JP2017041630A - Metallized film and manufacturing method of the same - Google Patents
Metallized film and manufacturing method of the same Download PDFInfo
- Publication number
- JP2017041630A JP2017041630A JP2016141034A JP2016141034A JP2017041630A JP 2017041630 A JP2017041630 A JP 2017041630A JP 2016141034 A JP2016141034 A JP 2016141034A JP 2016141034 A JP2016141034 A JP 2016141034A JP 2017041630 A JP2017041630 A JP 2017041630A
- Authority
- JP
- Japan
- Prior art keywords
- film
- copper
- adhesive
- thickness
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011104 metalized film Substances 0.000 title claims abstract description 34
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 6
- 239000010408 film Substances 0.000 claims abstract description 136
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 90
- 229910052802 copper Inorganic materials 0.000 claims abstract description 84
- 239000010949 copper Substances 0.000 claims abstract description 84
- 239000013078 crystal Substances 0.000 claims abstract description 31
- 238000000034 method Methods 0.000 claims abstract description 24
- 238000004544 sputter deposition Methods 0.000 claims description 19
- 230000003746 surface roughness Effects 0.000 claims description 18
- 238000001771 vacuum deposition Methods 0.000 claims description 16
- 150000001879 copper Chemical class 0.000 claims 1
- 239000012528 membrane Substances 0.000 claims 1
- 239000000853 adhesive Substances 0.000 abstract description 41
- 230000001070 adhesive effect Effects 0.000 abstract description 40
- 238000005240 physical vapour deposition Methods 0.000 abstract description 6
- 239000010410 layer Substances 0.000 description 19
- 229910001220 stainless steel Inorganic materials 0.000 description 19
- 239000010935 stainless steel Substances 0.000 description 19
- 239000002184 metal Substances 0.000 description 15
- 229910052751 metal Inorganic materials 0.000 description 15
- 239000013081 microcrystal Substances 0.000 description 14
- 229920005989 resin Polymers 0.000 description 11
- 239000011347 resin Substances 0.000 description 11
- 239000000463 material Substances 0.000 description 9
- 239000012298 atmosphere Substances 0.000 description 8
- 229920002799 BoPET Polymers 0.000 description 7
- 239000011889 copper foil Substances 0.000 description 7
- 238000011156 evaluation Methods 0.000 description 7
- 238000007740 vapor deposition Methods 0.000 description 7
- 238000000151 deposition Methods 0.000 description 6
- 238000005566 electron beam evaporation Methods 0.000 description 6
- 238000001755 magnetron sputter deposition Methods 0.000 description 6
- 238000001816 cooling Methods 0.000 description 5
- 230000008021 deposition Effects 0.000 description 4
- 238000001704 evaporation Methods 0.000 description 4
- 238000007788 roughening Methods 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 239000004332 silver Substances 0.000 description 4
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 3
- 239000012790 adhesive layer Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 2
- 239000005751 Copper oxide Substances 0.000 description 2
- 239000002313 adhesive film Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 229910000431 copper oxide Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229920006267 polyester film Polymers 0.000 description 2
- -1 polyethylene terephthalate Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 1
- 239000012964 benzotriazole Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229920006290 polyethylene naphthalate film Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920001955 polyphenylene ether Polymers 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000010301 surface-oxidation reaction Methods 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Landscapes
- Laminated Bodies (AREA)
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
Abstract
Description
本発明は電磁波シールド用途等に好適に使用される金属化フィルムおよびその製造方法に関するものである。 The present invention relates to a metallized film suitably used for electromagnetic wave shielding applications and the like and a method for producing the same.
携帯通信機器では配線部およびチップ部に、電磁波シールドフィルムを積層して電磁波をシールドすることが従来から行われている。電磁波シールドは、絶縁層と導電層を有した金属膜付フィルムに導電性粘着剤を塗布したものが使用されている。該金属膜付フィルムの金属には銅や銀が好適に用いられている。 In portable communication devices, electromagnetic wave shielding is conventionally performed by laminating an electromagnetic wave shielding film on a wiring part and a chip part. As the electromagnetic wave shield, a film having a metal film having an insulating layer and a conductive layer and a conductive adhesive applied thereto is used. Copper or silver is preferably used as the metal of the film with a metal film.
近年ではインターネットの高速化等を実現するために携帯通信機器は大容量の信号処理が必要となってきている。したがってこのような大容量の信号を処理するため、半導体素子(以下、ICということがある。)の信号処理も高速化となり、ICおよび信号線からの電磁波ノイズが多く発生するようになる。 In recent years, mobile communication devices have been required to process a large amount of signals in order to realize high-speed Internet. Therefore, in order to process such a large-capacity signal, the signal processing of the semiconductor element (hereinafter, sometimes referred to as IC) is also speeded up, and a lot of electromagnetic noise from the IC and signal lines is generated.
これらの電磁波ノイズが携帯通信機器に内蔵されるアンテナ部品に干渉し誤動作の原因となる。よって高速化に伴って電磁波ノイズを遮蔽するために、より優れたシールド特性をもつシールドフィルムが要求されている。シールド性能を高くするためにはシールド材料の種類とシールド材料の厚みが支配因子であり導電率および透磁率が高い銀、銅が好まれ、膜厚が厚い金属層が好まれる。実際に1GHz帯の周波数の信号を遮蔽するためには金属層の抵抗値は500mΩ/m2以下の抵抗値である必要があり、例えば銅であると0.08μm以上の厚みが必要となる。一方で、被シールド物にはICチップ、ケースなど様々な形状があり、ここに隙間なくシールドフィルムを貼り合わせるため、形状追従性が求められる。金属層およびフィルムが厚くなると貼り合わせるときにシワが発生して形状を追従できなくなり好ましくない。よって金属層は0.08〜2.0μmの厚さ、またフィルムは4〜75μmの厚さが求められる。 These electromagnetic noises interfere with antenna components built in portable communication devices and cause malfunctions. Therefore, in order to shield electromagnetic wave noise with increasing speed, a shield film having better shielding properties is required. In order to improve the shielding performance, the kind of the shielding material and the thickness of the shielding material are the controlling factors, and silver and copper having high conductivity and magnetic permeability are preferred, and a metal layer having a large thickness is preferred. Actually, in order to shield a signal having a frequency of 1 GHz band, the resistance value of the metal layer needs to be a resistance value of 500 mΩ / m 2 or less. For example, a thickness of 0.08 μm or more is required for copper. On the other hand, the object to be shielded has various shapes such as an IC chip and a case, and in order to bond the shield film without gaps, shape followability is required. If the metal layer and the film are thick, wrinkles are generated when they are bonded together, and the shape cannot be followed. Therefore, the metal layer is required to have a thickness of 0.08 to 2.0 μm, and the film is required to have a thickness of 4 to 75 μm.
