JP2017050118A - Electrode plate for plasma processing apparatus and method of manufacturing the same - Google Patents

Electrode plate for plasma processing apparatus and method of manufacturing the same Download PDF

Info

Publication number
JP2017050118A
JP2017050118A JP2015171761A JP2015171761A JP2017050118A JP 2017050118 A JP2017050118 A JP 2017050118A JP 2015171761 A JP2015171761 A JP 2015171761A JP 2015171761 A JP2015171761 A JP 2015171761A JP 2017050118 A JP2017050118 A JP 2017050118A
Authority
JP
Japan
Prior art keywords
electrode plate
copper
electrode
hole
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015171761A
Other languages
Japanese (ja)
Other versions
JP6500705B2 (en
Inventor
康太 高畠
Kota Takahata
康太 高畠
輝紀 田中
Teruki Tanaka
輝紀 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2015171761A priority Critical patent/JP6500705B2/en
Publication of JP2017050118A publication Critical patent/JP2017050118A/en
Application granted granted Critical
Publication of JP6500705B2 publication Critical patent/JP6500705B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve labor saving and low cost and prevent copper contamination in plasma processing by forming a vent hole by electrical discharge machining using a machining electrode of copper.SOLUTION: A method of manufacturing an electrode plate for a plasma processing apparatus includes: a hole boring step for forming a lower hole having a smaller diameter than a vent hole by applying electrical discharge machining using a processing electrode made of copper to a blank plate serving as an electrode plate; a heat treatment step for applying heat treatment to a hole bored blank plate forming the lower hole at a temperature of 900°C or more and 1100°C or less for 12 hours or more and 32 hours or less; and an etching step for removing a damage layer due to the electrical discharge machining of an inner peripheral part of the lower hole by applying etching to the hole bored blank plate after heat treatment.SELECTED DRAWING: Figure 1

Description

本発明は、プラズマ処理装置において、プラズマ生成用ガスを厚さ方向に通過させながら放電するプラズマ処理装置用電極板及びその製造方法に関する。   The present invention relates to an electrode plate for a plasma processing apparatus that discharges a plasma generating gas while passing it in the thickness direction in a plasma processing apparatus, and a method for manufacturing the same.

半導体デバイス製造プロセスに使用されるプラズマエッチング装置やプラズマCVD装置等のプラズマ処理装置は、チャンバー内に、高周波電源に接続される一対の電極を、例えば上下方向に対向配置し、その下側電極の上に被処理基板を配置した状態として、上部電極に形成した通気孔からエッチングガスを被処理基板に向かって流通させながら高周波電圧を印加することによりプラズマを発生させ、被処理基板にエッチング等の処理を行う構成とされている。そして、このプラズマ処理装置で使用される上部電極として、一般に、シリコン製の電極板を冷却板に固定し重ね合せた積層電極板が用いられており、プラズマ処理中に上昇する電極板の熱は、冷却板を通じて放熱されるように構成されている。   A plasma processing apparatus such as a plasma etching apparatus or a plasma CVD apparatus used in a semiconductor device manufacturing process has a pair of electrodes connected to a high-frequency power source in a chamber, for example, vertically arranged, and the lower electrode With the substrate to be processed disposed thereon, plasma is generated by applying a high-frequency voltage while flowing an etching gas from the air hole formed in the upper electrode toward the substrate to be processed, and etching is performed on the substrate to be processed. It is set as the structure which processes. As the upper electrode used in this plasma processing apparatus, a laminated electrode plate in which a silicon electrode plate is fixed to a cooling plate is generally used, and the heat of the electrode plate rising during the plasma processing is The heat is dissipated through the cooling plate.

この種の電極板は、単結晶シリコン、多結晶シリコン、又は一方向凝固組織を有する柱状晶シリコンからなるインゴットをダイヤモンドバンドソー等で略円板状に薄く切断した後、厚さ方向に平行に多数の通気孔(直径1mm程度の細孔)を形成し、所定の研削加工を施した後に、エッチング処理、ポリッシング加工することで仕上げられる。
この電極板に通気孔を形成する方法として、例えば特許文献1及び特許文献2には、放電加工による方法が開示されている。放電加工では、電極(銅主成分の合金)を被加工材(例えばSi)に近づけ、電圧をかけることで、電極と被加工材の間にアーク放電を発生させ、被加工材を削る。この放電加工による孔加工では、ドリル加工等に比べて、加工速度が速く、省力化、低コスト化が可能である。
This type of electrode plate is obtained by cutting an ingot made of single crystal silicon, polycrystalline silicon, or columnar crystal silicon having a unidirectionally solidified structure into a thin plate with a diamond band saw or the like, and then in parallel in the thickness direction. The air holes (pores having a diameter of about 1 mm) are formed and subjected to a predetermined grinding process, followed by an etching process and a polishing process.
As a method for forming a vent hole in this electrode plate, for example, Patent Document 1 and Patent Document 2 disclose a method by electric discharge machining. In electric discharge machining, an electrode (alloy containing copper as a main component) is brought close to a workpiece (for example, Si) and a voltage is applied to generate an arc discharge between the electrode and the workpiece to cut the workpiece. In this hole machining by electric discharge machining, the machining speed is faster than in drilling and the like, and labor saving and cost reduction are possible.

