JP2017051961A - Laser processing device - Google Patents

Laser processing device Download PDF

Info

Publication number
JP2017051961A
JP2017051961A JP2015175796A JP2015175796A JP2017051961A JP 2017051961 A JP2017051961 A JP 2017051961A JP 2015175796 A JP2015175796 A JP 2015175796A JP 2015175796 A JP2015175796 A JP 2015175796A JP 2017051961 A JP2017051961 A JP 2017051961A
Authority
JP
Japan
Prior art keywords
coordinate
control
axis direction
trajectory coordinates
coordinates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015175796A
Other languages
Japanese (ja)
Other versions
JP6643837B2 (en
Inventor
智之 谷口
Tomoyuki Taniguchi
智之 谷口
大樹 沢辺
Daiki Sawabe
大樹 沢辺
一彦 井田
Kazuhiko Ida
一彦 井田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Disco Corp
Original Assignee
Disco Abrasive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Disco Abrasive Systems Ltd filed Critical Disco Abrasive Systems Ltd
Priority to JP2015175796A priority Critical patent/JP6643837B2/en
Priority to TW105124800A priority patent/TWI687274B/en
Priority to KR1020160109190A priority patent/KR102440569B1/en
Priority to CN201610804743.3A priority patent/CN106493470B/en
Publication of JP2017051961A publication Critical patent/JP2017051961A/en
Application granted granted Critical
Publication of JP6643837B2 publication Critical patent/JP6643837B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • B23K26/0853Devices involving movement of the workpiece in at least in two axial directions, e.g. in a plane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/268Bombardment with radiation with high-energy radiation using electromagnetic radiation, e.g. laser radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/67715Changing the direction of the conveying path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67703Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
    • H01L21/67718Changing orientation of the substrate, e.g. from a horizontal position to a vertical position
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Abstract

PROBLEM TO BE SOLVED: To provide a laser processing device capable of accurate curve-processing even when executing curve-processing by increasing a processing feed speed, in the laser processing device for applying the curve-processing to a workpiece, in the present invention.SOLUTION: The present invention provides a laser processing device having control means constituted at least of a target track coordinate storage part for storing a target track coordinate by an X-coordinate and the Y-coordinate to actually move by holding means for moving a focal light point of a laser beam along a processing expected line of a workpiece, a locus coordinate storage part for storing a locus coordinate actually moved by the holding means by the X-coordinate and the Y-coordinate by operating an X-axis direction movement means and a Y-axis direction movement means based on a control track coordinate and control track coordinate correction means for correcting the control track coordinate so that the locus coordinate coincides with the target track coordinate by comparing the target track coordinate and the locus coordinate.SELECTED DRAWING: Figure 7

Description

本発明は、ガラス板や半導体ウエーハ等の被加工物にレーザー光線を照射して曲線加工を施すレーザー加工装置に関する。   The present invention relates to a laser processing apparatus that performs curve processing by irradiating a workpiece such as a glass plate or a semiconductor wafer with a laser beam.

IC、LSI等のデバイスが分割予定ラインによって区画された表面に形成されたウエーハは、ダイシング装置、レーザー加工装置によって個々のデバイスに分割され携帯電話、パソコン等の電気機器に利用される。   A wafer formed on a surface where devices such as IC and LSI are defined by division lines is divided into individual devices by a dicing apparatus and a laser processing apparatus, and is used for electric devices such as mobile phones and personal computers.

レーザー加工装置は、被加工物を保持する保持手段と、該保持手段に保持された被加工物にレーザー光線を照射する集光器を含むレーザー光線照射手段と、該保持手段をX軸方向、Y軸方向に加工送りする加工送り手段と、制御手段と、から少なくとも構成されており、被加工物に高精度な加工を施すことができる。また、直進性を必要とする切削ブレードを備えたダイシング装置とは異なり、レーザー加工装置は曲線加工を可能とし、例えば、半導体ウエーハやガラス板に対して、曲線を含む形状に切断加工を施すことができることが知られている(例えば、特許文献1を参照)。   The laser processing apparatus includes: a holding unit that holds a workpiece; a laser beam irradiation unit that includes a condenser that irradiates the workpiece held by the holding unit with a laser beam; It comprises at least a processing feed means for processing and feeding in the direction, and a control means, and can process a workpiece with high accuracy. In addition, unlike a dicing machine equipped with a cutting blade that requires straightness, the laser processing machine enables curve processing, for example, cutting a semiconductor wafer or glass plate into a shape including a curve. (For example, refer to Patent Document 1).

特開2008−062289号公報JP 2008-062289 A

ここで、被加工物に対して曲線加工を施す場合に、上記加工送り手段の加工送り速度を遅くして、時間を掛けてゆっくり加工した場合は所望の曲線に加工が可能であるものの、加工効率を上げるために、加工送り速度を上げて制御手段に記憶された目標軌道座標に従って保持手段をX軸方向、Y軸方向に加工送りして曲線加工を施すと、該保持手段と被加工物の慣性力によってレーザー光線の集光点が加工しようとしている曲線座標から外れて正確な曲線加工が施せないという問題が生じる。   Here, when the workpiece is subjected to curve machining, if the machining feed rate of the machining feed means is slowed down and the workpiece is slowly machined over time, the workpiece can be machined to a desired curve. In order to increase the efficiency, when the machining means is raised and the holding means is machined and fed in the X-axis direction and the Y-axis direction according to the target trajectory coordinates stored in the control means, the holding means and the workpiece are processed. Due to the inertial force of the laser beam, the converging point of the laser beam deviates from the curvilinear coordinates to be processed, and an accurate curve processing cannot be performed.

本発明は上記事実に鑑みてなされたものであり、その主たる技術課題は、被加工物に対して曲線加工を施すレーザー加工装置において、加工送り速度を上げて曲線加工をする場合であっても、正確な曲線加工が可能なレーザー加工装置を提供することにある。   The present invention has been made in view of the above-mentioned facts, and the main technical problem is that even in the case of performing a curved process by increasing the processing feed rate in a laser processing apparatus that performs a curved process on a workpiece. An object of the present invention is to provide a laser processing apparatus capable of accurate curve processing.

上記主体技術課題を解決するため、本発明によれば、被加工物を保持する保持手段と、該保持手段に保持された被加工物にレーザー光線を集光する集光器を備えたレーザー光線照射手段と、該保持手段を加工送りする加工送り手段と、制御手段と、から少なくとも構成されるレーザー加工装置であって、該加工送り手段は、制御軌道座標に基づいて該保持手段をX軸方向に加工送りするX軸方向移動手段と、該X軸と直交するY軸方向に該保持手段を加工送りするY軸方向移動手段と、から構成され、該制御手段は、レーザー光線の集光点を被加工物の加工予定ラインに沿って移動させるための保持手段が実際に移動すべき目標軌道座標をX座標、Y座標で記憶する目標軌道座標記憶部と、該制御軌道座標に基づいて該X軸方向移動手段、及びY軸方向移動手段を作動して該保持手段が実際に移動した軌跡座標をX座標、Y座標で記憶する軌跡座標記憶部と、該目標軌道座標と該軌跡座標とを比較して該軌跡座標が該目標軌道座標と一致するように該制御軌道座標を修正する制御軌道座標修正手段と、を備えるレーザー加工装置が提供される。   In order to solve the main technical problem, according to the present invention, a laser beam irradiation unit including a holding unit that holds a workpiece and a condenser that focuses the laser beam on the workpiece held by the holding unit. And a machining processing means for processing and feeding the holding means, and a control means, wherein the machining feeding means moves the holding means in the X-axis direction based on the control trajectory coordinates. X-axis direction moving means for processing and feeding, and Y-axis direction moving means for processing and feeding the holding means in the Y-axis direction orthogonal to the X-axis, and the control means covers the condensing point of the laser beam. A target trajectory coordinate storage section for storing the target trajectory coordinates to be actually moved by the holding means for moving along the planned processing line of the workpiece as X coordinates and Y coordinates, and the X axis based on the control trajectory coordinates Direction moving means, and A trajectory coordinate storage unit that stores the trajectory coordinates actually moved by the holding means by operating the Y-axis direction moving means as X coordinates and Y coordinates, and comparing the trajectory coordinates with the target trajectory coordinates and the trajectory coordinates. There is provided a laser processing apparatus comprising control trajectory coordinate correcting means for correcting the control trajectory coordinates such that the control trajectory coordinates coincide with the target trajectory coordinates.