従来から、電磁波シールドフィルムが提案されている(例えば特許文献1)。厚さ10〜200μmのフィルムに銀あるいは銅などの金属材料を10〜500nm蒸着し接着層を形成した電磁波シールドフィルムである。フィルム状の支持体に導電金属材料を蒸着して得た導電性薄膜が設けられているので、ワイヤーハーネスなどに巻きつける際の柔軟性を確保しつつ電磁波遮蔽効果を得ることが出来る。 Conventionally, an electromagnetic wave shielding film has been proposed (for example, Patent Document 1). It is an electromagnetic wave shielding film formed by depositing a metal material such as silver or copper on a film having a thickness of 10 to 200 μm by 10 to 500 nm to form an adhesive layer. Since a conductive thin film obtained by vapor-depositing a conductive metal material on a film-like support is provided, an electromagnetic wave shielding effect can be obtained while ensuring flexibility when wound around a wire harness or the like.
また、被シールド物に隙間なく十分に密着するような薄くて柔軟な電磁波シールドフィルムが提案されている(例えば特許文献2)。厚さ0.5〜5.0μmの絶縁性の片面に厚み0.32〜5.0μmの金属層を形成し、これに接着層を形成した電磁波シールドフィルムである。金属層に銀を用いており、薄くて柔軟性があり、被シールド物に隙間なく十分に密着するようなフィルムを得ることができる。 In addition, a thin and flexible electromagnetic wave shielding film that can be sufficiently adhered to a shielded object without a gap has been proposed (for example, Patent Document 2). An electromagnetic wave shielding film in which a metal layer having a thickness of 0.32 to 5.0 μm is formed on one insulating surface having a thickness of 0.5 to 5.0 μm, and an adhesive layer is formed thereon. Since silver is used for the metal layer, a film that is thin and flexible and can be sufficiently adhered to a shielded object without a gap can be obtained.
電磁波シールドフィルムは被シールド材に粘着剤を塗布した金属膜付フィルムを貼り合わせるような方法で使用される。しかしながら、この電磁波シールドフィルムが貼り合わされる工程は後工程で実施されることが多く、貼り合わせ工程にはリペア性が求められる。つまり、一度貼り合わせたフィルムを綺麗に剥がし、再度貼り直しが出来ることが要求される。このとき製品の一部に粘着剤等が残ってしまうと外観不良となり製品の収率を下げてしまう。このリペア性を上げるためには電磁波シールドフィルムの金属層と粘着剤との密着強度を上げる必要がある。 The electromagnetic wave shielding film is used by a method in which a film with a metal film obtained by applying an adhesive to a shielded material is bonded. However, the step of bonding the electromagnetic wave shielding film is often performed in a post-process, and repairability is required for the bonding step. In other words, it is required that the film once pasted can be peeled off and then pasted again. At this time, if an adhesive or the like remains in a part of the product, the appearance is deteriorated and the yield of the product is lowered. In order to increase this repairability, it is necessary to increase the adhesion strength between the metal layer of the electromagnetic wave shielding film and the pressure-sensitive adhesive.
特許文献1〜2のような方法では被シールド物に隙間なく貼り合わせることはできるが金属層と粘着剤の密着強度が低い問題がある。このシールドフィルムを剥がすと粘着剤が製品の一部に残ってしまい、リペアするために外観不良となってしまう。 In the methods as described in Patent Documents 1 and 2, the shielded object can be bonded without any gap, but there is a problem that the adhesion strength between the metal layer and the adhesive is low. If this shield film is peeled off, the pressure-sensitive adhesive remains in a part of the product, resulting in poor appearance due to repair.
また、特許文献3のように粘着剤との密着強度を上げる方法には表面を粗化する方法がある。ただし、表面を粗化すると金属層の抵抗が上がり、この抵抗を下げるためには金属膜厚を厚くする必要がある。銅膜厚が厚くなるほど被シールド材と貼り合わせた時の追従性が悪くなってしまう問題がある。このため、追従性を確保するには金属層の表面粗さを低く維持したまま銅層の密着強度を上げる必要がある。 Further, as disclosed in Patent Document 3, there is a method of roughening the surface as a method of increasing the adhesion strength with the adhesive. However, when the surface is roughened, the resistance of the metal layer increases, and in order to reduce this resistance, it is necessary to increase the metal film thickness. As the copper film thickness increases, there is a problem that the followability when bonded to the shielded material deteriorates. For this reason, in order to ensure followability, it is necessary to increase the adhesion strength of the copper layer while keeping the surface roughness of the metal layer low.
そこで本発明は、物理蒸着法を用いて銅膜を形成し、かつ、物理蒸着法の種類を適宜選択することによって結晶粒を制御し銅膜表面を微細粗化することで銅膜と粘着剤との密着強度を確保するような金属化フィルムを作製することを目的とした。 Therefore, the present invention provides a copper film and an adhesive by forming a copper film using a physical vapor deposition method and controlling the crystal grains by appropriately selecting the type of physical vapor deposition method to finely roughen the surface of the copper film. It aimed at producing the metallized film which ensures adhesive strength with.
本発明者らは、上記の課題に鑑み鋭意検討した結果、シールド特性を満足するような0.08μm以上2.0μm以下の銅膜を有する金属化フィルムであり、かつ該銅膜の表面に5nm以上50nm以下の銅の微結晶を形成することで異方導電性接着層との密着強度を向上させた金属化フィルムを得るに至った。 As a result of intensive studies in view of the above-mentioned problems, the present inventors are a metallized film having a copper film of 0.08 μm or more and 2.0 μm or less that satisfies shielding characteristics, and 5 nm on the surface of the copper film. The metallized film which improved the adhesive strength with an anisotropic conductive adhesive layer by forming the copper microcrystal below 50 nm or more came to obtain.
すなわち、本発明は、フィルムの一面に銅膜を有する金属化フィルムであって、該銅膜の表面は5nm以上50nm以下の結晶粒が面積比65%以上含まれていることを特徴とする金属化フィルムに関する。 That is, the present invention is a metallized film having a copper film on one surface of the film, wherein the surface of the copper film contains crystal grains of 5 nm to 50 nm in an area ratio of 65% or more. Relates to the film.
好ましい態様は、該銅膜の表面には5nm以上50nm以下の結晶粒が80%以上含まれていることを特徴とする金属化フィルムに関する。 A preferred embodiment relates to a metallized film characterized in that 80% or more of crystal grains of 5 nm to 50 nm are contained on the surface of the copper film.
好ましい態様は、該銅膜は厚みが0.08μm以上2.0μm以下であることを特徴とする金属化フィルムに関する。 A preferred embodiment relates to a metallized film, wherein the copper film has a thickness of 0.08 μm or more and 2.0 μm or less.
好ましい態様は、該銅膜は表面粗さRaが0.01μm以上0.10μm以下であることを特徴とする金属化フィルムに関する。 A preferred embodiment relates to a metallized film, wherein the copper film has a surface roughness Ra of 0.01 μm or more and 0.10 μm or less.
