JP2017067352A - 排熱回収ボイラおよび排熱回収方法 - Google Patents

排熱回収ボイラおよび排熱回収方法 Download PDF

Info

Publication number
JP2017067352A
JP2017067352A JP2015191871A JP2015191871A JP2017067352A JP 2017067352 A JP2017067352 A JP 2017067352A JP 2015191871 A JP2015191871 A JP 2015191871A JP 2015191871 A JP2015191871 A JP 2015191871A JP 2017067352 A JP2017067352 A JP 2017067352A
Authority
JP
Japan
Prior art keywords
exhaust gas
flow path
heat
exhaust
divided
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015191871A
Other languages
English (en)
Inventor
滝脇 賢也
Kenya Takiwaki
賢也 滝脇
山本 泰
Yasushi Yamamoto
泰 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2015191871A priority Critical patent/JP2017067352A/ja
Publication of JP2017067352A publication Critical patent/JP2017067352A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

【課題】排熱回収における伝熱効率を向上させることができる排熱回収ボイラおよび排熱回収方法を提供すること。【解決手段】本実施形態による排熱回収ボイラは、排ガス流路と、流路分割壁と、第1伝熱管とを備える。排ガス流路は、排ガス入口から排ガス出口へと排ガスを流す。流路分割壁は、排ガスの流動方向に直交する方向において排ガス流路を複数の分割流路に分割する。第1伝熱管は、複数の分割流路のうちの第1分割流路から、複数の分割流路のうちの第2分割流路へと至り、第1分割流路側から第2分割流路側に向かって熱媒体を流す。【選択図】図1

