WO2008099527A1 - Flexible circuit board and process for producing the same - Google Patents

Flexible circuit board and process for producing the same Download PDF

Info

Publication number
WO2008099527A1
WO2008099527A1 PCT/JP2007/068314 JP2007068314W WO2008099527A1 WO 2008099527 A1 WO2008099527 A1 WO 2008099527A1 JP 2007068314 W JP2007068314 W JP 2007068314W WO 2008099527 A1 WO2008099527 A1 WO 2008099527A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
film
silicon
layer
sputtering
Prior art date
Application number
PCT/JP2007/068314
Other languages
French (fr)
Japanese (ja)
Inventor
Tsunemi Oiwa
Masatosi Kondo
Original Assignee
Hyomen Shori System Co, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2007035578A external-priority patent/JP2008198953A/en
Priority claimed from JP2007035579A external-priority patent/JP2008198954A/en
Priority claimed from JP2007155944A external-priority patent/JP2008311328A/en
Application filed by Hyomen Shori System Co, Ltd. filed Critical Hyomen Shori System Co, Ltd.
Publication of WO2008099527A1 publication Critical patent/WO2008099527A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/388Improvement of the adhesion between the insulating substrate and the metal by the use of a metallic or inorganic thin film adhesion layer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0393Flexible materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0175Inorganic, non-metallic layer, e.g. resist or dielectric for printed capacitor