特開平11‐92972号公報Japanese Patent Laid-Open No. 11-92972 特開平10‐223613号公報Japanese Patent Laid-Open No. 10-223613

ところで、放電加工で使用する加工電極には、銅が用いられることが多い。この加工電極の銅は、放電によって徐々に消耗し、細かく削られた銅成分が孔表面に付着することで被加工材であるシリコン製電極板の内部(孔周辺)に浸透して拡散するおそれがある。このため、その電極板を用いてプラズマ処理すると、銅成分が汚染の原因となるという問題がある。   By the way, copper is often used for a machining electrode used in electric discharge machining. The copper in this processed electrode is gradually consumed by electric discharge, and the finely cut copper component adheres to the surface of the hole, so that it may permeate and diffuse inside the silicon electrode plate that is the workpiece (around the hole). There is. For this reason, when plasma processing is performed using the electrode plate, there is a problem that the copper component causes contamination.

本発明は、このような事情に鑑みてなされたもので、銅の加工電極を用いた放電加工により通気孔を形成して、省力化、低コスト化を図りつつ、プラズマ処理における銅汚染を防止することができるプラズマ処理装置用電極板及びその製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and forms air holes by electrical discharge machining using a copper machining electrode to prevent copper contamination in plasma processing while saving labor and reducing costs. An object of the present invention is to provide an electrode plate for a plasma processing apparatus and a method for manufacturing the same.

本発明のプラズマ処理装置用電極板の製造方法は、プラズマ生成用ガスを流通させる複数の通気孔を有する電極板を製造する方法であって、電極板となる素板に、銅製加工電極を用いた放電加工を施して前記通気孔より小径の下孔を形成する孔明け工程と、前記下孔を形成した孔明き素板に900℃以上1100℃以下の温度で12時間以上32時間以下の熱処理を施す熱処理工程と、熱処理後の孔明き素板をエッチングして、前記下孔の内周部の前記放電加工によるダメージ層を除去するエッチング工程とを有する。   The method for producing an electrode plate for a plasma processing apparatus of the present invention is a method for producing an electrode plate having a plurality of air holes through which a plasma generating gas is circulated, and a copper processed electrode is used as a base plate to be an electrode plate. A drilling step of forming a prepared hole having a smaller diameter than the vent hole by performing electric discharge machining, and a heat treatment of not less than 12 hours and not more than 32 hours at a temperature of 900 ° C. to 1100 ° C. And a step of etching the perforated base plate after the heat treatment to remove the damaged layer caused by the electric discharge machining on the inner peripheral portion of the lower hole.

銅製電極を用いた放電加工の孔明け工程により、孔明き素板の下孔の内周部に銅が浸透し、内部に拡散するが、下孔の内周部は放電加工によるダメージ層が形成されており、孔明け工程後の熱処理工程において、電極板内に拡散していた銅が下孔内周部のダメージ層に移動して集められる。したがって、次のエッチング工程により、ダメージ層を除去することにより、銅濃度の低い電極板を得ることができる。
なお、銅製電極は、純銅製電極、銅合金製電極のいずれをも含むものとする。
Through the drilling process of electrical discharge machining using copper electrodes, copper penetrates into the inner peripheral part of the lower hole of the perforated base plate and diffuses inside, but a damaged layer is formed by electric discharge machining on the inner peripheral part of the lower hole In the heat treatment step after the drilling step, the copper diffused in the electrode plate moves to the damage layer on the inner periphery of the lower hole and is collected. Therefore, an electrode plate with a low copper concentration can be obtained by removing the damaged layer in the next etching step.
The copper electrode includes both a pure copper electrode and a copper alloy electrode.

本発明のプラズマ処理装置用電極板の製造方法において、前記エッチング工程は、前記下孔の内周部を厚さ20μm以上除去するとよい。
厚さ20μm以上除去することにより、通気孔の内周部の銅汚染がほとんどない電極板を得ることができる。
In the method for manufacturing an electrode plate for a plasma processing apparatus according to the present invention, the etching step may remove an inner peripheral portion of the prepared hole with a thickness of 20 μm or more.
By removing the thickness of 20 μm or more, it is possible to obtain an electrode plate having almost no copper contamination on the inner peripheral portion of the air hole.

本発明のプラズマ処理装置用電極板の製造方法において、前記孔明け工程の後であって、前記エッチング工程の前に、前記下孔をドリルを用いた機械加工によりサイジングするサイジング工程を有するとよい。   The method for manufacturing an electrode plate for a plasma processing apparatus according to the present invention may include a sizing step of sizing the pilot hole by machining using a drill after the drilling step and before the etching step. .

下孔を機械加工した後エッチングすることにより、エッチング時間を短縮することが可能である。この場合の機械加工は、予め形成した下孔のサイジング加工であるから、ドリルによる機械加工で下孔を形成する場合に比べて、加工時間は短くて済む。
また、このサイジング工程を熱処理工程の前に行うと、ダメージ層に適度な歪みを導入することができ、ダメージ層への銅の捕捉をより確実に行うことができる。
Etching time can be shortened by etching the pilot hole after machining. Since the machining in this case is a sizing process for a prepared pilot hole, the machining time can be shorter than when the pilot hole is formed by machining with a drill.
Further, if this sizing step is performed before the heat treatment step, an appropriate strain can be introduced into the damaged layer, and copper can be captured more reliably in the damaged layer.