Description

本発明による実施形態は、排熱回収ボイラおよび排熱回収方法に関する。
排熱回収ボイラは、ガスタービンの排気から熱を回収し、回収された熱で蒸気を駆動する。このような排熱回収ボイラの伝熱効率(換言すれば、伝熱量または熱交換効率)を向上させることで、発電プラントの発電効率を向上させることができる。
しかし、タービンの排ガスは、ボイラ等で燃焼されたガスと異なり温度が低いため、排熱回収ボイラの伝熱効率を向上させることは困難であった。
なお、これまでにも、排熱回収後の排ガスをバイパスダクトによって煙突等にバイパスさせる技術が知られている。しかるに、この技術は、排熱回収ボイラによる蒸気発生量を調整しようとするものであり、排熱回収ボイラの伝熱効率を向上させようとするものではない。
特開平8‐166103号公報
本発明は上述した課題を解決するためになされたものであり、排熱回収における伝熱効率を向上させることができる排熱回収ボイラおよび排熱回収方法を提供することを目的とする。
本実施形態による排熱回収ボイラは、排ガス流路と、流路分割壁と、第1伝熱管とを備える。排ガス流路は、排ガス入口から排ガス出口へと排ガスを流す。流路分割壁は、排ガスの流動方向に直交する方向において排ガス流路を複数の分割流路に分割する。第1伝熱管は、複数の分割流路のうちの第1分割流路から、複数の分割流路のうちの第2分割流路へと至る。第1伝熱管は、第1分割流路側から第2分割流路側に向かって熱媒体を流す。
本発明によれば、排熱回収における伝熱効率を向上させることができる。
第1の実施形態を示す排熱回収ボイラ1の概略断面図である。 図1の排熱回収ボイラ1の第1伝熱管131の一例を示す模式図である。 第2の実施形態を示す排熱回収ボイラ1の概略断面図である。 第3の実施形態を示す排熱回収ボイラ1の概略断面図である。 第4の実施形態を示す排熱回収ボイラ1の概略断面図である。 第5の実施形態を示す排熱回収ボイラ1の概略断面図である。 第6の実施形態を示す排熱回収ボイラ1の概略断面図である。
以下、図面を参照して本発明に係る実施形態を説明する。本実施形態は、本発明を限定するものではない。
(第1の実施形態)
図1は、第1の実施形態を示す排熱回収ボイラ1の概略断面図である。図1に示すように、排熱回収ボイラ1は、排ガス流路11と、流路分割壁12と、第1伝熱管131とを備える。
排ガス流路11は、不図示のガスタービンの排ガスを導入する排ガス入口101から、排熱回収後(熱媒体との熱交換後)の排ガスを排出する排ガス出口102へと、排ガスを流す。具体的には、排ガス流路11は、一端に排ガス入口101を有し、他端に排ガス出口102を有する中空の外壁10の内部に、排ガス入口101と排ガス出口102とを連通するように形成されている。なお、排ガス流路11は、外壁10の内部に設けられた不図示の内壁で囲まれた空間であってもよい。
より具体的には、排ガス流路11は、排ガス入口101から排ガス出口102に向かって順に、拡大部111と、分割部112と、統合部113と、縮小部114とを有する。拡大部111は、排ガス流路11のうち、排ガスの流動方向D1に進むにしたがって流動方向D1に直交する排ガス流路11の断面(内周)が拡大する区間である。分割部112は、排ガス流路11のうち、排ガス流路11が後述する複数の分割流路に分割される区間である。分割部112は、後述する熱媒体との熱交換によってガスタービンの排熱を回収する区間ということもできる。統合部113は、排ガス流路11のうち、分割部112で分割された複数の分割流路が1つの流路11に統合される区間である。縮小部114は、排ガス流路11のうち、流動方向D1に進むにしたがって流動方向D1に直交する排ガス流路11の断面が縮小する区間である。
流路分割壁12は、流動方向D1に直交する分割方向D2において排ガス流路11を複数の分割流路に分割する。ここで、分割流路とは、流路分割壁12によって流動方向D1に直交する分割方向D2において排ガス流路11を複数に分割した流路である。具体的には、図1に示すように、流路分割壁12は、排ガス流路11を、第1分割流路の一例としての下部流路1121と、第2分割流路の一例としての上部流路1122とに分割する。ここで、下部流路1121は、分割部112のうち流路分割壁12の下部に位置する流路である。上部流路1122は、分割部112のうち流路分割壁12の上部に位置する流路である。なお、図1の流路分割壁12は、分割部112の上流端から下流端に至るまで、ほぼ水平な1つの平板状に形成されている。
流路分割壁12によれば、排ガス流路11を分割することで、排ガスおよび熱媒体の温度分布を後述する対向流の場合の温度分布に近付けることができるので、排熱回収における伝熱効率を向上させることができる。
なお、流路分割壁12は、流動方向D1に直交する分割方向であれば、排ガス流路11を上下以外の分割方向(例えば、前後)において分割してもよい。また、流路分割壁12は、分割方向に間隔を空けて2つ以上設けられていてもよい。流路分割壁12を2つ以上設けることで、排ガス流路11を3つ以上の分割領域に分割できる。分割領域の個数を増加すれば、排ガスおよび熱媒体の温度分布を後述する対向流に更に近付けることができるので、伝熱効率を更に向上させることができる。また、流路分割壁12は、流動方向D1に進むにしたがって個数が変化してもよく、また、不連続であってもよい。流路分割壁12の材質も特に限定されず、例えば、耐熱性に優れた炭素鋼やステンレス鋼などであってもよい。また、上流側に向かうほど耐熱性が上がるように流路分割壁12の材質を変化させてもよい。
第1伝熱管131は、排ガス流路11に配置された複数種類の伝熱管13のうちの1つである。第1伝熱管131は、流路分割壁12を貫通して下部流路1121から上部流路1122へと至る。第1伝熱管131は、下部流路1121側から上部流路1122側に向かって熱媒体を流す。熱媒体は、例えば、水蒸気や水である。熱媒体は、二酸化炭素であってもよい。
図2は、図1の排熱回収ボイラ1の第1伝熱管131の一例を示す模式図である。図2に示すように、第1伝熱管131は、下部流路1121において複数回折り返されて上部流路1122に至る形状を有していてもよい。また、第1伝熱管131は、上部流路1122においても複数回折り返されていてもよい。また、図2とは異なり、第1伝熱管131は、下部流路1121から上部流路1122へと直線状に(折り返されずに)延びていてもよい。また、図1に示すように、第1伝熱管131は、流動方向D1に沿って複数配置されていてもよく、各第1伝熱管131の形状や用途は、同一であっても異なっていてもよい。第1伝熱管13は、例えば、過熱器を構成する過熱器管(過熱器の配管)や、再熱器を構成する再熱器管(再熱器の配管)などであってもよいが、これらに限定されない。
第1伝熱管131以外にも、排ガス流路11の分割部112には、種々の伝熱管13が配置されている。例えば、図1に示すように、分割部12には、下部流路1121のみに位置する(上部流路1122に至らない)伝熱管(伝熱管群)13A、13Bや、上部流路1122のみに位置する伝熱管(伝熱管群)13Cが配置されていてもよい。これらの伝熱管13A〜Cの種類も特に限定されない。例えば、下部流路1121の前半部分の下流端に位置する伝熱管13Aは、高圧段の蒸発器を構成する蒸発器管(蒸発器の配管)であってもよい。また、下部流路1121の後半部分の下流端に位置する伝熱管13Bは、低圧段の蒸発器管であってもよい。また、上部流路1122の後半部分の下流端に位置する伝熱管13Cは、低圧段の過熱器管であってもよい。また、図示はしないが、分割部112には、流路分割壁12を貫通するように複数回折り返された伝熱管が配置されていてもよい。
また、排熱回収における伝熱効率を向上させる観点から、各伝熱管13を、流動方向D1に向かって各伝熱管13に流れる熱媒体の温度が高いものから順に配置することが好ましい。
(排ガスと熱媒体との熱交換)
次に、以上の構成を有する第1の実施形態の排熱回収ボイラ1による排ガスと熱媒体との熱交換について説明する。
先ず、排ガスの流れについて説明する。ガスタービンから排出された排ガスは、排ガス入口101から排熱回収ボイラ1に導入されて、流動方向D1に流れる。具体的には、排ガスは、先ず、拡大部111で膨張されて減速されたうえで、分割部112に到達する。次いで、分割部112に到達した排ガスは、流路分割壁12によって下部流路1121と上部流路1122とに分流される。そして、分流された排ガスは、下部流路1121および上部流路1122のそれぞれに配置された伝熱管13を流れる熱媒体と熱交換する。熱交換後の排ガスは、統合部113において1つの流路11に統合(合流)された後、排ガス出口102から排出される。
次に、第1伝熱管131内の熱媒体の流れについて説明する。第1伝熱管131の下部流路1121側の一端(熱媒体の上流端)には、不図示の熱媒体の供給源から、熱媒体が供給される。熱媒体は、不図示の蒸気ドラムから供給される水蒸気であってもよい。
第1伝熱管131に供給された熱媒体は、第1伝熱管131の内部を、下部流路1121側から上部流路1122側(下流側)に向かって流れる。上部流路1122側に向かって流れる過程で、熱媒体は、先ず、下部流路1121を流れる排ガスとの熱交換によって加熱される。このとき、第1伝熱管131が折り返されていることで、熱交換の継続時間を長くすることができる。これによって、下部流路1121において熱媒体を十分に加熱することができる。一方、下部流路1121を流れる排ガスは、熱媒体との熱交換によって冷却される。
次いで、下部流路1121において加熱された第1伝熱管131を流れる熱媒体は、第1伝熱管131の上部流路1122側に進行する。上部流路1122側に進行した熱媒体は、上部流路1122を流れる排ガスとの熱交換によって更に加熱される。このとき、上部流路1122においても第1伝熱管131が折り返されていることで、上部流路1122においても、熱媒体を十分に加熱することができる。加熱後の熱媒体は、第1伝熱管131から不図示の蒸気ドラムや蒸気タービンに供給されてもよい。
