JP2021087982A - Adjustment method for laser processing apparatus - Google Patents

Adjustment method for laser processing apparatus Download PDF

Info

Publication number
JP2021087982A
JP2021087982A JP2019220511A JP2019220511A JP2021087982A JP 2021087982 A JP2021087982 A JP 2021087982A JP 2019220511 A JP2019220511 A JP 2019220511A JP 2019220511 A JP2019220511 A JP 2019220511A JP 2021087982 A JP2021087982 A JP 2021087982A
Authority
JP
Japan
Prior art keywords
laser beam
axis direction
coordinate
condensing point
adjusting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019220511A
Other languages
Japanese (ja)
Other versions
JP7355629B2 (en
Inventor
佑希 一宮
Yuki Ichinomiya
佑希 一宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Disco Corp
Original Assignee
Disco Abrasive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Disco Abrasive Systems Ltd filed Critical Disco Abrasive Systems Ltd
Priority to JP2019220511A priority Critical patent/JP7355629B2/en
Publication of JP2021087982A publication Critical patent/JP2021087982A/en
Application granted granted Critical
Publication of JP7355629B2 publication Critical patent/JP7355629B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Dicing (AREA)
  • Laser Beam Processing (AREA)

Abstract

To provide an adjustment method for a laser processing apparatus, by which the center of a light condenser and the center of a laser beam emitted from a spatial light modulator can be appropriately made to coincide with each other.SOLUTION: An adjustment method for a laser processing apparatus includes: emitting a laser beam LB1 to an upper surface 10a of an inspection plate 10 so as to position a first condensing point P1 and capturing an image by use of imaging means 47; finding X coordinate and Y coordinate positions of the first condensing point P1 displayed by display means 50; emitting a laser beam LB1 to the upper surface 10a of the inspection plate 10 by use of Z-axis adjustment means 45A so as to position a second condensing point P2 and capturing an image by use of the imaging means 47; finding X coordinate and Y coordinate positions of the second condensing point P2 displayed by the display means 50; and making an optical axis of a spatial light modulator 43 coincide with a center of a light condenser 45 by adjusting the optical axis of the spatial light modulator 43 such that the X coordinate and Y coordinate positions of the first condensing point P1 and the X coordinate and Y coordinate positions of the second condensing point P2 coincide with each other.SELECTED DRAWING: Figure 2

Description

本発明は、光学系に空間光変調器を備えたレーザー加工装置の調整方法に関する。 The present invention relates to a method for adjusting a laser processing apparatus having a spatial light modulator in an optical system.

IC、LSI等の複数のデバイスが分割予定ラインによって区画され表面に形成されたウエーハは、ダイシング装置、レーザー加工装置によって個々のデバイスチップに分割され、携帯電話、パソコン等の電気機器に利用される。 A wafer in which a plurality of devices such as ICs and LSIs are partitioned by a planned division line and formed on the surface is divided into individual device chips by a dicing device and a laser processing device, and is used for electric devices such as mobile phones and personal computers. ..

レーザー加工装置は、被加工物を保持する保持手段と、該保持手段に保持された被加工物にレーザー光線を照射するレーザー光線照射手段と、該保持手段とレーザー光線照射手段と、を相対的に加工送りする送り手段と、を含み、該レーザー光線照射手段は、レーザー光線を発振する発振器と、該発振器が発振したレーザー光線を集光する集光器と、該発振器と該集光器との間に配設されスポット形状を整形するマスク、又は集光点を2個以上生成する光学系と、から構成されている(例えば、特許文献1、2を参照)。 The laser processing apparatus relatively processes and feeds the holding means for holding the workpiece, the laser beam irradiating means for irradiating the workpiece held by the holding means with the laser beam, and the holding means and the laser beam irradiating means. The laser beam irradiating means is arranged between an oscillator that oscillates a laser beam, a condenser that collects the laser beam oscillated by the oscillator, and the oscillator and the condenser. It is composed of a mask that shapes the spot shape or an optical system that generates two or more focusing points (see, for example, Patent Documents 1 and 2).

また、上記したマスク及び集光点を2個以上生成する光学系の代替えとして空間光変調器(透過型(LC)、反射型(LCOS))が知られており、該空間光変調器を利用することにより、レーザー光線のスポット形状を整形したり、集光器によって形成される集光点を2個以上生成したりする等、レーザー光線の集光特性を自在に調整することができる(例えば特許文献3を参照)。 Spatial light modulators (transmission type (LC), reflection type (LCOS)) are known as alternatives to the above-mentioned optical system that generates two or more masks and focusing points, and the spatial light modulator is used. By doing so, it is possible to freely adjust the focusing characteristics of the laser beam, such as shaping the spot shape of the laser beam and generating two or more focusing points formed by the condenser (for example, Patent Documents). See 3).

特開2006−319198号公報Japanese Unexamined Patent Publication No. 2006-319198 特開2005−028438号公報Japanese Unexamined Patent Publication No. 2005-028438 国際公開第2008/088043号International Publication No. 2008/088043

上記した空間光変調器を使用する場合、集光器を構成する集光レンズの中心と、空間光変調器から発せられる光線の光軸とにずれが生じると、所望の位置にレーザー光線の集光点を位置付けることができず、特に、複数の位置に集光点を位置付けて加工する場合に高精度な加工が困難になるという問題がある。 When the above-mentioned spatial light modulator is used, if the center of the condenser lens constituting the condenser and the optical axis of the light beam emitted from the spatial light modulator are deviated, the laser beam is focused at a desired position. There is a problem that the points cannot be positioned, and in particular, when processing by positioning the condensing points at a plurality of positions, high-precision processing becomes difficult.

本発明は、上記事実に鑑みなされたものであり、その主たる技術課題は、集光器の中心と、空間光変調器から発せられるレーザー光線の光軸とを適切に一致させることができるレーザー加工装置の調整方法を提供することにある。 The present invention has been made in view of the above facts, and its main technical problem is a laser processing apparatus capable of appropriately aligning the center of a condenser with the optical axis of a laser beam emitted from a spatial light modulator. Is to provide a method of adjustment.