該制御手段は、該制御軌道座標修正手段により修正された制御軌道座標を制御軌道座標記憶部に記憶し、修正された該制御軌道座標に基づいて該X軸方向移動手段及び該Y軸方向移動手段を作動して該保持手段に保持された被加工物にレーザー加工を施すようにすることが好ましい。   The control means stores the control trajectory coordinates corrected by the control trajectory coordinate correction means in a control trajectory coordinate storage unit, and the X-axis direction movement means and the Y-axis direction movement based on the corrected control trajectory coordinates. It is preferable to operate the means to perform laser processing on the workpiece held by the holding means.

また、該制御手段は、該制御軌道座標に基づいて該X軸方向移動手段及び該Y軸方向移動手段を作動させて、該軌跡座標と該目標軌道座標とが一致するか否かの確認動作を実施し、該確認動作の結果、両者が一致するとみなせる許容範囲内であれば、該制御軌道座標記憶部に記憶された制御軌道座標に対する修正を終了し、許容範囲内でない場合は更に該軌跡座標が該目標軌道座標と一致する方向に該制御軌道座標を修正して該確認動作を繰り返すようにすることが好ましい。   Further, the control means operates the X-axis direction moving means and the Y-axis direction moving means based on the control trajectory coordinates to check whether or not the trajectory coordinates and the target trajectory coordinates match. If the result of the confirmation operation is within an allowable range that can be regarded as matching, the correction to the control trajectory coordinates stored in the control trajectory coordinate storage unit is terminated. It is preferable to repeat the confirmation operation by correcting the control trajectory coordinates in a direction where the coordinates coincide with the target trajectory coordinates.

本発明のレーザー加工装置によれば、該制御手段は、レーザー光線の集光点を被加工物の加工予定ラインに沿って移動させるための保持手段が実施に移動すべき目標軌道座標をX座標、Y座標で記憶する目標軌道座標記憶部と、該制御軌道座標に基づいて該X軸方向移動手段、及びY軸方向移動手段を作動して該保持手段が実際に移動した軌跡座標をX座標、Y座標で記憶する軌跡座標記憶部と、該目標軌道座標と該軌跡座標とを比較して該軌跡座標が該目標軌道座標と一致するように該制御軌道座標を修正する制御軌道座標修正手段とを備えるので、加工送り速度を高く設定しても、保持手段と被加工物の慣性力の影響により、レーザー光線の集光点が設計上の加工予定ラインから外れることがなく、正確な曲線加工を施すことが可能となる。   According to the laser processing apparatus of the present invention, the control means sets the target trajectory coordinates to be moved by the holding means for moving the condensing point of the laser beam along the planned processing line of the workpiece, the X coordinate, A target trajectory coordinate storage unit storing the Y coordinate, and the X coordinate in the X axis direction moving means and the Y axis direction moving means based on the control trajectory coordinates, and the trajectory coordinates actually moved by the holding means are set as the X coordinate, A trajectory coordinate storage unit that stores Y coordinates, and a control trajectory coordinate correction unit that compares the target trajectory coordinates with the trajectory coordinates and corrects the control trajectory coordinates so that the trajectory coordinates coincide with the target trajectory coordinates; Therefore, even if the processing feed rate is set high, the focusing point of the laser beam does not deviate from the planned processing line due to the influence of the inertial force of the holding means and the workpiece. Can be applied .

本発明によるレーザー加工装置の斜視図。The perspective view of the laser processing apparatus by this invention. 図1に示すレーザー加工装置に装備されるレーザー光線照射手段のブロック構成図。The block block diagram of the laser beam irradiation means with which the laser processing apparatus shown in FIG. 1 is equipped. 図1に示すレーザー加工装置に装備される制御手段のブロック構成図。The block block diagram of the control means with which the laser processing apparatus shown in FIG. 1 is equipped. 図1に示すレーザー加工装置によって実施するレーザー加工状態を示す説明図。Explanatory drawing which shows the laser processing state implemented by the laser processing apparatus shown in FIG. 図3に示す制御手段に記憶されたチャックテーブルの目標軌道座標を示す図。The figure which shows the target track | orbit coordinate of the chuck table memorize | stored in the control means shown in FIG. 図3に示す制御手段によって実際にチャックテーブルが移動した軌跡を示す軌跡座標を示す図。The figure which shows the locus | trajectory coordinate which shows the locus | trajectory which the chuck table actually moved by the control means shown in FIG. 図3に示す制御手段に記憶された制御軌道座標を、目標軌道座標と軌跡座標とにより修正すること示す説明図。Explanatory drawing which shows correcting the control track | orbit coordinate memorize | stored in the control means shown in FIG. 3 with a target track | orbit coordinate and a locus | trajectory coordinate.

以下、本発明によるレーザー加工装置の好適な実施形態について、添付図面を参照して更に詳細に説明する。   Hereinafter, a preferred embodiment of a laser processing apparatus according to the present invention will be described in more detail with reference to the accompanying drawings.

図1には、本発明によるレーザー加工装置の斜視図が示されている。図1に示すレーザー加工装置1は、静止基台2と、該静止基台2に矢印Xで示すX軸方向に移動可能に配設され被加工物を保持するチャックテーブル機構3と、静止基台2上に配設されたレーザー光線照射ユニット4とを具備している。   FIG. 1 is a perspective view of a laser processing apparatus according to the present invention. A laser processing apparatus 1 shown in FIG. 1 includes a stationary base 2, a chuck table mechanism 3 that is disposed on the stationary base 2 so as to be movable in the X-axis direction indicated by an arrow X, and holds a workpiece. And a laser beam irradiation unit 4 disposed on the table 2.