Definitions

  • Patent application title FLEXIBLE CIRCUIT BOARD AND METHOD OF MANUFACTURING THE SAME
  • the present invention relates to a flexible circuit board in which a copper-based metal layer is formed on the surface of a resin film such as polyimide film, for example, and a method of manufacturing the same.
  • a resin film such as polyimide film
  • FPC flexible printed circuit
  • a copper film is formed on a heat resistant film, the copper film is pattern etched, and an IC or the like is bonded to form a flexible circuit. There is a way to make the board.
  • a method of laminating copper foil and polyimide film, and a nickel-chromium alloy sputtered film for giving adhesion on polyimide film In general, a copper sputtered film is formed to impart conductivity and a copper film is formed thereon by a plating method. Of these two, the sputtering method described later has characteristics such as the ability to thin copper, and is promising from the point of future prospects.
  • the thickness of the copper film becomes thinner, the Since the sputtered film of nickel-chromium alloy for imparting adhesion is difficult to etch, there is a problem that side etching progresses and fine patterns with a line width of 35 ⁇ m or less can not be formed. Furthermore, in the storage test at high temperature, the permeation of moisture and oxygen from the polyimide film side causes the nickel-chromium alloy to be oxidized and the adhesion to be lowered, which is a problem in terms of reliability.
  • Patent Document 1 In order to solve these problems, in place of the nickel-chromium alloy, another metal such as, for example, nickel-copper alloy has been proposed (Patent Document 1 below). However, although the method of Patent Document 1 improves in terms of fine patterns, there are problems with reliability and the like.
  • Patent Documents 1 and 2 As a countermeasure against this, there has been proposed a method of forming an oxide on the polyimide surface opposite to the copper sputtered film (Patent Documents 1 and 2 below).
  • Patent Documents 1 and 2 These methods increase the number of film formation processes and complicate the apparatus, leading to a cost increase.
  • Patent Document 1 Patent No. 3 4 4 7 0 7
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2 0 0 5-2 1 9 2 5 9
  • Patent Document 3 Japanese Patent Application Laid-Open No. 1 1 1 3 3 7 2 9
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2000-05-3 4 7 4 3 8 Patent Document 5 Japanese Patent Application Laid-Open No. 2005-0554 25 9 Disclosure of the Invention
  • the compound film with nitrogen on the polyimide side formed by the method of Patent Document 4 has a considerably large film thickness because the nitriding reaction is not sufficiently promoted and it does not form a stoichiometric nitride. There is a problem that sufficient adhesion can not be obtained unless it is done. Furthermore, since the chemical reaction can not be promoted even if nitrogen gas is introduced in vacuum deposition, silicon and tantalum etc. do not become nitrides, and only films close to the metallic state can be obtained, thus improving the reliability. I can not do it.
  • the present invention has been made in view of these circumstances, and an object thereof is to provide a flexible circuit board which is excellent in adhesion of a copper-based metal layer, is capable of fine etching, and has high reliability, and a method of manufacturing the same. .
  • a silicon nitride layer is formed on the surface of a resin film by a sputtering method in which nitrogen is contained in an equivalent amount of 0.5 to 1.33 to silicon.
  • the first point is that a copper-based metal layer is further formed.
  • the flexible circuit board of the present invention has a silicon oxide layer formed by a sputtering method in which nitrogen is contained in an equivalent amount of 0.3 to 1.1 on the surface of a resin film relative to silicon.
  • the formation of a copper-based metal layer is referred to as the second aspect.
  • the flexible circuit board of the present invention has a silicon nitride layer or a silicon oxynitride layer formed by a sputtering method on the surface of a resin film, and is further selected from silicon, aluminum and nickel.
  • a third aspect of the present invention is that a metal film having a thickness of 0.5 to 5 nm is formed, and a copper-based metal layer is further formed.
  • a silicon nitride layer containing 0.5 to 1.33 equivalents of nitrogen relative to silicon on the surface of the resin film is provided.
  • the method for producing a flexible circuit board of the present invention further comprises the steps of forming a silicon oxynitride sputtering step of forming a copper-based metal layer and forming a copper-based metal layer of a copper-based metal layer.
  • a first sputtering step of forming a silicon nitride layer or a silicon oxynitride layer by a sputtering method on the surface of a resin film And a second sputtering process for forming a metal film having a thickness of 0.5 to 5 nm selected from Ge, aluminum, and nickel, and a copper-based metal forming process for forming a copper-based metal layer.
  • a silicon nitride layer is formed on a surface of a resin film by a sputtering method in which nitrogen is contained in an equivalent amount of 0.5 to 1.3 with respect to silicon. A layer was formed.
  • the adhesion of the copper-based metal layer is improved by forming the silicon nitride layer containing 0.5 to 1.33 equivalent amounts of nitrogen as the intermediate layer.
  • the silicon nitride layer is an insulator, there is no need for etching, and only the copper-based metal layer needs to be etched, so that fine etching can be performed without much side etching.
  • a silicon oxynitride layer is formed on a surface of a resin film by a sputtering method in which nitrogen is contained in an equivalent amount of 0.3 to 1.1 with respect to silicon. A layer was formed.
  • the adhesion of the copper-based metal layer is improved by forming the silicon oxynitride layer containing 0.3 to 1.1 of nitrogen equivalently as the intermediate layer.
  • the silicon oxynitride layer does not need to be etched because it is an insulator, it is sufficient to etch only the copper-based metal layer, so that it is possible to perform fine etching without much side etching.
  • a silicon nitride layer or a silicon oxynitride layer is formed on a surface of a resin film by a sputtering method, and a thickness selected from silicon, aluminum and nickel is further provided.
  • a metal film of ⁇ 5 nm Furthermore, a copper-based metal layer was formed.
  • Adhesion of the metal layer is good.
  • the silicon nitride layer or the silicon oxynitride layer does not need to be etched because it is an insulator, it is only necessary to etch only a thin metal film such as a thin silicon and a copper-based metal layer. Fine etching is possible without much occurrence of In addition, even if moisture or oxygen penetrates from the resin film side under high temperature, it is blocked by the silicon nitride layer or the silicon oxynitride layer, and oxidation of the copper-based metal layer and adhesion decrease.
  • the flexible circuit board has excellent reliability.
  • the silicon nitride sputtering step is carried out while applying a high-frequency bias voltage to an electrode roll for sending a resin film in a region facing a target. Since the electrode roll on the resin film side is shifted to the apparent negative potential side with respect to the surroundings due to the high frequency bias voltage, a sufficient amount of nitrogen in the silicon nitride can be secured and the adhesion of the silicon nitride layer is also significantly improves.
  • the above-mentioned oxynitride silicon sputtering process is carried out while applying a high frequency bias voltage to an electrode roll for sending a resin film in a region facing a target.
  • the electrode roll on the resin film side is apparently shifted to the negative potential side with respect to the surrounding area due to the high frequency bias voltage, so that sufficient amount of nitrogen in the silicon nitride can be secured and adhesion of the silicon nitride layer The power also improves significantly.
  • the second method described above When the sputtering process is performed while applying a high frequency bias voltage to the electrode roll that sends the resin film in the region facing the target, the electrode roll on the resin film side is against the surrounding due to the high frequency bias voltage. By apparently shifting to the negative potential side, the adhesion of the metal film is also greatly improved.
  • FIG. 1 is a cross-sectional view showing a flexible circuit board according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a flexible circuit board according to a second embodiment of the present invention.
  • Fig. 3 is a block diagram showing a sputtering apparatus.
  • Fig. 4 is a block diagram showing a plating apparatus.
  • Fig. 5 is a block diagram showing a second example of the sputtering apparatus.
  • Fig. 6 is a block diagram showing a third example of the sputtering apparatus.
  • Fig. 7 is a block diagram showing a fourth example of the sputtering apparatus.
  • FIG. 8 is a cross-sectional view showing a flexible circuit board according to another embodiment of the present invention.
  • FIG. 9 is a cross-sectional view showing a flexible circuit board according to a seventh embodiment of the present invention.
  • Fig. 10 is a block diagram showing a sputtering apparatus.
  • FIG. 11 is a cross-sectional view showing a flexible circuit board according to another embodiment of the present invention.
  • FIG. 1 is a cross-sectional view showing a flexible circuit board according to a first embodiment of the present invention.
  • a silicon nitride layer 2a is formed on the surface of the resin film 1 by a sputtering method in which nitrogen is contained in an equivalent amount of 0.5 to 1.33 with respect to silicon, and a copper-based metal is further formed.
  • Layer 3 is formed.
  • the copper-based metal layer 3 is composed of a copper sputter film 4 formed by a sputtering method and a copper plating layer 5 formed by a plating method.
  • Examples of the above-mentioned resin film 1 include polyimide film, polyethylene terephthalate, polyethylene carbonate, and liquid crystal polymer film, which have heat resistance, mechanical stability, mechanical strength, electrical characteristics, etc. It is excellent in point and can be used suitably.
  • a silicon nitride layer 2a containing 0.5 to 1.33 equivalent amounts of nitrogen relative to silicon is formed by reactive sputtering. If the amount of nitrogen to silicon is less than 0.5 equivalently, the reliability at high temperature becomes a problem, and conversely, if it exceeds 1.33 equivalently, the adhesion becomes weak.
  • the thickness of the silicon nitride layer 2 a is preferably about 5 to 15 nm. If the thickness is less than 5 nm, moisture permeation from the resin film 1 side can not be sufficiently prevented under high temperature, and there is a problem with reliability. On the other hand, if it exceeds 15 nm, the film may be cracked or distorted. As the film peels off, the adhesion is rather weak. In particular, 8 to 12 nm is desirable, and the adhesion and reliability of the copper-based metal layer 3 are excellent.
  • the copper-based metal layer 3 is composed of a copper sputtered film 4 formed on the silicon nitride layer 2 a and a copper plated layer 5 formed on the copper sputtered film 4.
  • the copper-based metal constituting the copper sputtered film 4 and the copper plating layer 5, that is, the copper-based metal layer 3, copper or a copper alloy can be used.
  • the sputtered copper film 4 is preferably formed to a thickness of about 50 to 100 nm. If the thickness is less than 50 nm, discoloration of the coating layer called "burn" tends to occur during copper plating in the next step, which makes it difficult to adjust the setting of copper plating conditions and, in some cases, adhesion To reduce the On the other hand, when lO O O n is exceeded, the sputtering time becomes long and the production rate is significantly reduced.
  • the thickness of the copper plating layer 5 can be appropriately determined by the electrical conductivity and the line width of the pattern, etc., but 0.2 ⁇ ! It is set to about 15 ⁇ m. If it is less than 0.2 / m, it will be a problem in terms of electrical conductivity, and conversely it will exceed 15 im If this is the case, it may be difficult to form a fine pattern.
  • FIG. 2 is a cross-sectional view showing a flexible circuit board according to a second embodiment of the present invention.
  • a silicon oxynitride silicon layer 2b is formed on the surface of the resin film 1 by a sputtering method in which nitrogen is contained in an equivalent amount of 0.3 to 1.1 with respect to silicon, and a copper-based metal is further formed.
  • Layer 3 is formed.
  • the copper-based metal layer 3 is composed of a copper sputter film 4 formed by a sputtering method and a copper plating layer 5 formed by a plating method.
  • a silicon oxynitride layer 2b containing nitrogen in an equivalent of 0.3 to 1.1 by nitrogen equivalent to silicon is formed by reactive sputtering. . If the amount of nitrogen to silicon is less than 0.3 equivalent weight, the reliability at high temperature becomes a problem, and conversely, if the equivalent weight exceeds 1.1, the adhesion becomes weak.
  • the thickness of the silicon oxynitride layer 2 b is preferably about 5 to 20 nm. If the thickness is less than 5 nm, moisture permeation from the resin film 1 side can not be sufficiently prevented under high temperature, and there is a problem with reliability. On the other hand, if it exceeds 20 nm, the film may be cracked or distorted. As the film peels off, the adhesion is rather weak. In particular, 8 to 15 nm is desirable, and the adhesion and reliability of the copper-based metal layer 3 are excellent.
  • the copper-based metal layer 3 is formed of the copper sputtered film 4 formed on the silicon oxynitride layer 2 b and the copper plating layer 5 formed on the copper sputtered film 4. It is configured.
  • the copper-based metal constituting the copper sputtered film 4 and the copper plating layer 5, that is, the copper-based metal layer 3, copper or a copper alloy can be used.
  • FIGS. 3 and 4 show an apparatus for manufacturing the flexible circuit board 6 described above.
  • FIG. 3 shows a sputtering apparatus for forming the silicon nitride layer 2 a, the silicon oxynitride layer 2 b and the copper sputtered film 4, and
  • FIG. 4 shows a plating apparatus for forming the copper plating layer 5.
  • the sputtering apparatus shown in FIG. 3 includes a plasma chamber 10 for performing plasma processing as a pretreatment, a first sputtering chamber 11 for performing a first sputtering process, and a first sputtering process for performing a first sputtering process.
  • a plasma chamber 10 for performing plasma processing as a pretreatment
  • a first sputtering chamber 11 for performing a first sputtering process
  • a first sputtering process for performing a first sputtering process.
  • the plasma chamber 10, the first sputtering chamber 11 and the second sputtering chamber 12 are each connected to a vacuum pump (not shown) so that the pressure can be adjusted independently.
  • the plasma chamber 10 is supplied with the resin film 1 wound in a roll shape, the silicon nitride layer 2 and the copper in the first sputtering chamber 11 and the second sputtering chamber 12 respectively.
  • a take-up roll 1 4 is provided for taking up the film 1 a with a seed layer on which the sputtered film 4 is formed.
  • the plasma chamber 10 is provided with a plasma processing apparatus 15 which performs plasma processing as a pretreatment to the resin film 1 supplied from the supply roll 13.
  • a gas obtained by adding 5 to 60% by volume of oxygen or nitrogen or a mixed gas thereof to argon gas is introduced into the plasma processing apparatus 15 as a gas for plasma processing. Then, a plasma is generated by applying a DC voltage, an AC voltage, or a high frequency voltage to the electrodes, and the resin film 1 is allowed to pass through the plasma atmosphere to carry out the plasma treatment.
  • a plasma treatment functional groups are generated on the surface of the resin film 1, and the adhesion of the silicon nitride layer 2a and the silicon oxynitride layer 2b is enhanced. Even if argon gas alone is used as the plasma processing gas Good, but the effect is enhanced by mixing oxygen and nitrogen.
  • the resin film 1 plasma-treated in the plasma chamber 10 is supplied to the first sputtering chamber 11 to form a silicon nitride oxide film and a silicon oxynitride film by reactive sputtering.
  • the first sputtering chamber 11 is provided with a silicon target 18 and a first roll 16 for feeding the resin film 1 plasma-treated in the area facing the silicon target 18. .
  • a negative voltage is applied to the silicon target 18 from the DC power supply 21.
  • a high frequency bias voltage is applied to the first roll 16 by a high frequency power source 2.
  • a mixed gas of argon and nitrogen is introduced as a reactive sputtering gas.
  • the ratio of argon gas to nitrogen gas is preferably in the range of 95: 5 to 50:50. If the amount of nitrogen gas is too low, the amount of nitrogen in the film becomes too low, and adhesion and reliability are obtained. I can not. On the other hand, if there is too much nitrogen gas, the deposition rate of the film will be slower, and more nitrogen than stoichiometry will be produced.
  • the above-mentioned silicon nitride sputtering process is performed while applying a high frequency bias voltage to the first roll 16 which functions as a running roll called a can roll for cooling the film.
  • the high frequency bias voltage is preferably in the range of 0.5 to 0.5 WZ cm 2 . If it is less than 0.50 WZ cm 2 , the adhesion can not be obtained, and if it exceeds 0.2 W / cm 2 , the polyimide film is deteriorated and there is a problem with reliability.
  • the resin film 1 on which the silicon nitride layer 2a is formed by the above-described silicon nitride sputtering process is supplied to the second sputtering chamber 12, and a copper sputtering process is performed.
  • the second sputtering chamber 12 is provided with a copper target 19 and a second roll 17 for feeding the resin film 1 in a region facing the copper target 19.
  • a negative potential voltage is applied to the copper target 19 by a DC power supply 21.
  • copper sputtering is performed using argon gas as a sputtering gas to form a copper sputtered film 4.
  • the gas pressure of the plasma chamber 10, the first sputtering chamber 11 and the second sputtering chamber 12 may be substantially the same, but it is preferable to make the second sputtering chamber 12 the highest. If the gas pressure in the second sputtering chamber 12 becomes low, nitrogen gas flows from the first sputtering chamber 11 or the plasma chamber 10, and copper nitride is formed, and in some cases, the conductivity may be lost. is there.
  • the film 1 a with a seed layer on which the copper sputtered film 4 is formed is again sent to the plasma chamber 10 and is removed by the drying roll 14.
  • the film 1a with a silicon layer on which the silicon nitride layer 2a and the copper sputtered film 4 are formed is subjected to a copper plating process with a continuous copper plating apparatus to form a copper plating layer 5.
  • the continuous copper plating device shown in Fig. 4 comprises a plating tank 2 5, a water washing tank 2 6 and a drying tank 2 7, and the film 1 a with a seed layer supplied by a supply roll 28 is copper in a copper sulfate bath or the like.
  • the flexible circuit board of the present invention is formed by forming the plating layer 5 Take up the winding roll 2 9.
  • reference numeral 30 is a DC power supply
  • 31 is an anode
  • 32 is a cathode roll.
  • the copper sputtering process and the copper plating process are the copper-based metal forming process of the present invention for forming the copper-based metal layer 3.
  • a negative voltage is applied to the silicon target 18 from the DC power supply 21.
  • a high frequency bias voltage is applied to the first roll 16 by a high frequency power supply 20.
  • a mixed gas of argon, oxygen and nitrogen is introduced as a reactive sputtering gas.
  • the ratio of argon gas to oxygen nitrogen mixed gas is preferably in the range of 90:10 to 60:40, and the ratio of oxygen gas to nitrogen gas in the oxygen nitrogen mixed gas is 10:90 to 2 0: 10 is a preferred range. If the amount of nitrogen gas is too low, the amount of nitrogen in the film will be too low to obtain adhesion and reliability. On the other hand, if there is too much nitrogen gas, the deposition rate of the film will be slower and more nitrogen than stoichiometry will be found.
  • the above silicon oxynitride sputter process is a first roll that functions as a traveling roll called a can roll for film cooling.
  • the high frequency bias voltage is preferably in the range of 0.5 to 0.5 cm 2 . If it is less than 0.50 WZ cm 2 , the adhesion can not be obtained, and if it exceeds 0.3 WZ cm 2 , the polyimide film is deteriorated and there is a problem in reliability. Without the application of the high frequency bias voltage, the nitrogen component contained in the formed silicon oxynitride layer 2 b is considerably reduced, and adhesion and reliability can not be obtained. Thus, on the surface of the resin film 1, an oxynitride silicon sputtering process is performed to form an oxynitride silicon layer 2b containing nitrogen in an equivalent amount of 0.5 to 1.33 with respect to silicon.
  • the resin film 1 on which the silicon oxynitride layer 2 b is formed in the above-described silicon oxynitride sputtering process is supplied to the second sputtering chamber 12, and a copper sputtering process and a copper plating process are performed.
  • the copper sputtering process and the copper plating process are the same as the method of the first embodiment described above.
  • the silicon nitride layer 2 a is formed on the surface of the resin film 1 by the sputtering method in which nitrogen is contained in an equivalent amount of 0.5 to 1.33 with respect to silicon. Further, a copper-based metal layer 3 was formed. Thus, the adhesion of the copper-based metal layer 3 is improved by forming the silicon nitride layer 2 a containing 0.5 to 1.33 nitrogen equivalently as the intermediate layer. . Furthermore, since the silicon nitride layer 2 a is an insulator, there is no need for etching, and only the copper-based metal layer 3 needs to be etched, so it is possible to perform fine etching without much side etching. Become.
  • the resin is applied by the high frequency bias voltage.
  • the first roll 16 on the side of the film 1 apparently shifts to the negative potential side with respect to the periphery, so that a sufficient amount of nitrogen in the silicon nitride can be secured.
  • the adhesion of the silicon nitride layer 2 a is also significantly improves.
  • the surface of the resin film 1 contains 0.5 to 1.33 equivalent amounts of nitrogen relative to silicon.
  • a silicon oxynitride layer 2 b was formed, and a copper-based metal layer 3 was further formed.
  • the adhesion of the copper-based metal layer 3 is considered to be good by forming the silicon oxynitride layer 2 b containing 0.5 to 1.33 equivalent amounts of nitrogen as the intermediate layer.
  • the silicon oxynitride layer 2b is an insulator, there is no need for etching, and only the copper-based metal layer 3 needs to be etched, so that side etching does not occur so much and fine etching can be performed. Become.
  • the resin by the high frequency bias voltage is used. Since the first roll 16 on the film 1 side apparently shifts to the negative potential side with respect to the surroundings, a sufficient amount of nitrogen in the silicon oxynitride can be secured and adhesion of the silicon oxynitride layer 2 b is also achieved. The power is also greatly improved.
  • FIG. 5 is a diagram for explaining a third embodiment of the present invention.
  • a high frequency bias voltage is applied to the second port 17 of the second Spack chamber 12 by the high frequency power supply 22, and the copper sputtering process is performed in the area facing the copper target 19. While applying the high frequency bias voltage to the second roll 1 ⁇ which sends
  • the power of the high frequency bias voltage is preferably in the range of 0.55 W / cm 2 or more, and if it is less than this, a sufficient improvement in adhesion can not be obtained.
  • the other parts are the same as in the first and second embodiments, and the same reference numerals are given to the same parts. By doing this, the adhesion of the copper sputtered film 4 is further improved. Otherwise, the same operation and effect as those of the first and second embodiments can be obtained.
  • FIG. 6 is a diagram for explaining a fourth embodiment of the present invention.
  • a common port 23 is provided between the first sputtering chamber 1 1 and the second sputtering chamber 12, and a high frequency bias voltage is supplied to the common port 23 by the high frequency power supply 22. It is applied. Then, the silicon nitride sputtering process, the silicon oxynitride sputtering process and the copper sputtering process are performed using the common roll 23 and are all performed while applying a high frequency bias voltage.
  • the other parts are the same as in the first and second embodiments, and the same reference numerals are given to the same parts. By doing this, the adhesion of the copper sputtered film 4 is further improved. The other effects are the same as those of the first to third embodiments.
  • FIG. 7 is a diagram for explaining a fifth embodiment of the present invention.
  • This sputtering apparatus is provided with a deposition chamber 37 for performing vacuum deposition instead of the second sputtering chamber 12.
  • a copper supply portion 33 for supplying a copper wire 34 to be deposited, a pot 35 for melting the supplied copper wire 34, a heater 36 for heating the crucible 35 and
  • a copper vapor-deposited film is formed.
  • the other parts are the same as in the first to fourth embodiments, and the same reference numerals are given to the same parts. Also in this example, the same effects as those of the first to fourth embodiments can be obtained.
  • FIG. 8 is a diagram showing a sixth embodiment of the present invention.
  • the flexible circuit board 6 is formed by forming a copper film 3 a by ion plating or vacuum evaporation and omitting copper plating. It is effective when the thickness of the copper film 3 a is 1 / m or less.
  • FIG. 9 is a cross-sectional view showing a flexible circuit board 6 according to a seventh embodiment of the present invention.
  • a silicon nitride layer 2 a or a silicon oxynitride layer 2 b is formed on the surface of the resin film 1 by sputtering. Further, a metal film 7 having a thickness of 0.5 to 5 nm selected from carbon, aluminum, and nickel is formed, and a copper-based metal layer 3 is further formed.
  • the copper-based metal layer 3 is composed of a copper sputter film 4 formed by sputtering and a copper plating layer 5 formed by plating.
  • Examples of the above-mentioned resin film 1 include polyimide film, polyethylene terephthalate, polyethylene carbonate, and liquid crystal polymer film, in terms of heat resistance, mechanical stability, mechanical strength, electrical characteristics and the like. It is excellent and can be suitably used.
  • a silicon nitride layer 2a or a silicon oxynitride layer 2b is formed on the surface of the resin film 1 as a middle layer by reactive sputtering.
  • the silicon nitride layer 2 a is preferably a silicon nitride layer 2 a containing 0.5 to 1.33 of nitrogen equivalent to silicon. If the amount of nitrogen to silicon is less than 0.5 equivalently, the reliability at high temperature becomes a problem, and conversely, if it exceeds 1.33 equivalently, the adhesion becomes weak.
  • the thickness of the silicon nitride layer 2 a is preferably about 5 to 15 nm. If the thickness is less than 5 nm, moisture permeation from the resin film 1 side can not be sufficiently prevented under high temperature, and there is a problem with reliability. On the contrary, if the thickness exceeds 15 nm, the film is cracked or distorted. Because of peeling, the adhesion is rather weak. In particular, 8 to 12 nm is desirable, and the adhesion and reliability of the copper-based metal layer 3 are excellent.
  • the silicon oxynitride layer 2 b is preferably a silicon oxynitride layer 2 b containing nitrogen in an equivalent amount of 0.3 to 1.1 with respect to the silicon. If the amount of nitrogen to silicon is less than 0.3 equivalently, the reliability at high temperature becomes a problem, and conversely, if it exceeds 1.1 equivalently, the adhesion becomes weak.
  • the thickness of the silicon oxynitride layer 2 b is preferably about 5 to 20 nm. is there. If it is less than 5 nm, the permeation of water from the resin film 1 side can not be sufficiently prevented under high temperature, and there is a problem with reliability. On the other hand, if it exceeds 20 nm, the film may be cracked or distorted. As the film peels off, the adhesion is rather weak. In particular, 8 to 15 nm is desirable, and the adhesion and reliability of the copper-based metal layer 3 are excellent.
  • a metal film 7 selected from Court, aluminum and nickel is formed.
  • the thickness is preferably 0.5 to 5 nm, more preferably 1 to 3 nm.
  • the film forming method may be a vapor deposition method or the like, but the sputter method is preferable in view of the relationship between the degree of vacuum and the like and the adhesion.
  • the copper-based metal layer 3 is a copper sputtered film 4 formed on the silicon nitride layer 2 a or the silicon oxynitride layer 2 b, and a copper plating formed on the copper sputtered film 4. It consists of 5 layers.
  • the sputtered copper film 4 is preferably formed to a thickness of about 50 to 100 nm. If the thickness is less than 50 nm, discoloration of the coating layer called "burn" tends to occur during copper plating in the next step, which makes it difficult to adjust the setting of copper plating conditions and, in some cases, adhesion To reduce the On the other hand, when lO O O n is exceeded, the sputtering time becomes long and the production rate is significantly reduced.
  • the thickness of the copper plating layer 5 can be appropriately determined depending on the electrical conductivity, the line width of the pattern, and the like, but is set to about 0.2 m to 15 ⁇ m. If it is less than 0.2 im, it will be a problem in terms of electrical conductivity, and conversely, if it exceeds 15 ⁇ , it may be difficult to form a fine pattern.
  • FIGS. 10 and 4 are diagrams showing an apparatus for manufacturing the flexible circuit board 6. 2 shows a sputtering apparatus for forming the silicon nitride layer 2 a, the silicon oxynitride layer 2 b, the metal film 7 and the copper sputtered film 4, and FIG. 3 shows a plating apparatus for forming the copper plated layer 5. Respectively.
  • the sputtering apparatus shown in FIG. 10 includes a plasma chamber 10 in which plasma processing is performed as a pretreatment, a first sputtering chamber 11 in which a first sputtering step is performed, and a second sputtering step in which a second sputtering step is performed. 2 Sputtering chamber 1 2 is provided.
  • the plasma chamber 10, the first sputtering chamber 11 and the second sputtering chamber 12 are each connected to a vacuum pump (not shown) so that the pressure can be adjusted independently.
  • the plasma chamber 10 is supplied with the resin film 1 wound into a roll, and the silicon nitride layer 2 a or the silicon nitride layer 2 a in the first sputtering chamber 11 and the second sputtering chamber 12 respectively.
  • a take-up roll 14 is provided for taking up a film 1 a with a seed layer on which the silicon oxynitride layer 2 b, the metal film 7 and the copper sputtered film 4 are formed.
  • the plasma chamber 10 is provided with a plasma processing apparatus 15 for performing plasma processing as a pretreatment on the resin film 1 supplied from the supply roll 13.
  • a gas obtained by adding 5 to 60% by volume of oxygen or nitrogen or a mixed gas thereof to argon gas is introduced into the plasma processing apparatus 15 as a gas for plasma processing.
  • a plasma is generated by applying a DC voltage, an AC voltage, or a high frequency voltage to the electrodes, and the resin film 1 is allowed to pass through the plasma atmosphere to carry out the plasma treatment.
  • a functional group is generated on the surface of the resin film 1 and functions to enhance the adhesion of the silicon nitride layer 2 a and the silicon oxynitride layer 2 b.
  • argon gas alone may be used as the plasma processing gas, the effect is enhanced by mixing oxygen and nitrogen.
  • the resin film 1 subjected to plasma treatment in the plasma chamber 10 is supplied to the first sputtering chamber 11 to form a silicon nitride or silicon oxynitride film by reactive sputtering.
  • the first sputtering chamber 11 is provided with a silicon target 18 and a first roll 16 for feeding the resin film 1 plasma-treated in the area facing the silicon target 18. .
  • a voltage of negative potential is applied to the silicon target 18 by the DC power supply 21.
  • a high frequency bias voltage is applied to the first roll 16 by a high frequency power supply 20.
  • a mixed gas of argon and nitrogen is introduced as a reactive sputtering gas.
  • the ratio of argon gas to nitrogen gas is preferably in the range of 95: 5 to 50:50. If the amount of nitrogen gas is too low, the amount of nitrogen in the film becomes too low, and adhesion and reliability are obtained. I can not. On the other hand, if there is too much nitrogen gas, the deposition rate of the film will be slower, and more nitrogen than stoichiometry will be generated.
  • the silicon nitride sputtering process applies a high frequency bias voltage to the first roll 16 which functions as a roll for running, which is called a roller roll for film cooling. Do. This provides energy to promote the reaction and promotes the chemical reaction.
  • the high frequency bias voltage is preferably in the range of 0.5 to 0.5 W / cm 2 . If it is less than 0.50 WZ cm 2 , adhesion can not be obtained, and if it exceeds 0.2 W / cm 2 , the polyimide film will be deteriorated, resulting in problems in reliability. Without the application of the high frequency bias voltage, the nitrogen component contained in the formed silicon nitride layer 2 a is considerably reduced, and adhesion and reliability can not be obtained.
  • a silicon nitride sputtering process is performed to form a silicon nitride layer 2a containing an equivalent weight of 0.5-3.
  • the resin film 1 on which the silicon nitride layer 2a is formed in the above-described silicon nitride sputtering process is supplied to the second sputtering chamber 12 and has a thickness of 0.5 to 5 nm selected from silicon, aluminum and nickel. While the metal sputtering process for forming the metal film 7 is performed, the copper sputtering process is performed.
  • a metal target 24 and a copper target 19 consisting of metals selected from Ge, aluminum, and nickel, and the metal target 24 and the copper target 19 are faced.
  • a second roll 1 7 for feeding the resin film 1 is provided.
  • a negative potential voltage is applied to the metal target 24 by a DC power supply 21 a. Then, using argon gas as a sputtering gas, metal sputtering is performed to form a metal film 7.
  • a high frequency bias voltage is applied by the high frequency power supply 22 to the second roll 1 which functions as a traveling roll called a roller for cooling the fnorem. It is preferred to do. This provides energy to promote the reaction and promotes the chemical reaction.
  • the high frequency bias voltage is preferably in the range of 0.3 to 0.3 Wz cm 2 . 0. Adhesion is somewhat weaker than 0 3 cm less than 2, 0. When 2 exceeds WZ cm 2, deteriorated Porii Mi de film, problems in reliability.
  • a negative potential voltage is applied to the copper target 19 by a DC power supply 21. Then, a copper sputtering process is performed using argon gas as a sputtering gas to form a copper sputtered film 4.
  • the copper sputter process is carried out by the high frequency power supply 22 with respect to the second roll 17 which feeds the resin film 1 in the area facing the copper target 19. It can also be performed while applying a bias voltage.
  • the power of the high frequency bias voltage is preferably 0.3 WZ cm 2 or more, and if it is less than this, the effect of improving the adhesion can not be obtained. By doing so, the adhesion of the copper sputtered film 4 is further improved.
  • the gas pressure of the plasma chamber 10, the first sputtering chamber 11 and the second sputtering chamber 12 may be substantially the same, but it is preferable to make the second sputtering chamber 12 the highest. If the gas pressure in the second sputtering chamber 12 becomes low, nitrogen gas flows from the first sputtering chamber 11 or the plasma chamber 10, copper nitride is formed, and in some cases, the conductivity may be lost. It is.
  • the film 1 a with a seed layer on which the copper sputtered film 4 is formed is again sent to the plasma chamber 10 and wound off by the winding roll 14.
  • the film 1a with a seed layer on which the silicon nitride layer 2a or the silicon oxynitride layer 2b, the metal film 7 and the copper sputtered film 4 are formed is subjected to a copper plating process using a continuous copper plating apparatus.
  • the copper plating layer 5 is formed.
  • the continuous copper plating device shown in Fig. 4 comprises a plating tank 2 5, a water washing tank 2 6 and a drying tank 2 7, and the film 1 a with a shield layer supplied by the supply roll 28 is a copper sulfate bath or the like.
  • a copper plating layer 5 is formed to form the flexible circuit board 6 of the present invention, and the winding roll 29 is scraped.
  • reference numeral 30 is a DC power supply
  • 31 is an anode
  • 32 is a cathode roll.
  • the copper sputtering process and the copper plating process are the copper-based metal forming process of the present invention for forming the copper-based metal layer 3.
  • a negative voltage is applied to the silicon target 18 from the DC power supply 21.
  • a high frequency bias voltage is applied to the first roll 16 by a high frequency power supply 20.
  • a mixed gas of argon, oxygen and nitrogen is introduced as a reactive sputtering gas.
  • the ratio of the oxygen-nitrogen mixed gas is preferably in the range of 90:10 to 60:40, and the ratio of oxygen gas to nitrogen gas in the oxygen-nitrogen mixed gas is in the range of 10:90 to 40: 6. 0 is a preferred range.
  • the amount of nitrogen gas is too low, the amount of nitrogen in the film will be too low to obtain adhesion and reliability. On the other hand, if there is too much nitrogen gas, the film deposition rate will be slower and more nitrogen than stoichiometry will be found.
  • the above-mentioned silicon oxynitride process is performed while applying a high frequency bias voltage to the first roll 16 which functions as a traveling roll called a can roll for cooling the film.
  • a high frequency bias voltage 0.5 to 0.5 Wz cm 2 is a preferable range. 0.
  • adhesion force is less than 0 5 cm 2, 0. 3 exceeds WZ cm 2, it deteriorated Porii Mi de film, problems in reliability.
  • the nitrogen component contained in the formed silicon oxynitride layer 2 b is considerably reduced, and adhesion and reliability can not be obtained.
  • a silicon oxynitride sputtering process is performed to form a silicon oxynitride layer 2b containing nitrogen in an equivalent amount of 0.5 to 1.33 with respect to silicon.
  • the resin film 1 on which the silicon oxynitride layer 2b is formed by the above-mentioned silicon oxynitride sputtering process is supplied to the second sputtering chamber 12, and a metal film sputtering process, a copper sputtering process and a copper plating process are performed.
  • the metal film sputtering process, the copper sputtering process and the copper plating process are the same as the method of the first example described above.
  • the silicon nitride layer 2 a or the silicon oxynitride layer 2 b is formed on the surface of the resin film 1 by the spack method. Further, a metal film 7 having a thickness of 0.5 to 5 nm selected from carbon, aluminum and nickel was formed, and a copper-based metal layer 3 was further formed. Thus, as the intermediate layer, the silicon nitride layer 2a or the silicon oxynitride layer 2b and the metal film 7 with a thickness of 0.5 to 5 nm selected from carbon, aluminum, and nickel were formed. Thus, the adhesion of the copper-based metal layer 3 is improved.
  • the silicon nitride layer 2 a or the silicon oxynitride layer 2 b is an insulator, there is no need to etch, and only the extremely thin metal film 7 such as silicon and the copper-based metal layer 3 can be etched. Since it is sufficient, fine etching can be performed without much side etching. Moreover, even if moisture or oxygen permeates from the resin film 1 side at high temperature, it is blocked by the silicon nitride layer 2 a or the silicon oxynitride layer 2 b, and oxidation of the copper-based metal layer 3 or The flexible circuit board 6 has excellent adhesion and no reduction in adhesion.
  • the metal sputtering process as the second sputtering process of the present invention is carried out while applying a high frequency bias voltage to the second roll 17 sending the resin film 1 in the region facing the metal target 24. Since the second roll 17 on the resin film 1 side is apparently shifted to the negative potential side with respect to the surroundings due to the high frequency bias voltage, the adhesion of the metal film 7 is also greatly improved.
  • a common roll is provided between the first sputtering chamber 1 1 and the second sputtering chamber 1 2, and a high frequency bias voltage may be applied to the common roll by a high frequency power supply.
  • the silicon nitride or silicon oxynitride sputter process, the metal sputter process and the copper sputter process may be performed using a common roll and may be performed while applying a high frequency bias voltage.
  • FIG. 11 shows a second embodiment of the present invention.
  • the flexible circuit board 6 is formed by forming a copper film 3 a by ion plating or vacuum evaporation and omitting copper plating. It is effective when the thickness of the copper film 3 a is 1 Z m or less. Examples will be described below.
  • An electroconductive film was produced using the film forming apparatus shown in FIG.
  • As the polyimide film a 25 cm wide, 25 cm wide, Kanemitsu-made polyimide film N P I having a width of 25 cm was used.
  • the film transport speed was 0.8 m / min.
  • a mixed gas of 30% nitrogen and argon is added to the plasma processing chamber gas, the gas flow rate is adjusted so that the gas pressure in the plasma processing chamber becomes 0.5 Pa, and an AC voltage of 380 V is applied. The plasma was generated, and the film was passed into the plasma atmosphere.
  • the flow rate is adjusted to 0.4 Pa under a mixed gas condition of 70% argon and 30% nitrogen, and the DC voltage is 40 V, width 26 cm A high frequency of 13.56 MHz was applied to 160 W for the first ronore 16 with a diameter of 20 cm.
  • the thickness of the formed film was 10 nm and the composition was S i N 1.2.
  • a copper snotter was deposited under conditions of argon gas pressure: 0.6 Pa and DC voltage: 400 V using a second roll 17 having a width 26 cm and a diameter 40 cm.
  • a plating was carried out so that the thickness of copper became 10 ⁇ m, and a flexible circuit board 6 of the present invention was produced.
  • Etching was performed so that the copper plating film remained in a width of 3 mm, and a tensile test was conducted in the vertical direction as defined in JIS C 5 0 16 to measure adhesion. Also, the reliability was measured at 180 ° C for samples etched to a width of 3 mm. It was left for 1 day, and the adhesion was similarly measured.
  • Example 2
  • Example 1 film formation was carried out under the same conditions except changing the film composition and film thickness by changing the nitrogen gas concentration such as silicon nitride sputter, DC voltage and high frequency power. Comparative example 1
  • a silicon nitride film having a composition of S i N O 3 was formed by changing the nitrogen gas concentration, DC voltage, and high frequency power in the silicon nitride film forming chamber.
  • Example 1 The conditions for producing silicon nitride and the evaluation results in Example 1, Example 2 and Comparative Example 1 are shown in Table 1 below.
  • the initial value is 0.5 mm or more, and there is no stipulation after high temperature storage, but in general, it should be 0.4 mm or more. Also from the evaluation results, in each example, good results were obtained both in the initial adhesion and after storage at high temperature. On the other hand, in the case of the comparative example, both the initial adhesion and the high temperature storage showed low values.
  • An electroconductive film was produced using the film forming apparatus shown in FIG.
  • a 25 m-thick, 25 cm-wide, Kanei-forced polyimido film NPI was used for polyimido de norem.
  • the film transport speed was 1 m / min.
  • a mixed gas of 10% oxygen and 20% nitrogen is added to argon in the plasma processing chamber gas, the gas flow rate is adjusted so that the gas pressure in the plasma processing chamber becomes 0.5 Pa, and AC voltage A voltage of 380 V was applied to generate a plasma, and the film was passed through the plasma atmosphere.
  • the flow rate was adjusted to 0.4 Pa under the conditions of a mixed gas of 70% argon, 10% oxygen, and 20% nitrogen, and a DC voltage of 40 0 V, A high frequency of 1 3.56 MHz was applied to 2 4 5 W to a 1st ROM 1 16 having a width 26 cm and a diameter of 2 0 cm.
  • the thickness of the formed film was 12 nm, and the composition was S i ON 0.7.
  • a copper snotter was deposited under conditions of argon gas pressure of 0.6 Pa and DC voltage of 400 V using a second roll 17 having a width of 26 cm and a diameter of 4 O cm.
  • the copper plating apparatus shown in FIG. 4 was used to make a copper thickness of 10 ⁇ m, and a flexible circuit board of the present invention was produced.
  • Etching was performed so that the copper plating film remained in a 3 mm width, and a tensile test was conducted in the vertical direction as defined in J I S C 5 0 16 to measure adhesion. The reliability was also measured by keeping the sample etched to a width of 3 mm at 180 ° C. for 1 day, and measuring adhesion in the same manner.
  • Example 5
  • Example 2 The film formation was carried out under the same conditions as in Example 1 except that the nitrogen gas concentration, direct current voltage and high frequency power of silicon oxynitride sputter process were changed, and the film composition and the film thickness were changed. Comparative example 2
  • a silicon oxynitride film having a composition of Si N 0.3 was formed by changing the nitrogen gas concentration, DC voltage, and high frequency power in the silicon oxynitride film forming chamber. .
  • Example 4 The conditions for producing silicon oxynitride and evaluation results in Example 4, Example 5 and Comparative Example are shown in Table 3 below.
  • Table 3 Sample No Gas pressure Gas composition DC voltage RF power Film composition Film thickness Adhesion (N / mm)
  • Example 5-1 0.5 7: 1: 2 425 0.15 SiON 0.7 6 0.8 0.7
  • Example 5-3 0.5 7: 2: 1 450 0.1 SiO 1.5 N 0.3 15 0.5 0.6
  • Example 5-4 0.6 6: 0.5: 3.5 440 0.2 SiO 0.3 1.1 12 0.7 0.8
  • Example 4 Using the apparatus shown in FIG. 5, under the conditions of Example 4, the film was formed under the same conditions except that high frequency power was applied to the copper sputtering nozzle.
  • the initial value is 0.5 NZ mm or more, and there is no stipulation after high temperature storage, but it is generally accepted that it should be 0.4 NZ m rn or more. Also from the evaluation results, in each example, good results were obtained both in the initial adhesion and after storage at high temperature. On the other hand, in the case of the comparative example, both the initial adhesion and the high temperature storage showed low values.
  • the conductivity imparting film was formed using the film forming apparatus shown in FIG.
  • As the polyimide film a 25 ⁇ m thick, 25 cm wide, Kanemitsu-made polyimide film N P I was used.
  • the film transport speed was 0.8 m / min.
  • a mixed gas of 30% nitrogen to argon is added to the plasma processing chamber gas, the gas flow rate is adjusted so that the gas pressure in the plasma processing chamber becomes 0.5 Pa, and an AC voltage of 300 V is applied. The plasma was generated and the film was passed into the plasma atmosphere.
  • the flow rate is adjusted to 0.4 P a under a mixed gas condition of 70% argon and 30% nitrogen, and a DC voltage of 40 V, width 2 6
  • a high frequency of 13.56 MHz was applied to 160 W at 1 cm of the first ronore 16 with a diameter of 20 cm.
  • the thickness of the film formed was 10 nm and the composition was S i N 1. 2.
  • a silicon sputter for forming a silicon film as the metal film 7 used a second roll 17 having a width of 26 cm and a diameter of 40 cm.
  • the silicon sputtering was formed under conditions of argon gas pressure of 0.6 Pa and DC voltage of 320 V.
  • the film was formed under conditions of argon gas pressure of 0.6 Pa and DC voltage of 400 V using a width 26 cm and a diameter 4 O c m second roll 17.
  • a flexible circuit board 6 of the present invention was produced by plating so that the thickness of copper would be 10 m.
  • Example 9 The film formation was performed under the same conditions as in Example 1 except that the film composition and the film thickness were changed by changing the nitrogen gas concentration, the direct current voltage and the high frequency power as silicon oxynitride sputtering process.
  • Example 9 the film composition and the film thickness were changed by changing the nitrogen gas concentration, the direct current voltage and the high frequency power as silicon oxynitride sputtering process.
  • Example 1 film formation was performed under the same conditions except that the metal film 7 was changed to a silica film to form an aluminum film and a nickel film, and the voltage was changed so as to obtain the same film thickness. did. -Example 1 0
  • Example 1 1 The film formation was carried out under the same conditions as in Example 1 except that the thickness of the silicon film as the metal film 7 was changed.
  • Example 1 2 A film was formed under the same conditions as in Example 1, except that a high frequency bias voltage was applied to the second port 17 during copper sputtering.
  • Example 1 2 A film was formed under the same conditions as in Example 1, except that a high frequency bias voltage was applied to the second port 17 during copper sputtering.
  • the conductivity imparting film was formed using the film forming apparatus shown in FIG.
  • a 25 ⁇ m thick, 25 cm wide, Kanemitsu-made polyimide film N P I having a thickness of 25 cm was used.
  • the film transport speed was 1 m / min.
  • a mixed gas of 10% oxygen and 20% nitrogen is added to argon in the plasma processing chamber gas, and the gas flow rate is adjusted so that the gas pressure in the plasma processing chamber becomes 0.5 Pa, and AC voltage 38 A voltage of 0 V was applied to generate a plasma, and the film was passed through the plasma atmosphere.
  • the flow rate is adjusted to 0.4 P a under the conditions of a mixed gas of 70% argon, 10% oxygen, and 20% nitrogen, and a DC voltage of 40 V,
  • a high frequency of 1 3.56 MHz was applied to 2 45 W to a first roll 16 having a width 26 cm and a diameter of 20 cm.
  • the thickness of the formed film was 12 nm, and the composition was S i ON 0.7.
  • a silicon sputter for forming a silicon film as the metal film 7 used a second roll 17 having a width of 26 cm and a diameter of 4 O cm.
  • the silicon sputtering was carried out under the conditions of an atmospheric pressure of 0.6 Pa and a DC voltage of 320 V.
  • Example 1 3 In addition, copper sputtering was performed under the conditions of argon gas pressure 0.6 Pa and DC voltage 400 V. Next, using a copper plating apparatus shown in FIG. 3, the thickness was made to be 15 ⁇ m so that the flexible circuit board 6 of the present invention was produced.
  • Example 1 3
  • Example 1 4 The film formation was carried out under the same conditions as Example 12 except that the nitrogen gas concentration, DC voltage and high frequency power in the silicon oxynitride sputtering step were changed to change the film composition and film thickness.
  • Example 1 4 the nitrogen gas concentration, DC voltage and high frequency power in the silicon oxynitride sputtering step were changed to change the film composition and film thickness.
  • Example 1 5 An aluminum film and a nickel film were formed as the metal film 7 in Example 12 in the same manner as the metal film 7 except that the voltage was changed so as to obtain the same film thickness.
  • Example 1 5 An aluminum film and a nickel film were formed as the metal film 7 in Example 12 in the same manner as the metal film 7 except that the voltage was changed so as to obtain the same film thickness.
  • a film was formed under the same conditions as Example 12, except that a high frequency bias voltage was applied to the second roll 17 in the copper sputtering.
  • Experimental example 2
  • a film was formed under the same conditions as Example 10 except that the thickness of the silicon film as the metal film 7 was changed.
  • Etching was performed so that the copper plating film remained in a 3 m width, and a tensile test was conducted in the vertical direction as defined in J I S C 5 0 16 to measure adhesion. Also, the reliability was measured by similarly holding the sample etched to a width of 3 mm at 180 ° C. for 1 day.
  • the conditions for producing silicon nitride and the evaluation results in Examples 7 to 10 are shown in Table 5 below.
  • the initial value is 0.5 Nz m or more, and there is no stipulation after high temperature storage, but in general, it should be 0.4 N Z m or more. From the evaluation results, good adhesion was obtained both in the initial stage and after storage at high temperature, and from the fact that it is an insulator, a flexible circuit board with a fine pattern without any etching problems was obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