本発明のプラズマ処理装置用電極板は、プラズマ生成用ガスを流通させる複数の通気孔を有する電極板であって、前記通気孔の内周面から深さ1μmの位置の銅濃度が0.2ppb以上5ppb以下である。   The electrode plate for a plasma processing apparatus of the present invention is an electrode plate having a plurality of vent holes for circulating a plasma generating gas, and the copper concentration at a depth of 1 μm from the inner peripheral surface of the vent hole is 0.2 ppb. The above is 5 ppb or less.

通気孔の内周面から深さ1μmの位置の銅濃度が5ppbを超えると、プラズマ処理時に銅がプラズマ中に放出されて、処理対象物の銅汚染の問題が生じるおそれがある。   If the copper concentration at a depth of 1 μm from the inner peripheral surface of the vent hole exceeds 5 ppb, copper may be released into the plasma during the plasma treatment, which may cause a problem of copper contamination of the object to be treated.

本発明によれば、放電加工により多数の孔を速やかに加工して、省力化、低コスト化を図ることができるとともに、プラズマ処理における銅汚染を防止することができる。   According to the present invention, it is possible to quickly process a large number of holes by electric discharge machining to save labor and cost, and to prevent copper contamination in plasma processing.

本発明のプラズマ処理装置用電極板の製造方法の実施形態を説明するフローチャートである。It is a flowchart explaining embodiment of the manufacturing method of the electrode plate for plasma processing apparatuses of this invention. 図1の製造方法における孔明け工程を説明する図である。It is a figure explaining the punching process in the manufacturing method of FIG. 図1の製造方法における孔明け工程後の下孔(a)及びエッチング工程後の通気孔(b)を比較して示す断面図である。It is sectional drawing which compares and shows the pilot hole (a) after the drilling process in the manufacturing method of FIG. 1, and the vent hole (b) after an etching process. プラズマ処理装置用電極板が用いられるプラズマエッチング装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the plasma etching apparatus with which the electrode plate for plasma processing apparatuses is used.

以下、本発明に係るプラズマ処理装置用電極板及びその製造方法の実施形態を、図面を参照しながら説明する。
まず、本実施形態で製造される電極板3が用いられるプラズマ処理装置として、プラズマエッチング装置について説明する。プラズマエッチング装置100は、図4に示すように、真空チャンバー2内の上側に電極板(上側電極)3が設けられるとともに、下側に上下動可能な架台(下側電極)4が電極板3と相互間隔をおいて平行に設けられる。この場合、上側の電極板3は絶縁体5により真空チャンバー2の壁に対して絶縁状態に支持されているとともに、架台4の上に、静電チャック6と、その周りを囲むシリコン製の支持リング7とが設けられており、静電チャック6上に支持リング7により周縁部を支持した状態でウエハ(被処理基板)8が載置されるようになっている。また、真空チャンバー2の上側には、エッチングガス供給管9が設けられ、このエッチングガス供給管9から送られてきたエッチングガスは、拡散部材10を経由した後、電極板3に設けられた通気孔11を通してウエハ8に向かって流され、真空チャンバー2の側部の排出口12から外部に排出される構成とされる。一方、電極板3と架台4との間には、高周波電源13により高周波電圧が印加されるようになっている。
Hereinafter, embodiments of an electrode plate for a plasma processing apparatus and a method for manufacturing the same according to the present invention will be described with reference to the drawings.
First, a plasma etching apparatus will be described as a plasma processing apparatus using the electrode plate 3 manufactured in the present embodiment. As shown in FIG. 4, the plasma etching apparatus 100 is provided with an electrode plate (upper electrode) 3 on the upper side in the vacuum chamber 2 and a gantry (lower electrode) 4 that can move up and down on the lower side. And in parallel with each other. In this case, the upper electrode plate 3 is supported in an insulated state with respect to the wall of the vacuum chamber 2 by the insulator 5, and the electrostatic chuck 6 and the silicon support surrounding the periphery are provided on the gantry 4. A ring (7) is provided, and a wafer (substrate to be processed) 8 is placed on the electrostatic chuck 6 with the peripheral edge supported by the support ring (7). Further, an etching gas supply pipe 9 is provided on the upper side of the vacuum chamber 2, and the etching gas sent from the etching gas supply pipe 9 passes through the diffusion member 10 and is then passed through the electrode plate 3. It is made to flow toward the wafer 8 through the pores 11 and is discharged to the outside from the discharge port 12 on the side of the vacuum chamber 2. On the other hand, a high frequency voltage is applied between the electrode plate 3 and the gantry 4 by a high frequency power source 13.

また、電極板3の背面には、熱伝導性に優れるアルミニウム等からなる冷却板14が固定されている。この冷却板14にも、電極板3の通気孔11に連通するように、通気孔11と同じピッチで貫通孔15が形成されている。そして、電極板3は、背面が冷却板14に接触した状態でねじ止め等によってプラズマエッチング装置100内に固定される。   A cooling plate 14 made of aluminum or the like having excellent heat conductivity is fixed to the back surface of the electrode plate 3. The cooling plate 14 is also formed with through holes 15 at the same pitch as the air holes 11 so as to communicate with the air holes 11 of the electrode plate 3. The electrode plate 3 is fixed in the plasma etching apparatus 100 by screwing or the like with the back surface in contact with the cooling plate 14.