上記チャックテーブル機構3は、静止基台2上にX軸方向に沿って平行に配設された一対の案内レール31、31と、該案内レール31、31上にX軸方向に移動可能に配設された第1の滑動ブロック32と、該第1の滑動ブロック32上にX軸方向と直交する矢印Yで示すY軸方向に移動可能に配設された第2の滑動ブロック33と、該第2の滑動ブロック33上に円筒部材34によって支持されたカバーテーブル35と、被加工物を保持する保持手段としてのチャックテーブル36を具備している。このチャックテーブル36は通気性を有する多孔性材料から形成された吸着チャック361を具備しており、吸着チャック361の上面である保持面上に図示しない吸引手段を作動することによって被加工物を保持するようになっている。このように構成されたチャックテーブル36は、円筒部材34内に配設された図示しないパルスモータによって回転させられる。なお、チャックテーブル36には、被加工物を、保護テープを介して支持する環状のフレームを固定するためのクランプ362が配設されている。   The chuck table mechanism 3 includes a pair of guide rails 31 and 31 disposed in parallel along the X-axis direction on the stationary base 2, and is arranged on the guide rails 31 and 31 so as to be movable in the X-axis direction. A first sliding block 32 provided, a second sliding block 33 disposed on the first sliding block 32 so as to be movable in the Y-axis direction indicated by an arrow Y orthogonal to the X-axis direction, A cover table 35 supported by a cylindrical member 34 on the second sliding block 33 and a chuck table 36 as holding means for holding a workpiece are provided. The chuck table 36 includes a suction chuck 361 formed of a porous material having air permeability, and holds a workpiece by operating suction means (not shown) on a holding surface which is the upper surface of the suction chuck 361. It is supposed to be. The chuck table 36 configured as described above is rotated by a pulse motor (not shown) disposed in the cylindrical member 34. The chuck table 36 is provided with a clamp 362 for fixing an annular frame that supports a workpiece via a protective tape.

上記第1の滑動ブロック32は、下面に上記一対の案内レール31、31と嵌合する一対の被案内溝321、321が設けられているとともに、上面にY軸方向に沿って平行に形成された一対の案内レール322、322が設けられている。このように構成された第1の滑動ブロック32は、被案内溝321、321が一対の案内レール31、31に嵌合することにより、一対の案内レール31、31に沿ってX軸方向に移動可能に構成される。図示のチャックテーブル機構3は、第1の滑動ブロック32を一対の案内レール31、31に沿ってX軸方向に移動させるためのX軸方向移動手段37を具備している。X軸方向移動手段37は、上記一対の案内レール31と31との間に平行に配設された雄ネジロッド371と、該雄ネジロッド371を回転駆動するためのパルスモータ372の出力軸に伝動連結されている。なお、雄ネジロッド371は、第1の滑動ブロック32の中央部下面に突出して設けられた図示しない雄ネジブロックに形成された貫通雌ネジ穴に螺合されている。従って、パルスモータ372によって雄ネジロッド371を正転および逆転駆動することにより、第1の滑動ブロック32は、案内レール31、31に沿ってX軸方向に移動させられる。   The first sliding block 32 is provided with a pair of guided grooves 321 and 321 fitted to the pair of guide rails 31 and 31 on the lower surface, and is formed on the upper surface in parallel along the Y-axis direction. A pair of guide rails 322 and 322 are provided. The first sliding block 32 configured in this manner moves in the X-axis direction along the pair of guide rails 31, 31 when the guided grooves 321, 321 are fitted into the pair of guide rails 31, 31. Configured to be possible. The illustrated chuck table mechanism 3 includes X-axis direction moving means 37 for moving the first sliding block 32 along the pair of guide rails 31, 31 in the X-axis direction. The X-axis direction moving means 37 is transmission-coupled to a male screw rod 371 arranged in parallel between the pair of guide rails 31 and 31 and an output shaft of a pulse motor 372 for rotationally driving the male screw rod 371. Has been. The male screw rod 371 is screwed into a penetrating female screw hole formed in a male screw block (not shown) provided on the lower surface of the center portion of the first sliding block 32. Accordingly, the first slide block 32 is moved in the X-axis direction along the guide rails 31 and 31 by driving the male screw rod 371 forward and backward by the pulse motor 372.

図示のレーザー加工装置1は、上記チャックテーブル36のX軸方向位置を検出するためのX軸方向位置検出手段374を備えている。X軸方向位置検出手段374は、案内レール31に沿って配設されたリニアスケール374aと、第1の滑動ブロック32に配設され第1の滑動ブロック32とともにリニアスケール374aに沿って移動する読み取りヘッド374bとからなっている。このX軸方向位置検出手段374の読み取りヘッド374bは、例えば1μm毎に1パルスのパルス信号を後述する制御手段に送る。そして、後述する制御手段は、入力したパルス信号をカウントすることにより、チャックテーブル36のX軸方向位置を検出する。なお、上記X軸方向移動手段37の駆動源としてパルスモータ372を用いた場合には、パルスモータ372に駆動信号を出力する後述する制御手段の駆動パルスをカウントすることにより、チャックテーブル36のX軸方向の位置を検出することもできる。また、上記X軸方向移動手段37の駆動源としてサーボモータを用いた場合には、サーボモータの回転数を検出するロータリーエンコーダが出力するパルス信号を後述する制御手段に送り、制御手段が入力したパルス信号をカウントすることにより、チャックテーブル36のX軸方向位置を検出することもできる。   The illustrated laser processing apparatus 1 is provided with X-axis direction position detecting means 374 for detecting the X-axis direction position of the chuck table 36. The X-axis direction position detecting means 374 is a linear scale 374a disposed along the guide rail 31 and a reading that is disposed along the linear scale 374a together with the first sliding block 32 disposed along the first sliding block 32. It consists of a head 374b. The reading head 374b of the X-axis direction position detecting means 374 sends a pulse signal of one pulse for every 1 μm, for example, to the control means described later. And the control means mentioned later detects the X-axis direction position of the chuck table 36 by counting the input pulse signal. When the pulse motor 372 is used as the drive source for the X-axis direction moving means 37, the drive pulse of the control means, which will be described later, that outputs a drive signal to the pulse motor 372 is counted. The position in the axial direction can also be detected. Further, when a servo motor is used as a drive source for the X-axis direction moving means 37, a pulse signal output from a rotary encoder that detects the rotation speed of the servo motor is sent to the control means described later, and the control means inputs it. By counting the pulse signal, the position of the chuck table 36 in the X-axis direction can also be detected.

上記第2の滑動ブロック33は、下面に上記第1の滑動ブロック32の上面に設けられた一対の案内レール322、322と嵌合する一対の被案内溝331、331が設けられており、この被案内溝331、331を一対の案内レール322、322に嵌合することにより、Y軸方向に移動可能に構成される。図示のチャックテーブル機構3は、第2の滑動ブロック33を第1の滑動ブロック32に設けられた一対の案内レール322、322に沿ってY軸方向に移動させるためのY軸方向移動手段38を具備している。Y軸方向移動手段38は、上記一対の案内レール322、322の間に平行に配設された雄ネジロッド381と、該雄ネジロッド381を回転駆動するためのパルスモータ382等の駆動源を含んでいる。該雄ネジロッド381は、一端が上記第1の滑動ブロック32の上面に固定された軸受ブロック383に回転自在に支持されており、他端が上記パルスモータ382の出力軸に伝動連結されている。なお、雄ネジロッド381は、第2の滑動ブロック33の中央部下面に突出して設けられた図示しない雄ネジブロックに形成された貫通雌ネジ穴に螺合されている。従って、パルスモータ382によって雄ネジロッド381を正転および逆転駆動することにより、第2の滑動ブロック33は案内レール322、322に沿ってY軸方向に移動させられる。   The second sliding block 33 is provided with a pair of guided grooves 331 and 331 which are fitted to a pair of guide rails 322 and 322 provided on the upper surface of the first sliding block 32 on the lower surface. By fitting the guided grooves 331 and 331 to the pair of guide rails 322 and 322, the guide grooves 331 and 331 are configured to be movable in the Y-axis direction. The illustrated chuck table mechanism 3 includes Y-axis direction moving means 38 for moving the second slide block 33 in the Y-axis direction along a pair of guide rails 322 and 322 provided on the first slide block 32. It has. The Y-axis direction moving means 38 includes a male screw rod 381 disposed in parallel between the pair of guide rails 322 and 322, and a drive source such as a pulse motor 382 for rotationally driving the male screw rod 381. Yes. One end of the male screw rod 381 is rotatably supported by a bearing block 383 fixed to the upper surface of the first sliding block 32, and the other end is connected to the output shaft of the pulse motor 382. The male screw rod 381 is screwed into a penetrating female screw hole formed in a male screw block (not shown) provided on the lower surface of the center portion of the second sliding block 33. Therefore, the second sliding block 33 is moved along the guide rails 322 and 322 in the Y-axis direction by driving the male screw rod 381 forward and backward by the pulse motor 382.