A flexible circuit board of high reliability that excels in the adherence of a copper based metal layer, permitting microetching. Resin film (1) on its surface is provided with silicon nitride layer (2) according to sputtering technique wherein nitrogen is contained in an amount of 0.5 to 1.33 in terms of equivalent to silicon, and further provided with copper based metal layer (3). Accordingly, the adherence of the copper based metal layer (3) is high. Further, as the silicon nitride layer (2) is an insulator, etching thereof is not needed with the copper based metal layer only to be etched, so that side etching is less likely to occur, allowing execution of microetching. Still further, even in the event of penetration of moisture or oxygen from the side of resin film (1) at high temperature, it would be blocked by the silicon nitride layer (2), so that any oxidation or adherence deterioration of the copper based metal layer (3) would not occur to thereby provide flexible circuit board (6) of high reliability.

Description

発明の名称 フレキシブル回路基板およびその製造方法 技術分野 Patent application title: FLEXIBLE CIRCUIT BOARD AND METHOD OF MANUFACTURING THE SAME
本発明は、 例えばポリイ ミ ドフィルム等の樹脂フィルムの表面に銅系 金属層を形成したフレキシブル回路基板およびその製造方法に関するも のである。 明 背景技術 書 ' 近年、 電子機器の小型化、 高性能化に伴い、 素子や基板など構成部品 のインターフェースとなる実装技術の高密度化が進み、 対応するフレキ シブルプリ ント回路基板 (F P C ) においても高精細化が要求されてい る。  The present invention relates to a flexible circuit board in which a copper-based metal layer is formed on the surface of a resin film such as polyimide film, for example, and a method of manufacturing the same. In recent years, with the miniaturization and high performance of electronic devices, the density of mounting technology that interfaces with components such as elements and boards has been increased, and the corresponding flexible printed circuit (FPC) has been developed. High definition is required.
このような回路基板の 1つである、 フレキシブルプリ ント回路基板の 作成法と して、 耐熱性フィルムの上に銅膜を形成し、 銅膜をパターンェ ツチングし、 I Cなどをボンディングしてブレキシブル回路板を作成す る方法が行なわれている。  As a method of producing a flexible printed circuit board, which is one of such circuit boards, a copper film is formed on a heat resistant film, the copper film is pattern etched, and an IC or the like is bonded to form a flexible circuit. There is a way to make the board.
本回路用と して使用されるフレキシブル回路基板については、 銅箔と ポリイ ミ ドフイルムとをラ ミネー トする方式と、 ポリイ ミ ドフィルムの 上に密着力を付与するためのニッケルークロム合金スパッタ膜と導電性 を付与するための銅スパッタ膜を形成し、 その上にメ ツキ法によって銅 膜を形成するものが一般に採用されている。 両者のうち後述のスパッタ 法によるものは、 銅を薄くできるなどの特徴があり将来性の点から今後 有望である。  With regard to the flexible circuit board used for this circuit, a method of laminating copper foil and polyimide film, and a nickel-chromium alloy sputtered film for giving adhesion on polyimide film. In general, a copper sputtered film is formed to impart conductivity and a copper film is formed thereon by a plating method. Of these two, the sputtering method described later has characteristics such as the ability to thin copper, and is promising from the point of future prospects.
しかし、 銅膜の厚さが薄く なるとともに、 微細パターン化する際、 密 着力を付与するためのニッケル一クロム合金スパッタ膜がエッチングし にくいことから、 サイ ドエツチングが進行してしまレ、、 線幅 3 5 μ m以 下の微細パターンの形成ができないという問題がある。 さらに、 高温で の保存試験において、 ポリイ ミ ドフィルム側からの水分や酸素の浸透に よ り、 ニッケル一.クロム合金が酸化して密着力が低下し、 信頼性の点か ら問題がある。 However, as the thickness of the copper film becomes thinner, the Since the sputtered film of nickel-chromium alloy for imparting adhesion is difficult to etch, there is a problem that side etching progresses and fine patterns with a line width of 35 μm or less can not be formed. Furthermore, in the storage test at high temperature, the permeation of moisture and oxygen from the polyimide film side causes the nickel-chromium alloy to be oxidized and the adhesion to be lowered, which is a problem in terms of reliability.
これらの問題を解決するため、 ニッケル—クロム合金に替えて他の金 属、例えば二ッケルー銅合金などが提案されている(下記の特許文献 1 )。 ところが、 特許文献 1 の方法では、 微細パターンの点では改良されるも のの、 信頼性の点などが問題である。  In order to solve these problems, in place of the nickel-chromium alloy, another metal such as, for example, nickel-copper alloy has been proposed (Patent Document 1 below). However, although the method of Patent Document 1 improves in terms of fine patterns, there are problems with reliability and the like.
この対策と して、 銅スパッタ膜と反対側のポリイ ミ ド面に酸化物を成 膜する方法が提案されている (下記の特許文献 1および 2 )。 ところが、 これらの方法では、 成膜プロセスが多くなって装置が複雑となるため、 コス トアップにつながる。  As a countermeasure against this, there has been proposed a method of forming an oxide on the polyimide surface opposite to the copper sputtered film (Patent Documents 1 and 2 below). However, these methods increase the number of film formation processes and complicate the apparatus, leading to a cost increase.
この対策と して、 フィルムと銅スパッタの界面に、 酸化シリ コンや酸 化ジルコニウムなどの酸化物が提案されている (下記の特許文献 3 )。 と ころが、 この方法では、 密着力が十分とはいえない。  As a countermeasure against this, oxides such as silicon oxide and zirconium oxide have been proposed at the interface between the film and copper sputtering (Patent Document 3 below). However, this method does not have sufficient adhesion.
そこで、 シリ コン、 ク ロム、二ッケルなどの金属と窒素との化合物膜、 銅との密着力を得るために銅側には窒素の少ない膜を使用し、 密着力の 向上と水分透過を防止することが提案されている (下記の特許文献 4 )。 また、 窒化物の代わりに銅酸窒化物層を形成させるものが提案されて いる (下記の特許文献 5 )。  Therefore, use a compound film of nitrogen and a metal such as silicon, chromium and nickel, and a film containing less nitrogen on the copper side to obtain adhesion with copper, and improve adhesion and prevent moisture permeation. It has been proposed to do this (patent document 4 below). Further, it has been proposed to form a copper oxynitride layer instead of a nitride (Patent Document 5 below).
特許文献 1 特許第 3 4 4 7 0 7 0号公報  Patent Document 1 Patent No. 3 4 4 7 0 7
特許文献 2 特開 2 0 0 5— 2 1 9 2 5 9号公報  Patent Document 2 Japanese Patent Application Laid-Open No. 2 0 0 5-2 1 9 2 5 9
特許文献 3 特開平 1 一 1 3 3 7 2 9号公報  Patent Document 3 Japanese Patent Application Laid-Open No. 1 1 1 3 3 7 2 9
特許文献 4 特開 2 0 0 5— 3 4 7 4 3 8号公報 特許文献 5 特開 2 0 0 5— 5 4 2 5 9号公報 発明の開示 Patent Document 4 Japanese Patent Application Laid-Open No. 2000-05-3 4 7 4 3 8 Patent Document 5 Japanese Patent Application Laid-Open No. 2005-0554 25 9 Disclosure of the Invention
発明が解決しょ う とする課題 Problems that Invention is to Solve
しかしながら、 上記特許文献 4の方法で形成したポリイ ミ ド側の窒素 との化合物膜は、 窒化反応が十分に促進されず、 化学量論的な窒化物に はならないことから、 膜厚をかなり厚く しなければ十分な密着性が得ら れないという問題がある。さらに、真空蒸着では窒素ガスを導入しても、 化学反応を促進できないので、 シリ コンやタンタルなどでは、 窒化物と はならず、 金属状態に近い膜しか得られず、 信頼性を向上させることは できない。 さらに、 密着力を改善するため、 シリ コンやニッケル、 クロ ムなどの金属層がはいることにより、 結果的に後プロセスのエッチング によるエッチングがしにく く なり、 微細パターン化の際にサイ ドエツチ ングが進行してしま う問題が残る。 一方、 装置と しても、 ターゲッ ト数 が多く なるため、 装置が大きくなるなどの問題がある。 また、 上記特許 文献 5の方法では、 ポリイ ミ ドフィルムとの密着性の点で十分とはいえ ない。  However, the compound film with nitrogen on the polyimide side formed by the method of Patent Document 4 has a considerably large film thickness because the nitriding reaction is not sufficiently promoted and it does not form a stoichiometric nitride. There is a problem that sufficient adhesion can not be obtained unless it is done. Furthermore, since the chemical reaction can not be promoted even if nitrogen gas is introduced in vacuum deposition, silicon and tantalum etc. do not become nitrides, and only films close to the metallic state can be obtained, thus improving the reliability. I can not do it. In addition, the presence of metal layers such as silicon, nickel, chromium and the like to improve adhesion results in that etching by post-process etching becomes difficult, and side etching occurs during micropatterning. There is still a problem that On the other hand, even with devices, the number of targets increases, so there are problems such as the devices becoming larger. Further, the method of Patent Document 5 mentioned above is not sufficient in terms of the adhesion to the polyimide film.
本発明は、 このよ うな事情に鑑みなされたもので、 銅系金属層の密着 性に優れ、 微細エッチングが可能で、 信頼性の高いフ レキシブル回路基 板およびその製造方法の提供を目的とする。 課題を解決するための手段  The present invention has been made in view of these circumstances, and an object thereof is to provide a flexible circuit board which is excellent in adhesion of a copper-based metal layer, is capable of fine etching, and has high reliability, and a method of manufacturing the same. . Means to solve the problem
上記目的を達成するため、 本発明のフレキシブル回路基板は、 樹脂フ イルムの表面に、 シリ コンに対して窒素が当量で 0 . 5〜 1 . 3 3含ま れるスパッタ法による窒化シリ コン層が形成され、 さらに銅系金属層が 形成されたことを第 1の要旨とする。 上記目的を達成するため、 本発明のフ レキシブル回路基板は、 樹脂フ イルムの表面に、 シリ コンに対して窒素が当量で 0 . 3〜 1 . 1含まれ るスパッタ法による酸窒化シリ コン層が形成され、 さらに銅系金属層が 形成されたこ とを第 2の要旨とする。 In order to achieve the above object, in the flexible circuit board of the present invention, a silicon nitride layer is formed on the surface of a resin film by a sputtering method in which nitrogen is contained in an equivalent amount of 0.5 to 1.33 to silicon. The first point is that a copper-based metal layer is further formed. In order to achieve the above object, the flexible circuit board of the present invention has a silicon oxide layer formed by a sputtering method in which nitrogen is contained in an equivalent amount of 0.3 to 1.1 on the surface of a resin film relative to silicon. And the formation of a copper-based metal layer is referred to as the second aspect.
上記目的を達成するため、 本発明のフ レキシブル回路基板は、 樹脂フ イルムの表面に、 スパッタ法による窒化シリ コン層または酸窒化シリ コ ン層が形成され、 さらにケィ素、 アルミニウム、 ニッケルから選ばれる 厚み 0 . 5〜 5 n mの金属膜が形成され、 さらに銅系金属層が形成され たことを第 3の要旨とする。  In order to achieve the above object, the flexible circuit board of the present invention has a silicon nitride layer or a silicon oxynitride layer formed by a sputtering method on the surface of a resin film, and is further selected from silicon, aluminum and nickel. A third aspect of the present invention is that a metal film having a thickness of 0.5 to 5 nm is formed, and a copper-based metal layer is further formed.
また、 上記目的を達成するため、 本発明のフ レキシブル回路基板の製 造方法は、 樹脂フィルムの表面に、 シリ コンに対して窒素が当量 0 . 5 〜 1 . 3 3含まれる窒化シリ コン層を形成する窒化シリ ユンスパッタエ 程と、 さらに銅系金属層を形成する銅系金属形成工程とを備えたことを 第 1の要旨とする。  In addition, in order to achieve the above object, according to the method for producing a flexible circuit board of the present invention, a silicon nitride layer containing 0.5 to 1.33 equivalents of nitrogen relative to silicon on the surface of the resin film. The first summary is to provide a silicon nitride sputter process for forming a copper-based metal layer and a copper-based metal formation process for forming a copper-based metal layer.
また、 上記目的を達成するため、 本発明のフ レキシブル回路基板の製 造方法は、 樹脂フィルムの表面に、 シリ コンに対して窒素が当量 0 . 3 〜 1 . 1含まれる酸窒化シリ コン層を形成する酸窒化シリ コンスパッタ 工程と、 さらに銅系金属層を形成する銅系金属形成工程とを備えたこと を第 2の要旨とする。  In addition, in order to achieve the above object, according to the method for producing a flexible circuit board of the present invention, a silicon oxynitride layer containing nitrogen in an equivalent amount of 0.3 to 1.1 with respect to silicon on the surface of a resin film. According to a second aspect of the present invention, the method further comprises the steps of forming a silicon oxynitride sputtering step of forming a copper-based metal layer and forming a copper-based metal layer of a copper-based metal layer.
また、 上記目的を達成するため、 本発明のフ レキシブル回路基板の製 造方法は、 樹脂フィルムの表面に、 スパッタ法による窒化シリ コン層ま たは酸窒化シリ コン層を形成する第 1 スパッタ工程と、 さらにケィ素、 アルミニウム、 ニッケルから選ばれる厚み 0 . 5〜 5 n mの金属膜を形 成する第 2スパッタエ程と、 さらに銅系金属層を形成する銅系金属形成 工程とを備えたことを第 3の要旨とする。 発明の効果 Further, in order to achieve the above object, according to the method for producing a flexible circuit board of the present invention, a first sputtering step of forming a silicon nitride layer or a silicon oxynitride layer by a sputtering method on the surface of a resin film And a second sputtering process for forming a metal film having a thickness of 0.5 to 5 nm selected from Ge, aluminum, and nickel, and a copper-based metal forming process for forming a copper-based metal layer. As the third summary. Effect of the invention
すなわち、 第 1 の本発明は、 樹脂フィルムの表面に、 シリ コンに対し て窒素が当量で 0 . 5〜 1 . 3 3含まれるスパッタ法による窒化シリ コ ン層を形成し、 さらに銅系金属層を形成した。 このよ うに、 中間層と し て窒素が当量で 0 . 5〜 1 . 3 3含まれる窒化シリ コン層を形成したこ とによ り、 銅系金属層の密着性が良好となる。 さらに、 上記窒化シリ コ ン層は絶縁物であることからエッチングの必要が無く 、 銅系金属層だけ をエッチングすればよいため、 サイ ドエッチングがあまり起こらずに微 細エッチングが可能となる。 しかも、 高温下で仮に樹脂フィルム側から の水分や酸素が浸透したと しても窒化シリ コン層によってブロックされ、 銅系金属層の酸化や密着力の低下が生じず、 信頼性にも優れたフ レキシ ブル回路基板となる。  That is, according to the first aspect of the present invention, a silicon nitride layer is formed on a surface of a resin film by a sputtering method in which nitrogen is contained in an equivalent amount of 0.5 to 1.3 with respect to silicon. A layer was formed. Thus, the adhesion of the copper-based metal layer is improved by forming the silicon nitride layer containing 0.5 to 1.33 equivalent amounts of nitrogen as the intermediate layer. Furthermore, since the silicon nitride layer is an insulator, there is no need for etching, and only the copper-based metal layer needs to be etched, so that fine etching can be performed without much side etching. In addition, even if moisture or oxygen penetrates from the resin film side under high temperature, it is blocked by the silicon nitride layer, oxidation of the copper-based metal layer does not occur and adhesion strength is not generated, and the reliability is also excellent. It becomes a flexible circuit board.
すなわち、 第 2の本発明は、 樹脂フィルムの表面に、 シリ コンに対し て窒素が当量で 0 . 3〜 1 . 1含まれるスパッタ法による酸窒化シリ コ ン層を形成し、 さらに銅系金属層を形成した。 このよ う に、 中間層と し て窒素が当量で 0 . 3〜 1 . 1含まれる酸窒化シリ コン層を形成したこ とによ り、 銅系金属層の密着性が良好となる。 さらに、 上記酸窒化シリ コン層は絶縁物であることからェツチングの必要が無く、 銅系金属層だ けをエッチングすればよいため、 サイ ドエッチングがあまり起こらずに 微細エッチングが可能となる。 しかも、 高温下で仮に樹脂フィルム側か らの水分や酸素が浸透したと しても窒化シリ コン層によってプロックさ れ、 銅系金属層の酸化や密着力の低下が生じず、 信頼性にも優れたフレ キシブル回路基板となる。  That is, according to the second aspect of the present invention, a silicon oxynitride layer is formed on a surface of a resin film by a sputtering method in which nitrogen is contained in an equivalent amount of 0.3 to 1.1 with respect to silicon. A layer was formed. Thus, the adhesion of the copper-based metal layer is improved by forming the silicon oxynitride layer containing 0.3 to 1.1 of nitrogen equivalently as the intermediate layer. Furthermore, since the silicon oxynitride layer does not need to be etched because it is an insulator, it is sufficient to etch only the copper-based metal layer, so that it is possible to perform fine etching without much side etching. In addition, even if moisture or oxygen penetrates from the resin film side at high temperature, it is blocked by the silicon nitride layer and oxidation of the copper-based metal layer does not occur and adhesion is not deteriorated. It is an excellent flexible circuit board.
また、 第 3の本発明は、 樹脂フィルムの表面に、 スパッタ法による窒 化シリ コン層または酸窒化シリ コン層を形成し、 さらにケィ素、 アルミ 二ゥム、 ニッケルから選ばれる厚み 0 . 5〜 5 n mの金属膜を形成し、 さらに銅系金属層を形成した。 このよ う に、 中間層と して窒化シリ コン 層または酸窒化シリ コン層とケィ素、 アルミニウム、 ニッケルから選ば れる厚み 0 . 5〜 5 n mの金属膜とを形成したことにより、 '銅系金属層 の密着性が良好となる。 さらに、 上記窒化シリ コン層または酸窒化シリ コン層は絶縁物であることからエッチングの必要が無く、 ごく薄いケィ 素等の金属膜と銅系金属層だけをエッチングすればよいため、 サイ ドエ ツチングがあまり起こらずに微細エッチングが可能となる。 しかも、 高 温下で仮に樹脂フィルム側からの水分や酸素が浸透したと しても窒化シ リ コン層または酸窒化シリ コン層によってブロ ックされ、 銅系金属層の 酸化や密着力の低下が生じず、 信頼性にも優れたフレキシブル回路基板 となる。 In the third aspect of the present invention, a silicon nitride layer or a silicon oxynitride layer is formed on a surface of a resin film by a sputtering method, and a thickness selected from silicon, aluminum and nickel is further provided. Form a metal film of ~ 5 nm, Furthermore, a copper-based metal layer was formed. Thus, by forming a silicon nitride layer or a silicon oxynitride layer and a metal film having a thickness of 0.5 to 5 nm selected from silicon, aluminum, and nickel as an intermediate layer, Adhesion of the metal layer is good. Furthermore, since the silicon nitride layer or the silicon oxynitride layer does not need to be etched because it is an insulator, it is only necessary to etch only a thin metal film such as a thin silicon and a copper-based metal layer. Fine etching is possible without much occurrence of In addition, even if moisture or oxygen penetrates from the resin film side under high temperature, it is blocked by the silicon nitride layer or the silicon oxynitride layer, and oxidation of the copper-based metal layer and adhesion decrease. The flexible circuit board has excellent reliability.
本発明の第 1のフレキシブル回路基板の製造方法において、 上記窒化 シリ コンスパッタ工程は、 タ一ゲッ トに対面した領域で樹脂フィルムを 送る電極ロールに対して高周波バイァス電圧を印加しながら行なう場合 には、 高周波バイアス電圧によって樹脂フィルム側の電極ロールが周囲 に対して見かけ上マイナス電位側にシフ トすることから、 窒化シリ コン 中の窒素量が十分確保できる うえ窒化シリ コン層の密着力も大幅に向上 する。  In the first method for manufacturing a flexible circuit board according to the present invention, the silicon nitride sputtering step is carried out while applying a high-frequency bias voltage to an electrode roll for sending a resin film in a region facing a target. Since the electrode roll on the resin film side is shifted to the apparent negative potential side with respect to the surroundings due to the high frequency bias voltage, a sufficient amount of nitrogen in the silicon nitride can be secured and the adhesion of the silicon nitride layer is also significantly improves.
本発明の第 2のフレキシブル回路基板の製造方法において、 上記酸窒 ィ匕シリ コンスパッタエ程は、 ターゲッ トに対面した領域で樹脂フィルム を送る電極ロールに対して高周波バイァス電圧を印加しながら行なう場 合には、 高周波バイアス電圧によって樹脂フィルム側の電極ロールが周 囲に対して見かけ上マイナス電位側にシフ トすることから、 窒化シリ コ ン中の窒素量が十分確保できるうえ窒化シリ コン層の密着力も大幅に向 上する。  In the second method for manufacturing a flexible circuit board according to the present invention, the above-mentioned oxynitride silicon sputtering process is carried out while applying a high frequency bias voltage to an electrode roll for sending a resin film in a region facing a target. In this case, the electrode roll on the resin film side is apparently shifted to the negative potential side with respect to the surrounding area due to the high frequency bias voltage, so that sufficient amount of nitrogen in the silicon nitride can be secured and adhesion of the silicon nitride layer The power also improves significantly.
本発明の第 3のフレキシブル回路基板の製造方法において、 上記第 2 スパッタエ程は、 ターゲッ トに対面した領域で樹脂フィルムを送る電極 ロールに対して高周波バイァス電圧を印加しながら行なう場合には、 高 周波バイァス電圧によつて樹脂フィルム側の電極ロールが周囲に対して 見かけ上マイナス電位側にシフ トすることから、 金属膜の密着力も大幅 に向上する。 図面の簡単な説明 In the third method for manufacturing a flexible circuit board of the present invention, the second method described above When the sputtering process is performed while applying a high frequency bias voltage to the electrode roll that sends the resin film in the region facing the target, the electrode roll on the resin film side is against the surrounding due to the high frequency bias voltage. By apparently shifting to the negative potential side, the adhesion of the metal film is also greatly improved. Brief description of the drawings
図 1 本発明の第 1実施形態のフ レキシブル回路基板を示す断面図であ る。 FIG. 1 is a cross-sectional view showing a flexible circuit board according to a first embodiment of the present invention.
図 2 本発明の第 2実施形態のフレキシブル回路基板を示す断面図であ る。 FIG. 2 is a cross-sectional view showing a flexible circuit board according to a second embodiment of the present invention.
図 3 スパッタ リ ング装置を示す構成図である。 Fig. 3 is a block diagram showing a sputtering apparatus.
図 4 めっき装置を示す構成図である。 Fig. 4 is a block diagram showing a plating apparatus.
図 5 スパッタ リ ング装置の第 2例を示す構成図である。 Fig. 5 is a block diagram showing a second example of the sputtering apparatus.