本実施形態の電極板3は、単結晶シリコン、柱状晶シリコン、又は多結晶シリコンにより、例えば厚さ5〜12mm程度、直径300〜400mm程度の円板に形成され、この電極板3には、内径0.2mm〜0.8mmの通気孔11が数mm〜10mmピッチで数百〜3000個程度、縦横に整列した状態(マトリクス状)で厚さ方向に平行に貫通するように形成されている。   The electrode plate 3 of the present embodiment is formed of a single crystal silicon, columnar crystal silicon, or polycrystalline silicon, for example, into a disk having a thickness of about 5 to 12 mm and a diameter of about 300 to 400 mm. Ventilation holes 11 having an inner diameter of 0.2 mm to 0.8 mm are formed to penetrate several hundred to 3,000 in a pitch of several mm to 10 mm in parallel in the thickness direction in a state (matrix shape) aligned vertically and horizontally. .

このように構成される電極板3は、図1のフローチャートに示すように、電極板3となる素板31に放電加工を施して、通気孔11より小径の下孔32を複数形成する孔明け工程(S1)と、下孔32を形成した孔明き素板33に熱処理を施す熱処理工程(S2)と、熱処理後の孔明き素板33をエッチングして、下孔32の内周部の放電加工によるダメージ層35を除去するエッチング工程(S3)と、エッチング処理工程(S3)後に孔空き素板33の表裏面を研磨するポリッシング工程(S4)と、ポリッシング工程(S4)後に孔空き素板33を洗浄する洗浄工程(S5)とを経て製造される。   As shown in the flow chart of FIG. 1, the electrode plate 3 configured in this way is a hole in which a base plate 31 to be the electrode plate 3 is subjected to electric discharge machining to form a plurality of lower holes 32 having a smaller diameter than the air holes 11. Step (S1), a heat treatment step (S2) for performing heat treatment on the perforated base plate 33 in which the lower holes 32 are formed, and etching the perforated base plate 33 after the heat treatment to discharge the inner peripheral portion of the lower holes 32 An etching step (S3) for removing the damaged layer 35 due to processing, a polishing step (S4) for polishing the front and back surfaces of the perforated base plate 33 after the etching step (S3), and a perforated base plate after the polishing step (S4) It is manufactured through a cleaning step (S5) for cleaning 33.

上記の電極板の製造方法の各工程を詳述すると、まず、図示は省略するが、単結晶シリコン、多結晶シリコン、又は一方向凝固組織を有する柱状晶シリコンからなるインゴットを、ダイヤモンドバンドソー等で略円板状に薄く切断することにより形成した素板31を用意する。   The steps of the above electrode plate manufacturing method will be described in detail. First, although not shown in the drawing, an ingot made of single crystal silicon, polycrystalline silicon, or columnar crystal silicon having a unidirectionally solidified structure is formed with a diamond band saw or the like. A base plate 31 formed by thinly cutting into a substantially disc shape is prepared.

(孔明け工程)
素板31に放電加工により下孔32を形成する。放電加工のための電極41は、図2に示すように、下孔32を形成するための断面円形のピン状突起42を複数有しており、銅(又は銅合金)により形成される。この銅製電極41のピン状突起42と素板31の表面とを加工液中で対向させ、加工電極41と素板31との間に電圧を印加し、これらの間に放電を生じさせながらピン状突起42を素板31の厚さ方向に移動する。このピン状突起41を素板31に貫通することにより下孔32が形成され、孔明き素板33が形成される。
この孔明け工程では、電極41のピン状突起42を複数形成しておくことにより、素板31の各下孔32を一度に、あるいは複数個ずつ複数回に分けて形成することができる。
(Drilling process)
A pilot hole 32 is formed in the base plate 31 by electric discharge machining. As shown in FIG. 2, the electrode 41 for electric discharge machining has a plurality of pin-shaped protrusions 42 having a circular cross section for forming the pilot holes 32, and is formed of copper (or a copper alloy). The pin-like protrusions 42 of the copper electrode 41 and the surface of the base plate 31 are made to face each other in the processing liquid, a voltage is applied between the processing electrode 41 and the base plate 31, and a discharge occurs between them. The protrusion 42 is moved in the thickness direction of the base plate 31. By passing this pin-shaped protrusion 41 through the base plate 31, a lower hole 32 is formed, and a perforated base plate 33 is formed.
In this drilling step, by forming a plurality of pin-like protrusions 42 of the electrode 41, the respective lower holes 32 of the base plate 31 can be formed at a time or in a plurality of times.

(熱処理工程)
次に、孔明き素板33に熱処理を施す。熱処理は、窒素又は不活性ガス雰囲気の下、900℃以上1100℃以下の温度で12時間以上32時間以下実施する。前工程の孔明け工程において銅製電極41を用いて放電加工したことにより、銅製電極41の銅成分が孔明き素板33の下孔32の内周面から内部に拡散しており、この熱処理を施すことにより、孔明き素板33の内部に拡散していた銅が表面に向かって移動(拡散)する。この場合、下孔32の内周部には、図3(a)に示すように、放電加工により歪みが蓄積したダメージ層35が形成されているので、銅はこのダメージ層35に捕捉され、ダメージ層35に集中して析出する。
この熱処理温度が900℃未満では、銅の移動が小さく、ダメージ層35への集中が十分でなく、1100℃を超えると、銅の移動が大きくなり過ぎて、ダメージ層35での捕捉が難しくなる。熱処理時間も12時間未満では効果が十分でなく、32時間を超えると、高温に長時間さらされることにより、電極板表面にできる酸化膜層が厚くなり、その後のエッチング工程で除去しきれなくなる。
(Heat treatment process)
Next, the perforated base plate 33 is heat treated. The heat treatment is performed in a nitrogen or inert gas atmosphere at a temperature of 900 ° C. to 1100 ° C. for 12 hours to 32 hours. By performing the electrical discharge machining using the copper electrode 41 in the previous drilling step, the copper component of the copper electrode 41 diffuses from the inner peripheral surface of the lower hole 32 of the perforated base plate 33 to the inside, and this heat treatment is performed. By applying, the copper diffused in the perforated base plate 33 moves (diffuses) toward the surface. In this case, as shown in FIG. 3A, a damage layer 35 in which strain is accumulated by electric discharge machining is formed on the inner peripheral portion of the lower hole 32, so that copper is captured by the damage layer 35, It concentrates on the damaged layer 35 and precipitates.
If the heat treatment temperature is less than 900 ° C., the movement of copper is small and the concentration on the damaged layer 35 is not sufficient, and if it exceeds 1100 ° C., the movement of copper becomes too large and it is difficult to capture the damage layer 35. . If the heat treatment time is less than 12 hours, the effect is not sufficient. If the heat treatment time is longer than 32 hours, the oxide film layer formed on the electrode plate surface becomes thick due to exposure to high temperature for a long time, and cannot be completely removed in the subsequent etching process.

(エッチング工程)
孔明き素板33をエッチング液に浸漬してエッチング処理を施す。このエッチング処理により、下孔32の内周部のダメージ層35が除去され、このダメージ層35に捕捉されていた銅もダメージ層35とともに除去される。エッチング液としては、フッ酸(HF)、硝酸(HNO)、酢酸(CHCOOH)を5〜8:42〜48:16〜24の比率(容量比)で混合したエッチング液(フッ硝酢酸)を用いるとよい。このエッチング処理により、孔明き素板33の表面を20μm以上除去するが、必要以上に多く除去しない方が良い。
(Etching process)
Etching is performed by immersing the perforated base plate 33 in an etching solution. By this etching process, the damaged layer 35 in the inner peripheral portion of the lower hole 32 is removed, and the copper trapped in the damaged layer 35 is also removed together with the damaged layer 35. Etching solution (hydrofluoric acid acetic acid) in which hydrofluoric acid (HF), nitric acid (HNO 3 ), and acetic acid (CH 3 COOH) are mixed at a ratio (capacity ratio) of 5-8: 42-48: 16-24. ) Is recommended. By this etching process, the surface of the perforated base plate 33 is removed by 20 μm or more, but it is better not to remove more than necessary.

このエッチング処理は、図3(b)に示す最終の電極板3の通気孔11の表面部(表面から深さ1μmの位置)の銅濃度を0.2ppb〜5ppbとすることを目標とする。この程度の銅濃度であれば、プラズマ処理による銅汚染の問題は生じない。エッチング液への浸漬時間は、各酸の混合比率にもよるが、2分程度でよい。
電極板3の表面の銅濃度は、二次イオン質量分析法(SIMS;Secondary Ion Mass Spectrometry)によって計測することができる。
なお、このエッチング工程では、孔明き素板33をエッチング液に浸漬することに代えて、孔明き素板33の一方の表面の周縁部に、箱体の開口端を密接させ、箱体内にエッチング液を加圧状態で供給しながら、孔明き素板33の各下孔32内にエッチング液を通過させるようにしてもよい。
The target of this etching process is to set the copper concentration in the surface portion (position of 1 μm depth from the surface) of the air hole 11 of the final electrode plate 3 shown in FIG. 3B to 0.2 ppb to 5 ppb. With such a copper concentration, there is no problem of copper contamination due to plasma treatment. The immersion time in the etching solution may be about 2 minutes depending on the mixing ratio of each acid.
The copper concentration on the surface of the electrode plate 3 can be measured by secondary ion mass spectrometry (SIMS).
In this etching step, instead of immersing the perforated base plate 33 in the etching solution, the opening end of the box is brought into close contact with the peripheral portion of one surface of the perforated base plate 33, and the inside of the box is etched. The etching solution may be passed through each of the lower holes 32 of the perforated base plate 33 while supplying the solution in a pressurized state.

(ポリッシング工程、洗浄工程)
エッチング処理後の孔明き素板の表裏面を研磨して平滑化する。
最後に、洗浄工程(S5)において、孔空き素板を洗浄して電極板3に仕上げる。具体的には、孔空き素板を純水等の洗浄液に一定時間浸漬するとともに、洗浄液中で孔空き素板を揺動させるなどにより行う。
(Polishing process, cleaning process)
The front and back surfaces of the perforated base plate after the etching treatment are polished and smoothed.
Finally, in the cleaning step (S5), the perforated base plate is cleaned to finish the electrode plate 3. Specifically, it is performed by immersing the perforated base plate in a cleaning liquid such as pure water for a certain time and swinging the perforated base plate in the cleaning liquid.

以上のように、この製造方法は、素板31に放電加工によって複数の下孔32を形成した後、この放電加工によって孔明き素板33内に拡散した銅を、次の熱処理工程によって下孔32内周部のダメージ層35に移動させ、そのダメージ層35をエッチング処理によって除去することにより、銅成分の少ない電極板3を得ることができる。また、ダメージ層35が除去されているので、プラズマ処理時にパーティクルの発生も防止することができる。   As described above, in this manufacturing method, after a plurality of prepared holes 32 are formed in the base plate 31 by electric discharge machining, copper diffused in the perforated base plate 33 by this electric discharge machining is prepared by the next heat treatment step. The electrode plate 3 with a small amount of copper component can be obtained by moving the damage layer 35 to the inner peripheral portion 32 and removing the damaged layer 35 by etching. Further, since the damaged layer 35 is removed, the generation of particles can be prevented during the plasma processing.

以上の実施形態では、放電加工による孔明け工程、熱処理工程、エッチング工程の順に行って電極板3を製造したが、孔明け工程の後、エッチング工程までの間に、孔明け工程で形成した下孔32の表面部のみをドリルを用いてわずかに切削するサイジング工程を実施してもよい。
このサイジング工程を実施する場合、孔明け工程で形成する下孔32を小さめに形成しておき、サイジング工程で下孔32の表面部を切削する。その切削代はわずかでよく、したがって、最初からドリルで孔明け加工する場合に比べて、作業時間は少なくて済む。
このサイジング工程を熱処理工程の前に実施すると、下孔32の放電加工によるダメージ層35にドリル加工による機械的な歪みを付与することができ、次の熱処理工程におけるダメージ層35への銅の捕捉をより確実に行うことができる。
In the above embodiment, the electrode plate 3 is manufactured in the order of the drilling process by electric discharge machining, the heat treatment process, and the etching process. However, after the drilling process and before the etching process, the electrode plate 3 is formed in the drilling process. You may implement the sizing process which cuts only the surface part of the hole 32 slightly using a drill.
When this sizing process is performed, the pilot hole 32 formed in the drilling process is formed smaller, and the surface portion of the pilot hole 32 is cut in the sizing process. The cutting allowance is small, and therefore the working time is shorter than when drilling from the beginning.
If this sizing step is performed before the heat treatment step, mechanical damage due to drilling can be imparted to the damaged layer 35 caused by the electric discharge machining of the prepared hole 32, and copper is captured in the damaged layer 35 in the next heat treatment step. Can be performed more reliably.

次に、本発明の効果を確認するために、熱処理条件を変えて複数の電極板を作製し、各電極板の通気孔の内周部における銅濃度を測定した。   Next, in order to confirm the effect of the present invention, a plurality of electrode plates were produced by changing the heat treatment conditions, and the copper concentration in the inner peripheral portion of the vent hole of each electrode plate was measured.

電極板は、外径390mm(12インチ)、厚さ12mmの単結晶シリコンの円板を用いて作製し、その単結晶シリコンの円板(素板)に銅製電極を用いた放電加工により、直径0.5mmの下孔を1000個形成した。そして、窒素雰囲気の下、表1に示す温度、時間で熱処理を施した後、エッチング工程を行い、所定のポリッシング工程、洗浄工程を経て、各電極板を作製した。エッチング工程では、フッ酸(HF)、硝酸(HNO)、酢酸(CHCOOH)を7:45:20の比率(容量比)で混合したエッチング液を用い、試料を2分間浸漬した。エッチング量は20μmであった。
エッチング後の試料につき、通気孔の内周面から1μmの深さの箇所の銅(Cu)濃度を二次イオン質量分析装置を用いて測定した。
測定結果を表1に示す。
The electrode plate is manufactured using a single crystal silicon disk having an outer diameter of 390 mm (12 inches) and a thickness of 12 mm, and the diameter is obtained by electric discharge machining using a copper electrode for the single crystal silicon disk (element plate). 1000 pilot holes of 0.5 mm were formed. And after performing heat processing by the temperature and time which are shown in Table 1 under nitrogen atmosphere, the etching process was performed and each electrode plate was produced through the predetermined polishing process and the washing | cleaning process. In the etching step, the sample was immersed for 2 minutes using an etching solution in which hydrofluoric acid (HF), nitric acid (HNO 3 ), and acetic acid (CH 3 COOH) were mixed at a ratio (volume ratio) of 7:45:20. The etching amount was 20 μm.
About the sample after an etching, the copper (Cu) density | concentration of the location of a 1 micrometer depth from the inner peripheral surface of a vent hole was measured using the secondary ion mass spectrometer.
The measurement results are shown in Table 1.

Figure 2017050118
Figure 2017050118

表1からわかるように、900℃以上1100℃以下の温度で熱処理することにより、銅濃度が0.2ppb〜5ppbまで減少しており、1000℃で最も銅濃度が低い状態であった。熱処理温度が900℃以上1100℃以下の範囲より低い場合も、高い場合でも、いずれも銅濃度は10ppbと高くなっていた。熱処理時間としては16時間としたが、12時間〜32時間の範囲内であれば好適と想定される。   As can be seen from Table 1, the heat treatment at a temperature of 900 ° C. or higher and 1100 ° C. or lower reduced the copper concentration to 0.2 ppb to 5 ppb, and the copper concentration was the lowest at 1000 ° C. In both cases where the heat treatment temperature was lower than the range of 900 ° C. or higher and 1100 ° C. or lower, the copper concentration was as high as 10 ppb. The heat treatment time is 16 hours, but it is assumed that the heat treatment time is preferably in the range of 12 hours to 32 hours.