上記主たる技術課題を解決するため、本発明によれば、X軸方向、及び該X軸方向に直交するY軸方向で規定される被加工物を保持する保持面を備えた保持手段と、該保持面に保持された被加工物にレーザー光線を照射するレーザー光線照射手段と、該保持面に保持された被加工物で反射した光を撮像する撮像手段と、該撮像手段が撮像した画像を表示する表示手段と、を備え、該レーザー光線照射手段は、レーザー光線を発振する発振器と、該レーザー光線を反射して該X軸方向及び該Y軸方向に直交するZ軸方向に導き、且つ被加工物にて反射した光を透過するスプリッターと、該発振器と該スプリッターとの間に配設され該発振器が発振したレーザー光線の出力を調整するアッテネータと、該アッテネータと該スプリッターとの間に配設されレーザー光線の集光特性を調整する空間光変調器と、該空間光変調器を操作する操作手段と、該スプリッターで反射したレーザー光線を該保持面に保持された被加工物に集光する集光器と、該集光器と該保持手段とを相対的にZ軸方向に接近、及び離反させレーザー光線の集光点の位置を調整するZ軸調整手段と、から少なくとも構成されたレーザー加工装置の調整方法であって、該空間光変調器がZ軸方向においてレーザー光線の第一の集光点及び第二の集光点の2個の集光点を形成するように該操作手段を操作し、該Z軸調整手段によって該保持面に保持された検査板の上面にレーザー光線の第一の集光点を位置付けて照射して該撮像手段により撮像し、該表示手段に表示された該第一の集光点のX座標及びY座標位置を求め、該Z軸調整手段によって該検査板の上面にレーザー光線の第二の集光点を位置付けて照射して該撮像手段により撮像し、該表示手段に表示された該第二の集光点のX座標及びY座標位置を求め、該第一の集光点のX座標及びY座標位置と、該第二の集光点のX座標及びY座標位置とが一致するように該空間光変調器の光軸位置を調整することにより、該空間光変調器の光軸を該集光器の中心に一致させる、レーザー加工装置の調整方法が提供される。 In order to solve the above-mentioned main technical problem, according to the present invention, a holding means provided with a holding surface for holding a work piece defined in the X-axis direction and the Y-axis direction orthogonal to the X-axis direction, and the said A laser beam irradiating means for irradiating a workpiece held on the holding surface with a laser beam, an imaging means for capturing the light reflected by the workpiece held on the holding surface, and an image captured by the imaging means are displayed. The laser beam irradiating means comprises a display means, and the laser beam irradiating means reflects the laser beam and guides the laser beam in the Z-axis direction orthogonal to the X-axis direction and the Y-axis direction, and is used in the workpiece. A splitter that transmits reflected light, an attenuator that is placed between the oscillator and the splitter to adjust the output of the laser beam oscillated by the oscillator, and a collection of laser beams that are placed between the attenuator and the splitter. A spatial light modulator that adjusts the optical characteristics, an operating means for operating the spatial optical modulator, a concentrator that condenses the laser beam reflected by the splitter onto a work piece held on the holding surface, and the like. It is an adjustment method of a laser processing apparatus composed of at least a Z-axis adjusting means for adjusting the position of a condensing point of a laser beam by relatively approaching and separating the concentrator and the holding means in the Z-axis direction. Then, the operating means is operated so that the spatial light modulator forms two focusing points, a first focusing point and a second focusing point of the laser beam in the Z-axis direction, and the Z-axis adjustment is performed. The first condensing point of the laser beam is positioned and irradiated on the upper surface of the inspection plate held on the holding surface by the means, the image is taken by the imaging means, and the first condensing point displayed on the display means. The X-coordinate and Y-coordinate positions are obtained, the second condensing point of the laser beam is positioned and irradiated on the upper surface of the inspection plate by the Z-axis adjusting means, the image is taken by the imaging means, and the display is displayed on the display means. The X-coordinate and Y-coordinate positions of the second condensing point are obtained, and the X-coordinate and Y-coordinate positions of the first condensing point coincide with the X-coordinate and Y-coordinate positions of the second condensing point. By adjusting the position of the optical axis of the spatial optical modulator as described above, a method for adjusting the laser processing apparatus is provided, in which the optical axis of the spatial optical modulator is aligned with the center of the condenser.

本発明のレーザー加工装置の調整方法は、空間光変調器がZ軸方向においてレーザー光線の第一の集光点及び第二の集光点の2個の集光点を形成するように操作手段を操作し、Z軸調整手段によって保持面に保持された検査板の上面にレーザー光線の第一の集光点を位置付けて照射して撮像手段により撮像し、表示手段に表示された第一の集光点のX座標及びY座標位置を求め、Z軸調整手段によって検査板の上面にレーザー光線の第二の集光点を位置付けて照射して撮像手段により撮像し、表示手段に表示された第二の集光点のX座標及びY座標位置を求め、該第一の集光点のX座標及びY座標位置と、該第二の集光点のX座標及びY座標位置とが一致するように該空間光変調器の光軸位置を調整することにより、該空間光変調器の光軸を該集光器の中心に一致させるようにしていることから、集光器の中心と、空間光変調器の光軸の中心とを適切に一致させることができ、空間光変調器を使用してレーザー加工を実施する際にも、高精度な加工を維持することができる。 The adjustment method of the laser processing apparatus of the present invention uses an operating means so that the spatial light modulator forms two focusing points, a first focusing point and a second focusing point of the laser beam in the Z-axis direction. Operate, position the first focusing point of the laser beam on the upper surface of the inspection plate held on the holding surface by the Z-axis adjusting means, irradiate it, image it with the imaging means, and display the first focusing point on the display means. The X-coordinate and Y-coordinate positions of the points are obtained, the second condensing point of the laser beam is positioned on the upper surface of the inspection plate by the Z-axis adjusting means, irradiated, and the image is taken by the imaging means. The X-coordinate and Y-coordinate positions of the condensing point are obtained, and the X-coordinate and Y-coordinate positions of the first condensing point are matched with the X-coordinate and Y-coordinate position of the second condensing point. By adjusting the position of the optical axis of the spatial optical modulator so that the optical axis of the spatial optical modulator is aligned with the center of the condenser, the center of the condenser and the spatial optical modulator The center of the optical axis can be appropriately aligned with the center of the optical axis, and high-precision machining can be maintained even when laser machining is performed using a spatial optical modulator.