好ましい態様は、該銅膜を真空蒸着法によって形成した後、さらにスパッタリング法で形成することを特徴とする金属化フィルムの製造方法に関する。 A preferred embodiment relates to a method for producing a metallized film, wherein the copper film is formed by a vacuum deposition method and then formed by a sputtering method.
本発明の金属化フィルムの銅膜の表面に5nm以上50nm以下の結晶粒が面積比10%以上90%以下含まれているのでシールド性能を満足し、また粘着剤との密着強度が高くリワーク性に優れる。 Since the surface of the copper film of the metallized film of the present invention contains crystal grains of 5 nm or more and 50 nm or less in an area ratio of 10% or more and 90% or less, the shielding performance is satisfied, and the adhesive strength with the adhesive is high and reworkability Excellent.
本発明について以下詳細に説明する。 The present invention will be described in detail below.
本発明の金属化フィルムは、フィルムの一方の面に銅膜が形成されているものである。また、本発明で用いられるフィルムとは、合成樹脂などの高分子を薄い膜状に成型したものである。 In the metallized film of the present invention, a copper film is formed on one surface of the film. The film used in the present invention is a film obtained by molding a polymer such as a synthetic resin into a thin film.
本発明における銅膜は、かかる高分子からなるフィルムの上に物理蒸着法における真空蒸着法により形成された後、さらにスパッタリング法で形成されることが好ましい。また銅膜とフィルム間の密着強度をあげるためにアンカー層を設けても構わない。アンカー層はスパッタリング法で形成されることが好ましく例示される。 The copper film in the present invention is preferably formed on a film made of such a polymer by a vacuum vapor deposition method in a physical vapor deposition method and then further formed by a sputtering method. An anchor layer may be provided to increase the adhesion strength between the copper film and the film. Preferably, the anchor layer is formed by a sputtering method.
本発明における銅膜の厚みは0.08μm以上2.0μm以下であることが好ましい。1GHz帯の周波数の信号を遮蔽するためには0.08μm以上の厚みが望ましい。厚みが0.08μm未満であると要求されるシールド性能を満足しなくなることがある。一方で、厚みが2.0μmを超えると蒸着中に基材にかかる熱量が大きくなり基材が熱変形してしまうおそれがある。また硬さが増すために被シールド材への追従性が悪くなってしまうおそれがある。よってより好ましくは銅膜の厚みが0.10μm以上1.5μm以下、さらに好ましくは銅膜の厚みが0.10μm以上1.0μm以下である。 The thickness of the copper film in the present invention is preferably 0.08 μm or more and 2.0 μm or less. In order to shield a signal with a frequency of 1 GHz band, a thickness of 0.08 μm or more is desirable. When the thickness is less than 0.08 μm, the required shielding performance may not be satisfied. On the other hand, if the thickness exceeds 2.0 μm, the amount of heat applied to the base material during vapor deposition increases and the base material may be thermally deformed. Further, since the hardness increases, the followability to the shielded material may be deteriorated. Therefore, the thickness of the copper film is more preferably 0.10 μm or more and 1.5 μm or less, and still more preferably the thickness of the copper film is 0.10 μm or more and 1.0 μm or less.
真空蒸着法には誘導加熱蒸着法、抵抗加熱蒸着法、レーザービーム蒸着法、電子ビーム蒸着法などがある。どの蒸着法を用いても構わないが高い成膜速度を有する観点から電子ビーム蒸着法が好適に用いられる。蒸着中は基材の温度が上昇しないようにフィルムを冷却しながら蒸着を行ってもよい。 Examples of the vacuum evaporation method include induction heating evaporation method, resistance heating evaporation method, laser beam evaporation method, and electron beam evaporation method. Any evaporation method may be used, but the electron beam evaporation method is preferably used from the viewpoint of having a high film formation rate. During the deposition, the deposition may be performed while cooling the film so that the temperature of the substrate does not increase.
物理蒸着法を用いて成膜した蒸着膜は厚くなるほど熱の影響を受ける。本発明では銅膜厚み0.08μm以上2.0μm以下が好ましいため真空蒸着法のみでこの厚みまで成膜すると結晶粒が成長して100nm以上の大きさになるおそれがある。かかる表面の結晶粒100nm以上の大きさの銅表面は平滑でアンカー効果が無く粘着剤との密着強度が低い。そこで密着強度を得るためにはこの100nm以上の結晶粒上に5nm以上50nm以下の結晶粒を形成し密着に寄与する微細粗化表面を形成するのがよい。100nm以上の結晶粒上に5nm以上50nm以下の小さな結晶粒を形成するためには、例えばスパッタリング法を用いて形成することができる。真空蒸着法でも形成することが可能であるが、100nm以上の結晶粒を形成した後にさらに5nm以上50nm以下の小さな結晶粒を形成するためには、逐次的に真空蒸着を行う必要がある。連続的に真空蒸着を行うと結晶粒が成長するのみで表面に小さな結晶粒を作ることが困難である。このため工程を2回に分けるかあるいは装置内に2つの蒸着設備を有する必要があり簡易ではなくなる。スパッタリング法は装置を比較的簡易に設けることができ、また真空蒸着と同ライン上で逐次的に行うことで1つの工程で行うことが可能なため好ましく用いることが出来る。 The vapor deposition film formed using the physical vapor deposition method is affected by heat as the thickness increases. In the present invention, the thickness of the copper film is preferably 0.08 μm or more and 2.0 μm or less. Therefore, when the film is formed to this thickness only by the vacuum deposition method, the crystal grains may grow and become a size of 100 nm or more. A copper surface having a crystal grain size of 100 nm or more on the surface is smooth, has no anchor effect, and has low adhesion strength with the adhesive. Therefore, in order to obtain adhesion strength, it is preferable to form crystal grains of 5 nm to 50 nm on the crystal grains of 100 nm or more to form a fine rough surface that contributes to adhesion. In order to form small crystal grains of 5 nm or more and 50 nm or less on crystal grains of 100 nm or more, for example, sputtering can be used. Although it can be formed by a vacuum deposition method, it is necessary to sequentially perform vacuum deposition in order to form further small crystal grains of 5 nm to 50 nm after forming crystal grains of 100 nm or more. When continuous vacuum deposition is performed, it is difficult to form small crystal grains on the surface only by growing crystal grains. For this reason, it is necessary to divide the process into two steps or to have two vapor deposition facilities in the apparatus, which is not simple. The sputtering method can be preferably used because the apparatus can be provided in a relatively simple manner, and can be performed in one step by being performed sequentially on the same line as the vacuum deposition.