なお、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。   In addition, this invention is not limited to the said embodiment, A various change can be added in the range which does not deviate from the meaning of this invention.

100 プラズマ処理装置
2 真空チャンバー
3 電極板(プラズマ処理装置用電極板)
4 架台
5 絶縁体
6 静電チャック
7 支持リング
8 ウエハ(被処理基板)
9 エッチングガス供給管
10 拡散部材
11 通気孔
12 排出口
13 高周波電源
14 冷却板
15 貫通孔
31 素板
32 下孔
33 孔空き素板
35 ダメージ層
100 Plasma processing apparatus 2 Vacuum chamber 3 Electrode plate (electrode plate for plasma processing apparatus)
4 Base 5 Insulator 6 Electrostatic Chuck 7 Support Ring 8 Wafer (Substrate to be Processed)
9 Etching gas supply pipe 10 Diffusion member 11 Vent hole 12 Discharge port 13 High frequency power supply 14 Cooling plate 15 Through hole 31 Base plate 32 Lower hole 33 Perforated base plate 35 Damaged layer

Claims (4)

プラズマ生成用ガスを流通させる複数の通気孔を有する電極板を製造する方法であって、電極板となる素板に、銅製加工電極を用いた放電加工を施して前記通気孔より小径の下孔を形成する孔明け工程と、前記下孔を形成した孔明き素板に900℃以上1100℃以下の温度で12時間以上32時間以下の熱処理を施す熱処理工程と、熱処理後の孔明き素板をエッチングして、前記下孔の内周部の前記放電加工によるダメージ層を除去するエッチング工程とを有すことを特徴とするプラズマ処理装置用電極板の製造方法。   A method of manufacturing an electrode plate having a plurality of air holes through which a plasma generating gas is circulated, wherein a base plate serving as an electrode plate is subjected to electric discharge machining using a copper processing electrode, and a pilot hole having a smaller diameter than the air holes. A heat treatment step of subjecting the perforated base plate on which the lower hole is formed to a heat treatment of 900 ° C. to 1100 ° C. for 12 hours to 32 hours, and a post-heat treatment perforated base plate. A method for manufacturing an electrode plate for a plasma processing apparatus, comprising: an etching step of etching to remove a damaged layer caused by the electric discharge machining at an inner peripheral portion of the lower hole. 前記エッチング工程は、前記下孔の内周部を厚さ20μm以上除去することを特徴とする請求項1記載のプラズマ処理装置用電極板の製造方法。   2. The method of manufacturing an electrode plate for a plasma processing apparatus according to claim 1, wherein the etching step removes an inner peripheral portion of the lower hole with a thickness of 20 μm or more. 前記孔明け工程の後であって、前記エッチング工程の前に、前記下孔をドリルを用いた機械加工によりサイジングするサイジング工程を有することを特徴とする請求項1又は2記載のプラズマ処理装置用電極板の製造方法。   The plasma processing apparatus according to claim 1, further comprising a sizing step of sizing the pilot hole by machining using a drill after the drilling step and before the etching step. Manufacturing method of electrode plate. プラズマ生成用ガスを流通させる複数の通気孔を有する電極板であって、前記通気孔の内周面から深さ1μmの位置の銅濃度が0.2ppb以上2ppb以下であることを特徴とするプラズマ処理装置用電極板。

An electrode plate having a plurality of air holes for circulating a plasma generating gas, wherein the copper concentration at a depth of 1 μm from the inner peripheral surface of the air holes is 0.2 ppb or more and 2 ppb or less. Electrode plate for processing equipment.

JP2015171761A 2015-09-01 2015-09-01 Electrode plate for plasma processing apparatus and method of manufacturing the same Active JP6500705B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015171761A JP6500705B2 (en) 2015-09-01 2015-09-01 Electrode plate for plasma processing apparatus and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015171761A JP6500705B2 (en) 2015-09-01 2015-09-01 Electrode plate for plasma processing apparatus and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2017050118A true JP2017050118A (en) 2017-03-09
JP6500705B2 JP6500705B2 (en) 2019-04-17

Family

ID=58279933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015171761A Active JP6500705B2 (en) 2015-09-01 2015-09-01 Electrode plate for plasma processing apparatus and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP6500705B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210015210A (en) * 2019-08-01 2021-02-10 배문성 Apparatus for Treating Harmful Gas
KR20210015737A (en) * 2019-08-01 2021-02-10 배문성 Apparatus for Treating Harmful Gas