レーザー加工装置の全体斜視図である。It is an overall perspective view of a laser processing apparatus. 図1に示すレーザー加工装置に備えられたレーザー光線照射手段の光学系を示すブロック図である。It is a block diagram which shows the optical system of the laser beam irradiation means provided in the laser processing apparatus shown in FIG. 空間光変調器によって集光特性が調整されたレーザー光線の集光点を示す概念図であり、(a)集光器の中心と空間光変調器の光軸とが一致している場合の第一の集光点と第二の集光点の位置を示す概念図、(b)集光器の中心と空間光変調器の光軸がずれている場合であって、第一の集光点と、第二の集光点とのY軸方向のずれを示す概念図、(c)集光器の中心と空間光変調器の光軸がずれている場合であって、第一の集光点と、第二の集光点とのX軸方向のずれを示す概念図である。It is a conceptual diagram which shows the focusing point of a laser beam whose focusing characteristic was adjusted by a spatial light modulator, and (a) the first when the center of a condenser and the optical axis of a spatial light modulator are aligned. Conceptual diagram showing the positions of the condensing point and the second condensing point, (b) When the center of the concentrator and the optical axis of the spatial light modulator are deviated from each other, the first condensing point and , A conceptual diagram showing a deviation in the Y-axis direction from the second light collection point, (c) When the center of the light collector and the optical axis of the spatial light modulator are out of alignment, the first light collection point It is a conceptual diagram showing the deviation in the X-axis direction from the second focusing point.

以下、本発明に基づいて構成されるレーザー加工装置の調整方法に係る実施形態について添付図面を参照しながら、詳細に説明する。 Hereinafter, embodiments relating to an adjustment method for a laser processing apparatus configured based on the present invention will be described in detail with reference to the accompanying drawings.

図1には、本発明の調整方法を実施するのに好適なレーザー加工装置1の全体斜視図が示されており、以下にその詳細について説明する。 FIG. 1 shows an overall perspective view of the laser processing apparatus 1 suitable for carrying out the adjustment method of the present invention, and details thereof will be described below.

図1に示すレーザー加工装置1は、被加工物を保持する保持手段20と、保持手段20を移動させる移動手段30と、保持手段20に保持された被加工物にレーザー光線を照射するレーザー光線照射手段40と、表示手段50と、アライメント手段60を備えている。 The laser processing apparatus 1 shown in FIG. 1 includes a holding means 20 for holding a work piece, a moving means 30 for moving the holding means 20, and a laser beam irradiating means for irradiating a work piece held by the holding means 20 with a laser beam. 40, a display means 50, and an alignment means 60 are provided.

保持手段20は、図中に矢印Xで示すX軸方向において移動自在に基台2に載置される矩形状のX軸方向可動板21と、図中に矢印Yで示すY軸方向において移動自在にX軸方向可動板21に載置される矩形状のY軸方向可動板22と、Y軸方向可動板22の上面に固定された円筒状の支柱23と、支柱23の上端に固定された矩形状のカバー板26とを含む。カバー板26には、カバー板26上に形成された長穴を通って上方に延びる円形状のチャックテーブル25が配設されている。チャックテーブル25は、図示しない回転駆動手段により回転可能に構成されている。チャックテーブル25の上面を構成するX軸方向、及び該X軸方向に直交するY軸方向により規定される保持面25aは、多孔質材料から形成されて通気性を有し、支柱23の内部を通る流路によって図示しない吸引手段に接続されている。チャックテーブル25には、保護テープTを介して被加工物を支持する環状のフレームFを固定するためのクランプ27も配設される。なお、本実施形態においてレーザー光線が照射される被加工物は、図1に示すように、保護テープTを介して環状のフレームFによって保持されたレーザー光線照射手段40の調整に用いられる検査板10であり、上面10aには錫膜がコーティングされている。 The holding means 20 moves in the X-axis direction indicated by the arrow X in the drawing and the rectangular X-axis direction movable plate 21 mounted on the base 2 so as to be movable in the Y-axis direction indicated by the arrow Y in the drawing. A rectangular Y-axis movable plate 22 freely placed on the X-axis movable plate 21, a cylindrical support 23 fixed to the upper surface of the Y-axis movable plate 22, and fixed to the upper end of the support 23. Includes a rectangular cover plate 26 and the like. The cover plate 26 is provided with a circular chuck table 25 that extends upward through an elongated hole formed on the cover plate 26. The chuck table 25 is configured to be rotatable by a rotation driving means (not shown). The holding surface 25a defined by the X-axis direction forming the upper surface of the chuck table 25 and the Y-axis direction orthogonal to the X-axis direction is formed of a porous material and has breathability, and the inside of the support column 23 is formed. It is connected to a suction means (not shown) by a flow path through which it passes. The chuck table 25 is also provided with a clamp 27 for fixing the annular frame F that supports the workpiece via the protective tape T. As shown in FIG. 1, the workpiece to be irradiated with the laser beam in the present embodiment is an inspection plate 10 used for adjusting the laser beam irradiating means 40 held by the annular frame F via the protective tape T. The upper surface 10a is coated with a tin film.

移動手段30は、基台2上に配設され、保持手段20をX軸方向に加工送りするX軸方向送り手段31と、Y軸可動板22をY軸方向に割り出し送りするY軸方向送り手段32と、を備えている。X軸方向送り手段31は、パルスモータ33の回転運動を、ボールねじ34を介して直線運動に変換してX軸方向可動板21に伝達し、基台2上の案内レール2a、2aに沿ってX軸方向可動板21をX軸方向において進退させる。Y軸方向送り手段32は、パルスモータ35の回転運動を、ボールねじ36を介して直線運動に変換してY軸方向可動板22に伝達し、X軸方向可動板21上の案内レール21a、21aに沿ってY軸方向可動板22をY軸方向において進退させる。なお、図示は省略するが、X軸方向送り手段31、Y軸方向送り手段32、及びチャックテーブル25には、位置検出手段が配設されており、チャックテーブル25のX軸方向の位置、Y軸方向の位置、周方向の回転位置が正確に検出され、後述する制御手段100(図2を参照)に伝達される。そして、その位置情報に基づいて制御手段100から指示される指示信号により、X軸方向送り手段31、Y軸方向送り手段32、及び図示しないチャックテーブル25の回転駆動手段が駆動されて、保持手段20上の所望の位置にチャックテーブル25を位置付けることができる。 The moving means 30 is arranged on the base 2, and the X-axis direction feeding means 31 for processing and feeding the holding means 20 in the X-axis direction and the Y-axis direction feeding for indexing and feeding the Y-axis movable plate 22 in the Y-axis direction. Means 32 and. The X-axis direction feeding means 31 converts the rotational motion of the pulse motor 33 into a linear motion via the ball screw 34 and transmits it to the X-axis direction movable plate 21 along the guide rails 2a and 2a on the base 2. The movable plate 21 in the X-axis direction is moved forward and backward in the X-axis direction. The Y-axis direction feeding means 32 converts the rotational motion of the pulse motor 35 into a linear motion via the ball screw 36 and transmits it to the Y-axis direction movable plate 22, and the guide rail 21a on the X-axis direction movable plate 21 The movable plate 22 in the Y-axis direction is moved back and forth along the 21a in the Y-axis direction. Although not shown, the X-axis direction feeding means 31, the Y-axis direction feeding means 32, and the chuck table 25 are provided with position detecting means, and the position of the chuck table 25 in the X-axis direction, Y. The axial position and the circumferential rotation position are accurately detected and transmitted to the control means 100 (see FIG. 2) described later. Then, the rotation driving means of the X-axis direction feeding means 31, the Y-axis direction feeding means 32, and the chuck table 25 (not shown) is driven by the instruction signal instructed from the control means 100 based on the position information, and the holding means. The chuck table 25 can be positioned at a desired position on the 20.

図1に示すように、移動手段30の側方には、枠体4が立設される。枠体4は、基台2上に配設される垂直壁部4a、及び垂直壁部4aの上端部から水平方向に延びる水平壁部4bと、を備えている。枠体4の水平壁部4bの内部には、レーザー光線照射手段40を含む光学系が収容されている。 As shown in FIG. 1, a frame body 4 is erected on the side of the moving means 30. The frame body 4 includes a vertical wall portion 4a arranged on the base 2 and a horizontal wall portion 4b extending in the horizontal direction from the upper end portion of the vertical wall portion 4a. An optical system including a laser beam irradiating means 40 is housed inside the horizontal wall portion 4b of the frame body 4.

図2を参照しながら、図1に示すレーザー加工装置1に備えられたレーザー光線照射手段40を含む光学系について説明する。レーザー光線照射手段40には、所定の特性を備えたパルス状のレーザー光線LB0を発振する発振器41と、発振器41から発振されたレーザー光線LB0の出力を調整するアッテネータ42と、アッテネータ42から出力されたレーザー光線LB0の位相の空間分布を調整して集光特性が調整されたレーザー光線LB1を出力する空間光変調器43と、空間光変調器43を操作する操作手段43Aと、空間光変調器43から出力されたレーザー光線LB1を反射してチャックテーブル25の保持面25aに向かうZ軸方向(上下方向)に導き、保持面25aに保持された被加工物で反射した光を透過するスプリッター44と、を備えている。 An optical system including a laser beam irradiating means 40 provided in the laser processing apparatus 1 shown in FIG. 1 will be described with reference to FIG. The laser beam irradiating means 40 includes an oscillator 41 that oscillates a pulsed laser beam LB0 having predetermined characteristics, an attenuator 42 that adjusts the output of the laser beam LB0 oscillated from the oscillator 41, and a laser beam LB0 output from the attenuator 42. It was output from the spatial light modulator 43 that outputs the laser beam LB1 whose focusing characteristics are adjusted by adjusting the spatial distribution of the phase, the operating means 43A that operates the spatial light modulator 43, and the spatial light modulator 43. It includes a splitter 44 that reflects the laser beam LB1 and guides it in the Z-axis direction (vertical direction) toward the holding surface 25a of the chuck table 25, and transmits the light reflected by the workpiece held on the holding surface 25a. ..

レーザー光線照射手段40はさらに、スプリッター44で反射したレーザー光線LB1を保持面25aに保持された被加工物に集光する集光レンズ46を含む集光器45と、図示を省略する駆動モータ等の駆動手段によって動作し集光器45と保持手段20とを相対的にZ軸方向で接近及び離反させ、レーザー光線LB1の集光点の位置を調整するZ軸調整手段45Aとを備えている。なお、集光器45は、枠体4の水平壁部4bの先端部下面に位置付けられる(図1を参照)。 The laser beam irradiating means 40 further drives a condenser 45 including a condenser lens 46 that concentrates the laser beam LB1 reflected by the splitter 44 on a workpiece held on the holding surface 25a, a drive motor (not shown), and the like. It is provided with a Z-axis adjusting means 45A that operates by means to relatively approach and separate the concentrator 45 and the holding means 20 in the Z-axis direction and adjust the position of the condensing point of the laser beam LB1. The condenser 45 is positioned on the lower surface of the tip portion of the horizontal wall portion 4b of the frame body 4 (see FIG. 1).

また、上記した空間光変調器43は、空間光変調器43によって出力されるレーザー光線LB1の光軸の位置を調整する光軸調整手段43Bを含んでいる。光軸調整手段43Bを操作して空間光変調器43を図2における上下方向で移動させることにより、保持面25aを規定するY軸方向における位置調整がなされ、図面に垂直な方向で空間光変調器43を移動させることにより保持面25aを規定するX軸方向における位置調整がなされる。光軸調整手段43Bは、例えば、空間光変調器43をX軸方向、Y軸方向に移動させる調整ネジ等により構成される。該光学系は、上記したレーザー光線照射手段40に加え、保持面25aに保持された被加工物上で反射しスプリッター44を透過した光を撮像する撮像手段47を備えている。 Further, the spatial light modulator 43 described above includes an optical axis adjusting means 43B for adjusting the position of the optical axis of the laser beam LB1 output by the spatial light modulator 43. By operating the optical axis adjusting means 43B to move the spatial light modulator 43 in the vertical direction in FIG. 2, the position of the holding surface 25a is adjusted in the Y-axis direction, and the spatial light modulation is performed in the direction perpendicular to the drawing. By moving the vessel 43, the position of the holding surface 25a is adjusted in the X-axis direction. The optical axis adjusting means 43B is composed of, for example, an adjusting screw for moving the spatial light modulator 43 in the X-axis direction and the Y-axis direction. In addition to the laser beam irradiating means 40 described above, the optical system includes an imaging means 47 that captures the light reflected on the workpiece held on the holding surface 25a and transmitted through the splitter 44.

図2に示すように、レーザー加工装置1は、制御手段100を備えている。制御手段100は、コンピュータにより構成され、制御プログラムに従って演算処理する中央演算処理装置(CPU)と、制御プログラム等を格納するリードオンリメモリ(ROM)と、検出した検出値、演算結果等を一時的に格納するための読み書き可能なランダムアクセスメモリ(RAM)と、入力インターフェース、及び出力インターフェースとを備えている(詳細についての図示は省略)。この制御手段100によって上記した移動手段30、レーザー光線照射手段40が制御されるほか、空間光変調器43によって所望の集光特性が得られるように、操作手段43Aに対して制御信号を出力し、撮像手段47によって撮像された画像を取り込んで記憶すると共に表示手段50に画像情報を出力する。 As shown in FIG. 2, the laser processing apparatus 1 includes a control means 100. The control means 100 is composed of a computer, and temporarily stores a central processing unit (CPU) that performs arithmetic processing according to a control program, a read-only memory (ROM) that stores the control program, and detected detection values, arithmetic results, and the like. It has a readable and writable random access memory (RAM) for storing in, an input interface, and an output interface (details are not shown). In addition to controlling the moving means 30 and the laser beam irradiating means 40 described above by the control means 100, a control signal is output to the operating means 43A so that the spatial light modulator 43 can obtain desired focusing characteristics. The image captured by the imaging means 47 is captured and stored, and the image information is output to the display means 50.

なお、上記したレーザー加工装置1では、Z軸調整手段45Aを集光器45側に設置したが、保持手段20側に設置してもよく、保持手段20のチャックテーブル25をZ軸方向において上下動させることによって、被加工物上に対するレーザー光線LB1の集光点の位置を調整することもできる。 In the laser processing apparatus 1 described above, the Z-axis adjusting means 45A is installed on the condenser 45 side, but it may be installed on the holding means 20 side, and the chuck table 25 of the holding means 20 is moved up and down in the Z-axis direction. By moving the laser beam LB1, the position of the focusing point of the laser beam LB1 on the workpiece can be adjusted.

レーザー加工装置1は、概ね上記したとおりの構成を備えており、このレーザー加工装置1を例にして、本実施形態の調整方法、より具体的には、集光器45の集光レンズ46の中心と、空間光変調器43から出力されてスプリッター44によって反射されるレーザー光線LB1の光軸とがずれているか否かを確認し、ずれている場合に、空間光変調器43の光軸を、集光器45の中心に一致させる調整方法について、以下に説明する。 The laser processing device 1 has substantially the same configuration as described above. Taking the laser processing device 1 as an example, the adjustment method of the present embodiment, more specifically, the condenser lens 46 of the condenser 45 Check whether the center and the optical axis of the laser beam LB1 output from the spatial light modulator 43 and reflected by the splitter 44 are deviated, and if they are deviated, the optical axis of the spatial light modulator 43 is set. The adjustment method for aligning with the center of the condenser 45 will be described below.

レーザー加工装置1に配設された空間光変調器43の光軸を集光器45の集光レンズ46の中心に一致させるための調整を実施するに際し、まず、図1に基づいて説明したように、保護テープTを介して環状のフレームFに保持された検査板10を用意する。検査板10は、レーザー加工装置1によってレーザー加工が施される半導体ウエーハを模して形成された円盤上の薄板(ダミーウエーハ)であり、上面10aに錫箔がコーティングされている。なお、検査板10は、必ずしも錫箔がコーティングされた薄板に限定されず、例えば、ミラーウエーハであってもよい。 When making adjustments for aligning the optical axis of the spatial light modulator 43 arranged in the laser processing apparatus 1 with the center of the condenser lens 46 of the condenser 45, first, as described with reference to FIG. In addition, the inspection plate 10 held by the annular frame F via the protective tape T is prepared. The inspection plate 10 is a thin plate (dummy wafer) on a disk formed by imitating a semiconductor wafer that is laser-processed by the laser processing apparatus 1, and the upper surface 10a is coated with tin foil. The inspection plate 10 is not necessarily limited to a thin plate coated with tin foil, and may be, for example, a mirror wafer.

上記した検査板10を用意したならば、チャックテーブル25の保持面25aに載置して、図示しない吸引手段を作動して吸引保持し、クランプ27によって固定する。チャックテーブル25に検査板10を固定したならば、上記した移動手段30を作動して、検査板10をレーザー光線照射手段40の集光器45の直下に位置付ける。必要に応じて、検査板10を集光器45の直下に位置付ける前に、一旦アライメント手段60の直下に位置付けて、検査板10の上面10aにおけるレーザー光線を照射する照射位置をアライメント手段60によって撮像して検出するようにしてもよい。 When the above-mentioned inspection plate 10 is prepared, it is placed on the holding surface 25a of the chuck table 25, a suction means (not shown) is operated to suck and hold the inspection plate 10, and the inspection plate 10 is fixed by the clamp 27. After the inspection plate 10 is fixed to the chuck table 25, the moving means 30 described above is operated to position the inspection plate 10 directly under the concentrator 45 of the laser beam irradiating means 40. If necessary, before positioning the inspection plate 10 directly under the condenser 45, the inspection plate 10 is once positioned directly under the alignment means 60, and the irradiation position on the upper surface 10a of the inspection plate 10 to be irradiated with the laser beam is imaged by the alignment means 60. May be detected.

検査板10をレーザー光線照射手段40の集光器45の直下に位置付けたならば、制御手段100から操作手段43Aに制御信号を送り、空間光変調器43に投入されるレーザー光線LB0が、図3(a)〜(c)に示すように、チャックテーブル25上のZ軸方向(上下方向)において、間隔を開けて第一の集光点P1及び第二の集光点P2の2個の集光点が形成される集光特性を備えたレーザー光線LB1に調整される状態とする。本実施形態においては、第一の集光点P1と第二の集光点P2とは、Z軸方向において200μmの距離になるように設定されている。なお、レーザー光線LB1が、空間光変調器43によって上記したような2つの集光点を形成する集光特性に調整されて出力される場合、例えば、レーザー光線LB1に含まれ第一の集光点P1を形成する一方のレーザー光線LB1aは平行光であり、レーザー光線LB1に含まれ第二の集光点P2を形成する他方のレーザー光線LB1bは拡散光である場合が想定されるが、必ずしもこれに限定されるわけではない。また、前記した集光点P1と集光点P2の集光器45からの距離は、予め制御手段100に記憶されている。 When the inspection plate 10 is positioned directly under the condenser 45 of the laser beam irradiating means 40, the laser beam LB0 that sends a control signal from the control means 100 to the operating means 43A and is input to the spatial light modulator 43 is shown in FIG. As shown in a) to (c), two light collection points P1 and a second light collection point P2 are spaced apart from each other in the Z-axis direction (vertical direction) on the chuck table 25. The state is adjusted to the laser beam LB1 having the light-collecting characteristic in which points are formed. In the present embodiment, the first condensing point P1 and the second condensing point P2 are set to have a distance of 200 μm in the Z-axis direction. When the laser beam LB1 is adjusted by the spatial light modulator 43 to have the focusing characteristics forming the two focusing points as described above and output, for example, the first focusing point P1 included in the laser beam LB1 is included. It is assumed that one laser beam LB1a forming the above is parallel light, and the other laser beam LB1b included in the laser beam LB1 and forming the second focusing point P2 is diffused light, but is not necessarily limited to this. Do not mean. Further, the distance between the condensing point P1 and the condensing point P2 from the concentrator 45 is stored in advance in the control means 100.

まず、予め制御手段100に記憶されている集光器45から第一の集光点P1までの距離に基づいてZ軸調整手段45Aを作動し、集光器45の位置を調整して、チャックテーブル25の保持面25aに保持された検査板10の上面10aにレーザー光線LB1aの第一の集光点P1を位置付ける。そして、発振器41を作動して、レーザー光線LB0を発振し、空間光変調器43からレーザー光線LB1を出力する。これにより、検査板10の上面10aに第一の集光点P1の位置に対応する打痕が形成される。そして、その打痕は、上記したスプリッター44を介して撮像手段47に捉えられて制御手段100に記憶されると共に、図2に示された表示手段50上に表示される。表示手段50に表示された打痕(=第一の集光点P1)の位置を表示手段50上で特定することにより、第一の集光点P1のX座標、Y座標位置(P1(X,Y))が演算され、制御手段100に記憶される。 First, the Z-axis adjusting means 45A is operated based on the distance from the concentrator 45 stored in the control means 100 in advance to the first condensing point P1, the position of the concentrator 45 is adjusted, and the chuck is chucked. The first focusing point P1 of the laser beam LB1a is positioned on the upper surface 10a of the inspection plate 10 held by the holding surface 25a of the table 25. Then, the oscillator 41 is operated to oscillate the laser beam LB0, and the laser beam LB1 is output from the spatial light modulator 43. As a result, a dent corresponding to the position of the first condensing point P1 is formed on the upper surface 10a of the inspection plate 10. Then, the dent is captured by the imaging means 47 via the splitter 44, stored in the control means 100, and displayed on the display means 50 shown in FIG. By specifying the position of the dent (= first condensing point P1) displayed on the display means 50 on the display means 50, the X coordinate and Y coordinate position (P1 (X)) of the first condensing point P1 , Y)) is calculated and stored in the control means 100.

上記したように、第一の集光点P1のX座標、Y座標位置(P1(X,Y))が求められたならば、次いで、Z軸調整手段45Aを作動して、集光器45の位置を調整し(200μm上昇させる)、検査板10の上面10aにレーザー光線LB1bの第二の集光点P2を位置付ける。そして、発振器41を作動して、レーザー光線LB0を発振し、空間光変調器43からレーザー光線LB1を出力する。これにより、検査板10の上面10aに第二の集光点P2に対応する新たな打痕が形成される。そして、その打痕は、上記したスプリッター44を介して撮像手段47に捉えられて制御手段100に記憶されると共に、図2に示された表示手段50上に表示される。表示手段50に表示された新たな打痕(=第二の集光点P2)を表示手段50上で特定することにより、第二の集光点P2のX座標、Y座標位置(P2(X,Y))が算出され、制御手段100に記憶される。 As described above, when the X-coordinate and Y-coordinate positions (P1 (X, Y)) of the first condensing point P1 are obtained, then the Z-axis adjusting means 45A is operated to activate the condensing device 45. Is adjusted (raised by 200 μm), and the second focusing point P2 of the laser beam LB1b is positioned on the upper surface 10a of the inspection plate 10. Then, the oscillator 41 is operated to oscillate the laser beam LB0, and the laser beam LB1 is output from the spatial light modulator 43. As a result, a new dent corresponding to the second condensing point P2 is formed on the upper surface 10a of the inspection plate 10. Then, the dent is captured by the imaging means 47 via the splitter 44, stored in the control means 100, and displayed on the display means 50 shown in FIG. By specifying a new dent (= second light-collecting point P2) displayed on the display means 50 on the display means 50, the X-coordinate and Y-coordinate position (P2 (X)) of the second light-collecting point P2 , Y)) is calculated and stored in the control means 100.

ここで、仮に、第一の集光点P1、第二の集光点P2がZ軸方向(上下方向)で重なり、保持面25a上のX座標及びY座標位置で一致する場合(又は一致していると見なせる範囲で近接している場合)は、図3(a)に示すように、集光器45の集光レンズ46の中心C1と、空間光変調器43から出力されてスプリッター44によって反射されるレーザー光線LB1の光軸C2とが一致している場合であると判断される。よって、この場合は、集光器45の集光レンズ46の中心C1と、空間光変調器43から出力されてスプリッター44によって反射されるレーザー光線LB1の光軸C2との位置調整を実施する必要がないと判断され、本実施形態の調整は終了する。これに対し、図2の表示手段50、図3(b)、及び図3(c)に示すように、第一の集光点P1の位置と、第二の集光点P2の位置がずれていると判断される場合は、集光器45の集光レンズ46の中心C1と、スプリッター44によって反射され集光器45に導かれるレーザー光線LB1の光軸C2とがずれている場合であると判断されるから、以下のごとく、そのずれを調整する。 Here, if the first condensing point P1 and the second condensing point P2 overlap in the Z-axis direction (vertical direction) and match (or match) at the X-coordinate and Y-coordinate positions on the holding surface 25a. As shown in FIG. 3A, the center C1 of the condenser lens 46 of the condenser 45 and the output from the spatial light modulator 43 are output by the splitter 44. It is determined that the light axis C2 of the reflected laser beam LB1 coincides with the light axis C2. Therefore, in this case, it is necessary to adjust the positions of the center C1 of the condenser lens 46 of the condenser 45 and the optical axis C2 of the laser beam LB1 output from the spatial light modulator 43 and reflected by the splitter 44. It is determined that there is no such adjustment, and the adjustment of the present embodiment is completed. On the other hand, as shown in the display means 50, FIG. 3 (b), and FIG. 3 (c) of FIG. 2, the position of the first condensing point P1 and the position of the second condensing point P2 deviate from each other. If it is determined that the light is aligned, the center C1 of the condenser lens 46 of the condenser 45 and the optical axis C2 of the laser beam LB1 reflected by the splitter 44 and guided to the condenser 45 are deviated from each other. Since it is judged, adjust the deviation as follows.

集光器45の集光レンズ46の中心C1と、レーザー光線LB1の光軸C2とを一致させるためには、第一の集光点P1と、第二の集光点P2とが、保持面25a上のX座標及びY座標位置で一致するように光軸調整手段43Bを操作して、空間光変調器43から出力されるレーザー光線LB1の光軸C2の位置を修正すればよい。 In order to align the center C1 of the condensing lens 46 of the condensing device 45 with the optical axis C2 of the laser beam LB1, the first condensing point P1 and the second condensing point P2 are held on the holding surface 25a. The optical axis adjusting means 43B may be operated so that the above X and Y coordinate positions match, and the position of the optical axis C2 of the laser beam LB1 output from the spatial light modulator 43 may be corrected.

より具体的には、図2の表示手段50に示されている第一の集光点P1の位置から第二の集光点P2の位置までを結んだ直線の方向が、集光レンズ46の中心C1に対してレーザー光線LB1の光軸C2の位置を修正すべき方向を示している。よって、この方向に基づいて、レーザー光線LB1の光軸C2の位置を調整する方向を決定する。そして、第一の集光点P1の位置座標P1(X,Y)と、第二の集光点P2の位置座標P2(X,Y)に基づいて、両者の距離を算出し、この距離に基づいてレーザー光線LB1の光軸C2を移動させる移動距離を演算する。なお、この移動距離については、予め実験等により、集光器45の集光レンズ46の中心C1とレーザー光線LB1の光軸C2とのずれ量と、該ずれ量に応じた第一の集光点P1と第二の集光点P2とのずれ量との相関関係を求めて制御手段100に記憶させておき、該相関関係に基づいて、集光器45の集光レンズ46の中心C1に、レーザー光線LB1の光軸C2を一致させるレーザー光線LB1の光軸C2の移動距離を演算する。 More specifically, the direction of the straight line connecting the position of the first condensing point P1 and the position of the second condensing point P2 shown in the display means 50 of FIG. 2 is the direction of the condensing lens 46. The direction in which the position of the optical axis C2 of the laser beam LB1 should be corrected with respect to the center C1 is shown. Therefore, based on this direction, the direction for adjusting the position of the optical axis C2 of the laser beam LB1 is determined. Then, the distance between the two is calculated based on the position coordinates P1 (X, Y) of the first condensing point P1 and the position coordinates P2 (X, Y) of the second condensing point P2, and the distance is set to this distance. Based on this, the moving distance for moving the optical axis C2 of the laser beam LB1 is calculated. Regarding this moving distance, the amount of deviation between the center C1 of the condenser lens 46 of the condenser 45 and the optical axis C2 of the laser beam LB1 and the first focusing point according to the deviation amount are determined in advance by experiments or the like. The correlation between the deviation amount of P1 and the second condensing point P2 is obtained and stored in the control means 100, and based on the correlation, the center C1 of the condensing lens 46 of the condensing device 45 is used. The moving distance of the optical axis C2 of the laser beam LB1 that matches the optical axis C2 of the laser beam LB1 is calculated.

上記したように、レーザー光線LB1の光軸C2を移動させる方向、及び移動距離を演算したならば、該演算結果に基づいて、光軸調整手段43Bを操作して、空間光変調器43の光軸C2の位置を移動させる。その結果、図3(a)に示すように、集光器45の集光レンズ46の中心C1と、レーザー光線LB1の光軸C2とを一致させることができる。 As described above, if the direction in which the optical axis C2 of the laser beam LB1 is moved and the moving distance are calculated, the optical axis adjusting means 43B is operated based on the calculation result to operate the optical axis of the spatial light modulator 43. Move the position of C2. As a result, as shown in FIG. 3A, the center C1 of the condenser lens 46 of the condenser 45 and the optical axis C2 of the laser beam LB1 can be aligned with each other.

本発明は、上記した実施形態に限定されない。例えば、上記した実施形態では、検査板10として、上面10aに錫箔をコーティングしたものを用意し、レーザー光線LB1を照射することにより、第一の集光点P1、第二の集光点P2に対応する位置に打痕を形成し、撮像手段47によって、該打痕を検出するようにしたが、レーザー光線照射手段40から照射されるレーザー光線LB1の出力を、検査板10の上面10aに対して打痕を形成しない程度の弱い出力に調整して照射し、検査板10の上面10aにて反射させ、該反射光を撮像手段47によって撮像して、第一の集光点P1、第二の集光点P2のX座標、Y座標位置を検出するようにしてもよい。 The present invention is not limited to the above-described embodiment. For example, in the above-described embodiment, as the inspection plate 10, a top surface 10a coated with tin foil is prepared, and by irradiating the laser beam LB1, the inspection plate 10 corresponds to the first focusing point P1 and the second focusing point P2. A dent is formed at the position where the dent is formed, and the dent is detected by the imaging means 47. However, the output of the laser beam LB1 emitted from the laser beam irradiating means 40 is dented on the upper surface 10a of the inspection plate 10. The output is adjusted to a weak output that does not form the above light, is reflected by the upper surface 10a of the inspection plate 10, the reflected light is imaged by the imaging means 47, and the first condensing point P1 and the second condensing point P1 are condensing. The X-coordinate and Y-coordinate positions of the point P2 may be detected.

1:レーザー加工装置
2:基台
10:検査板(被加工物)
10a:上面
20:保持手段
25:チャックテーブル
25a:保持面
27:クランプ
30:移動手段
31:X軸方向送り手段
32:Y軸方向送り手段
40:レーザー光線照射手段
41:発振器
42:アッテネータ
43:空間光変調器
43A:操作手段
43B:光軸調整手段
44:スプリッター
45:集光器
45A:Z軸調整手段
46:集光レンズ
47:撮像手段
50:表示手段
60:アライメント手段
100:制御手段
1: Laser machining equipment 2: Base 10: Inspection plate (workpiece)
10a: Top surface 20: Holding means 25: Chuck table 25a: Holding surface 27: Clamp 30: Moving means 31: X-axis direction feeding means 32: Y-axis direction feeding means 40: Laser beam irradiation means 41: Oscillator 42: Attenuator 43: Space Optical modulator 43A: Operating means 43B: Optical axis adjusting means 44: Splitter 45: Condenser 45A: Z-axis adjusting means 46: Condensing lens 47: Imaging means 50: Display means 60: Alignment means 100: Control means

Claims (1)

X軸方向、及び該X軸方向に直交するY軸方向で規定される被加工物を保持する保持面を備えた保持手段と、該保持面に保持された被加工物にレーザー光線を照射するレーザー光線照射手段と、該保持面に保持された被加工物で反射した光を撮像する撮像手段と、該撮像手段が撮像した画像を表示する表示手段と、を備え、該レーザー光線照射手段は、レーザー光線を発振する発振器と、該レーザー光線を反射して該X軸方向及び該Y軸方向に直交するZ軸方向に導き、且つ被加工物にて反射した光を透過するスプリッターと、該発振器と該スプリッターとの間に配設され該発振器が発振したレーザー光線の出力を調整するアッテネータと、該アッテネータと該スプリッターとの間に配設されレーザー光線の集光特性を調整する空間光変調器と、該空間光変調器を操作する操作手段と、該スプリッターで反射したレーザー光線を該保持面に保持された被加工物に集光する集光器と、該集光器と該保持手段とを相対的にZ軸方向に接近、及び離反させレーザー光線の集光点の位置を調整するZ軸調整手段と、から少なくとも構成されたレーザー加工装置の調整方法であって、
該空間光変調器がZ軸方向においてレーザー光線の第一の集光点及び第二の集光点の2個の集光点を形成するように該操作手段を操作し、該Z軸調整手段によって該保持面に保持された検査板の上面にレーザー光線の第一の集光点を位置付けて照射して該撮像手段により撮像し、該表示手段に表示された該第一の集光点のX座標及びY座標位置を求め、該Z軸調整手段によって該検査板の上面にレーザー光線の第二の集光点を位置付けて照射して該撮像手段により撮像し、該表示手段に表示された該第二の集光点のX座標及びY座標位置を求め、該第一の集光点のX座標及びY座標位置と、該第二の集光点のX座標及びY座標位置とが一致するように該空間光変調器の光軸位置を調整することにより、該空間光変調器の光軸を該集光器の中心に一致させる、レーザー加工装置の調整方法。
A holding means having a holding surface for holding a work piece defined in the X-axis direction and the Y-axis direction orthogonal to the X-axis direction, and a laser beam for irradiating the work piece held on the holding surface with a laser beam. The laser beam irradiating means includes an irradiating means, an imaging means for capturing the light reflected by the workpiece held on the holding surface, and a display means for displaying the image captured by the imaging means. The laser beam irradiating means emits a laser beam. An oscillating oscillator, a splitter that reflects the laser beam and guides it in the Z-axis direction orthogonal to the X-axis direction and the Y-axis direction, and transmits the light reflected by the workpiece, and the oscillator and the splitter. An attenuator arranged between the attenuators for adjusting the output of the laser beam oscillated by the oscillator, a spatial optical modulator arranged between the attenuator and the splitter for adjusting the focusing characteristics of the laser beam, and the spatial optical modulation. An operating means for operating the device, a concentrator that condenses the laser beam reflected by the splitter on a work piece held on the holding surface, and a concentrator and the holding means relatively in the Z-axis direction. It is an adjustment method of a laser processing apparatus composed of at least a Z-axis adjusting means for adjusting the position of a condensing point of a laser beam by approaching and separating from the laser beam.
The space light modulator operates the operating means so as to form two focusing points, a first focusing point and a second focusing point of the laser beam in the Z-axis direction, and the Z-axis adjusting means The first condensing point of the laser beam is positioned and irradiated on the upper surface of the inspection plate held on the holding surface, imaged by the imaging means, and the X coordinate of the first condensing point displayed on the display means. And the Y coordinate position is obtained, the second condensing point of the laser beam is positioned and irradiated on the upper surface of the inspection plate by the Z-axis adjusting means, the image is taken by the imaging means, and the second is displayed on the display means. The X-coordinate and Y-coordinate positions of the first condensing point are obtained, and the X-coordinate and Y-coordinate positions of the first condensing point coincide with the X-coordinate and Y-coordinate position of the second condensing point. A method for adjusting a laser processing apparatus, which aligns the optical axis of the spatial optical modulator with the center of the condenser by adjusting the position of the optical axis of the spatial optical modulator.
JP2019220511A 2019-12-05 2019-12-05 How to adjust laser processing equipment Active JP7355629B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019220511A JP7355629B2 (en) 2019-12-05 2019-12-05 How to adjust laser processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019220511A JP7355629B2 (en) 2019-12-05 2019-12-05 How to adjust laser processing equipment

Publications (2)

Publication Number Publication Date
JP2021087982A true JP2021087982A (en) 2021-06-10
JP7355629B2 JP7355629B2 (en) 2023-10-03

Family

ID=76218881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019220511A Active JP7355629B2 (en) 2019-12-05 2019-12-05 How to adjust laser processing equipment

Country Status (1)

Country Link
JP (1) JP7355629B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023020575A1 (en) * 2021-08-18 2023-02-23 深圳市创客工场科技有限公司 Calculation method, laser machining device and computer-readable storage medium

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6783509B2 (en) 2015-09-29 2020-11-11 株式会社東京精密 Laser processing equipment and laser processing method
JP6620976B2 (en) 2015-09-29 2019-12-18 株式会社東京精密 Laser processing apparatus and laser processing method
JP7032050B2 (en) 2017-03-14 2022-03-08 株式会社ディスコ Laser processing equipment
JP6882045B2 (en) 2017-04-13 2021-06-02 株式会社ディスコ Focus point position detection method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023020575A1 (en) * 2021-08-18 2023-02-23 深圳市创客工场科技有限公司 Calculation method, laser machining device and computer-readable storage medium

Also Published As

Publication number Publication date
JP7355629B2 (en) 2023-10-03

Similar Documents

Publication Publication Date Title
KR102355837B1 (en) Laser machining apparatus
US9724783B2 (en) Laser processing apparatus
US7630421B2 (en) Laser beam irradiation apparatus and laser working machine
US9870961B2 (en) Wafer processing method
JP6907011B2 (en) Laser processing equipment and laser processing method
TWI583475B (en) Laser processing method and laser processing device
TWI609732B (en) Laser processing device
JP2008194729A (en) Manufacturing method, laser beam machining method and laser beam machining apparatus for small device
US20160172182A1 (en) Laser processing apparatus
JP6757185B2 (en) Laser beam inspection method
JP2021087982A (en) Adjustment method for laser processing apparatus
TW202241623A (en) Adjustment method of laser processing apparatus, and laser processing apparatus
CN108723599B (en) Method for detecting position of focused spot
CN110896042A (en) Processing device
CN106493470B (en) Laser processing apparatus
KR20220017358A (en) Laser processing apparatus
US20230415262A1 (en) Laser processing apparatus
US20230398630A1 (en) Laser processing apparatus
JP6649705B2 (en) Laser processing method
JP2023114909A (en) Laser processing device
JP2021087967A (en) Method for adjusting laser processing device
JP2021000645A (en) Laser processing device
JP2020196038A (en) Inclination check method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221021

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230823

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20230824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230921

R150 Certificate of patent or registration of utility model

Ref document number: 7355629

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150