本発明における100nm以上の結晶粒上に形成された小さな結晶粒は5nm以上50nm以下であることが好ましい。5nmより小さい結晶粒を形成した場合は微細粗化の影響が小さく密着強度があまり上昇しない。また、50nmよりも大きいと粗化が微細で無くなる上に密着強度が小さくなってしまう。よって5nm以上50nm以下であることが好ましく、さらに好ましくは10nm以上50nm以下である。 The small crystal grains formed on the crystal grains of 100 nm or more in the present invention are preferably 5 nm or more and 50 nm or less. When crystal grains smaller than 5 nm are formed, the influence of fine roughening is small and the adhesion strength does not increase so much. On the other hand, when the thickness is larger than 50 nm, the roughening is not fine and the adhesion strength is reduced. Therefore, it is preferably 5 nm or more and 50 nm or less, and more preferably 10 nm or more and 50 nm or less.
本発明における5nm以上50nm以下の結晶粒の割合は面積比65%以上含まれていることが必要である。面積比65%未満であると微細粗化の影響が小さく密着強度を満足しない。 In the present invention, the ratio of the crystal grains of 5 nm or more and 50 nm or less needs to be included in an area ratio of 65% or more. If the area ratio is less than 65%, the influence of fine roughening is small and the adhesion strength is not satisfied.
より好ましくは面積比80%以上である。面積比が80%以上のとき、銅層表面には緻密な薄い安定な銅酸化膜が形成されると推察され好ましい。この薄い酸化膜は高温環境においても保護膜として働き、酸化の進行を抑制すると考えられる。そのため、面積比が80%以上の場合は防錆処理を実施する必要がない。一般的な防錆処理は銅表面にベンゾトリアゾール等の薄い有機皮膜を形成して酸素との接触を抑制し、酸化防止するが、樹脂との密着を阻害するために、樹脂との貼り合せ前に除去する必要がある。一方、緻密な薄い安定な銅酸化膜は膜中の酸素を介在して、樹脂の末端基等と結合し、密着力がより増加すると推察され好ましい。 More preferably, the area ratio is 80% or more. It is presumed that when the area ratio is 80% or more, a dense thin stable copper oxide film is formed on the surface of the copper layer. This thin oxide film is considered to function as a protective film even in a high temperature environment and suppress the progress of oxidation. Therefore, when the area ratio is 80% or more, it is not necessary to perform rust prevention treatment. General anti-rust treatment forms a thin organic film such as benzotriazole on the copper surface to suppress contact with oxygen and prevent oxidation, but in order to inhibit adhesion with the resin, before bonding with the resin Need to be removed. On the other hand, it is presumed that a dense thin stable copper oxide film is bonded with an end group of the resin through oxygen in the film, and it is presumed that the adhesion is further increased.
本発明では真空蒸着法によってロールトゥロールでフィルム上に銅膜を形成することが好ましく例示される。その場合、フィルムは蒸着時に熱に曝される。フィルムは裏面に接している冷却ロールにより冷却されるが、このときフィルムの耐熱温度が低かったり、フィルムの熱収縮が大きかったりすると、フィルムの変形に伴って冷却ロールから浮いてしまい、冷却が十分にされず溶融により穴が空いてしまったりする。よって耐熱温度が高く、また、熱収縮が小さいフィルムが好ましい。電子ビーム法によって銅膜を形成するときの蒸着時のフィルム上の温度は100〜120℃程度であることが想定される。このため耐熱温度が120℃以上あり、120℃での熱収縮率がフィルムの長手方向(MD方向ともいう)、幅方向(TD方向ともいう)のいずれも2.0%以下であることが好ましい。フィルムの熱収縮率が2.0%を超えると張力変更やロールの冷却によってフィルムの変形を制御することが難しく、上記銅層の厚みを形成しようとするとフィルムがロールから離れてフィルムの温度が上昇し溶融して穴が空いてしまうおそれがある。より好ましくは熱収縮率が1.8%以下、さらに好ましくは1.5%以下である。フィルムの熱収縮率は所定の温度で30分間処理した前後の寸法変化率より求めることが出来る。 In the present invention, it is preferable to form a copper film on the film by roll-to-roll by a vacuum deposition method. In that case, the film is exposed to heat during deposition. The film is cooled by a cooling roll in contact with the back side. At this time, if the heat resistant temperature of the film is low or the heat shrinkage of the film is large, the film floats from the cooling roll as the film is deformed, and cooling is sufficient. It is not made, but a hole is made by melting. Therefore, a film having a high heat-resistant temperature and low thermal shrinkage is preferable. It is assumed that the temperature on the film during vapor deposition when the copper film is formed by the electron beam method is about 100 to 120 ° C. Therefore, the heat-resistant temperature is 120 ° C. or higher, and the thermal shrinkage rate at 120 ° C. is preferably 2.0% or less in both the longitudinal direction (also referred to as MD direction) and the width direction (also referred to as TD direction). . If the thermal shrinkage rate of the film exceeds 2.0%, it is difficult to control the deformation of the film by changing the tension or cooling the roll, and when the thickness of the copper layer is formed, the film is separated from the roll and the film temperature is reduced. There is a risk that it will rise and melt and become a hole. More preferably, the heat shrinkage rate is 1.8% or less, and further preferably 1.5% or less. The thermal contraction rate of the film can be obtained from the dimensional change rate before and after the film is processed at a predetermined temperature for 30 minutes.
本発明で好適に用いられるフィルムとして例えばポリエステルフィルム、ポリエステルフィルムの中でもポリエチレンテレフタレートフィルムやポリエチレンナフタレートフィルム、ポリイミドフィルム、芳香族ポリアミドフィルム、変性ポリフェニレンエーテルフィルムを用いることができる。このうちポリエチレンテレフタレートフィルムがより好ましく用いられる。これらのフィルムは単独で用いても構わないし、複合されたものを用いても構わない。またフィルム表面に樹脂や粘着剤等をコーティングしたものを用いても構わないし、離型層を有したものを用いても構わない。 As a film suitably used in the present invention, for example, among a polyester film and a polyester film, a polyethylene terephthalate film, a polyethylene naphthalate film, a polyimide film, an aromatic polyamide film, or a modified polyphenylene ether film can be used. Among these, a polyethylene terephthalate film is more preferably used. These films may be used alone or in combination. Moreover, you may use what coated resin, an adhesive, etc. on the film surface, and you may use what has a mold release layer.
またかかるフィルムの厚みは4μm以上75μm以下であることが好ましい。フィルムの厚みが4μm未満であると蒸着中に生じる応力によってフィルムが変形したり破れたりしてしまう可能性がある。また75μmを超えるとフィルムを張力で制御できなくなり巻きズレ等をおこしてしまう可能性があり、また一度の蒸着で投入できる量が減ってしまい生産性を悪くしてしまう。より好ましくは6μm以上75μm以下である。 Moreover, it is preferable that the thickness of this film is 4 micrometers or more and 75 micrometers or less. If the thickness of the film is less than 4 μm, the film may be deformed or torn due to stress generated during vapor deposition. On the other hand, if it exceeds 75 μm, the film cannot be controlled by the tension, and there is a possibility that winding deviation or the like will occur, and the amount that can be thrown in by a single vapor deposition will decrease, resulting in poor productivity. More preferably, it is 6 μm or more and 75 μm or less.