図 6 スパッタリ ング装置の第 3例を示す構成図である。 Fig. 6 is a block diagram showing a third example of the sputtering apparatus.
図 7 スパッタ リ ング装置の第 4例を示す構成図である。 Fig. 7 is a block diagram showing a fourth example of the sputtering apparatus.
図 8 本発明の他の実施形態のフレキシブル回路基板を示す断面図であ る。 FIG. 8 is a cross-sectional view showing a flexible circuit board according to another embodiment of the present invention.
図 9 本発明の第 7実施形態のフレキシブル回路基板を示す断面図であ る。 FIG. 9 is a cross-sectional view showing a flexible circuit board according to a seventh embodiment of the present invention.
図 1 0 スパッタ リ ング装置を示す構成図である。 Fig. 10 is a block diagram showing a sputtering apparatus.
図 1 1 本発明の他の実施形態のフレキシブル回路基板を示す断面図で ある。 FIG. 11 is a cross-sectional view showing a flexible circuit board according to another embodiment of the present invention.
符号の説明 Explanation of sign
1 : 樹脂フィルム  1: Resin film
1 a : シード層付きフィルム 2 a : 窒化シリ コン層1 a: film with seed layer 2 a: Silicon nitride layer
2 b : 酸窒化シリ コン層2 b: Silicon oxynitride layer
3 : 銅系金属層 3: Copper-based metal layer
3 a : 銅膜  3 a: Copper film
4 : 銅スパッタ膜  4: Copper sputtered film
5 : 銅めつき層  5: Copper plating layer
6 : フレキシブル回路基板 6: Flexible circuit board
7 : 金属膜 7: Metal film
0 : プラズマ室  0: Plasma chamber
1 : 第 1 スノ ッタ室 1: 1st Snotto Room
2 : 第 2スノヽ0ッタ室2: 2nd Suno 0 Room
3 : 供給ロール 3: Supply roll
: 卷取'ローノレ  : Tottori 'Ronole
5 : プラズマ処理装置 5: Plasma processing equipment
: 第 1 口ール : First entry
7 : 第 2 ロール  7: second role
: シ リ コ ンターゲッ ト : Silicon target
: 銅ターゲッ ト: Copper target
: 高周波電源 : High frequency power supply
1 : 直流電源、  1: DC power supply,
1 a : 直流電源  1 a: DC power supply
b : 直流電源、  b: DC power supply,
: 高周波電源  : High frequency power supply
: 共通ローノレ  Common Renore
: 金属ターゲッ ト : Metal target
: めつさ槽 2 6 : 水洗槽 : Mezusa tank 2 6: Washing tank
2 7 : 乾燥槽  2 7: Drying tank
2 8 : 供給ロール  2 8: Supply roll
2 9 : 卷取口一ル  2 9: One way
3 0 : 直流電源  3 0: DC power supply
3 1 : 陽極  3 1: Anode
3 2 : 陰極ロール  3 2: Cathode roll
3 3 : 銅供給部  3 3: Copper supply part
3 4 : 銅線  3 4: Copper wire
3 5 : るつぼ  3 5: Crucible
3 6 : ヒータ  3 6: Heater
3 7 ; 着室 発明を実施するための最良の形態  3 7; landing mode BEST MODE FOR CARRYING OUT THE INVENTION
つぎに、 本発明を実施するための最良の形態を説明する。  Next, the best mode for carrying out the present invention will be described.
図 1は、 本発明の第 1実施形態のフレキシブル回路基板を示す断面図 である。  FIG. 1 is a cross-sectional view showing a flexible circuit board according to a first embodiment of the present invention.
このフレキシブル回路基板 6は、 樹脂フィルム 1 の表面に、 シリ コン に対して窒素が当量で 0 . 5〜 1 . 3 3含まれるスパッタ法による窒化 シリ コン層 2 aが形成され、 さらに銅系金属層 3が形成されている。 こ の例では、 上記銅系金属層 3は、 スパッタ法によって形成された銅スパ ッタ膜 4 と、 めっき法によって形成された銅めつき層 5 とから構成され ている。  In this flexible circuit board 6, a silicon nitride layer 2a is formed on the surface of the resin film 1 by a sputtering method in which nitrogen is contained in an equivalent amount of 0.5 to 1.33 with respect to silicon, and a copper-based metal is further formed. Layer 3 is formed. In this example, the copper-based metal layer 3 is composed of a copper sputter film 4 formed by a sputtering method and a copper plating layer 5 formed by a plating method.
上記樹脂フィルム 1 と しては、 例えば、 ポリ イ ミ ドフィルム、 ポリ エ チレンテレフタ レー トフイノレム、 ポリ カーボネー トフイノレム、 液晶ポリ マーフィルム等が耐熱性、 機械的安定性、 機械的強度、 電気的特性等の 点で優れており、 好適に用いることができる。 Examples of the above-mentioned resin film 1 include polyimide film, polyethylene terephthalate, polyethylene carbonate, and liquid crystal polymer film, which have heat resistance, mechanical stability, mechanical strength, electrical characteristics, etc. It is excellent in point and can be used suitably.
上記樹脂フィルム 1の表面に、 中間層と して反応性スパッタ法によつ てシリ コンに対して窒素が当量で 0. 5〜 1. 3 3含まれる窒化シリ コ ン層 2 aを形成する。 シリ コンに対する窒素の量が当量で 0. 5未満で は、 高温下における信頼性の点で問題となり、 反対に当量で 1. 3 3を 超えるとかえつて密着力が弱くなる。  On the surface of the resin film 1, as an intermediate layer, a silicon nitride layer 2a containing 0.5 to 1.33 equivalent amounts of nitrogen relative to silicon is formed by reactive sputtering. . If the amount of nitrogen to silicon is less than 0.5 equivalently, the reliability at high temperature becomes a problem, and conversely, if it exceeds 1.33 equivalently, the adhesion becomes weak.
上記窒化シリ コン層 2 aの厚みは、 5〜 1 5 n m程度が好適である。 5 n m未満では高温下において樹脂フィルム 1側からの水分の透過を十 分に防ぐことができず、 信頼性に問題が生じ、 反対に 1 5 n mを超える と、 膜にクラックが入ったり歪で膜が剥離するため、 かえって密着力が 弱くなる。 特に、 望ましいのは 8〜 1 2 n mであり、 銅系金属層 3の密 着力および信頼性に優れたものとなる。  The thickness of the silicon nitride layer 2 a is preferably about 5 to 15 nm. If the thickness is less than 5 nm, moisture permeation from the resin film 1 side can not be sufficiently prevented under high temperature, and there is a problem with reliability. On the other hand, if it exceeds 15 nm, the film may be cracked or distorted. As the film peels off, the adhesion is rather weak. In particular, 8 to 12 nm is desirable, and the adhesion and reliability of the copper-based metal layer 3 are excellent.
上記銅系金属層 3は、 この例では、 上記窒化シリ コン層 2 a上に形成 された銅スパッタ膜 4 と、 上記銅スパッタ膜 4上に形成された銅めつき 層 5 とから構成されている。 上記銅スパッタ膜 4および銅めつき層 5す なわち銅系金属層 3を構成する銅系金属と しては、 銅または銅合金を用 いることができる。  In this example, the copper-based metal layer 3 is composed of a copper sputtered film 4 formed on the silicon nitride layer 2 a and a copper plated layer 5 formed on the copper sputtered film 4. There is. As the copper-based metal constituting the copper sputtered film 4 and the copper plating layer 5, that is, the copper-based metal layer 3, copper or a copper alloy can be used.
上記銅スパッタ膜 4は、 5 0〜 1 0 0 n m程度の厚みに形成するのが 好ましい。 厚みが 5 0 n m未満では、 次工程の銅メ ツキの際に 「やけ」 と称するメ ツキ層の変色が起こりやすく、 銅メ ツキの条件設定の調整が 困難となる うえ、 場合によっては密着力を低下させるからである。 反対 に、 l O O n mを超えると、 スパッタ時間が長くなつて生産速度が著し く低下するからである。  The sputtered copper film 4 is preferably formed to a thickness of about 50 to 100 nm. If the thickness is less than 50 nm, discoloration of the coating layer called "burn" tends to occur during copper plating in the next step, which makes it difficult to adjust the setting of copper plating conditions and, in some cases, adhesion To reduce the On the other hand, when lO O O n is exceeded, the sputtering time becomes long and the production rate is significantly reduced.
上記銅めつき層 5の厚みは、 電気伝導度やパターンの線幅などで適宜 決定することができるが 0. 2 μ π!〜 1 5 μ m程度に設定される。 0. 2 / m未満では、 電気伝導度の点で問題となり、 反対に 1 5 i mを超え ると微細パターンを形成しにく くなる場合があるからである。 The thickness of the copper plating layer 5 can be appropriately determined by the electrical conductivity and the line width of the pattern, etc., but 0.2 μπ! It is set to about 15 μm. If it is less than 0.2 / m, it will be a problem in terms of electrical conductivity, and conversely it will exceed 15 im If this is the case, it may be difficult to form a fine pattern.
'図 2は、 本発明の第 2実施形態のフレキシブル回路基板を示す断面図 である。  FIG. 2 is a cross-sectional view showing a flexible circuit board according to a second embodiment of the present invention.
このフレキシブル回路基板 6は、 樹脂フィルム 1 の表面に、 シリ コン に対して窒素が当量で 0 . 3〜 1 . 1含まれるスパッタ法による酸窒化 シリ コン層 2 bが形成され、 さらに銅系金属層 3が形成されている。 こ の例では、 上記銅系金属層 3は、 スパッタ法によって形成された銅スパ ッタ膜 4 と、 めっき法によって形成された銅めつき層 5 とから構成され ている。  In this flexible circuit board 6, a silicon oxynitride silicon layer 2b is formed on the surface of the resin film 1 by a sputtering method in which nitrogen is contained in an equivalent amount of 0.3 to 1.1 with respect to silicon, and a copper-based metal is further formed. Layer 3 is formed. In this example, the copper-based metal layer 3 is composed of a copper sputter film 4 formed by a sputtering method and a copper plating layer 5 formed by a plating method.
上記樹脂フィルム 1の表面に、 中間層と して反応性スパッタ法によつ てシリ コンに対して窒素が当量で 0 . 3〜 1 . 1含まれる酸窒化シリ コ ン層 2 bを形成する。 シリ コンに対する窒素の量が当量で 0 . 3未満で は、 高温下における信頼性の点で問題となり、 反対に当量で 1 . 1 を超 えるとかえって密着力が弱くなる。  On the surface of the resin film 1, as an intermediate layer, a silicon oxynitride layer 2b containing nitrogen in an equivalent of 0.3 to 1.1 by nitrogen equivalent to silicon is formed by reactive sputtering. . If the amount of nitrogen to silicon is less than 0.3 equivalent weight, the reliability at high temperature becomes a problem, and conversely, if the equivalent weight exceeds 1.1, the adhesion becomes weak.
上記酸窒化シリ コン層 2 bの厚みは、 5〜 2 0 n m程度が好適である。 5 n m未満では高温下において樹脂フィルム 1側からの水分の透過を十 分に防ぐことができず、 信頼性に問題が生じ、 反対に 2 0 n mを超える と、 膜にクラックが入ったり歪で膜が剥離するため、 かえって密着力が 弱くなる。 特に、 望ましいのは 8〜 1 5 n mであり、 銅系金属層 3の密 着力および信頼性に優れたものとなる。  The thickness of the silicon oxynitride layer 2 b is preferably about 5 to 20 nm. If the thickness is less than 5 nm, moisture permeation from the resin film 1 side can not be sufficiently prevented under high temperature, and there is a problem with reliability. On the other hand, if it exceeds 20 nm, the film may be cracked or distorted. As the film peels off, the adhesion is rather weak. In particular, 8 to 15 nm is desirable, and the adhesion and reliability of the copper-based metal layer 3 are excellent.
上記銅系金属層 3は、 この例では、 上記酸窒化シリ コン層 2 b上に形 成された銅スパッタ膜 4 と、 上記銅スパッタ膜 4上に形成された銅めつ き層 5 とから構成されている。 上記銅スパッタ膜 4および銅めつき層 5 すなわち銅系金属層 3を構成する銅系金属と しては、 銅または銅合金を 用いることができる。  In this example, the copper-based metal layer 3 is formed of the copper sputtered film 4 formed on the silicon oxynitride layer 2 b and the copper plating layer 5 formed on the copper sputtered film 4. It is configured. As the copper-based metal constituting the copper sputtered film 4 and the copper plating layer 5, that is, the copper-based metal layer 3, copper or a copper alloy can be used.
それ以外は、 上記第 1実施形態のフレキシブル回路基板 6 と同様であ り、 同様の部分には同じ符号を付している。 Except for this point, it is the same as the flexible circuit board 6 of the first embodiment. The same symbols are attached to similar parts.
図 3および図 4は、 上記フ レキシブル回路基板 6を製造する装置を示 す図である。 図 3は、 上記窒化シリ コン層 2 a、 酸窒化シリ コン層 2 b および銅スパッタ膜 4を形成するスパッタ リ ング装置、 図 4は上記銅め つき層 5を形成するめつき装置をそれぞれ示す。  FIGS. 3 and 4 show an apparatus for manufacturing the flexible circuit board 6 described above. FIG. 3 shows a sputtering apparatus for forming the silicon nitride layer 2 a, the silicon oxynitride layer 2 b and the copper sputtered film 4, and FIG. 4 shows a plating apparatus for forming the copper plating layer 5.
図 3に示すスパッタ リ ング装置は、 前処理と してのプラズマ処理を行 うプラズマ室 1 0 と、 第 1 スパッタ工程が行なわれる第 1 スパッタ室 1 1 と、 第 1 スパッタエ程が行なわれる第 2 スパッタ室 1 2 とを備えてい る。 上記プラズマ室 1 0、 第 1 スパッタ室 1 1ならびに第 2 スパッタ室 1 2は、 それぞれ図示しない真空ポンプに接続されて、 それぞれ独立し て圧力調整できるようになっている。  The sputtering apparatus shown in FIG. 3 includes a plasma chamber 10 for performing plasma processing as a pretreatment, a first sputtering chamber 11 for performing a first sputtering process, and a first sputtering process for performing a first sputtering process. 2 Sputtering chamber 1 2 The plasma chamber 10, the first sputtering chamber 11 and the second sputtering chamber 12 are each connected to a vacuum pump (not shown) so that the pressure can be adjusted independently.
上記プラズマ室 1 0には、 ロール状に卷回された樹脂フイルム 1 を供 給する供給ロール 1 3 と、 第 1 スパッタ室 1 1および第 2 スパッタ室 1 2においてそれぞれ窒化シリ コン層 2および銅スパッタ膜 4が形成され たシー ド層付きフィルム 1 a を卷き取る卷取ロール 1 4 が設けられてい る。 また、 上記プラズマ室 1 0には、 供給ロール 1 3から供給された樹 脂フィルム 1に対して前処理と してプラズマ処理を行うプラズマ処理装 置 1 5が設けられている。  The plasma chamber 10 is supplied with the resin film 1 wound in a roll shape, the silicon nitride layer 2 and the copper in the first sputtering chamber 11 and the second sputtering chamber 12 respectively. A take-up roll 1 4 is provided for taking up the film 1 a with a seed layer on which the sputtered film 4 is formed. Further, the plasma chamber 10 is provided with a plasma processing apparatus 15 which performs plasma processing as a pretreatment to the resin film 1 supplied from the supply roll 13.
上記プラズマ処理装置 1 5には、 プラズマ処理用ガスと してアルゴン ガスに 5〜 6 0容量%の酸素もしく は窒素またはこれらの混合ガスを添 加したガスを導入する。 そして、 電極に直流電圧もしくは交流電圧ある いは高周波電圧を印加することによ りプラズマを発生させ、 このプラズ マ雰囲気中に樹脂フィルム 1 を通過させてプラズマ処理を実施する。 こ のプラズマ処理により、 樹脂フィ ルム 1表面に官能基が生成され、 窒化 シリ コ ン層 2 aおよび酸窒化シリ コン層 2 b の密着力を高める働きをす るものである。 プラズマ処理用ガスと してアルゴンガス単独を用いても よいが、 酸素や窒素を混合することにより効果が増す。 A gas obtained by adding 5 to 60% by volume of oxygen or nitrogen or a mixed gas thereof to argon gas is introduced into the plasma processing apparatus 15 as a gas for plasma processing. Then, a plasma is generated by applying a DC voltage, an AC voltage, or a high frequency voltage to the electrodes, and the resin film 1 is allowed to pass through the plasma atmosphere to carry out the plasma treatment. By this plasma treatment, functional groups are generated on the surface of the resin film 1, and the adhesion of the silicon nitride layer 2a and the silicon oxynitride layer 2b is enhanced. Even if argon gas alone is used as the plasma processing gas Good, but the effect is enhanced by mixing oxygen and nitrogen.
上記プラズマ室 1 0においてプラズマ処理された樹脂フィルム 1は、 第 1 スパッタ室 1 1 に供給され、 反応性スパッタによる窒化シリ コンぉ よび酸窒化シリ コンの成膜を行う。 第 1 スパッタ室 1 1には、 シリ コン ターゲッ ト 1 8 と、 上記シリ コンターゲッ ト 1 8 と対面する領域におい てプラズマ処理された樹脂フィルム 1 を送る第 1 ロール 1 6 とが設けら れている。  The resin film 1 plasma-treated in the plasma chamber 10 is supplied to the first sputtering chamber 11 to form a silicon nitride oxide film and a silicon oxynitride film by reactive sputtering. The first sputtering chamber 11 is provided with a silicon target 18 and a first roll 16 for feeding the resin film 1 plasma-treated in the area facing the silicon target 18. .
まず、窒化シリ コン層 2 aを形成する第 1実施形態の方法を説明する。 上記シリ コンターゲッ ト 1 8には、 直流電源 2 1 によりマイナス電位 の電圧が印加される。 一方、 上記第 1 ロール 1 6には、 高周波電源 2 ひ により高周波バイアス電圧が印加される。 そして、 反応性スパッタガス と して、 アルゴンと窒素の混合ガスを導入する。 アルゴンガスと窒素ガ スの比率は、 9 5 : 5から 5 0 : 5 0が好ましい範囲であり、 窒素ガス が少なすぎると、 膜中の窒素が少なくなりすぎて、 密着力や信頼性が得 られない。 反対に窒素ガスが多すぎると、 膜の析出速度が遅くなり、 ま た化学量論より窒素が多くなる。  First, the method of the first embodiment for forming the silicon nitride layer 2a will be described. A negative voltage is applied to the silicon target 18 from the DC power supply 21. On the other hand, a high frequency bias voltage is applied to the first roll 16 by a high frequency power source 2. Then, a mixed gas of argon and nitrogen is introduced as a reactive sputtering gas. The ratio of argon gas to nitrogen gas is preferably in the range of 95: 5 to 50:50. If the amount of nitrogen gas is too low, the amount of nitrogen in the film becomes too low, and adhesion and reliability are obtained. I can not. On the other hand, if there is too much nitrogen gas, the deposition rate of the film will be slower, and more nitrogen than stoichiometry will be produced.
また、 上記窒化シリ コンスパッタエ程は、 フィルムの冷却のためのキ ヤンロールと呼ばれている走行用の口ールと して機能する第 1 ロール 1 6に対して高周波バイアス電圧を印加しながら行なう。 これにより、 反 応を促進するためのエネルギーを与えて化学反応を促進させる。 上記高 周波バイアス電圧は 0 . 0 5〜 0 . 2 W Z c m 2の電力が好ましい範囲 である。 0 . 0 5 W Z c m 2未満では密着力が得られず、 0 . 2 W/ c m 2を超えると、 ポリイ ミ ドフィルムが劣化し、 信頼性に問題が生じる。 この高周波バイァス電圧の印加がないと、 形成される窒化シリ コン層 2 aに含まれる窒素成分がかなり少なくなり、 密着力や信頼性が得られな レヽ 0 このよ う にして、 樹脂フィルム 1 の表面に、 シリ コンに対して窒素が 当量 0 . 5〜 1 . 3 3含まれる窒化シリ コン層 2 aを形成する窒化シリ コンスパッタエ程を行なう。 Further, the above-mentioned silicon nitride sputtering process is performed while applying a high frequency bias voltage to the first roll 16 which functions as a running roll called a can roll for cooling the film. This provides energy to promote the reaction and promotes the chemical reaction. The high frequency bias voltage is preferably in the range of 0.5 to 0.5 WZ cm 2 . If it is less than 0.50 WZ cm 2 , the adhesion can not be obtained, and if it exceeds 0.2 W / cm 2 , the polyimide film is deteriorated and there is a problem with reliability. Without application of the high frequency Baiasu voltage, nitrogen components contained in the nitride silicon layer 2 a to be formed is significantly less, the adhesion strength and reliability such obtained Rere 0 In this way, a silicon nitride sputtering process is performed on the surface of the resin film 1 to form a silicon nitride layer 2 a containing nitrogen in an equivalent amount of 0.5 to 1.33 with respect to silicon.
上記窒化シリ コンスパッタエ程で窒化シリ コン層 2 aが形成された樹 脂フィルム 1は、 第 2スパッタ室 1 2に供給され、 銅スパッタエ程が行 なわれる。  The resin film 1 on which the silicon nitride layer 2a is formed by the above-described silicon nitride sputtering process is supplied to the second sputtering chamber 12, and a copper sputtering process is performed.
上記第 2スパッタ室 1 2には、 銅ターゲッ ト 1 9 と、 上記銅ターゲッ ト 1 9 と対面する領域において樹脂フィルム 1 を送る第 2 ロール 1 7 と が設けられている。  The second sputtering chamber 12 is provided with a copper target 19 and a second roll 17 for feeding the resin film 1 in a region facing the copper target 19.
上記銅ターゲッ ト 1 9には、 直流電源 2 1 によりマイナス電位の電圧 が印加される。  A negative potential voltage is applied to the copper target 19 by a DC power supply 21.
そして、 スパッタガスと してアルゴンガスを用い、 銅スパッタエ程を行 なって銅スパッタ膜 4を形成する。 Then, copper sputtering is performed using argon gas as a sputtering gas to form a copper sputtered film 4.
なお、 プラズマ室 1 0、 第 1 スパッタ室 1 1、 第 2スパッタ室 1 2の ガス圧はほぼ同じにしてもよいが、 第 2スパッタ室 1 2を最も高くする のが好ましい。 第 2スパッタ室 1 2のガス圧が低くなると、 第 1スパッ タ室 1 1やプラズマ室 1 0から窒素ガスが流れ込み、 銅の窒化物が生成 して場合によっては導電性がなくなってしまうからである。  The gas pressure of the plasma chamber 10, the first sputtering chamber 11 and the second sputtering chamber 12 may be substantially the same, but it is preferable to make the second sputtering chamber 12 the highest. If the gas pressure in the second sputtering chamber 12 becomes low, nitrogen gas flows from the first sputtering chamber 11 or the plasma chamber 10, and copper nitride is formed, and in some cases, the conductivity may be lost. is there.
銅スパッタ膜 4を形成したシー ド層付きフィルム 1 aは再びプラズマ 室 1 0に送られて卷取ロール 1 4で卷き取られる。  The film 1 a with a seed layer on which the copper sputtered film 4 is formed is again sent to the plasma chamber 10 and is removed by the drying roll 14.
つぎに、 窒化シリ コン層 2 aおよび銅スパッタ膜 4を形成したシ一ド 層付きフィルム 1 aは連続銅めつき装置で銅めつき工程を行い、 銅めつ き層 5を形成する。  Next, the film 1a with a silicon layer on which the silicon nitride layer 2a and the copper sputtered film 4 are formed is subjected to a copper plating process with a continuous copper plating apparatus to form a copper plating layer 5.
図 4に示す連続銅めつき装置は、 めっき槽 2 5 と水洗槽 2 6 と乾燥槽 2 7 を備え、 供給ロール 2 8で供給されたシー ド層付きフィルム 1 aに 硫酸銅浴等で銅めつき層 5を形成して本発明のフ レキシブル回路基板 6 を形成し、 巻取ロール 2 9で巻取る。 図において符号 3 0は直流電源、 3 1は陽極、 3 2は陰極ロールである。 The continuous copper plating device shown in Fig. 4 comprises a plating tank 2 5, a water washing tank 2 6 and a drying tank 2 7, and the film 1 a with a seed layer supplied by a supply roll 28 is copper in a copper sulfate bath or the like. The flexible circuit board of the present invention is formed by forming the plating layer 5 Take up the winding roll 2 9. In the figure, reference numeral 30 is a DC power supply, 31 is an anode, and 32 is a cathode roll.
この例では、 上記銅スパッタエ程と銅めつき工程とが、 銅系金属層 3 を形成する本発明の銅系金属形成工程である。  In this example, the copper sputtering process and the copper plating process are the copper-based metal forming process of the present invention for forming the copper-based metal layer 3.
つぎに、 酸窒化シリ コン層 2 bを形成する第 2実施形態の方法を説明 する。  Next, the method of the second embodiment for forming the silicon oxynitride layer 2b will be described.