図示のレーザー加工装置1は、上記第2の滑動ブロック33のY軸方向位置を検出するためのY軸方向位置検出手段384を備えている。Y軸方向位置検出手段384は、案内レール322に沿って配設されたリニアスケール384aと、第2の滑動ブロック33に配設され第2の滑動ブロック33とともにリニアスケール384aに沿って移動する読み取りヘッド384bとからなっている。このY軸方向位置検出手段384の読み取りヘッド384bは、例えば1μm毎に1パルスのパルス信号を後述する制御手段に送る。そして、後述する制御手段は、入力したパルス信号をカウントすることにより、第2の滑動ブロック33のY軸方向位置を検出する。なお、上記Y軸方向移動手段38の駆動源としてパルスモータ382を用いた場合には、パルスモータ382に駆動信号を出力する後述する制御手段の駆動パルスをカウントすることにより、第2の滑動ブロック33のY軸方向の位置を検出することもできる。また、上記Y軸方向移動手段38の駆動源としてサーボモータを用いた場合には、サーボモータの回転数を検出するロータリーエンコーダが出力するパルス信号を後述する制御手段に送り、制御手段が入力したパルス信号をカウントすることにより、第2の滑動ブロック33のY軸方向位置を検出することもできる。   The illustrated laser processing apparatus 1 includes Y-axis direction position detection means 384 for detecting the Y-axis direction position of the second sliding block 33. The Y-axis direction position detecting means 384 is a linear scale 384a disposed along the guide rail 322, and a reading which is disposed along the linear scale 384a together with the second sliding block 33 disposed along the second sliding block 33. And a head 384b. The reading head 384b of the Y-axis direction position detecting unit 384 sends a pulse signal of one pulse to, for example, a later-described control unit every 1 μm. And the control means mentioned later detects the Y-axis direction position of the 2nd sliding block 33 by counting the input pulse signal. When the pulse motor 382 is used as the drive source of the Y-axis direction moving means 38, the second sliding block is counted by counting the drive pulses of the control means to be described later that outputs a drive signal to the pulse motor 382. It is also possible to detect the position of 33 in the Y-axis direction. When a servo motor is used as a drive source for the Y-axis direction moving means 38, a pulse signal output from a rotary encoder that detects the rotation speed of the servo motor is sent to the control means described later, and the control means inputs it. By counting the pulse signal, the position of the second sliding block 33 in the Y-axis direction can also be detected.

上記レーザー光線照射ユニット4は、上記静止基台2上に配置された支持部材41と、該支持部材41によって支持され実質上水平に延出するケーシング42と、該ケーシング42に配設されたレーザー光線照射手段5と、ケーシング42の前端部に配設されレーザー加工すべき加工領域を検出する撮像手段6を具備している。なお、撮像手段6は、被加工物を照明する照明手段と、該照明手段によって照明された領域を捕える光学系と、該光学系によって捕えられた像を撮像する撮像素子(CCD)等を備え、撮像した画像信号を後述する制御手段に送る。   The laser beam irradiation unit 4 includes a support member 41 disposed on the stationary base 2, a casing 42 supported by the support member 41 and extending substantially horizontally, and a laser beam irradiation disposed in the casing 42. Means 5 and imaging means 6 that is disposed at the front end of the casing 42 and detects a processing region to be laser processed are provided. The imaging unit 6 includes an illuminating unit that illuminates the workpiece, an optical system that captures an area illuminated by the illuminating unit, and an imaging device (CCD) that captures an image captured by the optical system. Then, the captured image signal is sent to the control means described later.

上記レーザー光線照射手段5について図2を参照して説明する。
図示のレーザー光線照射手段5は、パルスレーザー光線発振手段51と、該パルスレーザー光線発振手段51から発振されたパルスレーザー光線LBの出力を調整する出力調整手段52と、該出力調整手段52によって出力が調整されたパルスレーザー光線を集光してチャックテーブル36に保持された被加工物に照射する集光器53を具備している。集光器53は、上記パルスレーザー光線発振手段51から発振され、出力調整手段52によって出力が調整されたパルスレーザー光線を図2において下方に向けて方向変換する方向変換ミラー531と、該方向変換ミラー531によって方向変換されたパルスレーザー光線を集光してチャックテーブル36に保持された被加工物10に照射する集光レンズ532とからなっている。なお、集光器53によって集光されるパルスレーザー光線の集光点位置は、図示しない集光点位置調整手段によってチャックテーブル36の上面である保持面に対して垂直な方向(Z軸方向)に調整されるようになっている。このように構成されたレーザー光線照射手段5のパルスレーザー光線発振手段51および出力調整手段52は、後述する制御手段によって制御される。
The laser beam irradiation means 5 will be described with reference to FIG.
The illustrated laser beam irradiating means 5 has a pulse laser beam oscillating means 51, an output adjusting means 52 for adjusting the output of the pulse laser beam LB oscillated from the pulse laser beam oscillating means 51, and the output adjusted by the output adjusting means 52. A condenser 53 for condensing the pulse laser beam and irradiating the workpiece held on the chuck table 36 is provided. The condenser 53 oscillates from the pulse laser beam oscillating means 51 and changes the direction of the pulse laser beam whose output is adjusted by the output adjusting means 52 downward in FIG. 2, and the direction converting mirror 531. And a condensing lens 532 for condensing the pulse laser beam whose direction has been changed by irradiating the workpiece 10 held on the chuck table 36. The focal point position of the pulsed laser beam condensed by the condenser 53 is in a direction (Z-axis direction) perpendicular to the holding surface, which is the upper surface of the chuck table 36, by a focal point position adjusting unit (not shown). It has come to be adjusted. The thus configured pulsed laser beam oscillating unit 51 and output adjusting unit 52 of the laser beam irradiating unit 5 are controlled by a control unit described later.

図示のレーザー加工装置1は、図3に示す制御手段8を具備している。制御手段8は、コンピュータによって構成されており、制御プログラムに従って演算処理する中央処理装置(CPU)81と、制御プログラム等を格納するリードオンリメモリ(ROM)82と、演算結果等を格納する読み書き可能なランダムアクセスメモリ(RAM)83と、入力インターフェース84には、上記X軸方向位置検出手段374、Y軸方向位置検出手段384、撮像手段6等からの検出信号が入力される。そして、制御手段8の出力インターフェース85からは、上記X軸方向移動手段37、Y軸方向移動手段38、レーザー光線照射手段5のパルスレーザー光線発振手段51および出力調整手段52等に制御信号を出力する。   The illustrated laser processing apparatus 1 includes control means 8 shown in FIG. The control means 8 is constituted by a computer, and a central processing unit (CPU) 81 that performs arithmetic processing according to a control program, a read-only memory (ROM) 82 that stores a control program, etc., and a read / write that stores arithmetic results and the like. The random access memory (RAM) 83 and the input interface 84 are supplied with detection signals from the X-axis direction position detection means 374, the Y-axis direction position detection means 384, the imaging means 6, and the like. A control signal is output from the output interface 85 of the control means 8 to the X-axis direction movement means 37, the Y-axis direction movement means 38, the pulse laser beam oscillation means 51 of the laser beam irradiation means 5, the output adjustment means 52, and the like.