また本発明の金属化フィルムは、銅膜の表面粗さRaが0.01μm以上0.10μm以下であることが好ましい。表面が粗くなると銅膜の抵抗が上がる。この抵抗を下げるためには銅膜厚を厚くする必要があり、銅膜厚が厚くなるほど被シールド材と貼り合わせた時の追従性が悪くなってしまう。より好ましくは表面粗さRaが0.01μm以上0.08μm以下、さらに好ましくは表面粗さRaが0.01μm以上0.06μm以下である。 In the metallized film of the present invention, the surface roughness Ra of the copper film is preferably 0.01 μm or more and 0.10 μm or less. When the surface becomes rough, the resistance of the copper film increases. In order to reduce this resistance, it is necessary to increase the copper film thickness, and as the copper film thickness increases, the followability when bonded to the shielded material becomes worse. The surface roughness Ra is more preferably 0.01 μm or more and 0.08 μm or less, and still more preferably the surface roughness Ra is 0.01 μm or more and 0.06 μm or less.
また本発明の金属化フィルムは電磁波シールド用途が主であるがこれに限らず、例えば、回路材料用途、タッチパネルなどの転写箔の用途などに用いることができる。 Further, the metallized film of the present invention is mainly used for electromagnetic shielding, but is not limited thereto, and can be used for, for example, circuit materials and transfer foils such as touch panels.
なお、本発明は、以上に説明した各構成に限定されるものではなく、種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 It should be noted that the present invention is not limited to the configurations described above, and various modifications are possible, and the present invention is also applied to embodiments obtained by appropriately combining technical means disclosed in different embodiments. It is included in the technical scope of the invention.
以下、実施例に基づいて本発明を具体的に説明するが、本発明はこれらの実施例により限定されるものではない。 EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited by these Examples.
(表面粗さの測定)
表面粗さRaはJIS B 0601-1994に定義される算術平均粗さのことであり、粗さ曲線からその平均線の方向に基準粗さ(l)だけ抜き取り、この抜き取り部分の平均線の方向にX軸を、X軸と直行する方向にY軸を取り、粗さ曲線をy=f(x)であらわしたときに、次の式によって求められる値である。
(Measurement of surface roughness)
The surface roughness Ra is the arithmetic average roughness defined in JIS B 0601-1994. The surface roughness Ra is extracted from the roughness curve by the reference roughness (l) in the direction of the average line, and the direction of the average line of this extracted portion. When the X axis is taken along the Y axis in the direction perpendicular to the X axis, and the roughness curve is represented by y = f (x), the value is obtained by the following equation.
フィルムをレーザー顕微鏡(キーエンス製、VK-8500)を用いて表面観察を行いJIS B0601-1994に準拠して行った。解析は株式会社キーエンス製の解析アプリケーションソフトVK-H1Wを用い、カットオフ値は0.25μmとした。該ソフトにおいて、100μmの長さを指定して表面粗さRaを求めた。測定はサンプルのある一方向とその垂直な方向で測定して値の大きな方を表面粗さRaとした。 The surface of the film was observed using a laser microscope (manufactured by Keyence, VK-8500), and the film was formed in accordance with JIS B0601-1994. Analysis was performed using analysis application software VK-H1W manufactured by Keyence Corporation, and the cut-off value was 0.25 μm. In the software, the surface roughness Ra was determined by designating a length of 100 μm. The measurement was performed in one direction of the sample and the direction perpendicular thereto, and the larger value was defined as the surface roughness Ra.
(銅膜の厚み測定)
金属化フィルムの銅厚みは蛍光X線膜厚計(エスエスアイ・ナノテクノロジー製、SFT9400)にて測定した。
(Copper film thickness measurement)
The copper thickness of the metallized film was measured with a fluorescent X-ray film thickness meter (SFT 9400, manufactured by SSI Nanotechnology).
(粘着剤貼り合わせ後の密着性試験)
金属化フィルムを100mm×20mmの大きさにカットして、金属化フィルムと厚さ0.2μmのステンレス板をアクリル系粘着剤(ニチバン製ナイスタック一般タイプ)で貼り合わせた。貼り合わせ後にステンレス板から粘着剤を剥がした時にステンレス板に粘着剤残りが無かったものを◎、端部にだけ粘着剤残りがあったがその他は粘着剤残り無く剥離できたものを○、粘着剤残りがあったものを△、剥がれなかったあるいは全面に粘着剤残りが生じたものを×とした。
(Adhesion test after adhesive bonding)
The metallized film was cut into a size of 100 mm × 20 mm, and the metallized film and a stainless steel plate having a thickness of 0.2 μm were bonded to each other with an acrylic pressure-sensitive adhesive (Nichiban general type made by Nichiban). When the adhesive was peeled off from the stainless steel plate after bonding, ◎ indicates that there was no adhesive remaining on the stainless steel plate. The case where there was a residual agent was indicated by Δ, and the case where the adhesive remained on the entire surface was indicated by ×.
(結晶粒の径と粒子数、面積率)
原子間力顕微鏡(日立ハイテクサイエンス製AFM5200S)を用いて金属化フィルムの銅層側表面の観察を行った。観察は1μm×1μmで行い、画像エンハンスドソフトウェア「LucisPro MT/R」(三谷商事製)でエッジ強調を行った後、画像解析・計測ソフトウェア「WinROOF2015 Standard」(三谷商事製)を用いて観察画像の結晶粒径と粒子数をカウントし、結晶粒の面積率を算出した。
(Grain size, number of particles, area ratio)
The copper layer side surface of the metallized film was observed using an atomic force microscope (AFM5200S manufactured by Hitachi High-Tech Science). Observation is performed at 1 μm × 1 μm, edge enhancement is performed with image enhanced software “LucisPro MT / R” (Mitani Corporation), and then image analysis / measurement software “WinROOF2015 Standard” (Mitani Corporation) The crystal grain size and the number of particles were counted, and the area ratio of the crystal grains was calculated.
(表面の耐酸化性について)
クリーンオーブンを用いて金属化フィルムをそのまま大気雰囲気で140℃1時間の熱処理を行い、熱処理後の変色具合で耐酸化性を判断した。表面の色が青く変色してしまったものを×、変色しないで銅の色を維持できているもの○とした。
(Surface oxidation resistance)
The metallized film was heat-treated at 140 ° C. for 1 hour in an air atmosphere using a clean oven, and the oxidation resistance was judged by the degree of discoloration after the heat treatment. The case where the surface color changed to blue was evaluated as x, and the case where the color of copper could be maintained without discoloring was evaluated as ○.