ここで、下部流路1121側の第1伝熱管131には、熱交換前の低温の熱媒体が流れるので、下部流路1121おいて、排ガスと熱媒体との温度差は大きい。このため、下部流路1121において、排ガスと熱媒体との熱交換による熱伝達量は大きく、排ガスは熱交換によって低温になる。一方、上部流路1122側の第1伝熱管131には、熱交換後の高温の熱媒体が流れるので、上部流路1122において、排ガスと熱媒体との温度差は小さい。このため、上部流路1122において、排ガスと熱媒体との熱交換による熱伝達量は小さく、排ガスは熱交換後も高温のままである。
このように、下部流路1121と上部流路1122との間での排ガスの温度差が生じたうえで、下部流路1121では、低温の排ガスと低温の熱媒体とが熱交換され、上部流路1122では、高温の排ガスと高温の熱媒体とが熱交換される。このような排ガスおよび熱媒体の温度分布の下での熱交換によって、排熱回収における伝熱効率を向上させることができる。その理由を以下に説明する。
熱交換による伝熱量は、次式で表される。
Q=K・A・ΔT (1)
但し、数式(1)において、Qは、伝熱量、Kは、総括伝熱係数、Aは、伝熱面積、ΔTは、対数平均温度差である。
更に、対数平均温度差は、次式で表される。
ΔT=ΔTcount・F (2)
但し、数式(2)において、ΔTcountは、対向流における対数平均温度差であり、Fは、補正係数(対向流の場合は最大値1.0)である。
ここで、対向流とは、向い合わせに接して流れる加熱媒体と冷却媒体との流れである。対向流の場合、数式(2)において補正係数Fが最大値(1.0)をとるので、対数平均温度差ΔTが最大値ΔTcountをとる。したがって、数式(1)の右辺のΔTは最大値ΔTcountをとるので、伝熱量Qは大きくなる。したがって、対向流の伝熱効率は高い。
一方、第1の実施形態のように、熱媒体の流動方向が排ガスの流動方向D1に直交する場合、通常では、補正係数Fが小さくなるので、伝熱量Qは小さくなる。
しかるに、第1の実施形態によれば、上下で温度差を有する排ガスと熱媒体とを熱交換することで、下部流路1121では、低温の排ガスと低温の熱媒体とを熱交換し、上部流路1122では、高温の排ガスと高温の熱媒体とを熱交換することができる。すなわち、第1の実施形態によれば、分割方向D2において、加熱媒体(排ガス)と冷却媒体(熱媒体)とが向い合せに接して流れる対向流の温度分布と類似した排ガスおよび熱媒体の温度分布を形成することができる。この結果、排熱回収における伝熱効率を向上させることができる。
また、伝熱管13を流動方向D1に向かって熱媒体の温度が高いものから順に配置することで、流動方向D1においても、対向流の温度分布と類似した排ガスおよび熱媒体の温度分布を形成することができる。この結果、排熱回収ボイラ1の伝熱効率を更に向上させることができる。
ところで、蒸発器管では、排ガスの熱が熱媒体の温度上昇ではなく熱媒体の沸騰に用いられる。もし、流路分割壁12を貫通する第1伝熱管131が蒸発器管である場合、下部流路1121および上部流路1122の双方において、第1伝熱管131を流れる熱媒体の温度は、一様(沸点)となる。そして、温度が一様の熱媒体との熱交換により、下部流路1121側の排ガスの温度と上部流路1122側の排ガスの温度とが均一化して、伝熱効率が低下するおそれがある。これに対して、第1の実施形態では、蒸発器管13A、13Bを下部流路1121のみに配置する(第1伝熱管131とはしない)ことで、下部流路1121側の排ガス温度と上部流路1122側の排ガス温度との均一化を防止できる。この結果、排熱回収における伝熱効率を更に向上させることができる。
以上述べたように、第1の実施形態の排熱回収ボイラ1によれば、流路分割壁12によって、熱媒体の流れる方向に沿った排ガスの温度差を形成することができるので、排熱回収における伝熱効率(排熱回収ボイラ1の熱交換効率)を向上させることができる。
(第2の実施形態)
次に、第2の実施形態として、統合部に第2伝熱管を備える排熱回収ボイラの実施形態について説明する。なお、第2の実施形態の説明において、第1の実施形態に対応する構成部については同一の符号を用いて重複した説明を省略する。図3は、第2の実施形態を示す排熱回収ボイラ1の概略断面図である。
図3に示すように、第2の実施形態の排熱回収ボイラ1は、統合部113に第2伝熱管132を備える。第2伝熱管132は、統合部113において熱媒体を流す。第2伝熱管132は、統合部113に配置されているのであれば具体的な形状や寸法は特に限定されない。例えば、第2伝熱管132は、下部流路1121および上部流路1122の双方の下流端に面するように上下に延びていてもよい。
既述したように、上部流路1122側の排ガスは、下部流路1121側の排ガスに比べて温度が高い。もし、上部流路1122側の排ガスをそのまま排ガス出口102から排出した場合、上部流路1122側の排ガスの熱を無駄にすることになる。
これに対して、第2の実施形態では、統合部113に第2伝熱管132が配置されているので、上部流路1122側の高温の排ガスで、第2伝熱管132内の熱媒体を加熱することができる。
したがって、第2の実施形態によれば、上部流路1122側の排ガスの熱を活用することで、排熱回収における伝熱効率を更に向上させることができる。
(第3の実施形態)
次に、第3の実施形態として、統合部から上部流路へと至る第3伝熱管を備える排熱回収ボイラの実施形態について説明する。なお、第3の実施形態の説明において、第1の実施形態に対応する構成部については同一の符号を用いて重複した説明を省略する。図4は、第3の実施形態を示す排熱回収ボイラ1の概略断面図である。
図4に示すように、第3の実施形態の排熱回収ボイラ1は、統合部113から上部流路1122へと至る第3伝熱管133を備える。第3伝熱管133は、統合部113側から上部流路1122側に向かって熱媒体を流す。
第3の実施形態では、上部流路1122を流れる排ガスが、上部流路1122側の第3伝熱管133を流れる熱媒体との熱交換によって加熱される。加熱された排ガスは、統合部113において、統合部113側の第3伝熱管133を流れる熱媒体を加熱する。
したがって、第3の実施形態によれば、上部流路1122側の排ガスの熱を統合部113側の第3伝熱管133を流れる熱媒体の加熱に利用できるので、排熱回収における伝熱効率を更に向上させることができる。
(第4の実施形態)
次に、第4の実施形態として、排ガス流路を上流側の前半部分で分割する排熱回収ボイラの実施形態について説明する。なお、第4の実施形態の説明において、第1の実施形態に対応する構成部については同一の符号を用いて重複した説明を省略する。図5は、第4の実施形態を示す排熱回収ボイラ1の概略断面図である。
図5に示すように、第4の実施形態において、流路分割壁12は、排ガス流路11をその上流側の前半部分(上流側の所定範囲の一例)において下部流路1121と上部流路1122とに分割している。すなわち、第4の実施形態では、流路分割壁12が第1の実施形態に比べて流動方向D1において短く形成され、その分、統合部113が流動方向D1において長く形成されている。
既述したように、流動方向D1において対向流に類似する排ガスおよび熱媒体の温度分布を形成する観点から、排ガス流路11の前半部分には、伝熱管13として、高圧タービン用の蒸発器管および過熱器管や、中圧タービン用の再熱器管などを配置することが望ましい。これらの伝熱管13に流れる熱媒体の温度は、低圧タービンや節炭器用の伝熱管13に流れる熱媒体の温度より高く、また、伝熱管13内における温度上昇幅も大きい。したがって、第4の実施形態のように、排ガス流路11の前半部分を分割するだけでも、下部流路1121側の排ガスと上部流路1122側の排ガスとの温度差を大きくして、熱媒体との熱交換を効率的に行うことができる。
第4の実施形態によれば、既存の排熱回収ボイラ1からの設計変更量(コスト)を抑えながら、排熱回収における伝熱効率を向上させることができる。
(第5の実施形態)
次に、第5の実施形態として、分割流路の下流端に流路分割壁を貫通する蒸発器管を備える排熱回収ボイラの実施形態について説明する。なお、第5の実施形態の説明において、第1の実施形態に対応する構成部については同一の符号を用いて重複した説明を省略する。図6は、第5の実施形態を示す排熱回収ボイラ1の概略断面図である。
図6に示すように、第5の実施形態の排熱回収ボイラ1は、第4の実施形態に対して、下部流路1121の下流端の伝熱管13を蒸発器管13EVAに限定している点が異なる。蒸発器管13EVAは、流路分割壁12を貫通して下部流路1121から上部流路1122へと至る。
第1の実施形態では、下部流路1121側の排ガス温度と上部流路1122側の排ガス温度との均一化を避けるために、蒸発器管を下部流路1121のみに配置(流路分割壁12を貫通しないように配置)していた。これに反し、第5の実施形態では、流路分割壁12を貫通するように蒸発器管13EVAを配置する。ここで、流路分割壁12の下流端では、直後に分割流路が統合されて排ガスの温度差がなくなるため、排ガスの温度差を維持する有用性に乏しい。寧ろ、上部流路1122の排ガス温度を蒸発器管13EVAの熱媒体の蒸発に利用する方が有意義である。このため、第5の実施形態では、下部流路1121から上部流路1122へと至るように蒸発器管13EVAを延ばしている。第5の実施形態によれば、上部流路1122の排ガス温度を活用して、排熱回収における伝熱効率を向上させることができる。
(第6の実施形態)
次に、第6の実施形態として、過熱器管と蒸発器管とを上下に対向配置した排熱回収ボイラ1の実施形態について説明する。なお、第6の実施形態の説明において、第1の実施形態に対応する構成部については同一の符号を用いて重複した説明を省略する。図7は、第6の実施形態を示す排熱回収ボイラ1の概略断面図である。
図7に示すように、第6の実施形態の排熱回収ボイラ1は、下部流路1121に蒸発器管13EVAを備え、かつ、蒸発器管13EVAに対向する上部流路1122に、過熱器管13SHを備える。
第6の実施形態によれば、上下で異なる機器を配置することができるので、排熱回収ボイラ1の設計の自由度を向上させることができる。
また、第1〜第6の実施形態を適宜組み合わせてもよい。例えば、排熱回収ボイラ1は、第1〜第3伝熱管131〜133をすべて備えていてもよい。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
1 排熱回収ボイラ
101 排ガス入口
102 排ガス出口
11 排ガス流路
1121 下部流路
1122 上部流路
12 流路分割壁
131 第1伝熱管