上記シリ コンターゲッ ト 1 8には、 直流電源 2 1によりマイナス電位 の電圧が印加される。 一方、 上記第 1 ロール 1 6には、 高周波電源 2 0 により高周波バイアス電圧が印加される。 そして、 反応性スパッタガス と して、 アルゴンと酸素と窒素の混合ガスを導入する。 アルゴンガスと 酸素窒素混合ガスの比率は、 9 0 : 1 0から 6 0 : 4 0が好ましい範囲 であり、 上記酸素窒素混合ガスの酸素ガスと窒素ガスの比率は、 1 0 : 9 0から 2 0 : 1 0が好ましい範囲である。 窒素ガスが少なすぎると、 膜中の窒素が少なくなりすぎて、 密着力や信頼性が得られない。 反対に 窒素ガスが多すぎると、 膜の析出速度が遅くなり、 また化学量論より窒 素が多くなる。  A negative voltage is applied to the silicon target 18 from the DC power supply 21. On the other hand, a high frequency bias voltage is applied to the first roll 16 by a high frequency power supply 20. Then, a mixed gas of argon, oxygen and nitrogen is introduced as a reactive sputtering gas. The ratio of argon gas to oxygen nitrogen mixed gas is preferably in the range of 90:10 to 60:40, and the ratio of oxygen gas to nitrogen gas in the oxygen nitrogen mixed gas is 10:90 to 2 0: 10 is a preferred range. If the amount of nitrogen gas is too low, the amount of nitrogen in the film will be too low to obtain adhesion and reliability. On the other hand, if there is too much nitrogen gas, the deposition rate of the film will be slower and more nitrogen than stoichiometry will be found.
また、 上記酸窒化シリ コンスパッタエ程は、 フィルムの冷却のための キャンロールと呼ばれている走行用のロールと して機能する第 1 ロール In addition, the above silicon oxynitride sputter process is a first roll that functions as a traveling roll called a can roll for film cooling.
1 6に対して高周波バイァス電圧を印加しながら行なう。 これにより、 反応を促進するためのエネルギーを与えて化学反応を促進させる。 上記 高周波バイアス電圧は 0 . 0 5〜 0 . 3 c m 2の電力が好ましい範 囲である。 0 . 0 5 WZ c m 2未満では密着力が得られず、 0 . 3 W Z c m 2を超えると、 ポリイ ミ ドフィルムが劣化し、信頼性に問題が生じる。 この高周波バイアス電圧の印加がないと、 形成される酸窒化シリ コン層 2 bに含まれる窒素成分がかなり少なくなり、 密着力や信頼性が得られ ない。 このよ う にして、 樹脂フィルム 1 の表面に、 シリ コンに対して窒素が 当量 0 . 5〜 1 . 3 3含まれる酸窒化シリ コン層 2 bを形成する酸窒化 シリ コンスパッタエ程を行なう。 This is done while applying a high frequency bias voltage to 16. This provides energy to promote the reaction and promotes the chemical reaction. The high frequency bias voltage is preferably in the range of 0.5 to 0.5 cm 2 . If it is less than 0.50 WZ cm 2 , the adhesion can not be obtained, and if it exceeds 0.3 WZ cm 2 , the polyimide film is deteriorated and there is a problem in reliability. Without the application of the high frequency bias voltage, the nitrogen component contained in the formed silicon oxynitride layer 2 b is considerably reduced, and adhesion and reliability can not be obtained. Thus, on the surface of the resin film 1, an oxynitride silicon sputtering process is performed to form an oxynitride silicon layer 2b containing nitrogen in an equivalent amount of 0.5 to 1.33 with respect to silicon.
上記酸窒化シリ コンスパッタ工程で酸窒化シリ コン層 2 bが形成され た樹脂フィルム 1は、 第 2スパッタ室 1 2に供給され、 銅スパッタエ程 および銅めっき工程が行なわれる。 銅スパッタエ程および銅めっき工程 は上述した第 1実施形態の方法と同様である。  The resin film 1 on which the silicon oxynitride layer 2 b is formed in the above-described silicon oxynitride sputtering process is supplied to the second sputtering chamber 12, and a copper sputtering process and a copper plating process are performed. The copper sputtering process and the copper plating process are the same as the method of the first embodiment described above.
以上のよ うに、 第 1の実施形態では、 樹脂フィルム 1の表面に、 シリ コ ンに対して窒素が当量で 0 . 5〜 1 . 3 3含まれるスパッタ法による 窒化シリ コン層 2 aを形成し、 さらに銅系金属層 3を形成した。 このよ うに、 中間層と して窒素が当量で 0 . 5〜 1 . 3 3含まれる窒化シリ コ ン層 2 aを形成したことによ り、 銅系金属層 3の密着性が良好となる。 さ らに、 上記窒化シリ コン層 2 aは絶縁物であることからエッチングの 必要が無く 、 銅系金属層 3だけをエッチングすればよいため、 サイ ドエ ツチングがあまり起こらずに微細エッチングが可能となる。 しかも、 高 温下で仮に樹脂フィルム 1側からの水分や酸素が浸透したと しても窒化 シリ コン層 2 aによってブロ ックされ、 銅系金属層 3の酸化や密着力の 低下が生じず、 信頼性にも優れたフ レキシブル回路基板 6 となる。  As described above, in the first embodiment, the silicon nitride layer 2 a is formed on the surface of the resin film 1 by the sputtering method in which nitrogen is contained in an equivalent amount of 0.5 to 1.33 with respect to silicon. Further, a copper-based metal layer 3 was formed. Thus, the adhesion of the copper-based metal layer 3 is improved by forming the silicon nitride layer 2 a containing 0.5 to 1.33 nitrogen equivalently as the intermediate layer. . Furthermore, since the silicon nitride layer 2 a is an insulator, there is no need for etching, and only the copper-based metal layer 3 needs to be etched, so it is possible to perform fine etching without much side etching. Become. Moreover, even if moisture or oxygen permeates from the resin film 1 side under high temperature, it is blocked by the silicon nitride layer 2a, and oxidation of the copper-based metal layer 3 and deterioration of adhesion does not occur. It becomes flexible circuit board 6 with excellent reliability.
また、 上記窒化シリ コンスパッタ工程は、 シリ コンターゲッ ト 1 8に 対面した領域で樹脂フィルム 1 を送る第 1 ロール 1 6に対して高周波バ ィァス電圧を印加しながら行なうため、 高周波バイァス電圧によって樹 脂フィルム 1側の第 1 ロール 1 6が周囲に対して見かけ上マイナス電位 側にシフ トすることから、 窒化シリ コン中の窒素量が十分確保できる う え窒化シリ コン層 2 aの密着力も大幅に向上する。  In addition, since the above-mentioned silicon nitride sputtering process is performed while applying a high frequency bias voltage to the first roll 16 which sends the resin film 1 in the region facing the silicon target 18, the resin is applied by the high frequency bias voltage. The first roll 16 on the side of the film 1 apparently shifts to the negative potential side with respect to the periphery, so that a sufficient amount of nitrogen in the silicon nitride can be secured. The adhesion of the silicon nitride layer 2 a is also significantly improves.
以上のよ うに、 第 2の実施形態では、 樹脂フィルム 1の表面に、 シリ コンに対して窒素が当量で 0 . 5〜 1 . 3 3含まれるスノ ッタ法による 酸窒化シリ コン層 2 bを形成し、 さらに銅系金属層 3を形成した。 この ように、 中間層と して窒素が当量で 0 . 5〜 1 . 3 3含まれる酸窒化シ リ コン層 2 bを形成したことによ り、 銅系金属層 3の密着性が良好とな る。 さらに、 上記酸窒化シリ コン層 2 bは絶縁物であることからエッチ ングの必要が無く、 銅系金属層 3だけをエッチングすればよいため、 サ ィ ドエツチングがあまり起こらずに微細ェツチングが可能となる。 しか も、 高温下で仮に樹脂フィルム 1側からの水分や酸素が浸透したと して も酸窒化シリ コン層 2 bによってブロックされ、 銅系金属層 3の酸化や 密着力の低下が生じず、 信頼性にも優れたフレキシブル回路基板 6 とな る。 As described above, according to the second embodiment, the surface of the resin film 1 contains 0.5 to 1.33 equivalent amounts of nitrogen relative to silicon. A silicon oxynitride layer 2 b was formed, and a copper-based metal layer 3 was further formed. Thus, the adhesion of the copper-based metal layer 3 is considered to be good by forming the silicon oxynitride layer 2 b containing 0.5 to 1.33 equivalent amounts of nitrogen as the intermediate layer. Become. Furthermore, since the silicon oxynitride layer 2b is an insulator, there is no need for etching, and only the copper-based metal layer 3 needs to be etched, so that side etching does not occur so much and fine etching can be performed. Become. In addition, even if moisture or oxygen penetrates from the resin film 1 side at high temperature, it is blocked by the silicon oxynitride layer 2b, and oxidation of the copper-based metal layer 3 or deterioration of adhesion does not occur. Flexible circuit board 6 with excellent reliability.
また、 上記酸窒化シリ コンスパッタエ程は、 シリ コンターゲッ ト 1 8 に対面した領域で樹脂フィルム 1 を送る第 1 口ール 1 6に対して高周波 バイアス電圧を印加しながら行なうため、 高周波バイアス電圧によって 樹脂フィルム 1側の第 1 ロール 1 6が周囲に対して見かけ上マイナス電 位側にシフ トすることから、 酸窒化シリ コン中の窒素量が十分確保でき るうえ酸窒化シリ コン層 2 bの密着力も大幅に向上する。  In addition, since the above-mentioned silicon oxynitride process is performed while applying a high frequency bias voltage to the first port 16 for sending the resin film 1 in the region facing the silicon target 18, the resin by the high frequency bias voltage is used. Since the first roll 16 on the film 1 side apparently shifts to the negative potential side with respect to the surroundings, a sufficient amount of nitrogen in the silicon oxynitride can be secured and adhesion of the silicon oxynitride layer 2 b is also achieved. The power is also greatly improved.
図 5は、 本発明の第 3の実施形態を説明する図である。  FIG. 5 is a diagram for explaining a third embodiment of the present invention.
このスパッタ装置は、 第 2スパック室 1 2の第 2 口ール 1 7に高周波 電源 2 2により高周波バイァス電圧が印加され、 銅スパッタ工程を、 銅 ターゲッ ト 1 9に対面した領域で樹脂フィルム 1 を送る第 2 ロール 1 Ί に対して高周波バイアス電圧を印加しながら行なう。 高周波バイァス電 圧の電力は 0 . 0 5 W / c m 2以上が好ましい範囲であり、 これ以下だと 十分な密着力の向上効果が得られない。 それ以外は第 1および第 2の実 施形態と同様であり同様の部分には同じ符号を付している。 このよ うに することにより、 銅スパッタ膜 4の密着力がさらに向上する。 それ以外 は上記第 1および第 2の実施形態と同様の作用効果を奏する。 図 6は、 本発明の第 4の実施形態を説明する図である。 In this sputtering apparatus, a high frequency bias voltage is applied to the second port 17 of the second Spack chamber 12 by the high frequency power supply 22, and the copper sputtering process is performed in the area facing the copper target 19. While applying the high frequency bias voltage to the second roll 1 Ί which sends The power of the high frequency bias voltage is preferably in the range of 0.55 W / cm 2 or more, and if it is less than this, a sufficient improvement in adhesion can not be obtained. The other parts are the same as in the first and second embodiments, and the same reference numerals are given to the same parts. By doing this, the adhesion of the copper sputtered film 4 is further improved. Otherwise, the same operation and effect as those of the first and second embodiments can be obtained. FIG. 6 is a diagram for explaining a fourth embodiment of the present invention.
このスパッタ装置は、 第 1 スパッタ室 1 1 と第 2スパッタ室 1 2の間 に共通口ール 2 3が設けられ、 この共通口ール 2 3に高周波電源 2 2に よ り高周波バイアス電圧が印加されている。 そして、 窒化シリ コンスパ ッタ工程、 酸窒化シリ コンスパッタエ程および銅スパッタエ程を、 共通 ロール 2 3を利用して行い、 いずれも高周波バイァス電圧を印加しなが ら行なうよ うになつている。 それ以外は第 1および第 2の実施形態と同 様であり同様の部分には同じ符号を付している。 このよ うにすることに よ り、 銅スパッタ膜 4の密着力がさらに向上する。 それ以外は上記第 1 〜第 3の実施形態と同様の作用効果を奏する。  In this sputtering apparatus, a common port 23 is provided between the first sputtering chamber 1 1 and the second sputtering chamber 12, and a high frequency bias voltage is supplied to the common port 23 by the high frequency power supply 22. It is applied. Then, the silicon nitride sputtering process, the silicon oxynitride sputtering process and the copper sputtering process are performed using the common roll 23 and are all performed while applying a high frequency bias voltage. The other parts are the same as in the first and second embodiments, and the same reference numerals are given to the same parts. By doing this, the adhesion of the copper sputtered film 4 is further improved. The other effects are the same as those of the first to third embodiments.
図 7は、 本発明の第 5の実施形態を説明する図である。  FIG. 7 is a diagram for explaining a fifth embodiment of the present invention.
このスパッタ装置は、 第 2 スパッタ室 1 2のかわりに真空蒸着を行な う蒸着室 3 7が設けられたものである。 上記蒸着室 3 7には、 蒸着する 銅線 3 4を供給する銅供給部 3 3 と、 供給された銅線 3 4を溶解するる つぼ 3 5 と、 るつぼ 3 5を加熱するヒータ 3 6 とを備え、 銅スパッタ膜 4の代わりに銅蒸着膜を形成するよ うになつている。 それ以外は第 1〜 第 4実施形態と同様であり同様の部分には同じ符号を付している。 この 例でも、 上記第 1〜第 4の実施形態と同様の作用効果を奏する。  This sputtering apparatus is provided with a deposition chamber 37 for performing vacuum deposition instead of the second sputtering chamber 12. In the deposition chamber 37, a copper supply portion 33 for supplying a copper wire 34 to be deposited, a pot 35 for melting the supplied copper wire 34, a heater 36 for heating the crucible 35 and In place of the copper sputtered film 4, a copper vapor-deposited film is formed. The other parts are the same as in the first to fourth embodiments, and the same reference numerals are given to the same parts. Also in this example, the same effects as those of the first to fourth embodiments can be obtained.
図 8は、 本発明の第 6の実施形態を示す図である。  FIG. 8 is a diagram showing a sixth embodiment of the present invention.
このフレキシブル回路基板 6は、 銅系金属層 3 と して、 イオンプレー ティングゃ真空蒸着法により銅膜 3 aを作成し、 銅めつきを省略したも のである。 銅膜 3 aの厚さが 1 / m以下の場合に有効である。  As the copper-based metal layer 3, the flexible circuit board 6 is formed by forming a copper film 3 a by ion plating or vacuum evaporation and omitting copper plating. It is effective when the thickness of the copper film 3 a is 1 / m or less.
図 9は、 本発明の第 7の実施形態のフレキシブル回路基板 6を示す断 面図である。  FIG. 9 is a cross-sectional view showing a flexible circuit board 6 according to a seventh embodiment of the present invention.
このフ レキシブル回路基板 6は、 樹脂フィルム 1 の表面に、 スパッタ 法による窒化シリ コン層 2 a または酸窒化シリ コン層 2 bが形成され、 さらにケィ素、 アルミニウム、 ニッケルから選ばれる厚み 0 . 5 〜 5 n mの金属膜 7が形成され、 さらに銅系金属層 3が形成されている。 この 例では、 上記銅系金属層 3は、 スパッタ法によって形成された銅スパッ タ膜 4 と、 めっき法によって形成された銅めつき層 5 とから構成されて いる。 In this flexible circuit board 6, a silicon nitride layer 2 a or a silicon oxynitride layer 2 b is formed on the surface of the resin film 1 by sputtering. Further, a metal film 7 having a thickness of 0.5 to 5 nm selected from carbon, aluminum, and nickel is formed, and a copper-based metal layer 3 is further formed. In this example, the copper-based metal layer 3 is composed of a copper sputter film 4 formed by sputtering and a copper plating layer 5 formed by plating.
上記樹脂フィルム 1 と しては、 例えば、 ポリイ ミ ドフィルム、 ポリエ チレンテレフタ レー トフイノレム、 ポリカーボネー トフイノレム、 液晶ポリ マーフィルム等が耐熱性、 機械的安定性、 機械的強度、 電気的特性等の 点で優れており、 好適に用いることができる。  Examples of the above-mentioned resin film 1 include polyimide film, polyethylene terephthalate, polyethylene carbonate, and liquid crystal polymer film, in terms of heat resistance, mechanical stability, mechanical strength, electrical characteristics and the like. It is excellent and can be suitably used.
上記樹脂フィルム 1 の表面に、 中間層と して反応性スパッタ法によつ て窒化シリ コン層 2 aまたは酸窒化シリ コン層 2 bを形成する。  A silicon nitride layer 2a or a silicon oxynitride layer 2b is formed on the surface of the resin film 1 as a middle layer by reactive sputtering.
上記窒化シリ コン層 2 a と しては、シリ コンに対して窒素が当量で 0 . 5 〜 1 . 3 3含まれる窒化シリ コン層 2 a とすることが好ましい。 シリ コンに対する窒素の量が当量で 0 . 5未満では、 高温下における信頼性 の点で問題となり、 反対に当量で 1 . 3 3を超えるとかえつて密着力が 弱くなる。 上記窒化シリ コン層 2 a の厚みは、 5 〜 1 5 n m程度が好適 である。 5 n m未満では高温下において樹脂フィルム 1側からの水分の 透過を十分に防ぐことができず、 信頼性に問題が生じ、 反対に 1 5 n m を超えると、 膜にクラックが入ったり歪で膜が剥離するため、 かえって 密着力が弱くなる。 特に、 望ましいのは 8 〜 1 2 n mであり、 銅系金属 層 3の密着力および信頼性に優れたものとなる。  The silicon nitride layer 2 a is preferably a silicon nitride layer 2 a containing 0.5 to 1.33 of nitrogen equivalent to silicon. If the amount of nitrogen to silicon is less than 0.5 equivalently, the reliability at high temperature becomes a problem, and conversely, if it exceeds 1.33 equivalently, the adhesion becomes weak. The thickness of the silicon nitride layer 2 a is preferably about 5 to 15 nm. If the thickness is less than 5 nm, moisture permeation from the resin film 1 side can not be sufficiently prevented under high temperature, and there is a problem with reliability. On the contrary, if the thickness exceeds 15 nm, the film is cracked or distorted. Because of peeling, the adhesion is rather weak. In particular, 8 to 12 nm is desirable, and the adhesion and reliability of the copper-based metal layer 3 are excellent.
酸窒化シリ コン層 2 b と しては、 シリ コンに対して窒素が当量で 0 . 3 〜 1 . 1含まれる酸窒化シリ コン層 2 b とするのが好ましい。 シリ コ ンに対する窒素の量が当量で 0 . 3未満では、 高温下における信頼性の 点で問題となり、 反対に当量で 1 . 1 を超えるとかえつて密着力が弱く なる。 上記酸窒化シリ コン層 2 b の厚みは、 5 〜 2 0 n m程度が好適で ある。 5 n m未満では高温下において樹脂フィルム 1側からの水分の透 過を十分に防ぐことができず、 信頼性に問題が生じ、 反対に 2 0 n mを 超えると、 膜にクラックが入ったり歪で膜が剥離するため、 かえって密 着力が弱く なる。 特に、 望ましいのは 8〜 1 5 n mであり、 銅系金属層 3の密着力および信頼性に優れたものとなる。 The silicon oxynitride layer 2 b is preferably a silicon oxynitride layer 2 b containing nitrogen in an equivalent amount of 0.3 to 1.1 with respect to the silicon. If the amount of nitrogen to silicon is less than 0.3 equivalently, the reliability at high temperature becomes a problem, and conversely, if it exceeds 1.1 equivalently, the adhesion becomes weak. The thickness of the silicon oxynitride layer 2 b is preferably about 5 to 20 nm. is there. If it is less than 5 nm, the permeation of water from the resin film 1 side can not be sufficiently prevented under high temperature, and there is a problem with reliability. On the other hand, if it exceeds 20 nm, the film may be cracked or distorted. As the film peels off, the adhesion is rather weak. In particular, 8 to 15 nm is desirable, and the adhesion and reliability of the copper-based metal layer 3 are excellent.
つぎに、 ケィ素、 アルミニウム、 ニッケルから選ばれる金属膜 7を形 成する。 その厚みは、 0 . 5 n m〜 5 n mが好ましく、 さらに好ましい のは 1 n m〜 3 n mである。 金属膜 7の厚みが 0 . 5 n m未満の場合も 5 n mを超えた場合いずれも、 銅系金属層 3の密着力を向上させる効果 が少ない。 成膜法は蒸着法等でもよいが、 前後の真空度などの関係及び 密着力の点からスッパタ法が望ましい。  Next, a metal film 7 selected from kein, aluminum and nickel is formed. The thickness is preferably 0.5 to 5 nm, more preferably 1 to 3 nm. When the thickness of the metal film 7 is less than 0.5 nm or more than 5 nm, the effect of improving the adhesion of the copper-based metal layer 3 is small. The film forming method may be a vapor deposition method or the like, but the sputter method is preferable in view of the relationship between the degree of vacuum and the like and the adhesion.
上記銅系金属層 3は、 この例では、 上記窒化シリ コン層 2 aまたは酸 窒化シリ コン層 2 b上に形成された銅スパッタ膜 4 と、 上記銅スパッタ 膜 4上に形成ざれた銅めつき層 5 とから構成されている。 上記銅スパッ タ膜 4および銅めつき層 5すなわち銅系金属層 3を構成する銅系金属と しては、 銅または銅合金を用いることができる。  In this example, the copper-based metal layer 3 is a copper sputtered film 4 formed on the silicon nitride layer 2 a or the silicon oxynitride layer 2 b, and a copper plating formed on the copper sputtered film 4. It consists of 5 layers. As the copper-based metal constituting the copper sputter film 4 and the copper plating layer 5, ie, the copper-based metal layer 3, copper or a copper alloy can be used.
上記銅スパッタ膜 4は、 5 0〜 1 0 0 n m程度の厚みに形成するのが 好ましい。 厚みが 5 0 n m未満では、 次工程の銅メ ツキの際に 「やけ」 と称するメ ツキ層の変色が起こりやすく、 銅メ ツキの条件設定の調整が 困難となる うえ、 場合によっては密着力を低下させるからである。 反対 に、 l O O n mを超えると、 スパッタ時間が長くなつて生産速度が著し く低下するからである。  The sputtered copper film 4 is preferably formed to a thickness of about 50 to 100 nm. If the thickness is less than 50 nm, discoloration of the coating layer called "burn" tends to occur during copper plating in the next step, which makes it difficult to adjust the setting of copper plating conditions and, in some cases, adhesion To reduce the On the other hand, when lO O O n is exceeded, the sputtering time becomes long and the production rate is significantly reduced.
上記銅めつき層 5の厚みは、 電気伝導度やパターンの線幅などで適宜 決定することができるが 0 . 2 m〜 1 5 μ m程度に設定される。 0 . 2 i m未満では、 電気電導度の点で問題となり、 反対に 1 5 μ πιを超え ると微細パターンを形成しにく く なる場合があるからである。 図 1 0および図 4は、 上記フレキシブル回路基板 6を製造する装置を 示す図である。 図 2は、 上記窒化シリ コン層 2 a、 酸窒化シリ コン層 2 b、 金属膜 7および銅スパッタ膜 4を形成するスパッタ リ ング装置、 図 3は上記銅めつき層 5を形成するめつき装置をそれぞれ示す。 The thickness of the copper plating layer 5 can be appropriately determined depending on the electrical conductivity, the line width of the pattern, and the like, but is set to about 0.2 m to 15 μm. If it is less than 0.2 im, it will be a problem in terms of electrical conductivity, and conversely, if it exceeds 15 μπι, it may be difficult to form a fine pattern. FIGS. 10 and 4 are diagrams showing an apparatus for manufacturing the flexible circuit board 6. 2 shows a sputtering apparatus for forming the silicon nitride layer 2 a, the silicon oxynitride layer 2 b, the metal film 7 and the copper sputtered film 4, and FIG. 3 shows a plating apparatus for forming the copper plated layer 5. Respectively.
図 1 0に示すスパッタ リ ング装置は、 前処理と してのプラズマ処理を 行うプラズマ室 1 0 と、 第 1 スパッタ工程が行なわれる第 1 スパッタ室 1 1 と、 第 2スパッタエ程が行なわれる第 2スパッタ室 1 2 とを備えて いる。 上記プラズマ室 1 0、 第 1 スパッタ室 1 1ならびに第 2スパッタ 室 1 2は、 それぞれ図示しない真空ポンプに接続されて、 それぞれ独立 して圧力調整できるよ うになつている。  The sputtering apparatus shown in FIG. 10 includes a plasma chamber 10 in which plasma processing is performed as a pretreatment, a first sputtering chamber 11 in which a first sputtering step is performed, and a second sputtering step in which a second sputtering step is performed. 2 Sputtering chamber 1 2 is provided. The plasma chamber 10, the first sputtering chamber 11 and the second sputtering chamber 12 are each connected to a vacuum pump (not shown) so that the pressure can be adjusted independently.
上記プラズマ室 1 0には、 ロール状に卷回された樹脂フィルム 1 を供 給する供給ロール 1 3 と、 第 1 スパッタ室 1 1および第 2スパッタ室 1 2においてそれぞれ窒化シリ コン層 2 aまたは酸窒化シリ コン層 2 b、 金属膜 7および銅スパッタ膜 4が形成されたシード層付きフィルム 1 a を卷き取る卷取ロール 1 4が設けられている。 また、 上記プラズマ室 1 0には、 供給ロール 1 3から供給された樹脂フィルム 1に対して前処理 と してプラズマ処理を行うプラズマ処理装置 1 5が設けられている。 上記プラズマ処理装置 1 5には、 プラズマ処理用ガスと してアルゴン ガスに 5〜 6 0容量%の酸素もしく は窒素またはこれらの混合ガスを添 加したガスを導入する。 そして、 電極に直流電圧もしくは交流電圧ある いは高周波電圧を印加することによ りプラズマを発生させ、 このプラズ マ雰囲気中に樹脂フィルム 1 を通過させてプラズマ処理を実施する。 こ のプラズマ処理によ り、 樹脂フィルム 1表面に官能基が生成され、 窒化 シリ コン層 2 aおよび酸窒化シリ コン層 2 bの密着力を高める働きをす るものである。 プラズマ処理用ガスと してアルゴンガス単独を用いても よいが、 酸素や窒素を混合することにより効果が増す。 上記プラズマ室 1 0においてプラズマ処理された樹脂フィルム 1は、 第 1スパッタ室 1 1に供給され、 反応性スパッタによる窒化シリ コンま たは酸窒化シリ コンの成膜を行う。 第 1 スパッタ室 1 1には、 シリ コン ターゲッ ト 1 8 と、 上記シリ コンターゲッ ト 1 8 と対面する領域におい てプラズマ処理された樹脂フィルム 1 を送る第 1 ロール 1 6 とが設けら れている。 The plasma chamber 10 is supplied with the resin film 1 wound into a roll, and the silicon nitride layer 2 a or the silicon nitride layer 2 a in the first sputtering chamber 11 and the second sputtering chamber 12 respectively. A take-up roll 14 is provided for taking up a film 1 a with a seed layer on which the silicon oxynitride layer 2 b, the metal film 7 and the copper sputtered film 4 are formed. Further, the plasma chamber 10 is provided with a plasma processing apparatus 15 for performing plasma processing as a pretreatment on the resin film 1 supplied from the supply roll 13. A gas obtained by adding 5 to 60% by volume of oxygen or nitrogen or a mixed gas thereof to argon gas is introduced into the plasma processing apparatus 15 as a gas for plasma processing. Then, a plasma is generated by applying a DC voltage, an AC voltage, or a high frequency voltage to the electrodes, and the resin film 1 is allowed to pass through the plasma atmosphere to carry out the plasma treatment. By this plasma treatment, a functional group is generated on the surface of the resin film 1 and functions to enhance the adhesion of the silicon nitride layer 2 a and the silicon oxynitride layer 2 b. Although argon gas alone may be used as the plasma processing gas, the effect is enhanced by mixing oxygen and nitrogen. The resin film 1 subjected to plasma treatment in the plasma chamber 10 is supplied to the first sputtering chamber 11 to form a silicon nitride or silicon oxynitride film by reactive sputtering. The first sputtering chamber 11 is provided with a silicon target 18 and a first roll 16 for feeding the resin film 1 plasma-treated in the area facing the silicon target 18. .
まず、 窒化シリ コン層 2 a を形成する第 1例の方法を説明する。  First, the method of the first example for forming the silicon nitride layer 2 a will be described.
上記シリ コ ンターゲッ ト 1 8には、 直流電源 2 1 によりマイナス電位 の電圧が印加される。 一方、 上記第 1 ロール 1 6には、 高周波電源 2 0 により高周波バイアス電圧が印加される。 そして、 反応性スパッタガス と して、 アルゴンと窒素の混合ガスを導入する。 アルゴンガスと窒素ガ スの比率は、 9 5 : 5から 5 0 : 5 0が好ましい範囲であり、 窒素ガス が少なすぎると、 膜中の窒素が少なくなりすぎて、 密着力や信頼性が得 られない。 反対に窒素ガスが多すぎると、 膜の析出速度が遅くなり、 ま た化学量論より窒素が多く なる。  A voltage of negative potential is applied to the silicon target 18 by the DC power supply 21. On the other hand, a high frequency bias voltage is applied to the first roll 16 by a high frequency power supply 20. Then, a mixed gas of argon and nitrogen is introduced as a reactive sputtering gas. The ratio of argon gas to nitrogen gas is preferably in the range of 95: 5 to 50:50. If the amount of nitrogen gas is too low, the amount of nitrogen in the film becomes too low, and adhesion and reliability are obtained. I can not. On the other hand, if there is too much nitrogen gas, the deposition rate of the film will be slower, and more nitrogen than stoichiometry will be generated.
また、 上記窒化シリ コ ンスパッタエ程は、 フィルムの冷却のためのキ ヤ ンロールと呼ばれている走行用の口ールと して機能する第 1 ロール 1 6に対して高周波バイアス電圧を印加しながら行なう。 これにより、 反 応を促進するためのエネルギーを与えて化学反応を促進させる。 上記高 周波バイ アス電圧は 0 . 0 5〜 0 . 2 W / c m 2の電力が好ましい範囲 である。 0 . 0 5 WZ c m 2未満では密着力が得られず、 0 . 2 W/ c m 2を超えると、 ポリイ ミ ドフ ィルムが劣化し、 信頼性に問題が生じる。 この高周波バイアス電圧の印加がないと、 形成される窒化シリ コン層 2 a に含まれる窒素成分がかなり少なくなり、 密着力や信頼性が得られな い。 The silicon nitride sputtering process applies a high frequency bias voltage to the first roll 16 which functions as a roll for running, which is called a roller roll for film cooling. Do. This provides energy to promote the reaction and promotes the chemical reaction. The high frequency bias voltage is preferably in the range of 0.5 to 0.5 W / cm 2 . If it is less than 0.50 WZ cm 2 , adhesion can not be obtained, and if it exceeds 0.2 W / cm 2 , the polyimide film will be deteriorated, resulting in problems in reliability. Without the application of the high frequency bias voltage, the nitrogen component contained in the formed silicon nitride layer 2 a is considerably reduced, and adhesion and reliability can not be obtained.
このよ うにして、 樹脂フィルム 1の表面に、 シリ コ ンに対して窒素が 当量 0 . 5〜 1 . 3 3含まれる窒化シリ コ ン層 2 aを形成する窒化シリ コ ンスパッタエ程を行なう。 In this way, nitrogen is added to the surface of resin film 1 with respect to silicon. A silicon nitride sputtering process is performed to form a silicon nitride layer 2a containing an equivalent weight of 0.5-3.
上記窒化シリ コンスパッタ工程で窒化シリ コン層 2 aが形成された樹 脂フィルム 1 は、 第 2 スパッタ室 1 2に供給され、 ケィ素、 アルミニゥ ム、 ニッケルから選ばれる厚み 0 . 5〜 5 n mの金属膜 7を形成する金 属スパッタ工程が行なわれるととともに、銅スパッタ工程が行なわれる。 上記第 2スパッタ室 1 2には、 ケィ素、 アルミニウム、 ニッケルから 選ばれる金属からなる金属ターゲッ ト 2 4および銅ターゲッ ト 1 9 と、 上記金属ターゲッ ト 2 4および銅ターゲッ ト 1 9 と対面する領域におい て樹脂フィルム 1 を送る第 2 ロール 1 7 とが設けられている。  The resin film 1 on which the silicon nitride layer 2a is formed in the above-described silicon nitride sputtering process is supplied to the second sputtering chamber 12 and has a thickness of 0.5 to 5 nm selected from silicon, aluminum and nickel. While the metal sputtering process for forming the metal film 7 is performed, the copper sputtering process is performed. In the second sputtering chamber 12, a metal target 24 and a copper target 19 consisting of metals selected from Ge, aluminum, and nickel, and the metal target 24 and the copper target 19 are faced. In the area, a second roll 1 7 for feeding the resin film 1 is provided.
上記金属ターゲッ ト 2 4には、 直流電源 2 1 aによりマイナス電位の 電圧が印加される。 そして、 スパッタガスと してアルゴンガスを用い、 金属スパッタエ程を行なって金属膜 7を形成する。  A negative potential voltage is applied to the metal target 24 by a DC power supply 21 a. Then, using argon gas as a sputtering gas, metal sputtering is performed to form a metal film 7.
このとき、 フィノレムの冷却のためのキヤ ン口ールと呼ばれている走行 用のロールと して機能する第 2ロール 1 Ίに対して高周波電源 2 2によ り高周波バイァス電圧を印加しながら行なうのが好ましい。これにより、 反応を促進するためのエネルギーを与えて化学反応を促進させる。 上記 高周波バイ アス電圧は 0 . 0 3〜 0 . 2 W Z c m 2の電力が好ましい範 囲である。 0 . 0 3 c m 2未満では密着力がやや弱く なり、 0 . 2 W Z c m 2を超えると、 ポリイ ミ ドフィルムが劣化し、 信頼性に問題が 生じる。 At this time, a high frequency bias voltage is applied by the high frequency power supply 22 to the second roll 1 which functions as a traveling roll called a roller for cooling the fnorem. It is preferred to do. This provides energy to promote the reaction and promotes the chemical reaction. The high frequency bias voltage is preferably in the range of 0.3 to 0.3 Wz cm 2 . 0. Adhesion is somewhat weaker than 0 3 cm less than 2, 0. When 2 exceeds WZ cm 2, deteriorated Porii Mi de film, problems in reliability.
上記銅ターゲッ ト 1 9には、 直流電源 2 1 によりマイナス電位の電圧 が印加される。 そして、 スパッタガスと してアルゴンガスを用い、 銅ス パッタエ程を行なって銅スパッタ膜 4を形成する。  A negative potential voltage is applied to the copper target 19 by a DC power supply 21. Then, a copper sputtering process is performed using argon gas as a sputtering gas to form a copper sputtered film 4.
また、 銅スパッタエ程を、 銅ターゲッ ト 1 9に対面した領域で樹脂フ イルム 1 を送る第 2 ロール 1 7に対して高周波電源 2 2によ り高周波バ ィァス電圧を印加しながら行なう こともできる。 このときの、 高周波バ ィァス電圧の電力は 0 . 0 3 W Z c m 2以上が好ましい範囲であり、 これ 以下だと密着力の向上効果が得られない。 このようにすることにより、 銅スパッタ膜 4の密着力がさらに向上する。 Also, the copper sputter process is carried out by the high frequency power supply 22 with respect to the second roll 17 which feeds the resin film 1 in the area facing the copper target 19. It can also be performed while applying a bias voltage. At this time, the power of the high frequency bias voltage is preferably 0.3 WZ cm 2 or more, and if it is less than this, the effect of improving the adhesion can not be obtained. By doing so, the adhesion of the copper sputtered film 4 is further improved.
なお、 プラズマ室 1 0、 第 1 スパッタ室 1 1、 第 2スパッタ室 1 2の ガス圧はほぼ同じにしてもよいが、 第 2スパッタ室 1 2を最も高くする のが好ましい。 第 2スパッタ室 1 2のガス圧が低く なると、 第 1スパッ タ室 1 1やプラズマ室 1 0から窒素ガスが流れ込み、 銅の窒化物が生成 して場合によっては導電性がなく なつてしまうからである。  The gas pressure of the plasma chamber 10, the first sputtering chamber 11 and the second sputtering chamber 12 may be substantially the same, but it is preferable to make the second sputtering chamber 12 the highest. If the gas pressure in the second sputtering chamber 12 becomes low, nitrogen gas flows from the first sputtering chamber 11 or the plasma chamber 10, copper nitride is formed, and in some cases, the conductivity may be lost. It is.
銅スパッタ膜 4を形成したシー ド層付きフィルム 1 aは再びプラズマ 室 1 0に送られて巻取ロール 1 4で卷き取られる。  The film 1 a with a seed layer on which the copper sputtered film 4 is formed is again sent to the plasma chamber 10 and wound off by the winding roll 14.
つぎに、 窒化シリ コン層 2 aまたは酸窒化シリ コン層 2 b、 金属膜 7 および銅スパッタ膜 4を形成したシー ド層付きフィルム 1 aは連続銅め つき装置で銅めつき工程を行い、 銅めつき層 5を形成する。  Next, the film 1a with a seed layer on which the silicon nitride layer 2a or the silicon oxynitride layer 2b, the metal film 7 and the copper sputtered film 4 are formed is subjected to a copper plating process using a continuous copper plating apparatus. The copper plating layer 5 is formed.
図 4に示す連続銅めつき装置は、 めっき槽 2 5 と水洗槽 2 6 と乾燥槽 2 7を備え、 供給ロール 2 8で供給されたシ一ド層付きフィルム 1 aに 硫酸銅浴等で銅めつき層 5を形成して本発明のフレキシブル回路基板 6 を形成し、 巻取ロール 2 9で卷取る。 図において符号 3 0は直流電源、 3 1は陽極、 3 2は陰極ロールである。  The continuous copper plating device shown in Fig. 4 comprises a plating tank 2 5, a water washing tank 2 6 and a drying tank 2 7, and the film 1 a with a shield layer supplied by the supply roll 28 is a copper sulfate bath or the like. A copper plating layer 5 is formed to form the flexible circuit board 6 of the present invention, and the winding roll 29 is scraped. In the figure, reference numeral 30 is a DC power supply, 31 is an anode, and 32 is a cathode roll.
この例では、 上記銅スパッタエ程と銅めつき工程とが、 銅系金属層 3 を形成する本発明の銅系金属形成工程である。  In this example, the copper sputtering process and the copper plating process are the copper-based metal forming process of the present invention for forming the copper-based metal layer 3.
つぎに、 酸窒化シリ コン層 2 bを形成する第 2例の方法を説明する。 上記シリ コンターゲッ ト 1 8には、 直流電源 2 1 によりマイナス電位 の電圧が印加される。 一方、 上記第 1 ロール 1 6には、 高周波電源 2 0 により高周波バイアス電圧が印加される。 そして、 反応性スパッタガス と して、 アルゴンと酸素と窒素の混合ガスを導入する。 アルゴンガスと 酸素窒素混合ガスの比率は、 9 0 : 1 0から 6 0 : 4 0が好ましい範囲 であり、 上記酸素窒素混合ガスの酸素ガスと窒素ガスの比率は、 1 0 : 9 0から 4 0 : 6 0が好ましい範囲である。 窒素ガスが少なすぎると、 膜中の窒素が少なく なりすぎて、 密着力や信頼性が得られない。 反対に 窒素ガスが多すぎると、 膜の析出速度が遅く なり、 また化学量論より窒 素が多くなる。 Next, a method of the second example for forming the silicon oxynitride layer 2b will be described. A negative voltage is applied to the silicon target 18 from the DC power supply 21. On the other hand, a high frequency bias voltage is applied to the first roll 16 by a high frequency power supply 20. Then, a mixed gas of argon, oxygen and nitrogen is introduced as a reactive sputtering gas. With argon gas The ratio of the oxygen-nitrogen mixed gas is preferably in the range of 90:10 to 60:40, and the ratio of oxygen gas to nitrogen gas in the oxygen-nitrogen mixed gas is in the range of 10:90 to 40: 6. 0 is a preferred range. If the amount of nitrogen gas is too low, the amount of nitrogen in the film will be too low to obtain adhesion and reliability. On the other hand, if there is too much nitrogen gas, the film deposition rate will be slower and more nitrogen than stoichiometry will be found.
また、 上記酸窒化シリ コンスパッタエ程は、 フィルムの冷却のための キヤンロールと呼ばれている走行用のロールと して機能する第 1 ロール 1 6に対して高周波バイァス電圧を印加しながら行なう。 これにより、 反応を促進するためのエネルギーを与えて化学反応を促進させる。 上記 高周波バイアス電圧 0 . 0 5〜 0 . 3 W Z c m 2の電力が好ましい範 囲である。 0 . 0 5 c m 2未満では密着力が得られず、 0 . 3 W Z c m 2を超えると、 ポリイ ミ ドフィルムが劣化し、信頼性に問題が生じる。 この高周波バイアス電圧の印加がないと、 形成される酸窒化シリ コン層 2 bに含まれる窒素成分がかなり少なくなり、 密着力や信頼性が得られ ない。 Further, the above-mentioned silicon oxynitride process is performed while applying a high frequency bias voltage to the first roll 16 which functions as a traveling roll called a can roll for cooling the film. This provides energy to promote the reaction and promotes the chemical reaction. The power of the above-mentioned high frequency bias voltage 0.5 to 0.5 Wz cm 2 is a preferable range. 0. Not obtained adhesion force is less than 0 5 cm 2, 0. 3 exceeds WZ cm 2, it deteriorated Porii Mi de film, problems in reliability. Without the application of the high frequency bias voltage, the nitrogen component contained in the formed silicon oxynitride layer 2 b is considerably reduced, and adhesion and reliability can not be obtained.
このよ うにして、 樹脂フィルム 1の表面に、 シリ コンに対して窒素が 当量 0 . 5〜 1 . 3 3含まれる酸窒化シリ コン層 2 bを形成する酸窒化 シリ コンスパッタエ程を行なう。  Thus, on the surface of the resin film 1, a silicon oxynitride sputtering process is performed to form a silicon oxynitride layer 2b containing nitrogen in an equivalent amount of 0.5 to 1.33 with respect to silicon.
上記酸窒化シリ コンスパッタエ程で酸窒化シリ コン層 2 bが形成され た樹脂フィルム 1は、 第 2スパッタ室 1 2に供給され、 金属膜スパッタ 工程、 銅スパッタエ程および銅めつき工程が行なわれる。 金属膜スパッ タ工程、 銅スパッタエ程および銅めっき工程は上述した第 1例の方法と 同様である。  The resin film 1 on which the silicon oxynitride layer 2b is formed by the above-mentioned silicon oxynitride sputtering process is supplied to the second sputtering chamber 12, and a metal film sputtering process, a copper sputtering process and a copper plating process are performed. The metal film sputtering process, the copper sputtering process and the copper plating process are the same as the method of the first example described above.
以上のよ うに、 本実施形態では、 樹脂フィルム 1の表面に、 スパック 法による窒化シリ コン層 2 a または酸窒化シリ コン層 2 bを形成し、 さ らにケィ素、 アルミニウム、 ニッケルから選ばれる厚み 0 . 5〜 5 n m の金属膜 7を形成し、 さらに銅系金属層 3を形成した。 このよ う に、 中 間層と して窒化シリ コン層 2 aまたは酸窒化シリ コン層 2 b とケィ素、 アルミニウム、 ニッケルから選ばれる厚み 0 . 5〜 5 n mの金属膜 7 と を形成したことにより、 銅系金属層 3の密着性が良好となる。 さらに、 上記窒化シリ コン層 2 aまたは酸窒化シリ コン層 2 bは絶縁物であるこ とからエッチングの必要が無く、 ごく薄いケィ素等の金属膜 7 と銅系金 属層 3だけをエッチングすればよいため、 サイ ドエッチングがあまり起 こらずに微細エッチングが可能となる。 しかも、 高温下で仮に樹脂フィ ルム 1側からの水分や酸素が浸透したと しても窒化シリ コン層 2 aまた は酸窒化シリ コン層 2 bによってブロックされ、 銅系金属層 3の酸化や 密着力の低下が生じず、 信頼性にも優れたフレキシブル回路基板 6 とな る。 As described above, in the present embodiment, the silicon nitride layer 2 a or the silicon oxynitride layer 2 b is formed on the surface of the resin film 1 by the spack method. Further, a metal film 7 having a thickness of 0.5 to 5 nm selected from carbon, aluminum and nickel was formed, and a copper-based metal layer 3 was further formed. Thus, as the intermediate layer, the silicon nitride layer 2a or the silicon oxynitride layer 2b and the metal film 7 with a thickness of 0.5 to 5 nm selected from carbon, aluminum, and nickel were formed. Thus, the adhesion of the copper-based metal layer 3 is improved. Furthermore, since the silicon nitride layer 2 a or the silicon oxynitride layer 2 b is an insulator, there is no need to etch, and only the extremely thin metal film 7 such as silicon and the copper-based metal layer 3 can be etched. Since it is sufficient, fine etching can be performed without much side etching. Moreover, even if moisture or oxygen permeates from the resin film 1 side at high temperature, it is blocked by the silicon nitride layer 2 a or the silicon oxynitride layer 2 b, and oxidation of the copper-based metal layer 3 or The flexible circuit board 6 has excellent adhesion and no reduction in adhesion.
また、 本発明の第 2スパッタエ程と しての金属スパッタエ程は、 金属 ターゲッ ト 2 4に対面した領域で樹脂フィルム 1 を送る第 2ロール 1 7 に対して高周波バイァス電圧を印加しながら行なう場合には、 高周波バ ィァス電圧によって樹脂フィルム 1側の第 2 ロール 1 7が周囲に対して 見かけ上マイナス電位側にシフ トすることから、 金属膜 7の密着カも大 幅に向上する。  In addition, the metal sputtering process as the second sputtering process of the present invention is carried out while applying a high frequency bias voltage to the second roll 17 sending the resin film 1 in the region facing the metal target 24. Since the second roll 17 on the resin film 1 side is apparently shifted to the negative potential side with respect to the surroundings due to the high frequency bias voltage, the adhesion of the metal film 7 is also greatly improved.
上記スパッタ装置と して、 第 1 スパッタ室 1 1 と第 2スパッタ室 1 2 の間に共通ロールを設け、 この共通ロールに高周波電源により高周波バ ィァス電圧を印加するよ うにしてもよレ、。 そして、 窒化シリ コンまたは 酸窒化シリ コンスパッタエ程、 金属スパッタエ程および銅スパッタエ程 を、 共通ロールを利用して行い、 いずれも高周波バイアス電圧を印加し ながら行なう よ うにすることもできる。  As the sputtering apparatus described above, a common roll is provided between the first sputtering chamber 1 1 and the second sputtering chamber 1 2, and a high frequency bias voltage may be applied to the common roll by a high frequency power supply. . The silicon nitride or silicon oxynitride sputter process, the metal sputter process and the copper sputter process may be performed using a common roll and may be performed while applying a high frequency bias voltage.
図 1 1は、 本発明の第 2の実施形態を示す図である。 このフレキシブル回路基板 6は、 銅系金属層 3 と して、 イオンプレー ティングゃ真空蒸着法により銅膜 3 a を作成し、 銅めつきを省略したも のである。 銅膜 3 aの厚さが 1 Z m以下の場合に有効である。 以下、 実施例について説明する。 FIG. 11 shows a second embodiment of the present invention. As the copper-based metal layer 3, the flexible circuit board 6 is formed by forming a copper film 3 a by ion plating or vacuum evaporation and omitting copper plating. It is effective when the thickness of the copper film 3 a is 1 Z m or less. Examples will be described below.
実施例 1 Example 1
図 3に示す成膜装置を用いて導電性付与フィルムを作成した。 ポリイ ミ ドフィルムには、 厚さ 2 5 ΑΙ ΠΙ、 幅 2 5 c mのカネ力製ポリイ ミ ドフ イルム N P I を使用した。 フィルムの搬送速度は、 0. 8 m/分と した。 プラズマ処理室ガスにはアルゴンに 3 0 %の窒素の混合ガスを添加し、 プラズマ処理室内のガス圧が 0. 5 P aになるよ うガス流量を調節し、 交流電圧 3 8 0 Vを印加し、 プラズマを発生させ、 プラズマ雰囲気中に フィルムを通過させた。  An electroconductive film was produced using the film forming apparatus shown in FIG. As the polyimide film, a 25 cm wide, 25 cm wide, Kanemitsu-made polyimide film N P I having a width of 25 cm was used. The film transport speed was 0.8 m / min. A mixed gas of 30% nitrogen and argon is added to the plasma processing chamber gas, the gas flow rate is adjusted so that the gas pressure in the plasma processing chamber becomes 0.5 Pa, and an AC voltage of 380 V is applied. The plasma was generated, and the film was passed into the plasma atmosphere.
次の反応性スパッタ室では、 アルゴン 7 0 %、 3 0 %の窒素の混合ガ スの条件で、 0. 4 P a となるよう流量を調整し、 直流電圧 4 1 0 V、 幅 2 6 c m、 直径 2 0 c mの第 1 ロ ーノレ 1 6に 1 3. 5 6 MH zの高周 波を 1 6 0Wに印加した。 生成した膜の厚さは 1 0 n mで、 組成は S i N 1. 2であった。  In the next reactive sputtering chamber, the flow rate is adjusted to 0.4 Pa under a mixed gas condition of 70% argon and 30% nitrogen, and the DC voltage is 40 V, width 26 cm A high frequency of 13.56 MHz was applied to 160 W for the first ronore 16 with a diameter of 20 cm. The thickness of the formed film was 10 nm and the composition was S i N 1.2.
次に、 銅スノ ッタは、 幅 2 6 c m、 直径 4 0 c m第 2ロール 1 7を使 用し、アルゴンガス圧 0. 6 P a、直流電圧 4 0 0 Vの条件で成膜した。 次に、 図 4に示す銅メ ツキ装置で、 銅の厚さが 1 0 μ mになるようメ ッ キを行い、 本発明のフレキシブル回路基板 6を作成した。  Next, a copper snotter was deposited under conditions of argon gas pressure: 0.6 Pa and DC voltage: 400 V using a second roll 17 having a width 26 cm and a diameter 40 cm. Next, using a copper plating apparatus shown in FIG. 4, a plating was carried out so that the thickness of copper became 10 μm, and a flexible circuit board 6 of the present invention was produced.
〔評価法〕  [Evaluation method]
3 mm幅に銅メ ツキ膜が残るよ うにエッチングし、 J I S C 5 0 1 6に定めるよ うに垂直方向での引っ張り試験を行い、 密着力を測定し た。 また、 信頼性は、 3 mm幅にエッチングしたサンプルを 1 8 0°C中 に 1 日間放置し、 同様に密着力を測定した。 実施例 2 Etching was performed so that the copper plating film remained in a width of 3 mm, and a tensile test was conducted in the vertical direction as defined in JIS C 5 0 16 to measure adhesion. Also, the reliability was measured at 180 ° C for samples etched to a width of 3 mm. It was left for 1 day, and the adhesion was similarly measured. Example 2
実施例 1で、 窒化シリ コンスパッタエ程の窒素ガス濃度、 直流電圧、 高周波電力を変えて、 膜組成、 膜厚を替えた以外は同様の条件で成膜し た。 比較例 1  In Example 1, film formation was carried out under the same conditions except changing the film composition and film thickness by changing the nitrogen gas concentration such as silicon nitride sputter, DC voltage and high frequency power. Comparative example 1
比較例 1 と して、 窒化シリ コン成膜室の窒素ガス濃度、 直流電圧、 高 周波電力を変えて、 組成は S i N O . 3の窒化シリ コン膜を形成したも のを作成した。  As Comparative Example 1, a silicon nitride film having a composition of S i N O 3 was formed by changing the nitrogen gas concentration, DC voltage, and high frequency power in the silicon nitride film forming chamber.
実施例 1、 実施例 2および比較例 1における窒化シリ コン作成条件と 評価結果を下記の表 1 に示す。  The conditions for producing silicon nitride and the evaluation results in Example 1, Example 2 and Comparative Example 1 are shown in Table 1 below.
表 1 table 1
Figure imgf000029_0001
実施例 3
Figure imgf000029_0001
Example 3
図 5に示す装置を使用し、 実施例 1の条件で、 銅スパッタ用キャン口 ールに高周波電力を印加した以外は同様の条件で成膜した。  Using the apparatus shown in FIG. 5, under the conditions of Example 1, film formation was performed under the same conditions except that high frequency power was applied to the copper sputtering nozzle.
実施例 3における銅スパッタ時の高周波バイアス条件と評価結果を下 記の表 2に示す。 表 2 The high frequency bias conditions at the time of copper sputtering in Example 3 and the evaluation results are shown in Table 2 below. Table 2
Figure imgf000030_0001
Figure imgf000030_0001
〔評価の結果〕 [Result of evaluation]
規格では、 初期値で 0. 5 NZmm以上となっており、 高温保存後に ついては規定がないが、 一般には 0. 4 NZmm以上あればよいとされ ている。 評価の結果からも各実施例では、 初期の密着力、 高温保存後と もに良好な結果が得られた。 これに対し、 比較例のものは初期密着力、 高温保存後ともに低い値を示した。 実施例 4  According to the standard, the initial value is 0.5 mm or more, and there is no stipulation after high temperature storage, but in general, it should be 0.4 mm or more. Also from the evaluation results, in each example, good results were obtained both in the initial adhesion and after storage at high temperature. On the other hand, in the case of the comparative example, both the initial adhesion and the high temperature storage showed low values. Example 4
図 3に示す成膜装置を用いて導電性付与フィルムを作成した。 ポリイ ミ ドフイ ノレムには、 厚さ 2 5 m、 幅 2 5 c mのカネ力製ポリイ ミ ドフ ィルム N P I を使用した。 フィルムの搬送速度は、 1 m/分と した。 プラ ズマ処理室ガスにはアルゴンに 1 0 %の酸素と 2 0 %の窒素の混合ガス を添加し、 プラズマ処理室内のガス圧が 0. 5 P aになるようガス流量 を調節し、 交流電圧 3 8 0 Vを印加し、 プラズマを発生させ、 プラズマ 雰囲気中にフィルムを通過させた。  An electroconductive film was produced using the film forming apparatus shown in FIG. For polyimido de norem, a 25 m-thick, 25 cm-wide, Kanei-forced polyimido film NPI was used. The film transport speed was 1 m / min. A mixed gas of 10% oxygen and 20% nitrogen is added to argon in the plasma processing chamber gas, the gas flow rate is adjusted so that the gas pressure in the plasma processing chamber becomes 0.5 Pa, and AC voltage A voltage of 380 V was applied to generate a plasma, and the film was passed through the plasma atmosphere.
次の反応性スパッタ室では、アルゴン 7 0 %、酸素 1 0 %、窒素 2 0 % の混合ガスの条件で、 0. 4 P a となるよ う流量を調整し、 直流電圧 4 4 0 V、 幅 2 6 c m、 直径 2 0 c mの第 1 ロ ーノレ 1 6に 1 3. 5 6 MH zの高周波を 2 4 5Wに印加した。 生成した膜の厚さは 1 2 n mで、 組 成は S i O N 0. 7であった。 次に、 銅スノ ッタは、 幅 2 6 c m、 直径 4 O c m第 2 ロール 1 7を使 用し、 アルゴンガス圧 0. 6 P a、直流電圧 4 0 0 Vの条件で成膜した。 次に、 図 4に示す銅メ ツキ装置で、 銅の厚さが 1 0 μ mになるようメ ッ キを行い、 本発明のフ レキシブル回路基板を作成した。 In the next reactive sputtering chamber, the flow rate was adjusted to 0.4 Pa under the conditions of a mixed gas of 70% argon, 10% oxygen, and 20% nitrogen, and a DC voltage of 40 0 V, A high frequency of 1 3.56 MHz was applied to 2 4 5 W to a 1st ROM 1 16 having a width 26 cm and a diameter of 2 0 cm. The thickness of the formed film was 12 nm, and the composition was S i ON 0.7. Next, a copper snotter was deposited under conditions of argon gas pressure of 0.6 Pa and DC voltage of 400 V using a second roll 17 having a width of 26 cm and a diameter of 4 O cm. Next, the copper plating apparatus shown in FIG. 4 was used to make a copper thickness of 10 μm, and a flexible circuit board of the present invention was produced.
〔評価法〕  [Evaluation method]
3 mm幅に銅メ ツキ膜が残るようにエッチングし、 J I S C 5 0 1 6に定めるように垂直方向での引っ張り試験を行い、 密着力を測定し た。 また、 信頼性は、 3 mm幅にエッチングしたサンプルを 1 8 0°C中 に 1 日間放置し、 同様に密着力を測定した。 実施例 5  Etching was performed so that the copper plating film remained in a 3 mm width, and a tensile test was conducted in the vertical direction as defined in J I S C 5 0 16 to measure adhesion. The reliability was also measured by keeping the sample etched to a width of 3 mm at 180 ° C. for 1 day, and measuring adhesion in the same manner. Example 5
実施例 1 で、酸窒化シリ コンスパッタエ程の窒素ガス濃度、直流電圧、 高周波電力を変えて、 膜組成、 膜厚を替えた以外は同様の条件で成膜し た。 比較例 2  The film formation was carried out under the same conditions as in Example 1 except that the nitrogen gas concentration, direct current voltage and high frequency power of silicon oxynitride sputter process were changed, and the film composition and the film thickness were changed. Comparative example 2
比較例 2 と して、 酸窒化シリ コン成膜室の窒素ガス濃度、 直流電圧、 高周波電力を変えて、 組成は S i N 0. 3の酸窒化シリ コン膜を形成し たものを作成した。  As Comparative Example 2, a silicon oxynitride film having a composition of Si N 0.3 was formed by changing the nitrogen gas concentration, DC voltage, and high frequency power in the silicon oxynitride film forming chamber. .
実施例 4、 実施例 5および比較例における酸窒化シリ コン作成条件と 評価結果を下記の表 3に示す。 表 3 試料 No ガス圧 ガス組成 直流電圧高周波電力 膜組成 膜厚 密着力 (N/mm) The conditions for producing silicon oxynitride and evaluation results in Example 4, Example 5 and Comparative Example are shown in Table 3 below. Table 3 Sample No Gas pressure Gas composition DC voltage RF power Film composition Film thickness Adhesion (N / mm)
(Pa) (Ar02:N2) (V) (W/cm2) (nm) 初期 180°C— 1日 実施例 4 0.5 7:1:2 440 0.15 SiONO.7 12 0.6 0.7  (Pa) (Ar02: N2) (V) (W / cm2) (nm) Initial 180 ° C-1 day Example 4 0.5 7: 1: 2 440 0.15 SiONO.7 12 0.6 0.7
実施例 5— 1 0.5 7:1:2 425 0.15 SiON0.7 6 0.8 0.7  Example 5-1 0.5 7: 1: 2 425 0.15 SiON 0.7 6 0.8 0.7
実施例 5— 2 0.6 6:1:3 465 0.18 SiON0.7 28 0.5 0.8  Example 5-2 0.6 6: 1: 3 465 0.18 SiON 0.7 28 0.5 0.8
実施例 5— 3 0.5 7:2:1 450 0.1 SiO1.5N0.3 15 0.5 0.6  Example 5-3 0.5 7: 2: 1 450 0.1 SiO 1.5 N 0.3 15 0.5 0.6
実施例 5— 4 0.6 6:0.5:3.5 440 0.2 SiO0.3 1.1 12 0.7 0.8  Example 5-4 0.6 6: 0.5: 3.5 440 0.2 SiO 0.3 1.1 12 0.7 0.8
比較例 2— 1 0.5 7:2:1 450 0.03 SiO1.8N0.1 15 0.1 0.3  Comparative Example 2-1 0.5 7: 2: 1 450 0.03 SiO 1.8 N 0.1 15 0.1 0.3
比較例 2— 2 0.6 6:0.3:3.7 440 0.25 SiO0.2N1.2 12 0.2 0.4  Comparative Example 2-2 0.6 6: 0.3: 3.7 440 0.25 SiO 0.2 N 1.2 12 0.2 0.4
実施例 6 Example 6
図 5に示す装置を使用し、 実施例 4の条件で、 銅スパッタ用キャン口 ールに高周波電力を印加した以外は同様の条件で成膜した。  Using the apparatus shown in FIG. 5, under the conditions of Example 4, the film was formed under the same conditions except that high frequency power was applied to the copper sputtering nozzle.
実施例 6における銅スパッタ時の高周波バイァス条件と評価結果を下 記の表 4に示す。 表 4  The high frequency bias conditions at the time of copper sputtering in Example 6 and the evaluation results are shown in Table 4 below. Table 4
Figure imgf000032_0001
Figure imgf000032_0001
〔評価の結果〕 [Result of evaluation]
規格では、 初期値で 0 . 5 N Z m m以上となっており、 高温保存後に ついては規定がないが、 一般には 0 . 4 N Z m rn以上あればよいとされ ている。 評価の結果からも各実施例では、 初期の密着力、 高温保存後と もに良好な結果が得られた。 これに対し、 比較例のものは初期密着力、 高温保存後ともに低い値を示した。 実施例 Ί According to the standard, the initial value is 0.5 NZ mm or more, and there is no stipulation after high temperature storage, but it is generally accepted that it should be 0.4 NZ m rn or more. Also from the evaluation results, in each example, good results were obtained both in the initial adhesion and after storage at high temperature. On the other hand, in the case of the comparative example, both the initial adhesion and the high temperature storage showed low values. Example Ί
図 1 0に示す成膜装置を用いて導電性付与フィルムを作成した。 ポリ イ ミ ドフィルムには、 厚さ 2 5 /i m、 幅 2 5 c mのカネ力製ポリイ ミ ド フィルム N P I を使用した。フィルムの搬送速度は、 0. 8 m/分と した。 プラズマ処理室ガスにはアルゴンに 3 0 %の窒素の混合ガスを添加し、 プラズマ処理室内のガス圧が 0. 5 P aになるようガス流量を調節し、 交流電圧 3 8 0 Vを印加し、 プラズマを発生させ、 プラズマ雰囲気中に フィルムを通過させた。  The conductivity imparting film was formed using the film forming apparatus shown in FIG. As the polyimide film, a 25 μm thick, 25 cm wide, Kanemitsu-made polyimide film N P I was used. The film transport speed was 0.8 m / min. A mixed gas of 30% nitrogen to argon is added to the plasma processing chamber gas, the gas flow rate is adjusted so that the gas pressure in the plasma processing chamber becomes 0.5 Pa, and an AC voltage of 300 V is applied. The plasma was generated and the film was passed into the plasma atmosphere.
次の反応性スパッタ室では、 アルゴン 7 0 %、 3 0 %の窒素の混合ガ スの条件で、 0. 4 P a となるよ う流量を調整し、 直流電圧 4 1 0 V、 幅 2 6 c m、 直径 2 0 c mの第 1 ロ ーノレ 1 6に 1 3. 5 6 MH z の高周 波を 1 6 0 Wに印加した。 生成した膜の厚さは 1 0 n mで、 組成は S i N 1 . 2であった。  In the next reactive sputtering chamber, the flow rate is adjusted to 0.4 P a under a mixed gas condition of 70% argon and 30% nitrogen, and a DC voltage of 40 V, width 2 6 A high frequency of 13.56 MHz was applied to 160 W at 1 cm of the first ronore 16 with a diameter of 20 cm. The thickness of the film formed was 10 nm and the composition was S i N 1. 2.
次に、 金属膜 7 と してケィ素膜を生成するケィ素スパッタは、 幅 2 6 c m、 直径 4 0 c m第 2ロール 1 7を使用した。 ケィ素スパッタは、 ァ ルゴンガス圧 0. 6 P a、 直流電圧 3 2 0 Vの条件で成膜した。 また、 銅スノヽ。ッタは、 幅 2 6 c m、 直径 4 O c m第 2ロール 1 7を使用し、 ァ ルゴンガス圧 0. 6 P a、 直流電圧 4 0 0 Vの条件で成膜した。 次に、 図 3に示す銅メ ツキ装置で、 銅の厚さが 1 0 mになるよ うメ ツキを行 レ、、 本発明のフレキシブル回路基板 6を作成した。 実施例 8  Next, a silicon sputter for forming a silicon film as the metal film 7 used a second roll 17 having a width of 26 cm and a diameter of 40 cm. The silicon sputtering was formed under conditions of argon gas pressure of 0.6 Pa and DC voltage of 320 V. In addition, a copper snow bream. The film was formed under conditions of argon gas pressure of 0.6 Pa and DC voltage of 400 V using a width 26 cm and a diameter 4 O c m second roll 17. Next, using a copper plating apparatus shown in FIG. 3, a flexible circuit board 6 of the present invention was produced by plating so that the thickness of copper would be 10 m. Example 8
実施例 1 において、 酸窒化シリ コンスパッタエ程の窒素ガス濃度、 直 流電圧、 高周波電力を変えて、 膜組成、 膜厚を変更した以外は同様の条 件で成膜した。 実施例 9 The film formation was performed under the same conditions as in Example 1 except that the film composition and the film thickness were changed by changing the nitrogen gas concentration, the direct current voltage and the high frequency power as silicon oxynitride sputtering process. Example 9
実施例 1 において、 金属膜 7 と してケィ素膜に変えてアルミ二ゥム膜 及び二ッケル膜を形成し同等の膜厚になるよ う電圧を変更した以外は同 様の条件で成膜した。 - 実施例 1 0  In Example 1, film formation was performed under the same conditions except that the metal film 7 was changed to a silica film to form an aluminum film and a nickel film, and the voltage was changed so as to obtain the same film thickness. did. -Example 1 0
実施例 1において、 金属膜 7 と してのケィ素膜の膜厚を変更した以外 は同様の条件で成膜した。 実施例 1 1  The film formation was carried out under the same conditions as in Example 1 except that the thickness of the silicon film as the metal film 7 was changed. Example 1 1
実施例 1の条件で、 銅スパッタの際に、 第 2 口ール 1 7に高周波バイ ァス電圧を印加した以外は同様の条件で成膜した。 実施例 1 2  A film was formed under the same conditions as in Example 1, except that a high frequency bias voltage was applied to the second port 17 during copper sputtering. Example 1 2
図 1 0に示す成膜装置を用いて導電性付与フィルムを作成した。 ポリ イ ミ ドフイノレムには、 厚さ 2 5 /X m、 幅 2 5 c mのカネ力製ポリ イ ミ ド フィルム N P I を使用した。 フィルムの搬送速度は、 1 m/分と した。 プ ラズマ処理室ガスにはアルゴンに酸素 1 0 %と窒素 2 0 %の混合ガスを 添加し、 プラズマ処理室内のガス圧が 0. 5 P aになるようガス流量を 調節し、 交流電圧 3 8 0 Vを印加し、 プラズマを発生させ、 プラズマ雰 囲気中にフィルムを通過させた。  The conductivity imparting film was formed using the film forming apparatus shown in FIG. For polyvinyl dophinorem, a 25 μm thick, 25 cm wide, Kanemitsu-made polyimide film N P I having a thickness of 25 cm was used. The film transport speed was 1 m / min. A mixed gas of 10% oxygen and 20% nitrogen is added to argon in the plasma processing chamber gas, and the gas flow rate is adjusted so that the gas pressure in the plasma processing chamber becomes 0.5 Pa, and AC voltage 38 A voltage of 0 V was applied to generate a plasma, and the film was passed through the plasma atmosphere.
次の反応性スパッタ室では、アルゴン 7 0 %、酸素 1 0 %、窒素 2 0 % の混合ガスの条件で、 0. 4 P a となるよ う流量を調整し、 直流電圧 4 1 0 V、 幅 2 6 c m、 直径 2 0 c mの第 1 ロール 1 6に 1 3. 5 6 MH zの高周波を 2 4 5 Wに印加した。 生成した膜の厚さは 1 2 n mで、 組 成は S i O N 0. 7であった。 次に、 金属膜 7 と してケィ素膜を生成するケィ素スパッタは、 幅 2 6 c m、 直径 4 O c m第 2 ロール 1 7を使用した。 ケィ素スパッタは、 ァ ノレゴンガス圧 0 . 6 P a、 直流電圧 3 2 0 Vの条件で成膜した。 また、 銅スパッタは、 アルゴンガス圧 0 . 6 P a、 直流電圧 4 0 0 Vの条件で 成膜した。 次に、 図 3に示す銅メ ツキ装置で、 銅の厚さが 1 5 μ mにな るようメ ッキを行い、 本発明のフレキシブル回路基板 6を作成した。 実施例 1 3 In the next reactive sputtering chamber, the flow rate is adjusted to 0.4 P a under the conditions of a mixed gas of 70% argon, 10% oxygen, and 20% nitrogen, and a DC voltage of 40 V, A high frequency of 1 3.56 MHz was applied to 2 45 W to a first roll 16 having a width 26 cm and a diameter of 20 cm. The thickness of the formed film was 12 nm, and the composition was S i ON 0.7. Next, a silicon sputter for forming a silicon film as the metal film 7 used a second roll 17 having a width of 26 cm and a diameter of 4 O cm. The silicon sputtering was carried out under the conditions of an atmospheric pressure of 0.6 Pa and a DC voltage of 320 V. In addition, copper sputtering was performed under the conditions of argon gas pressure 0.6 Pa and DC voltage 400 V. Next, using a copper plating apparatus shown in FIG. 3, the thickness was made to be 15 μm so that the flexible circuit board 6 of the present invention was produced. Example 1 3
実施例 1 2において、 酸窒化シリ コンスパッタ工程の窒素ガス濃度、 直流電圧、 高周波電力を変えて、 膜組成、 膜厚を変更した以外は同様の 条件で成膜した。 実施例 1 4  The film formation was carried out under the same conditions as Example 12 except that the nitrogen gas concentration, DC voltage and high frequency power in the silicon oxynitride sputtering step were changed to change the film composition and film thickness. Example 1 4
実施例 1 2において、 金属膜 7 と してケィ素膜に変えてアルミニウム 膜及びニッケル膜を形成し同等の膜厚になるよう電圧を変更した以外は 同様の条件で成膜した。 実施例 1 5  An aluminum film and a nickel film were formed as the metal film 7 in Example 12 in the same manner as the metal film 7 except that the voltage was changed so as to obtain the same film thickness. Example 1 5
実施例 6において、 金属膜 7 と してのケィ素膜の膜圧を変更した以外 は同様の条件で成膜した。 実施例 1 6  A film was formed under the same conditions as in Example 6, except that the film pressure of the silicon film as the metal film 7 was changed. Example 1 6
実施例 1 2の条件で、 銅スパッタの際に、 第 2ロール 1 7に高周波バ ィァス電圧を印加した以外は同様の条件で成膜した。 実験例 1 実施例 7において、 窒化シ リ コ ン成膜室の窒素ガス濃度、 直流電圧、 高周波電力を変更して、 膜組成、 膜厚を替えた以外は同様の条件で成膜 した。 実験例 2 A film was formed under the same conditions as Example 12, except that a high frequency bias voltage was applied to the second roll 17 in the copper sputtering. Experimental example 1 In Example 7, film formation was performed under the same conditions except changing the film composition and film thickness by changing the nitrogen gas concentration, DC voltage, and high frequency power in the silicon nitride film forming chamber. Experimental example 2
実施例 1 0において、 金属膜 7 と してのケィ素膜の膜厚を変更した以 外は同様の条件で成膜した。  A film was formed under the same conditions as Example 10 except that the thickness of the silicon film as the metal film 7 was changed.
〔評価法〕  [Evaluation method]
3 m m幅に銅メ ツキ膜が残るよ うにエッチングし、 J I S C 5 0 1 6に定めるよ うに垂直方向での引つ張り試験を行い、 密着力を測定し た。 また、 信頼性は、 3 m m幅にエッチングしたサンプルを 1 8 0 °C中 に 1 日間放置し、 同様に密着力を測定した。 実施例 7〜 1 0における窒化シリ コン作成条件と評価結果を下記の表 5に示す。  Etching was performed so that the copper plating film remained in a 3 m width, and a tensile test was conducted in the vertical direction as defined in J I S C 5 0 16 to measure adhesion. Also, the reliability was measured by similarly holding the sample etched to a width of 3 mm at 180 ° C. for 1 day. The conditions for producing silicon nitride and the evaluation results in Examples 7 to 10 are shown in Table 5 below.
表 5 Table 5
Figure imgf000036_0001
実施例 1 1における銅スパッタ時の高周波バイアス条件と評価結果を 下記の表 6に示す。 表 6
Figure imgf000036_0001
The high frequency bias conditions and evaluation results at the time of copper sputtering in Example 11 are shown in Table 6 below. Table 6
Figure imgf000037_0001
実施例 1 2〜 1 5における酸窒化シリ コン作成条件と評価結果を下記 の表 7に示す。
Figure imgf000037_0001
The conditions for producing silicon oxynitride and the evaluation results in Examples 1 to 15 are shown in Table 7 below.
表 7 Table 7
Figure imgf000037_0002
実施例 1 6における銅スパッタ時の高周波バイアス条件と評価結果を 下記の表 8に示す。
Figure imgf000037_0002
The high frequency bias conditions and evaluation results at the time of copper sputtering in Example 16 are shown in Table 8 below.
表 8 Table 8
Figure imgf000037_0003
実験例 1 〜 2における窒化シリ コン作成条件と評価結果を下記の表 9 に示す。
Figure imgf000037_0003
The conditions for producing silicon nitride and the evaluation results in Experimental Examples 1 to 2 are shown in Table 9 below.
表 9 試料 No ガス圧 ガス組成 直流電圧 高周波電力 膜組成 膜厚 金属 膜厚 密着力 (N/mm) (Pa) (ArN2) (V) (W/cm2) (nm) (nm) 初期 1 80°C- 1曰 実験例 1—1 0.5 8:2 385 0.098 SiN1.2 3 珪素 2 0.9 0.3 実験例 1一 2 0.5 7:3 430 0.15 SiN1.1 20 珪素 2 0.3 0.6 実験例 1一 3 0.5 9:1 400 0.01 SiN0.3 10 珪素 2 0.3 0.2 実験例 1一 4 0.6 5:5 415 0.25 SiN1.4 10 珪素 2 0.9 0.3 実験例 2— 1 0.5 7:3 410 0.098 Si 1.2 10 珪素 0.3 0.4 0.5 実験例 2— 2 0.5 7:3 410 0.098 SiN1.2 10 珪素 6 0.4 0.7 Table 9 Sample No. Gas pressure Gas composition DC voltage RF power Film composition Film thickness Metal film Adhesion (N / mm) (Pa) (ArN2) (V) (W / cm2) (nm) (nm) Initial 1 80 ° C- 1 Experimental Example 1-1 0.5 8: 2 385 0.098 SiN 1.2 3 Silicon 2 0.9 0.3 Experimental Example 1 1 2 0.5 7: 3 430 0.15 SiN 1.1 20 Silicon 2 0.3 0.6 Experimental Example 1 3 0.5 9: 1 400 0.01 SiN 0.3 10 Silicon 2 0.3 0.2 Experimental Example 1-4 0.6 5: 5 415 0.25 SiN 1.4 10 Silicon 2 0.9 0.3 Experimental Example 2-1 0.5 7: 3: 410 0.098 Si 1.2 10 Silicon 0.3 0.4 0.5 Experimental Example 2- 2 0.5 7: 3 410 0.098 SiN 1.2 10 silicon 6 0.4 0.7
〔評価の結果〕 [Result of evaluation]
規格では、 初期値で 0 . 5 N Z m m以上となっており、 高温保存後に ついては規定がないが、 一般には 0 . 4 N Z m m以上あればよいとされ ている。 評価の結果からも初期の密着力、 高温保存後ともに良好な結果 がえられ、 また、 絶縁物ということから、 エッチングの問題がなく微細 パターンがえられるフレキシブル回路基板がえられた。  According to the standard, the initial value is 0.5 Nz m or more, and there is no stipulation after high temperature storage, but in general, it should be 0.4 N Z m or more. From the evaluation results, good adhesion was obtained both in the initial stage and after storage at high temperature, and from the fact that it is an insulator, a flexible circuit board with a fine pattern without any etching problems was obtained.

Claims

請求の範囲 The scope of the claims
1.樹脂フィルムの表面に、 シリ コンに対して窒素が当量で 0. 5〜 1 . 3 3含まれるスパッタ法による窒化シリ コン層が形成され、 さらに銅系 金属層が形成されたことを特徴とするフレキシブル回路基板。 1. On the surface of the resin film, a silicon nitride layer was formed by a sputtering method containing 0.5 to 1.33 equivalent amounts of nitrogen relative to silicon, and a copper-based metal layer was further formed. Flexible circuit board.
2.樹脂フイルムの表面に、シリ コンに対して窒素が当量で 0. 3〜 1 .2. On the surface of the resin film, 0.3 to 1 in nitrogen equivalent to silicon.
1含まれるスパッタ法による酸窒化シリ コン層が形成され、 さらに銅系 金属層が形成されたことを特徴とするフレキシブル回路基板。 1 A flexible circuit board characterized in that a silicon oxynitride layer is formed by a sputtering method and a copper-based metal layer is further formed.
3. 樹脂フィルムの表面に、 スパッタ法による窒化シリ コン層または酸 窒化シリ コン層が形成され、 さらにケィ素、 アルミニウム、 ニッケルか ら選ばれる厚み 0. 5〜 5 n mの金属膜が形成され、 さらに銅系金属層 が形成されたことを特徴とするフレキシブル回路基板。 3. A silicon nitride layer or a silicon oxynitride layer is formed by sputtering on the surface of the resin film, and a metal film with a thickness of 0.5 to 5 nm selected from Ge, Al and Ni is formed. Furthermore, a copper-based metal layer is formed.
4. 樹脂フィルムの表面に、 シリ コンに対して窒素が当量 0. 5〜 1 . 3 3含まれる窒化シリ コン層を形成する窒化シリ コンスパッタエ程と、 さらに銅系金属層を形成する銅系金属形成工程とを備えたことを特徴と するフ レキシブル回路基板の製造方法。 4. A silicon nitride sputter process to form a silicon nitride layer containing 0.5 to 1.33 equivalents of nitrogen relative to silicon on the surface of the resin film, and a copper based metal to form a copper based metal layer. A method of manufacturing a flexible circuit board, comprising the steps of: forming a flexible circuit board;
5. 上記窒化シリ コンスパッタエ程は、 ターゲッ トに対面した領域で樹 脂フィルムを送る電極ロールに対して高周波バイァス電圧を印加しなが ら行なう請求項 4記載のフレキシブル回路基板の製造方法。 5. The method for manufacturing a flexible circuit board according to claim 4, wherein the silicon nitride sputtering process is performed while applying a high frequency bias voltage to an electrode roll for sending a resin film in a region facing a target.
6. 樹脂フィルムの表面に、 シリ コンに対して窒素が当量 0. 3〜 1 .6. On the surface of the resin film, the nitrogen equivalent is 0.3 to 1 with respect to silicon.
1含まれる酸窒化シリ コン層を形成する酸窒化シリ コンスパッタ工程と、 さらに銅系金属層を形成する銅系金属形成工程とを備えたことを特徴と するフ レキシブル回路基板の製造方法。 1. A silicon oxynitride sputtering process for forming a silicon oxynitride layer contained And a copper based metal forming step of forming a copper based metal layer.
7 . 上記酸窒化シリ コンスパッタエ程は、 ターゲッ トに対面した領域で 樹脂フィルムを送る電極ロールに対して高周波バイァス電圧を印加しな がら行なう請求項 6記載のフレキシブル回路基板の製造方法。 7. The method of manufacturing a flexible circuit board according to claim 6, wherein the silicon oxynitride process is performed while applying a high frequency bias voltage to an electrode roll for sending a resin film in a region facing the target.
8 . 樹脂フィルムの表面に、 スパッタ法による窒化シリ コ ン層または酸 窒化シリ コ ン層を形成する第 1 スパッタエ程と、 さらにケィ素、 アルミ 二ゥム、 ニッケルから選ばれる厚み 0 . 5〜 5 n mの金属膜を形成する 第 2 スパッタエ程と、 さ らに銅系金属層を形成する銅系金属形成工程と を備えたことを特徴とするフレキシブル回路基板の製造方法。 8. A first sputtering process for forming a silicon nitride layer or a silicon oxynitride layer by a sputtering method on the surface of a resin film, and further, a thickness 0.5 to 5 selected from silicon, aluminum and nickel. A method of manufacturing a flexible circuit board, comprising: a second sputtering process for forming a metal film of 5 nm; and a copper-based metal forming process for forming a copper-based metal layer.
9 . 上記第 2 スパッタエ程は、 ターゲッ トに対面した領域で樹脂フィル ムを送る電極ロールに対して高周波バイァス電圧を印加しながら行なう 請求項 8記載のフレキシブル回路基板の製造方法。 9. The method for manufacturing a flexible circuit board according to claim 8, wherein the second sputtering process is performed while applying a high frequency bias voltage to an electrode roll for sending a resin film in a region facing the target.
PCT/JP2007/068314 2007-02-16 2007-09-10 Flexible circuit board and process for producing the same WO2008099527A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2007-035579 2007-02-16
JP2007035578A JP2008198953A (en) 2007-02-16 2007-02-16 Flexible circuit board and manufacturing method thereof
JP2007035579A JP2008198954A (en) 2007-02-16 2007-02-16 Flexible circuit board and manufacturing method thereof
JP2007-035578 2007-02-16
JP2007-155944 2007-06-13
JP2007155944A JP2008311328A (en) 2007-06-13 2007-06-13 Flexible circuit substrate and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2008099527A1 true WO2008099527A1 (en) 2008-08-21

Family

ID=39689784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/068314 WO2008099527A1 (en) 2007-02-16 2007-09-10 Flexible circuit board and process for producing the same

Country Status (2)

Country Link
TW (1) TW200836609A (en)
WO (1) WO2008099527A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106164327A (en) * 2014-09-19 2016-11-23 三井金属矿业株式会社 Surface treatment copper foil and manufacture method, use in printed circuit board copper-clad laminated board and printed circuit board (PCB)
JP2017041630A (en) * 2015-08-18 2017-02-23 東レKpフィルム株式会社 Metallized film and manufacturing method of the same
US10763002B2 (en) 2015-04-28 2020-09-01 Mitsui Mining & Smelting Co., Ltd. Surface-treated copper foil, manufacturing method therefor, printed circuit board copper-clad laminate, and printed circuit board

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003109748A (en) * 2001-09-27 2003-04-11 Sanyo Shinku Kogyo Kk Manufacturing method of electronic device or plastic board for organic el element, and electronic device or plastic board for organic el element or organic el element manufactured in same method
JP2005054259A (en) * 2003-08-07 2005-03-03 Matsushita Electric Ind Co Ltd Plastic film, its manufacturing method and flexible printed circuit board applying the method
JP2005347438A (en) * 2004-06-02 2005-12-15 Ulvac Japan Ltd Printed wiring board, and manufacturing method and apparatus thereof
JP2006088422A (en) * 2004-09-22 2006-04-06 Toppan Printing Co Ltd Transparent gas barrier laminate
JP2006159632A (en) * 2004-12-07 2006-06-22 Furukawa Circuit Foil Kk Copper metallized laminated sheet and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003109748A (en) * 2001-09-27 2003-04-11 Sanyo Shinku Kogyo Kk Manufacturing method of electronic device or plastic board for organic el element, and electronic device or plastic board for organic el element or organic el element manufactured in same method
JP2005054259A (en) * 2003-08-07 2005-03-03 Matsushita Electric Ind Co Ltd Plastic film, its manufacturing method and flexible printed circuit board applying the method
JP2005347438A (en) * 2004-06-02 2005-12-15 Ulvac Japan Ltd Printed wiring board, and manufacturing method and apparatus thereof
JP2006088422A (en) * 2004-09-22 2006-04-06 Toppan Printing Co Ltd Transparent gas barrier laminate
JP2006159632A (en) * 2004-12-07 2006-06-22 Furukawa Circuit Foil Kk Copper metallized laminated sheet and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106164327A (en) * 2014-09-19 2016-11-23 三井金属矿业株式会社 Surface treatment copper foil and manufacture method, use in printed circuit board copper-clad laminated board and printed circuit board (PCB)
US10763002B2 (en) 2015-04-28 2020-09-01 Mitsui Mining & Smelting Co., Ltd. Surface-treated copper foil, manufacturing method therefor, printed circuit board copper-clad laminate, and printed circuit board
JP2017041630A (en) * 2015-08-18 2017-02-23 東レKpフィルム株式会社 Metallized film and manufacturing method of the same

Also Published As

Publication number Publication date
TW200836609A (en) 2008-09-01

Similar Documents

Publication Publication Date Title
JP4754402B2 (en) Copper foil with carrier foil, method for producing copper foil with carrier foil, surface-treated copper foil with carrier foil, and copper-clad laminate using the surface-treated copper foil with carrier foil
TWI435802B (en) Metal polyimide composite, method for manufacturing the same, and method for manufacturing the same
TWI450816B (en) A polyimide complex coated with a metal, a method for producing the composite, and a manufacturing apparatus for the composite
KR102138676B1 (en) Surface-treated copper foil and its manufacturing method, copper-clad laminate for printed wiring board, and printed wiring board
KR101133488B1 (en) Non-adhesive-type flexible laminate and method for production thereof
WO1996038029A1 (en) Flexible printed wiring board
WO2015122258A1 (en) Carrier-equipped ultrathin copper foil, and copper-clad laminate, printed circuit substrate and coreless substrate that are manufactured using same
JP4341023B2 (en) Method for producing metal-coated liquid crystal polymer film
TWI389618B (en) A two layer film, a method of manufacturing a two layer film, and a method of manufacturing a printed circuit board
JP2005219259A (en) Metallized polyimide film
JP2008162245A (en) Plating-method two-layer copper polyimide laminated film, and method for manufacturing the same
WO2009098832A1 (en) Adhesive-free flexible laminate
WO2008099527A1 (en) Flexible circuit board and process for producing the same
JP2008311328A (en) Flexible circuit substrate and manufacturing method thereof
TW201334958A (en) Copper-clad two-layer material and process for producing same
JP5925981B1 (en) Surface-treated copper foil and method for producing the same, copper-clad laminate for printed wiring board, and printed wiring board
KR101363771B1 (en) Two-layer flexible substrate and process for producing same
JP2009501433A (en) Flexible circuit board
KR101269816B1 (en) Flexible laminate and flexible electronic circuit substrate formed using the same
JP2008198953A (en) Flexible circuit board and manufacturing method thereof
JP4588621B2 (en) Laminated body for flexible printed wiring board and Cu alloy sputtering target used for forming copper alloy layer of the laminated body
JP6466235B2 (en) Copper foil with carrier, copper-clad laminate with carrier, and method for producing printed wiring board
KR100948859B1 (en) Flexible copper clad laminate having high adhesion without adhesive and continuous fabrication thereof
JP2005262707A (en) Copper-clad laminated film and material for flexible circuit board
JP2019038136A (en) Double side metal laminate and production method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07807666

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
122 Ep: pct application non-entry in european phase

Ref document number: 07807666

Country of ref document: EP

Kind code of ref document: A1