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08203879A (en) * 1995-01-25 1996-08-09 Mitsubishi Materials Corp Electrode plate of single crystal silicon for plasma etching and production thereof
JPH10223613A (en) * 1997-02-10 1998-08-21 Mitsubishi Materials Corp Formation of narrow through hole of silicon electrode plate for plasma etching
JPH10275802A (en) * 1997-03-31 1998-10-13 Hitachi Chem Co Ltd Manufacture of plasma-etching electrode
JPH10291813A (en) * 1997-04-16 1998-11-04 Tokai Carbon Co Ltd Electrode plate for plasma etching
JPH10311315A (en) * 1997-05-13 1998-11-24 Shin Etsu Chem Co Ltd Silicon-made screws
JPH1192972A (en) * 1997-09-22 1999-04-06 Shin Etsu Chem Co Ltd Manufacturing method of electrode for plasma apparatus and electrode for plasma apparatus
JP2000349073A (en) * 1999-06-08 2000-12-15 Shin Etsu Chem Co Ltd Silicon electrode plate
JP2003007686A (en) * 2001-06-26 2003-01-10 Shin Etsu Chem Co Ltd Heater made of silicon and semiconductor-manufacturing apparatus using the same
JP2004200710A (en) * 2004-02-18 2004-07-15 Shin Etsu Handotai Co Ltd Method for removing impurities within silicon wafer and silicon wafer
US20040161943A1 (en) * 2002-04-17 2004-08-19 Daxing Ren Silicon parts having reduced metallic impurity concentration for plasma reaction chambers
JP2005093869A (en) * 2003-09-19 2005-04-07 Mimasu Semiconductor Industry Co Ltd Method of regenerating silicon wafer, and regenerated wafer
JP2015164179A (en) * 2014-01-29 2015-09-10 三菱マテリアル株式会社 Electrode plate for plasma processing devices, and method for manufacturing the same

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08203879A (en) * 1995-01-25 1996-08-09 Mitsubishi Materials Corp Electrode plate of single crystal silicon for plasma etching and production thereof
JPH10223613A (en) * 1997-02-10 1998-08-21 Mitsubishi Materials Corp Formation of narrow through hole of silicon electrode plate for plasma etching
JPH10275802A (en) * 1997-03-31 1998-10-13 Hitachi Chem Co Ltd Manufacture of plasma-etching electrode
JPH10291813A (en) * 1997-04-16 1998-11-04 Tokai Carbon Co Ltd Electrode plate for plasma etching
JPH10311315A (en) * 1997-05-13 1998-11-24 Shin Etsu Chem Co Ltd Silicon-made screws
JPH1192972A (en) * 1997-09-22 1999-04-06 Shin Etsu Chem Co Ltd Manufacturing method of electrode for plasma apparatus and electrode for plasma apparatus
JP2000349073A (en) * 1999-06-08 2000-12-15 Shin Etsu Chem Co Ltd Silicon electrode plate
JP2003007686A (en) * 2001-06-26 2003-01-10 Shin Etsu Chem Co Ltd Heater made of silicon and semiconductor-manufacturing apparatus using the same
US20040161943A1 (en) * 2002-04-17 2004-08-19 Daxing Ren Silicon parts having reduced metallic impurity concentration for plasma reaction chambers
JP2005093869A (en) * 2003-09-19 2005-04-07 Mimasu Semiconductor Industry Co Ltd Method of regenerating silicon wafer, and regenerated wafer
JP2004200710A (en) * 2004-02-18 2004-07-15 Shin Etsu Handotai Co Ltd Method for removing impurities within silicon wafer and silicon wafer
JP2015164179A (en) * 2014-01-29 2015-09-10 三菱マテリアル株式会社 Electrode plate for plasma processing devices, and method for manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210015210A (en) * 2019-08-01 2021-02-10 배문성 Apparatus for Treating Harmful Gas
KR20210015737A (en) * 2019-08-01 2021-02-10 배문성 Apparatus for Treating Harmful Gas
KR102267444B1 (en) * 2019-08-01 2021-06-21 배문성 Apparatus for Treating Harmful Gas
KR102371051B1 (en) * 2019-08-01 2022-03-10 배문성 Apparatus for Treating Harmful Gas

Also Published As

Publication number Publication date
JP6500705B2 (en) 2019-04-17

Similar Documents

Publication Publication Date Title
US10177004B2 (en) Method of processing wafer
US6846726B2 (en) Silicon parts having reduced metallic impurity concentration for plasma reaction chambers
US10790193B2 (en) Wafer processing method
JP2016040795A (en) Method for dividing wafer
JP6500705B2 (en) Electrode plate for plasma processing apparatus and method of manufacturing the same
JP2020150166A (en) Manufacturing method of element chip
US10790192B2 (en) Wafer processing method
JP6398827B2 (en) Method for manufacturing electrode plate for plasma processing apparatus
KR20110006932A (en) Apparatus for fixing substrate
JP6421611B2 (en) Electrode plate for plasma processing apparatus and method for manufacturing the same
JP6281276B2 (en) Method for manufacturing electrode plate for plasma processing apparatus
JP2008311297A (en) Electrode plate for plasma treatment apparatus, manufacturing method thereof, and plasma treatment apparatus
JPH09129605A (en) Plasma etching single crystal silicon electrode plate
JPH10223613A (en) Formation of narrow through hole of silicon electrode plate for plasma etching
JP4883368B2 (en) Single crystal silicon electrode plate for plasma etching
TWI824662B (en) Silicon carbide substrate or substrate processing method
JP5742347B2 (en) Electrode plate for plasma processing equipment
US20230127556A1 (en) Manufacturing and reuse of semiconductor substrates
JP6179171B2 (en) Silicon electrode plate for plasma processing apparatus and manufacturing method thereof
JP2022154293A (en) Electrode plate for plasma processing device and manufacturing method for the same
JP4211592B2 (en) Manufacturing method of wafer support
JP2009038209A (en) Silicon electrode plate providing uniform etching
JP6318046B2 (en) Wafer division method
JPH10265976A (en) Production of plasma etching electrode
CN112490190A (en) Method for processing wafer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190304

R150 Certificate of patent or registration of utility model

Ref document number: 6500705

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150