(実施例1)
厚さ50μmの2軸配向ポリエチレンテレフタレートフィルム(東レ(株)製、“ルミラー(登録商標)”タイプ:U483)に電子ビーム蒸着法によって銅を成膜速度2.0μm・m/min、ライン速度2.0m/minで1.0μmの厚さに真空蒸着した後にマグネトロンスパッタリング法で銅微結晶を形成した。スパッタリング条件による銅微結晶の形成条件としては、50mm×550mmサイズのターゲットを用い、真空到達度は1×10−2Pa以下、スパッタリング出力はDC電源を用いて5kwを採用した。この樹脂の5nm以上50nm以下の結晶粒の面積比は88.8%であった。この銅膜の厚みは1.02μm、表面粗さRaは0.03μmであった。
Example 1
Copper is deposited on a 50 μm thick biaxially oriented polyethylene terephthalate film (manufactured by Toray Industries, Inc., “Lumirror (registered trademark)” type: U483) by electron beam evaporation, and the film speed is 2.0 μm · m / min. After vacuum deposition at a thickness of 1.0 μm at 0.0 m / min, copper microcrystals were formed by magnetron sputtering. As conditions for forming copper microcrystals by sputtering conditions, a 50 mm × 550 mm size target was used, the degree of vacuum reached was 1 × 10 −2 Pa or less, and the sputtering output was 5 kW using a DC power source. The area ratio of crystal grains of 5 nm to 50 nm in this resin was 88.8%. The copper film had a thickness of 1.02 μm and a surface roughness Ra of 0.03 μm.
この銅膜フィルムとステンレス板を粘着剤で貼り合わせた後、粘着剤とステンレス板を剥離したところ、粘着剤残り無く良好に剥離することができ、評価は◎であった。 After bonding the copper film and the stainless steel plate with an adhesive, the adhesive and the stainless steel plate were peeled off. As a result, the adhesive film could be peeled off without any adhesive remaining, and the evaluation was ◎.
また、金属化フィルムをそのまま大気雰囲気で140℃1時間の熱処理を行ったが、銅箔表面は変色することはなかった。 Moreover, although the metallized film was directly heat-treated at 140 ° C. for 1 hour in an air atmosphere, the copper foil surface was not discolored.
(実施例2)
厚さ50μmの2軸配向ポリエチレンテレフタレートフィルム(東レ(株)製、“ルミラー(登録商標)”タイプ:T60)に銅を成膜速度1.0μm・m/min、ライン速度20.0m/minで0.05μmの厚さに真空蒸着した後にマグネトロンスパッタリング法で銅微結晶を形成した。スパッタリング条件による銅微結晶形成条件としては、50mm×550mmサイズのターゲットを用い、真空到達度は1×10−2Pa以下、スパッタリング出力はDC電源を用いて20kwを採用した。この銅膜の厚みは0.06μm、表面粗さRaは0.05μmであった。この樹脂の5nm以上50nm以下の結晶粒の面積比は68.2%であった。
(Example 2)
Copper is deposited on a 50 μm thick biaxially oriented polyethylene terephthalate film (manufactured by Toray Industries, Inc., “Lumirror (registered trademark)” type: T60) at a film forming speed of 1.0 μm · m / min and a line speed of 20.0 m / min. After vacuum deposition to a thickness of 0.05 μm, copper microcrystals were formed by magnetron sputtering. As conditions for forming copper microcrystals by sputtering conditions, a 50 mm × 550 mm size target was used, the degree of vacuum reached was 1 × 10 −2 Pa or less, and the sputtering output was 20 kW using a DC power source. The copper film had a thickness of 0.06 μm and a surface roughness Ra of 0.05 μm. The area ratio of crystal grains of 5 nm to 50 nm in this resin was 68.2%.
この銅膜フィルムとステンレス板を粘着剤で貼り合わせた後、粘着剤とステンレス板を剥離したところ、端部にのみ粘着剤残りが生じたが、他に粘着剤残りは無く、評価は○であった。 After laminating the copper film and the stainless steel plate with an adhesive, the adhesive and the stainless steel plate were peeled off, leaving an adhesive residue only at the edges, but there was no other adhesive residue, and the evaluation was ○ there were.
また、金属化フィルムをそのまま大気雰囲気で140℃1時間の熱処理を行ったが、銅箔表面は青く変色した。 Moreover, although the metallized film was directly heat-treated at 140 ° C. for 1 hour in an air atmosphere, the copper foil surface turned blue.
(実施例3)
厚さ50μmの2軸配向ポリエチレンテレフタレートフィルム(東レ(株)製、“ルミラー(登録商標)”タイプ:T60)に銅を成膜速度3.0μm・m/min、ライン速度1.0m/minで3.0μmの厚さに真空蒸着した後にマグネトロンスパッタリング法で銅微結晶を形成した。銅膜は蒸着中一部熱による変形が生じた。スパッタリング条件による銅微結晶形成条件としては、50mm×550mmサイズのターゲットを用い、真空到達度は1×10−2Pa以下、スパッタリング出力はDC電源を用いて2kwを採用した。この銅膜の厚みは2.91μm、表面粗さRaは0.05μmであった。この樹脂の5nm以上50nm以下の結晶粒の面積比は79.4%であった。
(Example 3)
Copper is deposited on a 50 μm-thick biaxially oriented polyethylene terephthalate film (“Lumirror (registered trademark)” type: T60 manufactured by Toray Industries, Inc.) at a film formation speed of 3.0 μm · m / min and a line speed of 1.0 m / min. After vacuum deposition to a thickness of 3.0 μm, copper microcrystals were formed by magnetron sputtering. The copper film was partially deformed by heat during deposition. As conditions for forming copper microcrystals by sputtering conditions, a 50 mm × 550 mm target was used, the degree of vacuum reached was 1 × 10 −2 Pa or less, and the sputtering output was 2 kW using a DC power source. The copper film had a thickness of 2.91 μm and a surface roughness Ra of 0.05 μm. The area ratio of the crystal grains of 5 nm to 50 nm of this resin was 79.4%.
この銅膜フィルムとステンレス板を粘着剤で貼り合わせた後、粘着剤とステンレス板を剥離したところ、粘着剤残り無く良好に剥離することができ、評価は◎であった。 After bonding the copper film and the stainless steel plate with an adhesive, the adhesive and the stainless steel plate were peeled off. As a result, the adhesive film could be peeled off without any adhesive remaining, and the evaluation was ◎.
また、金属化フィルムをそのまま大気雰囲気で140℃1時間の熱処理を行ったが、銅箔表面は青く変色した。 Moreover, although the metallized film was directly heat-treated at 140 ° C. for 1 hour in an air atmosphere, the copper foil surface turned blue.