以上のように構成されたレーザー加工装置1の作用について以下に説明する。なお、当該レーザー加工装置1により被加工物を加工する場合、直線、曲線を組み合わせた形状、あるいは、曲線のみからなる形状等、種々の形状に加工が可能であるが、以下の説明では、本願発明の作用の説明を容易ならしめるため、被加工物であるガラス板をレーザー加工により円形に切断する場合を例にとって説明する。   The operation of the laser processing apparatus 1 configured as described above will be described below. In addition, when processing a workpiece with the said laser processing apparatus 1, although it can process in various shapes, such as the shape which combined the straight line and the curve, or the shape which consists only of a curve, in the following description, this application In order to facilitate the explanation of the operation of the invention, a case where a glass plate as a workpiece is cut into a circle by laser processing will be described as an example.

図4には、本発明の実施形態におけるレーザー加工装置1により被加工物としてのガラス板10が加工される状態が示されている。図4に示すガラス板10は、例えば厚みが200μmの正方形に形成されており、表面10aには設計上設定された加工すべき加工予定ライン100が示されている(なお、当該加工予定ライン100は説明のために便宜上示したものであり、表面10aに実際に示されるものではない。)。このように構成されたガラス板10は、図4に示されているように、環状のフレームFの内側開口部を覆うように外周部が装着された保護テープTの表面に貼着されている。   FIG. 4 shows a state in which the glass plate 10 as a workpiece is processed by the laser processing apparatus 1 according to the embodiment of the present invention. The glass plate 10 shown in FIG. 4 is formed in, for example, a square having a thickness of 200 μm, and a processing schedule line 100 to be processed set by design is shown on the surface 10a (note that the processing schedule line 100 is related). These are shown for convenience of explanation and are not actually shown on the surface 10a). As shown in FIG. 4, the glass plate 10 configured in this manner is attached to the surface of the protective tape T on which the outer peripheral portion is mounted so as to cover the inner opening of the annular frame F. .

図5には、設計上設定された加工予定ライン100に沿った加工を施すための、チャックテーブル36が実際に移動すべき目標軌道ライン101を形成する座標位置を示す目標軌道座標(Xm,Yn)が示されており、制御手段8のランダムアクセスメモリ(RAM)83の目標軌道座標記憶部(記憶領域83a)に記憶されている。また、X軸方向移動手段37、およびY軸方向移動手段38を駆動してチャックテーブル36の位置制御をするための制御軌道座標(Xo,Yp)がランダムアクセスメモリ(RAM)83の制御軌道座標記憶部(記憶領域83b)に記憶されている。なお、初期状態では、該制御軌道座標記憶部には、目標軌道座標(Xm,Yn)と同一の座標データが記憶されている。   FIG. 5 shows target trajectory coordinates (Xm, Yn) indicating the coordinate position at which the chuck table 36 forms the target trajectory line 101 to be actually moved for performing processing along the planned processing line 100 set by design. ) And is stored in the target trajectory coordinate storage unit (storage area 83a) of the random access memory (RAM) 83 of the control means 8. Also, the control trajectory coordinates (Xo, Yp) for controlling the position of the chuck table 36 by driving the X-axis direction moving means 37 and the Y-axis direction moving means 38 are the control trajectory coordinates of the random access memory (RAM) 83. It is stored in the storage unit (storage area 83b). In the initial state, the control trajectory coordinate storage unit stores the same coordinate data as the target trajectory coordinates (Xm, Yn).

ここで、本発明のレーザー加工装置1では、レーザー光線を照射して被加工物を実際に加工する前に、レーザー光線を照射せずに、制御軌道座標記憶部に記憶されている制御軌道座標を修正する制御軌道座標修正手段を実行する。   Here, in the laser processing apparatus 1 of the present invention, the control trajectory coordinates stored in the control trajectory coordinate storage unit are corrected without irradiating the laser beam before actually processing the workpiece by irradiating the laser beam. The control trajectory coordinate correcting means is executed.

まず、レーザー加工装置1のチャックテーブル36上にガラス板10の保護テープT側を載置する。そして、図示しない吸引手段を作動させ、保護テープTを介してガラス板10をチャックテーブル36に吸引保持する。そして、ガラス板10が貼着された保護テープTが装着された環状のフレームFは、クランプ362によって固定される。ガラス板10を吸引保持したチャックテーブル36は、X軸方向移動手段37によって撮像手段6の直下に位置付けられ、チャックテーブル36が撮像手段6の直下に位置付けられると、撮像手段6および制御手段8によってガラス板10のレーザー加工すべき加工領域を検出するアライメント工程が実行される。即ち、制御手段8により、ガラス板10に形成すべき加工予定ライン100の加工開始位置にレーザー光線照射手段5を位置付けるために、チャックテーブル36を該加工予定ライン100の加工開始位置に対応する座標(X1,Y1)に位置付けるアライメント工程が実施される。   First, the protective tape T side of the glass plate 10 is placed on the chuck table 36 of the laser processing apparatus 1. Then, a suction means (not shown) is operated to suck and hold the glass plate 10 on the chuck table 36 via the protective tape T. Then, the annular frame F on which the protective tape T to which the glass plate 10 is attached is attached is fixed by a clamp 362. The chuck table 36 that sucks and holds the glass plate 10 is positioned immediately below the imaging unit 6 by the X-axis direction moving unit 37, and when the chuck table 36 is positioned directly below the imaging unit 6, the imaging unit 6 and the control unit 8 An alignment step for detecting a processing region of the glass plate 10 to be laser processed is executed. That is, in order to position the laser beam irradiation means 5 at the processing start position of the planned processing line 100 to be formed on the glass plate 10 by the control means 8, the chuck table 36 is coordinated to the processing start position of the planned processing line 100 ( An alignment step positioned at X1, Y1) is performed.

上述したように、アライメント工程を実施したならば、制御手段8は、レーザー光線照射手段5からのレーザー光線の照射をせず、その他は実際の加工条件に従い、制御軌道座標記憶部(記憶領域83b)に記憶された制御軌道座標(Xo,Yp)に基づいて、X軸方向移動手段37、およびY軸方向移動手段38を駆動して所定のレーザー加工開始位置からチャックテーブル36を移動させる。上記したように、初期状態では、該制御軌道座標記憶部に目標軌道座標(Xm,Yn)と同一の座標データが記憶されているため、実際には、目標軌道座標(Xm、Yn)に従いチャックテーブル36が移動させられる。   As described above, when the alignment process is performed, the control unit 8 does not irradiate the laser beam from the laser beam irradiating unit 5, and the others are stored in the control trajectory coordinate storage unit (storage area 83b) according to the actual processing conditions. Based on the stored control trajectory coordinates (Xo, Yp), the X-axis direction moving means 37 and the Y-axis direction moving means 38 are driven to move the chuck table 36 from a predetermined laser processing start position. As described above, in the initial state, since the same coordinate data as the target trajectory coordinates (Xm, Yn) is stored in the control trajectory coordinate storage unit, in actuality, chucking is performed according to the target trajectory coordinates (Xm, Yn). The table 36 is moved.

