉磁心)を試料No.1−1と同様の形状に組み合わせ、測定用部材(コイル部品)を作製し、試料No.1−1と同様に透磁率及びコアロスを測定した。その結果を表2に併せて示す。   Sample No. Samples Nos. 2-1 to 2-4 (powder magnetic cores) of Sample No. In combination with the same shape as 1-1, a measurement member (coil part) was prepared. The magnetic permeability and core loss were measured as in 1-1. The results are also shown in Table 2.

Figure 2017069550
Figure 2017069550

表2に示すように、裸鉄粉の不純物が少ない圧粉磁心ほど、透磁率が高く、コアロスが小さいことがわかる。特に、Oの含有量が0.10質量%以下で、かつP,Cr,Mn,Ni,Cuの合計含有量が0.20質量%以下である試料No.2−3,2−4は、透磁率が450以上、かつコアロスが215W/kg以下と、非常に高透磁率で、かつ低コアロスであることがわかる。これは、裸鉄粉の不純物の含有量が少ないことで、裸鉄粉が変形し易くなり、充填性が向上し、かつヒステリシス損が低減されたからと考えられる。   As shown in Table 2, it can be seen that the dust core with fewer bare iron powder impurities has higher magnetic permeability and smaller core loss. In particular, Sample No. in which the O content is 0.10% by mass or less and the total content of P, Cr, Mn, Ni, Cu is 0.20% by mass or less. As for 2-3 and 2-4, it turns out that magnetic permeability is 450 or more and core loss is 215 W / kg or less, and it is very high magnetic permeability and low core loss. This is presumably because the bare iron powder has a small impurity content, so that the bare iron powder is easily deformed, the filling property is improved, and the hysteresis loss is reduced.

1 圧粉磁心 1L 長尺片
10 被覆鉄粉 12 鉄粒子 14 絶縁被覆
20 裸鉄粉 30 潤滑剤
P 原料粉末
100 被覆鉄粉 120 鉄粒子 140 絶縁被覆
200 裸鉄粉 300 潤滑剤
1A,1B,1C コイル部品
10A,10B,10C 磁性コア
10i I字状のコア片 10f 枠状のコア片
10p U状のコア片
10h 貫通孔
G ギャップ C コイル
DESCRIPTION OF SYMBOLS 1 Powder magnetic core 1L Long piece 10 Coated iron powder 12 Iron particle 14 Insulation coating 20 Bare iron powder 30 Lubricant P Raw material powder 100 Coated iron powder 120 Iron particle 140 Insulation coating 200 Bare iron powder 300 Lubricant 1A, 1B, 1C Coil parts 10A, 10B, 10C Magnetic core 10i I-shaped core piece 10f Frame-shaped core piece 10p U-shaped core piece 10h Through hole G gap C Coil

Claims (8)

軟磁性粉末を有する圧粉磁心であって、
絶縁被覆を備えていない裸鉄粉と、
融点が120℃以上である粉末状の潤滑剤と、を備え、
前記軟磁性粉末における前記裸鉄粉の含有量が45質量%超であり、
前記圧粉磁心における前記潤滑剤の含有量が0.05質量%以上0.5質量%以下である圧粉磁心。
A dust core having soft magnetic powder,
Bare iron powder without insulation coating,
A powdery lubricant having a melting point of 120 ° C. or higher,
The content of the bare iron powder in the soft magnetic powder is more than 45% by mass,
The powder magnetic core whose content of the said lubricant in the said powder magnetic core is 0.05 mass% or more and 0.5 mass% or less.
前記圧粉磁心は、長尺片を有し、
前記長尺片の横断面又は縦断面において、前記裸鉄粉は、短径及び長径を有する扁平形状であり、その短径方向を圧縮方向とするとき、
前記長尺片は、その長手方向及び前記圧縮方向の双方に直交する方向の長さが前記裸鉄粉の平均粒径の80倍以下である細幅部を有する請求項1に記載の圧粉磁心。
The dust core has a long piece,
In the transverse section or longitudinal section of the long piece, the bare iron powder is a flat shape having a minor axis and a major axis, and when the minor axis direction is a compression direction,
The said long piece has the narrow part whose length of the direction orthogonal to both the longitudinal direction and the said compression direction has a narrow part which is 80 times or less of the average particle diameter of the said bare iron powder. core.
前記潤滑剤は、ステアリン酸金属塩を含む請求項1又は請求項2に記載の圧粉磁心。   The powder magnetic core according to claim 1, wherein the lubricant contains a stearic acid metal salt. 前記裸鉄粉は、
平均粒径が40μm以上100μm以下であり、
前記裸鉄粉の構成粒子のうち粒径が200μm以上の粒子の割合が10質量%以下である請求項1から請求項3のいずれか1項に記載の圧粉磁心。
The bare iron powder is
The average particle size is 40 μm or more and 100 μm or less,
The dust core according to any one of claims 1 to 3, wherein a ratio of particles having a particle diameter of 200 µm or more among the constituent particles of the bare iron powder is 10 mass% or less.
更に、絶縁被覆を備える被覆鉄粉を備え、
前記軟磁性粉末における前記被覆鉄粉の含有量が30質量%以上55質量%未満である請求項1から請求項4のいずれか1項に記載の圧粉磁心。
Furthermore, it comprises a coated iron powder with an insulating coating,
The dust core according to any one of claims 1 to 4, wherein a content of the coated iron powder in the soft magnetic powder is 30% by mass or more and less than 55% by mass.
前記裸鉄粉は、酸素の含有量が0.1質量%未満であり、リン、クロム、マンガン、ニッケル、及び銅の合計含有量が0.2質量%未満である請求項1から請求項5のいずれか1項に記載の圧粉磁心。   6. The bare iron powder has an oxygen content of less than 0.1% by mass and a total content of phosphorus, chromium, manganese, nickel, and copper of less than 0.2% by mass. The dust core according to any one of the above. コイルと、磁性コアと、を備えるコイル部品であって、
前記磁性コアの少なくとも一部に請求項1から請求項6のいずれか1項に記載の圧粉磁心を備えるコイル部品。
A coil component comprising a coil and a magnetic core,
A coil component comprising the dust core according to any one of claims 1 to 6 in at least a part of the magnetic core.
前記圧粉磁心は、長尺片を有し、
前記長尺片の横断面において、前記裸鉄粉は、短径及び長径を有する扁平形状であり、
前記長尺片は、その長手方向が前記コイルの励磁に伴う磁束方向に沿った方向となるように配置されている請求項7に記載のコイル部品。
The dust core has a long piece,
In the cross section of the long piece, the bare iron powder is a flat shape having a short diameter and a long diameter,
The coil component according to claim 7, wherein the long piece is disposed such that a longitudinal direction thereof is a direction along a magnetic flux direction accompanying excitation of the coil.
JP2016175870A 2015-09-28 2016-09-08 Dust core and coil parts Active JP6702830B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015189981 2015-09-28
JP2015189981 2015-09-28

Publications (2)

Publication Number Publication Date
JP2017069550A true JP2017069550A (en) 2017-04-06
JP6702830B2 JP6702830B2 (en) 2020-06-03

Family

ID=58495184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016175870A Active JP6702830B2 (en) 2015-09-28 2016-09-08 Dust core and coil parts

Country Status (1)

Country Link
JP (1) JP6702830B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009059954A (en) * 2007-08-31 2009-03-19 Hitachi Powdered Metals Co Ltd Disc type reactor
JP2010209469A (en) * 2003-09-09 2010-09-24 Hoganas Ab Iron based soft magnetic powder
JP2012212856A (en) * 2011-03-24 2012-11-01 Sumitomo Electric Ind Ltd Composite material, core for reactor, and reactor
JP2012238842A (en) * 2011-04-27 2012-12-06 Taiyo Yuden Co Ltd Magnetic material and coil component
JP2013098210A (en) * 2011-10-28 2013-05-20 Taiyo Yuden Co Ltd Coil type electronic component

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010209469A (en) * 2003-09-09 2010-09-24 Hoganas Ab Iron based soft magnetic powder
JP2009059954A (en) * 2007-08-31 2009-03-19 Hitachi Powdered Metals Co Ltd Disc type reactor
JP2012212856A (en) * 2011-03-24 2012-11-01 Sumitomo Electric Ind Ltd Composite material, core for reactor, and reactor
JP2012238842A (en) * 2011-04-27 2012-12-06 Taiyo Yuden Co Ltd Magnetic material and coil component
JP2013098210A (en) * 2011-10-28 2013-05-20 Taiyo Yuden Co Ltd Coil type electronic component

Also Published As

Publication number Publication date
JP6702830B2 (en) 2020-06-03

Similar Documents

Publication Publication Date Title
JP5650928B2 (en) SOFT MAGNETIC MATERIAL, MOLDED BODY, DUST CORE, ELECTRONIC COMPONENT, SOFT MAGNETIC MATERIAL MANUFACTURING METHOD, AND DUST CORE MANUFACTURING METHOD
JP5368686B2 (en) Soft magnetic material, dust core, method for producing soft magnetic material, and method for producing dust core
JP4325950B2 (en) Soft magnetic material and dust core
JP5050745B2 (en) Reactor core, manufacturing method thereof, and reactor
KR101840083B1 (en) Compact, reactor core and magnetic circuit component
JP5096605B2 (en) Outer core manufacturing method, outer core, and reactor
JP4327214B2 (en) Sintered soft magnetic powder compact
JP2012160726A (en) Magnetic powder material, low-loss composite magnetic material containing magnetic powder material, and magnetic element containing low-loss composite magnetic material
JP6423629B2 (en) Powder core and coil parts
JP6523778B2 (en) Dust core and manufacturing method of dust core
WO2017082027A1 (en) Pressed powder formed body, electromagnetic component, and pressed powder formed body production method
JP2012238866A (en) Core for reactor, method of manufacturing the same, and reactor
JP2020180364A (en) Alloy powder composition, molded body and its manufacturing method, as well as inductor
JP2013062457A (en) Green compact and current sensor
JP4909312B2 (en) Soft magnetic material for dust core and dust core
JP6702830B2 (en) Dust core and coil parts
CN107615411B (en) Mixed powder for dust core and dust core
WO2015045561A1 (en) Dust core, method for producing dust core and coil component
JP6882375B2 (en) Mixed powder for dust core and powder magnetic core
CN111065474B (en) Method for producing dust core and raw material powder for dust core
JP2017011073A (en) Powder-compact magnetic core and method of manufacturing power-compact magnetic core
JP5845022B2 (en) Magnetic circuit parts
JP6174954B2 (en) Method for producing a green compact
JP2003224017A (en) Powder magnetic core and method of manufacturing the same
JP4284042B2 (en) Dust core

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200507

R150 Certificate of patent or registration of utility model

Ref document number: 6702830

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250