(実施例4)
厚さ50μmの2軸配向ポリエチレンテレフタレートフィルム(東レ(株)製、“ルミラー(登録商標)”タイプ:X10S)に銅を成膜速度3.0μm・m/min、ライン速度5.0m/minで0.6μmの厚さに真空蒸着した後にマグネトロンスパッタリング法で銅微結晶を形成した。スパッタリング条件による銅微結晶形成条件としては、50mm×550mmサイズのターゲットを用い、真空到達度は1×10−2Pa以下、スパッタリング出力はDC電源を用いて12.5kwを採用した。この銅膜の厚みは0.67μm、表面粗さRaは0.15μmであった。この樹脂の5nm以上50nm以下の結晶粒の面積比は79.4%であった。
Example 4
Copper is deposited on a 50 μm thick biaxially oriented polyethylene terephthalate film (manufactured by Toray Industries, Inc., “Lumirror (registered trademark)” type: X10S) at a film forming speed of 3.0 μm · m / min and a line speed of 5.0 m / min. After vacuum deposition to a thickness of 0.6 μm, copper microcrystals were formed by magnetron sputtering. As conditions for forming copper microcrystals by sputtering conditions, a 50 mm × 550 mm size target was used, the degree of vacuum reached was 1 × 10 −2 Pa or less, and the sputtering output was 12.5 kW using a DC power source. The copper film had a thickness of 0.67 μm and a surface roughness Ra of 0.15 μm. The area ratio of the crystal grains of 5 nm to 50 nm of this resin was 79.4%.
この銅膜フィルムとステンレス板を粘着剤で貼り合わせた後、粘着剤とステンレス板を剥離したところ、端部にのみ粘着剤残りが生じたが、他に粘着剤残りは無く、評価は◎であった。 After bonding the copper film and the stainless steel plate with an adhesive, the adhesive and the stainless steel plate were peeled off, leaving an adhesive residue only at the edges, but there was no other adhesive remaining, and the evaluation was ◎ there were.
また、金属化フィルムをそのまま大気雰囲気で140℃1時間の熱処理を行ったが、銅箔表面は青く変色した。 Moreover, although the metallized film was directly heat-treated at 140 ° C. for 1 hour in an air atmosphere, the copper foil surface turned blue.
(実施例5)
厚さ50μmの2軸配向ポリエチレンテレフタレートフィルム(東レ(株)製、“ルミラー(登録商標)”タイプ:U483)に電子ビーム蒸着法によって銅を成膜速度2.0μm・m/min、ライン速度2.0m/minで1.0μmの厚さに真空蒸着した後にマグネトロンスパッタリング法で銅微結晶を形成した。スパッタリング条件による銅微結晶の形成条件としては、50mm×550mmサイズのターゲットを用い、真空到達度は1×10−2Pa以下、スパッタリング出力はDC電源を用いて10kwを採用した。この樹脂の5nm以上50nm以下の結晶粒の面積比は87.9%であった。この銅膜の厚みは1.03μm、表面粗さRaは0.03μmであった。
(Example 5)
Copper is deposited on a 50 μm thick biaxially oriented polyethylene terephthalate film (manufactured by Toray Industries, Inc., “Lumirror (registered trademark)” type: U483) by electron beam evaporation, and the film speed is 2.0 μm · m / min. After vacuum deposition at a thickness of 1.0 μm at 0.0 m / min, copper microcrystals were formed by magnetron sputtering. As conditions for forming copper microcrystals under sputtering conditions, a 50 mm × 550 mm size target was used, the degree of vacuum reached was 1 × 10 −2 Pa or less, and the sputtering output was 10 kW using a DC power source. The area ratio of the crystal grains of 5 nm to 50 nm of this resin was 87.9%. The copper film had a thickness of 1.03 μm and a surface roughness Ra of 0.03 μm.
この銅膜フィルムとステンレス板を粘着剤で貼り合わせた後、粘着剤とステンレス板を剥離したところ、端部にのみ粘着剤残りが生じたが、他に粘着剤残りは無く、評価は◎であった。
また、金属化フィルムをそのまま大気雰囲気で140℃1時間の熱処理を行ったが、銅箔表面は変色することはなかった。
After bonding the copper film and the stainless steel plate with an adhesive, the adhesive and the stainless steel plate were peeled off, leaving an adhesive residue only at the edges, but there was no other adhesive remaining, and the evaluation was ◎ there were.
Moreover, although the metallized film was directly heat-treated at 140 ° C. for 1 hour in an air atmosphere, the copper foil surface was not discolored.
(比較例1)
厚さ50μmの2軸配向ポリエチレンテレフタレートフィルム(東レ(株)製、“ルミラー(登録商標)”タイプ:U483)に電子ビーム蒸着法によって銅を成膜速度2.0μm・m/min、ライン速度2.0m/minで1.0μmの厚さに真空蒸着した。スパッタリング法による微結晶の形成は行わなかった。この樹脂の5nm以上50nm以下の結晶粒の面積比は61.4%であった。この銅膜の厚みは1.01μm、表面粗さRaは0.03μmであった。
(Comparative Example 1)
Copper is deposited on a 50 μm thick biaxially oriented polyethylene terephthalate film (manufactured by Toray Industries, Inc., “Lumirror (registered trademark)” type: U483) by electron beam evaporation, and the film speed is 2.0 μm · m / min. Vacuum deposition was performed at a thickness of 1.0 μm at 0.0 m / min. No microcrystals were formed by sputtering. The area ratio of crystal grains of 5 nm to 50 nm of this resin was 61.4%. The copper film had a thickness of 1.01 μm and a surface roughness Ra of 0.03 μm.
この銅膜フィルムとステンレス板を粘着剤で貼り合わせた後、粘着剤とステンレス板を剥離したところ、粘着剤が半分以上ステンレス板上に残ってしまい、評価は△であった。 After bonding the copper film and the stainless steel plate with an adhesive, the adhesive and the stainless steel plate were peeled off. As a result, more than half of the adhesive remained on the stainless steel plate, and the evaluation was Δ.
また、金属化フィルムをそのまま大気雰囲気で140℃1時間の熱処理を行ったが、銅箔表面は青く変色した。 Moreover, although the metallized film was directly heat-treated at 140 ° C. for 1 hour in an air atmosphere, the copper foil surface turned blue.
(比較例2)
厚さ50μmの2軸配向ポリエチレンテレフタレートフィルム(東レ(株)製、“ルミラー(登録商標)”タイプ:T60)に電子ビーム蒸着法によって銅を成膜速度0.1μm・m/min、ライン速度0.1m/minで1.0μmの厚さに真空蒸着した後にマグネトロンスパッタリング法で銅微結晶を形成した。スパッタリング条件による銅微結晶形成条件としては、50mm×550mmサイズのターゲットを用い、真空到達度は1×10−2Pa以下、スパッタリング出力はDC電源を用いて0.2kwを採用した。この銅膜の厚みは0.96μm、表面粗さRaは0.15μmであった。この樹脂の5nm以上50nm以下の結晶粒の面積比は57.2%でであった。
(Comparative Example 2)
Copper is deposited on a 50 μm thick biaxially oriented polyethylene terephthalate film (manufactured by Toray Industries, Inc., “Lumirror (registered trademark)” type: T60) by an electron beam evaporation method, and the line speed is 0 μm · m / min. After vacuum deposition at a thickness of 1.0 μm at 1 m / min, copper microcrystals were formed by magnetron sputtering. As conditions for forming copper microcrystals by sputtering conditions, a 50 mm × 550 mm size target was used, the degree of vacuum reached was 1 × 10 −2 Pa or less, and the sputtering output was 0.2 kW using a DC power source. The copper film had a thickness of 0.96 μm and a surface roughness Ra of 0.15 μm. The area ratio of the crystal grains of 5 nm to 50 nm of this resin was 57.2%.