制御手段8は、制御軌道座標記憶部に記憶されている制御軌道座標に従い、X軸方向移動手段37、およびY軸方向移動手段38を駆動してチャックテーブル36を移動させる一方、X軸方向位置検出手段374、Y軸方向位置検出手段384からの座標位置信号を、入力インターフェース84を介して受け取り、ランダムアクセスメモリ(RAM)83の軌跡座標記憶部(記憶領域83c)に該制御軌道座標に対応させて順次記憶していく。このようにして、チャックテーブル36を制御軌道座標に従い制御終端位置まで移動させると、図6に示すような、実際にチャックテーブル36が移動した軌跡座標(Xo,Yp)が検出され、実際の軌跡座標により形成される軌跡ライン102が把握される。なお、実際に移動した軌跡座標(Xo,Yp)は、上記したように制御軌道座標として格納されている個々の制御軌道座標と対応付けられて格納され、目標軌道座標、制御軌道座標、軌跡座標のデータ数は同一に設定されている。   The control means 8 drives the X-axis direction moving means 37 and the Y-axis direction moving means 38 according to the control trajectory coordinates stored in the control trajectory coordinate storage unit to move the chuck table 36, while the X-axis direction position Coordinate position signals from the detection means 374 and the Y-axis direction position detection means 384 are received via the input interface 84, and the locus coordinate storage unit (storage area 83c) of the random access memory (RAM) 83 corresponds to the control trajectory coordinates. And memorize them sequentially. In this way, when the chuck table 36 is moved to the control end position according to the control trajectory coordinates, the trajectory coordinates (Xo, Yp) where the chuck table 36 has actually moved are detected as shown in FIG. A trajectory line 102 formed by the coordinates is grasped. The trajectory coordinates (Xo, Yp) actually moved are stored in association with the individual control trajectory coordinates stored as control trajectory coordinates as described above, and the target trajectory coordinates, control trajectory coordinates, trajectory coordinates are stored. Are set to the same number of data.

上記したように、チャックテーブル36が実際に移動した軌跡の座標が記憶されたならば、制御手段8は、リードオンリメモリ(ROM)82に記憶されたプログラムを実行することにより、目標軌道座標記憶部(記憶領域83a)に記憶された目標軌道座標(Xm,Yn)と、該目標軌道座標に対応する実際にチャックテーブル36が移動した軌跡座標(Xo,Yp)との座標間の距離を算出し、目標軌道座標を制御軌道座標としてチャックテーブル36を移動させた場合の目標軌道座標に対するずれを算出する。   As described above, if the coordinates of the trajectory in which the chuck table 36 is actually moved are stored, the control means 8 executes the program stored in the read only memory (ROM) 82 to thereby store the target trajectory coordinates. The distance between the coordinates of the target trajectory coordinates (Xm, Yn) stored in the unit (storage area 83a) and the trajectory coordinates (Xo, Yp) corresponding to the target trajectory coordinates and the actual movement of the chuck table 36 is calculated. Then, a deviation from the target trajectory coordinates when the chuck table 36 is moved with the target trajectory coordinates as the control trajectory coordinates is calculated.

制御手段8は、上記検出されたずれに基づき、チャックテーブル36が実際に移動させられる軌跡が、設計上の目標とする目標軌道ライン101になるように、制御軌道座標を修正する。すなわち、図7、および図7の一部拡大図に示すように、設計上の目標とする目標軌道ライン101上の点P1に対して、実際の軌跡座標位置が点P2にずれた場合は、例えば、点P1を中心とする点対象の位置にある点P3の位置を新たな制御軌道座標として、制御軌道座標記憶手段(記憶領域83b)に記憶された座標を修正する。なお、この際、当該ずれ量が、許容される所定値以下の場合は、修正しないようにしてもよい。このようにして、初期状態の各制御軌道座標に対応する実際の軌跡座標に基づき、制御軌道座標記憶手段(記憶領域83b)に記憶された値がそれぞれ修正される。そして、該修正された制御軌道座標により、新たな制御軌道ライン103が形成される。   Based on the detected deviation, the control means 8 corrects the control trajectory coordinates so that the trajectory in which the chuck table 36 is actually moved becomes the target trajectory line 101 that is a design target. That is, as shown in FIG. 7 and a partially enlarged view of FIG. 7, when the actual trajectory coordinate position is shifted to the point P2 with respect to the point P1 on the target trajectory line 101 that is a design target, For example, the coordinates stored in the control trajectory coordinate storage means (storage area 83b) are corrected with the position of the point P3 at the point target position centered on the point P1 as the new control trajectory coordinates. At this time, if the amount of deviation is equal to or less than an allowable predetermined value, it may not be corrected. In this way, the values stored in the control trajectory coordinate storage means (storage area 83b) are respectively corrected based on the actual trajectory coordinates corresponding to the control trajectory coordinates in the initial state. Then, a new control trajectory line 103 is formed based on the corrected control trajectory coordinates.

上記修正により新たな制御軌道座標が確定したら、制御手段8は、さらに、確認動作を実行する。当該確認動作では、上記した制御軌道座標修正手段の作動条件と同一の条件に基づきチャックテーブル36を移動させる動作を繰り返すことになるが、上記動作では、初期状態として設定された目標軌道座標を制御軌道座標として、X軸方向移動手段37、およびY軸方向移動手段38を駆動していたのに対し、当該確認動作では、修正された制御軌道座標の値に基づいてX軸方向移動手段37、およびY軸方向移動手段38が駆動される。   When new control trajectory coordinates are determined by the above correction, the control means 8 further executes a confirmation operation. In the confirmation operation, the operation of moving the chuck table 36 is repeated based on the same condition as the operation condition of the control trajectory coordinate correcting means described above. In the above operation, the target trajectory coordinates set as the initial state are controlled. While the X-axis direction moving unit 37 and the Y-axis direction moving unit 38 are driven as trajectory coordinates, in the confirmation operation, the X-axis direction moving unit 37, based on the corrected control trajectory coordinate values, And the Y-axis direction moving means 38 is driven.

そして、修正された新たな制御軌道座標に基づきX軸方向移動手段37、およびY軸方向移動手段38を駆動した結果として得られる新たな軌跡座標と、上記した目標軌道座標との距離を確認し、当該距離が許容範囲として設定される所定値よりも大きい場合は、制御軌道座標記憶部に記憶された制御軌道座標をさらに修正し、当該距離が該所定値よりも小さく、実際の軌跡座標が全周に渡って目標軌道座標と一致しているとみなせる場合は、確認動作を終了し、制御軌道座標修正手段が完了する。   Then, the distance between the new trajectory coordinates obtained as a result of driving the X-axis direction moving means 37 and the Y-axis direction moving means 38 based on the new corrected control trajectory coordinates and the target trajectory coordinates is confirmed. When the distance is larger than a predetermined value set as the allowable range, the control trajectory coordinates stored in the control trajectory coordinate storage unit are further corrected, the distance is smaller than the predetermined value, and the actual trajectory coordinates are When it can be considered that the target trajectory coordinates coincide with the entire circumference, the confirmation operation is terminated and the control trajectory coordinate correcting means is completed.

以上のようにして制御軌道座標の修正が完了すると、修正された制御軌道座標に基づいて、該保持手段を加工送りする加工送り手段を実行しつつ、レーザー光線照射手段5を作動させて実際の被加工物に対するレーザー加工を行う。このようにして得られた制御軌道座標は、同一の被加工物に対してレーザー加工を施す場合は、新たな修正動作を実行することなく用いることができる。また、実際に被加工物に対してレーザー加工を施している最中にも、実際の軌跡座標と目標軌道座標とのずれを検出することは可能であるので、当該ずれ量が大きくなった場合は、一旦被加工物に対するレーザー加工を停止し、上記した制御軌道座標修正手段を実行するとよい。   When the correction of the control trajectory coordinates is completed as described above, based on the corrected control trajectory coordinates, the laser beam irradiating means 5 is operated to execute the processing feed means for processing and feeding the holding means. Perform laser processing on the workpiece. The control trajectory coordinates obtained in this way can be used without performing a new correction operation when laser machining is performed on the same workpiece. In addition, it is possible to detect the deviation between the actual trajectory coordinates and the target trajectory coordinates while the workpiece is actually being laser processed. May temporarily stop laser processing on the workpiece and execute the above-described control trajectory coordinate correcting means.

なお、本実施形態の説明では、チャックテーブル36をX軸方向移動手段37、およびY軸方向移動手段38により円形をなす軌道に沿って駆動させる場合を例にして説明したが、目標軌道座標に対する実際の軌跡座標のずれ量は単純に一様にはならない。なぜなら、チャックテーブル36の位置によって、X軸方向移動手段を構成するパルスモータ372、およびY軸方向移動手段を構成するパルスモータ382のうち、一方のみ、あるいは他方のみが作動していたり、両方のパルスモータ372、382が作動していたりする等、作動状態が一定せず、また、該パルスモータ372、382は、それぞれ要求される出力が異なることにより、出力特性も異なるからである。   In the description of the present embodiment, the case where the chuck table 36 is driven along a circular orbit by the X-axis direction moving unit 37 and the Y-axis direction moving unit 38 has been described as an example. The actual deviation amount of the locus coordinates is not simply uniform. Because, depending on the position of the chuck table 36, only one of the pulse motor 372 constituting the X-axis direction moving means and the pulse motor 382 constituting the Y-axis direction moving means, or only the other is operating. This is because the operation state is not constant, such as the pulse motors 372 and 382 are operating, and the pulse motors 372 and 382 have different output characteristics due to different required outputs.

上記実施形態では、制御軌道座標の修正を、ずれ量に応じた量だけ、すなわち実際の軌跡座標点からみて、目標軌道座標上の座標点を中心とした点対象の位置を新たな制御軌道座標点となるように修正するようにしたが、これに限らず、一度に実行される修正量を制限して、少量ずつ修正するようにし、確認動作を繰り返し行うことで、目標軌道座標に実際の軌跡座標が一致するよう修正してもよい。そのようにすることで、実際にチャックテーブル36が移動する軌跡座標が、目標軌道座標に速やかに収束しないという問題を抑制することができる。   In the above embodiment, the control trajectory coordinates are corrected by an amount corresponding to the deviation amount, that is, the point trajectory centered on the coordinate point on the target trajectory coordinates is the new control trajectory coordinates when viewed from the actual trajectory coordinate points. Although it was modified so that it becomes a point, it is not limited to this, it is possible to limit the amount of correction performed at a time, modify it little by little, and repeat the confirmation operation, so that the target trajectory coordinates are actually You may correct so that a locus | trajectory coordinate may correspond. By doing so, it is possible to suppress the problem that the trajectory coordinates where the chuck table 36 actually moves do not quickly converge to the target trajectory coordinates.

本発明のレーザー加工装置に適用されるレーザー加工の方式は限定されない。被加工物に対して吸収性を有する波長のレーザー光線で被加工物の表面に対してアブレーション加工を施すもの、被加工物に対して透過性を有する波長のレーザー光線の集光点を比較的高い開口数(例えば、NA=0.8)で被加工物の内部に位置付けて照射し、変質させることで改質層を得るもの、さらには、被加工物に対して透過性を有する波長のレーザー光線の集光点を比較的低い開口数(例えば、NA=0.4)で被加工物の上面近傍に位置付けて照射し、上面から下面に至る細孔と該細孔を囲繞する非晶質を形成する、いわゆるシールドトンネルを形成する加工を施すもの等、種々の公知のレーザー加工を適用することができる。   The laser processing method applied to the laser processing apparatus of the present invention is not limited. Ablation processing is performed on the surface of the workpiece with a laser beam having a wavelength that is absorptive with respect to the workpiece, and the condensing point of the laser beam with a wavelength that is transmissive to the workpiece is a relatively high aperture A number of (for example, NA = 0.8) is positioned inside the work piece to irradiate and change the quality to obtain a modified layer, and further, a laser beam having a wavelength that is transparent to the work piece. A condensing point is irradiated with a relatively low numerical aperture (for example, NA = 0.4) positioned in the vicinity of the upper surface of the workpiece to form a pore extending from the upper surface to the lower surface and an amorphous surrounding the pore. Various known laser processing can be applied, such as processing for forming a so-called shield tunnel.

1:レーザー加工装置
2:静止基台
3:チャックテーブル機構
36:チャックテーブル
37:X軸方向移動手段
38:Y軸方向移動手段
4:レーザー光線照射ユニット
5:レーザー光線照射手段
51:パルスレーザー光線発振手段
52:出力調整手段
6:撮像手段
8:制御手段
83:ランダムアクセスメモリ(RAM)
10:ガラス板
100:加工予定ライン
F:環状フレーム
T:保護テープ
1: Laser processing device 2: Stationary base 3: Chuck table mechanism 36: Chuck table 37: X-axis direction moving means 38: Y-axis direction moving means 4: Laser beam irradiation unit 5: Laser beam irradiation means 51: Pulse laser beam oscillation means 52 : Output adjustment means 6: Imaging means 8: Control means 83: Random access memory (RAM)
10: Glass plate 100: Planned processing line F: Ring frame T: Protective tape

Claims (3)

被加工物を保持する保持手段と、該保持手段に保持された被加工物にレーザー光線を集光する集光器を備えたレーザー光線照射手段と、該保持手段を加工送りする加工送り手段と、制御手段と、から少なくとも構成されるレーザー加工装置であって、
該加工送り手段は、制御軌道座標に基づいて該保持手段をX軸方向に加工送りするX軸方向移動手段と、該X軸と直交するY軸方向に該保持手段を加工送りするY軸方向移動手段と、から構成され、
該制御手段は、レーザー光線の集光点を被加工物の加工予定ラインに沿って移動させるための保持手段が実際に移動すべき目標軌道座標をX座標、Y座標で記憶する目標軌道座標記憶部と、該制御軌道座標に基づいて該X軸方向移動手段、及びY軸方向移動手段を作動して該保持手段が実際に移動した軌跡座標をX座標、Y座標で記憶する軌跡座標記憶部と、該目標軌道座標と該軌跡座標とを比較して該軌跡座標が該目標軌道座標と一致するように該制御軌道座標を修正する制御軌道座標修正手段と、を備えるレーザー加工装置。
A holding means for holding the workpiece, a laser beam irradiation means having a condenser for condensing the laser beam on the workpiece held by the holding means, a processing feed means for processing and feeding the holding means, and a control A laser processing apparatus comprising at least means,
The machining feed means includes an X-axis direction moving means for machining-feeding the holding means in the X-axis direction based on the control trajectory coordinates, and a Y-axis direction for machining-feeding the holding means in the Y-axis direction orthogonal to the X-axis. A moving means, and
The control means stores a target trajectory coordinate storage section for storing the target trajectory coordinates to be actually moved by the holding means for moving the condensing point of the laser beam along the planned processing line of the workpiece as the X coordinate and the Y coordinate. A trajectory coordinate storage unit that stores the trajectory coordinates actually moved by the holding means by operating the X-axis direction moving means and the Y-axis direction moving means based on the control trajectory coordinates, as an X coordinate and a Y coordinate; And a control trajectory coordinate correcting means for comparing the target trajectory coordinates with the trajectory coordinates and correcting the control trajectory coordinates so that the trajectory coordinates coincide with the target trajectory coordinates.
該制御手段は、該制御軌道座標修正手段により修正された制御軌道座標を制御軌道座標記憶部に記憶し、修正された該制御軌道座標に基づいて該X軸方向移動手段及び該Y軸方向移動手段を作動して該保持手段に保持された被加工物にレーザー加工を施す請求項1に記載のレーザー加工装置。   The control means stores the control trajectory coordinates corrected by the control trajectory coordinate correction means in a control trajectory coordinate storage unit, and the X-axis direction movement means and the Y-axis direction movement based on the corrected control trajectory coordinates. The laser processing apparatus according to claim 1, wherein the laser processing is performed on the workpiece held by the holding means by operating the means. 該制御手段は、該制御軌道座標に基づいて該X軸方向移動手段及び該Y軸方向移動手段を作動させて、該目標軌道座標と、該軌跡座標とが一致するか否かの確認動作を実施し、該確認動作の結果、両者が一致するとみなせる許容範囲内であれば、該制御軌道座標記憶部に記憶された制御軌道座標に対する修正を終了し、
該許容範囲内でない場合は更に該軌跡座標が該目標軌道座標と一致する方向に該制御軌道座標を修正して該確認動作を繰り返す請求項2に記載のレーザー加工装置。
The control means operates the X-axis direction moving means and the Y-axis direction moving means based on the control trajectory coordinates to perform an operation of confirming whether or not the target trajectory coordinates and the trajectory coordinates match. If the result of the confirmation operation is within an allowable range that can be regarded as matching, the correction to the control trajectory coordinates stored in the control trajectory coordinate storage unit is terminated,
3. The laser processing apparatus according to claim 2, wherein, if not within the permissible range, the control trajectory coordinates are further corrected in a direction in which the trajectory coordinates coincide with the target trajectory coordinates, and the confirmation operation is repeated.
JP2015175796A 2015-09-07 2015-09-07 Laser processing equipment Active JP6643837B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015175796A JP6643837B2 (en) 2015-09-07 2015-09-07 Laser processing equipment
TW105124800A TWI687274B (en) 2015-09-07 2016-08-04 Laser processing device
KR1020160109190A KR102440569B1 (en) 2015-09-07 2016-08-26 Laser processing device
CN201610804743.3A CN106493470B (en) 2015-09-07 2016-09-06 Laser processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015175796A JP6643837B2 (en) 2015-09-07 2015-09-07 Laser processing equipment

Publications (2)

Publication Number Publication Date
JP2017051961A true JP2017051961A (en) 2017-03-16
JP6643837B2 JP6643837B2 (en) 2020-02-12

Family

ID=58289964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015175796A Active JP6643837B2 (en) 2015-09-07 2015-09-07 Laser processing equipment

Country Status (4)

Country Link
JP (1) JP6643837B2 (en)
KR (1) KR102440569B1 (en)
CN (1) CN106493470B (en)
TW (1) TWI687274B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113695756A (en) * 2020-05-19 2021-11-26 大族激光科技产业集团股份有限公司 Laser cutting light spot compensation method, device, equipment and storage medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110587161A (en) * 2019-10-11 2019-12-20 中船黄埔文冲船舶有限公司 Positioning device for jointed boards of welding pressure frames

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63230287A (en) * 1987-01-22 1988-09-26 Jido Hosei Syst Gijutsu Kenkyu Kumiai Correcting method for machining error in laser beam machining
JP4277747B2 (en) * 2004-06-28 2009-06-10 パナソニック株式会社 Laser processing equipment
JP4694900B2 (en) * 2005-06-28 2011-06-08 株式会社ディスコ Laser processing method
JP2007275962A (en) * 2006-04-10 2007-10-25 Disco Abrasive Syst Ltd Laser beam machining apparatus
JP5007090B2 (en) * 2006-09-11 2012-08-22 株式会社ディスコ Laser processing method
JP5254646B2 (en) * 2008-03-13 2013-08-07 株式会社ディスコ Work processing method and work processing apparatus
JP5872799B2 (en) * 2011-06-17 2016-03-01 株式会社ディスコ Laser processing equipment
JP5872814B2 (en) * 2011-08-02 2016-03-01 株式会社ディスコ Displacement detection method and laser processing apparatus
JP6030299B2 (en) * 2011-12-20 2016-11-24 株式会社ディスコ Laser processing equipment
JP6148075B2 (en) * 2013-05-31 2017-06-14 株式会社ディスコ Laser processing equipment
JP6224462B2 (en) * 2014-01-09 2017-11-01 株式会社ディスコ Method for detecting operating characteristics of machining feed mechanism in laser machining apparatus and laser machining apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113695756A (en) * 2020-05-19 2021-11-26 大族激光科技产业集团股份有限公司 Laser cutting light spot compensation method, device, equipment and storage medium
CN113695756B (en) * 2020-05-19 2024-03-12 大族激光科技产业集团股份有限公司 Method, device, equipment and storage medium for compensating light spot of laser cutting

Also Published As

Publication number Publication date
KR20170029381A (en) 2017-03-15
KR102440569B1 (en) 2022-09-05
TWI687274B (en) 2020-03-11
CN106493470B (en) 2020-02-21
JP6643837B2 (en) 2020-02-12
TW201713444A (en) 2017-04-16
CN106493470A (en) 2017-03-15

Similar Documents

Publication Publication Date Title
JP6388823B2 (en) Laser processing equipment
JP6498553B2 (en) Laser processing equipment
JP5395411B2 (en) Wafer laser processing method
KR102226222B1 (en) Laser machining apparatus
US20160172182A1 (en) Laser processing apparatus
JP2007275962A (en) Laser beam machining apparatus
JP2010123723A (en) Laser processing method of wafer
CN109719386A (en) Laser-processing system
JP4786997B2 (en) Laser processing equipment
JP2016107330A (en) Laser processing device and method of processing wafer
JP6482184B2 (en) Laser processing equipment
JP6643837B2 (en) Laser processing equipment
JP5007090B2 (en) Laser processing method
JP6224462B2 (en) Method for detecting operating characteristics of machining feed mechanism in laser machining apparatus and laser machining apparatus
JP2015093304A (en) Laser processing machine
JP6441731B2 (en) Laser processing equipment
JP2017135132A (en) Laser processing device
JPWO2019176631A1 (en) Cutting machine and cutting method
JP5872814B2 (en) Displacement detection method and laser processing apparatus
JP2021087982A (en) Adjustment method for laser processing apparatus
JP2016107288A (en) Laser processing device
JP6649705B2 (en) Laser processing method
JP2012192415A (en) Laser processing device
JP2018103193A (en) Laser processing head and laser processing system provided with the same
JP2022072131A (en) Laser processing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200107

R150 Certificate of patent or registration of utility model

Ref document number: 6643837

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250