Claims (8)

  1. 排ガス入口から排ガス出口へと排ガスを流す排ガス流路と、
    前記排ガスの流動方向に直交する方向において前記排ガス流路を複数の分割流路に分割する流路分割壁と、
    前記複数の分割流路のうちの第1分割流路から、前記複数の分割流路のうちの第2分割流路へと至り、前記第1分割流路側から前記第2分割流路側に向かって熱媒体を流す第1伝熱管と、を備える排熱回収ボイラ。
  2. 前記排ガス流路は、前記流路分割壁の下流端と前記排ガス出口との間に、前記複数の分割流路を1つの流路に統合する統合部を有し、
    前記排熱回収ボイラは、前記統合部において熱媒体を流す第2伝熱管を更に備える、請求項1に記載の排熱回収ボイラ。
  3. 前記排ガス流路は、前記流路分割壁の下流端と前記排ガス出口との間に、前記複数の分割流路を1つの流路に統合する統合部を有し、
    前記排熱回収ボイラは、前記統合部から前記第2分割流路へと至り、前記統合部側から前記第2分割流路側に向かって熱媒体を流す第3伝熱管を更に備える、請求項1または2に記載の排熱回収ボイラ。
  4. 前記流路分割壁は、前記排ガス流路をその上流側の所定範囲において分割する、請求項1〜3のいずれか1項に記載の排熱回収ボイラ。
  5. 前記第1および第2分割流路の下流端において前記第1分割流路から前記第2分割流路へと至る蒸発器管を更に備える、請求項1〜4のいずれか1項に記載の排熱回収ボイラ。
  6. 前記第1分割流路に配置された蒸発器管と、
    前記蒸発器管に対向する前記第2分割流路に配置された過熱器管と、を更に備える、請求項1〜5のいずれか1項に記載の排熱回収ボイラ。
  7. 前記第1伝熱管は、前記第1分割流路において複数回折り返されて前記第2分割流路へと至る、請求項1〜6のいずれか1項に記載の排熱回収ボイラ。
  8. 排ガス入口から排ガス出口へと排ガス流路を通して排ガスを流し、
    流路分割壁で前記排ガスの流動方向に直交する方向において前記排ガス流路を分割した複数の分割流路において、前記複数の分割流路のうちの第1分割流路から第2分割流路へと至る第1伝熱管に、前記第1分割流路側から前記第2分割流路側に向かって熱媒体を流し、
    前記第1伝熱管に流れる熱媒体を、前記第1分割流路に流れる排ガスとの熱交換によって加熱した後に、前記第2分割流路を流れる排ガスとの熱交換によって更に加熱する、
    ことを含む排熱回収方法。
JP2015191871A 2015-09-29 2015-09-29 排熱回収ボイラおよび排熱回収方法 Pending JP2017067352A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015191871A JP2017067352A (ja) 2015-09-29 2015-09-29 排熱回収ボイラおよび排熱回収方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015191871A JP2017067352A (ja) 2015-09-29 2015-09-29 排熱回収ボイラおよび排熱回収方法

Publications (1)

Publication Number Publication Date
JP2017067352A true JP2017067352A (ja) 2017-04-06

Family

ID=58494337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015191871A Pending JP2017067352A (ja) 2015-09-29 2015-09-29 排熱回収ボイラおよび排熱回収方法

Country Status (1)

Country Link
JP (1) JP2017067352A (ja)

Similar Documents

Publication Publication Date Title
JP5862133B2 (ja) 蒸気動力サイクルシステム
EP2199720B1 (en) Double-pressure type condenser, and condensate reheating method
US8505886B2 (en) Multistage pressure condenser
JP2014157001A5 (ja)
JP2015230150A (ja) ボイラの化学洗浄方法
JP6911295B2 (ja) ボイラ
JP2011106782A (ja) 給湯器の熱交換器構造
US10502493B2 (en) Single pass cross-flow heat exchanger
ITBS20100046A1 (it) Impianto orc cogenerativo
JP5456071B2 (ja) 貫流蒸発器
KR20120027021A (ko) 연속 흐름식 증발기
CN101865612B (zh) 一种仿生双连树形管束式凝汽器
RU2351843C2 (ru) Прямоточный парогенератор и способ эксплуатации прямоточного парогенератора
JP2017067352A (ja) 排熱回収ボイラおよび排熱回収方法
JP2018074658A (ja) 熱電発電システム
JP4489775B2 (ja) 横形貫流ボイラとその運転方法
ES2582029T3 (es) Procedimiento para diseñar un evaporador continuo
JP6524430B2 (ja) 蒸気復水器
JP2008032354A (ja) 熱交換装置およびそれを備えた燃焼装置
JP2021076315A (ja) 多管式復水器
JP7202851B2 (ja) 熱交換器及びそれを備えたボイラ、並びに熱交換方法
JP5595710B2 (ja) 湿分分離加熱器
JP2020056552A (ja) 熱交換器
JP2014052161A (ja) 復水器及び複合復水器
JP6578247B2 (ja) 複圧式復水器

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20171127

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171128