この銅膜フィルムとステンレス板を粘着剤で貼り合わせた後、粘着剤とステンレス板を剥離したところ、粘着剤が半分以上ステンレス板上に残ってしまい、評価は△であった。 After bonding the copper film and the stainless steel plate with an adhesive, the adhesive and the stainless steel plate were peeled off. As a result, more than half of the adhesive remained on the stainless steel plate, and the evaluation was Δ.
また、金属化フィルムをそのまま大気雰囲気で140℃1時間の熱処理を行ったが、銅箔表面は青く変色した。 Moreover, although the metallized film was directly heat-treated at 140 ° C. for 1 hour in an air atmosphere, the copper foil surface turned blue.
Claims (5)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015160771 | 2015-08-18 | ||
JP2015160771 | 2015-08-18 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017041630A true JP2017041630A (en) | 2017-02-23 |
JP6671051B2 JP6671051B2 (en) | 2020-03-25 |
Family
ID=58206740
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016141034A Active JP6671051B2 (en) | 2015-08-18 | 2016-07-19 | Metallized film and method for producing metallized film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6671051B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020203109A1 (en) * | 2019-03-29 | 2020-10-08 | 東レ株式会社 | Metallized film and manufacturing method therefor |
JP2021177505A (en) * | 2020-05-07 | 2021-11-11 | 信越ポリマー株式会社 | Electromagnetic wave shield film, manufacturing method thereof and printed circuit board with electromagnetic wave shield film |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003001756A (en) * | 2001-06-27 | 2003-01-08 | Oike Ind Co Ltd | Copper thin film laminate |
JP2003094589A (en) * | 2001-09-27 | 2003-04-03 | Hitachi Metals Ltd | Method and apparatus for manufacturing laminate material |
JP2005196944A (en) * | 2003-12-08 | 2005-07-21 | Toray Ind Inc | Substrate for magnetic recording medium, and magnetic recording medium |
WO2008099527A1 (en) * | 2007-02-16 | 2008-08-21 | Hyomen Shori System Co, Ltd. | Flexible circuit board and process for producing the same |
JP2013185163A (en) * | 2012-03-06 | 2013-09-19 | Toray Kp Films Inc | Metalized film and metal foil |
JP2015070026A (en) * | 2013-09-27 | 2015-04-13 | 豊田合成株式会社 | Semiconductor device and manufacturing method of the same |
JP2017030350A (en) * | 2015-07-30 | 2017-02-09 | 東レKpフィルム株式会社 | Copper foil with release film and method for manufacturing copper foil with release film |
-
2016
- 2016-07-19 JP JP2016141034A patent/JP6671051B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003001756A (en) * | 2001-06-27 | 2003-01-08 | Oike Ind Co Ltd | Copper thin film laminate |
JP2003094589A (en) * | 2001-09-27 | 2003-04-03 | Hitachi Metals Ltd | Method and apparatus for manufacturing laminate material |
JP2005196944A (en) * | 2003-12-08 | 2005-07-21 | Toray Ind Inc | Substrate for magnetic recording medium, and magnetic recording medium |
WO2008099527A1 (en) * | 2007-02-16 | 2008-08-21 | Hyomen Shori System Co, Ltd. | Flexible circuit board and process for producing the same |
JP2013185163A (en) * | 2012-03-06 | 2013-09-19 | Toray Kp Films Inc | Metalized film and metal foil |
JP2015070026A (en) * | 2013-09-27 | 2015-04-13 | 豊田合成株式会社 | Semiconductor device and manufacturing method of the same |
JP2017030350A (en) * | 2015-07-30 | 2017-02-09 | 東レKpフィルム株式会社 | Copper foil with release film and method for manufacturing copper foil with release film |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020203109A1 (en) * | 2019-03-29 | 2020-10-08 | 東レ株式会社 | Metallized film and manufacturing method therefor |
JP7543139B2 (en) | 2019-03-29 | 2024-09-02 | 東レ株式会社 | Metallized film and method of manufacturing same |
JP2021177505A (en) * | 2020-05-07 | 2021-11-11 | 信越ポリマー株式会社 | Electromagnetic wave shield film, manufacturing method thereof and printed circuit board with electromagnetic wave shield film |
Also Published As
Publication number | Publication date |
---|---|
JP6671051B2 (en) | 2020-03-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6060854B2 (en) | Surface treatment method for resin film and method for producing copper clad laminate including the same | |
JPWO2017150678A1 (en) | Metal-clad laminate and manufacturing method thereof | |
TW202116119A (en) | Carrier-layer-included metal laminate base material and method for producing same, metal laminate base material and method for producing same, and printed wiring board | |
JP2005219259A (en) | Metallized polyimide film | |
JP6671051B2 (en) | Metallized film and method for producing metallized film | |
JP6300206B2 (en) | Method for producing copper foil with release film | |
JP2014086451A (en) | Flexible electronic device and manufacturing method of flexible electronic device | |
JP2014053410A (en) | Production method and production apparatus of double side metal laminate film, and manufacturing method of flexible double side printed wiring board | |
TWI783190B (en) | laminated body | |
JP6764587B2 (en) | Manufacturing method of metallized film | |
KR20200060228A (en) | Flexible substrate | |
KR102463385B1 (en) | Metallized film and manufacturing method thereof | |
JP6060836B2 (en) | Surface treatment method for resin film and method for producing copper clad laminate including the same | |
JP6705094B2 (en) | Copper foil with release film and method for producing copper foil with release film | |
JP2016153214A (en) | Conductive film and electromagnetic shield sheet using the same | |
TWI825179B (en) | Laminated body and method of manufacturing the laminated body | |
JP5565764B2 (en) | Electromagnetic wave interference prevention transfer film | |
JP6432793B2 (en) | Copper foil with release film | |
JP6671050B2 (en) | Copper foil with release film | |
JP6281215B2 (en) | Method for forming electric resistance thin film layer and method for producing copper clad laminate | |
JP2010274546A (en) | Metal film with adhesive and method for manufacturing the same | |
JP6772662B2 (en) | Can roll, dry film forming equipment, and curing band material | |
JP5650023B2 (en) | Copper foil for printed wiring board and laminated board using the same | |
JP6481864B2 (en) | Metallized film and method for producing the same | |
JP2015053353A (en) | Deposition method of electric resistance thin film layer and method of manufacturing copper-clad laminate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20181107 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190924 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191001 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191025 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200128 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200217 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6671051 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |