以下、本発明の実施形態に係る光波長変換シート、バックライト装置および画像表示装置について、図面を参照しながら説明する。本明細書において、「シート」、「フィルム」等の用語は、呼称の違いのみに基づいて、互いから区別されるものではない。したがって、例えば、「フィルム」は、シートとも呼ばれるような部材も含む意味で用いられ、また「シート」はフィルムとも呼ばれ得るような部材も含む意味で用いられる。図1は本実施形態に係る光波長変換シートの概略構成図であり、図2は本実施形態に係る光波長変換シートの作用を示す図であり、図3および4は本実施形態に係る他の光波長変換シートの概略構成図である。
<<<光波長変換シート>>>
図1に示される光波長変換シート10は、入射する光のうち一部の光の波長を他の波長に変換し、入射した光の他の一部および波長変換された光を出射させるシートである。光波長変換シート10は、光波長変換層11と、光波長変換層11の両面に設けられたバリアフィルム12、13と、バリアフィルム12、13における光波長変換層11側の面とは反対側の面に設けられた光拡散層14、15とを備えている。光波長変換シート10においては、光拡散層14、15の表面が光波長変換シート10の表面を構成している。光波長変換シートにおいて、「光散乱」という用語は、光波長変換シートの内部における粒子に起因する光散乱を意味し、「光拡散」という用語は、主に、光波長変換シートの表面に起因する光拡散を意味する。
光波長変換シート10は、光拡散層14/バリアフィルム12/光波長変換層11/バリアフィルム13/光拡散層15の構造となっているが、光波長変換シートが光波長変換層を有していれば、光波長変換シートの構造は特に限定されない。例えば、光波長変換シートは、光波長変換層のみ、光拡散層/バリアフィルム/光波長変換層/バリアフィルム、光拡散層/バリアフィルム/光波長変換層、バリアフィルム/光波長変換層、またはバリアフィルム/光波長変換層/バリアフィルムの構成であってもよい。
光波長変換シート10においては、光波長変換シート10の外部ヘイズ値は光波長変換シート10の内部ヘイズ値よりも小さくなっている。すなわち、光波長変換シート10は、下記式(1)の関係を満たしている。
内部ヘイズ値>外部ヘイズ値 …(1)
内部ヘイズは、光波長変換シートの内部に起因するヘイズ値であり、光波長変換シートにおける表面の凹凸形状を加味しないものである。これに対し、外部ヘイズ値は、光波長変換シートにおける表面の凹凸形状のみに起因するものである。
内部ヘイズ値および外部ヘイズ値は、ヘイズメーター(製品名「HM−150」、村上色彩技術研究所製)を用いて、求めることができる。具体的には、まず、ヘイズメーターを用いて、JIS K7136に従って光波長変換シートの全ヘイズ値を測定する。その後、光波長変換シートの両面に、膜厚が25μmの透明光学粘着層(製品名「パナクリーンPD−S1」、パナック社製)を介して厚みが60μmのトリアセチルセルロース基材(製品名「TD60UL」、富士フイルム社製)を貼り付ける。これによって、光波長変換シートの表面の凹凸形状が潰れ、光波長変換シートの表面が平坦化される。そして、この状態で、ヘイズメーター(製品名「HM−150」、村上色彩技術研究所製)を用いて、JIS K7136に従ってヘイズ値を測定することで内部ヘイズ値を求める。また、外部ヘイズ値は、全ヘイズから内部ヘイズを差し引くことによって求められる。本明細書における「外部ヘイズ値」は、光波長変換シート全体の外部ヘイズ値を意味する。すなわち、本明細書における外部ヘイズ値は、光波長変換シートの一方の面における外部ヘイズ値と光波長変換シートの他方の面における外部ヘイズ値の合計を意味する。
内部ヘイズ値と外部ヘイズ値は関係性がある。具体的には、内部ヘイズ値が大きくなると、同一の表面凹凸を有する場合でも外部ヘイズが小さくなる傾向がある。これは、以下の理由からであると考えられる。JIS K7136には、ヘイズは、試験片を通過する透過光のうち、前方散乱によって、入射光から0.044rad(2.5°)以上それた透過光の百分率であることが規定されている。すなわち、ヘイズの定義においては入射光に対し2.5°以上それた透過光はヘイズとして測定されるが、入射光に対し2.5°未満の透過光であればヘイズとして測定されない。一方で、内部ヘイズが大きい光波長変換シートにおいては、内部ヘイズがそれよりも小さい光波長変換シートに比べて、光はシート内部でより散乱されるので、シート表面に到達する入射光に対して2.5°未満の透過光は少なくなる。このため、内部ヘイズが大きい光波長変換シートと内部ヘイズがそれよりも小さい光波長変換シートが同一の表面凹凸を有する場合、内部ヘイズが大きい光波長変換シートの方が、内部ヘイズがそれよりも小さい光波長変換シートに比べて、表面凹凸による影響が少なくなる。したがって、シート表面に存在する表面凹凸の影響のみを考えた場合、内部ヘイズが大きい光波長変換シートと内部ヘイズがそれよりも小さい光波長変換シートが同じ表面凹凸を有していたとしても、内部ヘイズが大きい光波長変換シートの方が、内部ヘイズがそれよりも小さい光波長変換シートに比べて、表面凹凸から出射する入射光に対して2.5°未満の透過光のみならず、表面凹凸から出射する入射光に対して2.5°以上それた透過光も、少なくなる。よって、内部ヘイズ値が大きくなると、同一の表面凹凸を有する場合でも外部ヘイズが小さくなると考えられる。
光波長変換シート10において、光波長変換シート10の外部ヘイズ値を光波長変換シート10より小さくするためには、例えば、光波長変換シート10の内部に光散乱性粒子を添加することが挙げられる。光散乱性粒子は、光波長変換層11に添加されてもよく、基材となるバリアフィルム12、13中に添加されてもよく、また光拡散層14、15中に添加されてもよい。光散乱性粒子が添加された層が最外層である場合には、外部ヘイズを伴うことがあるため、最外層の表面凹凸を制御することにより上記の内部ヘイズと外部ヘイズの関係性を満たすことができる。
光波長変換シート10における内部ヘイズ値に対する外部ヘイズ値の割合(外部ヘイズ値/内部ヘイズ値)は、0以上0.1以下であることが好ましく、0以上0.05以下であることがより好ましい。この割合がこの範囲内にあれば、内部ヘイズによって光を充分に拡散させて、量子ドットを複数回励起させることができる。
光波長変換シート10における外部ヘイズ値は10%以下(0%を含む)であることが好ましく、5%以下であることがより好ましい。外部ヘイズ値が10%以下であることにより、レンズシート等の再帰反射性シートで再帰反射が生じやすくなる。
光波長変換シート10における内部ヘイズ値は60%以上であることが好ましく、80%以上であることがより好ましい。内部ヘイズ値が60%以上であることにより、内部ヘイズによって光を充分に拡散させて、量子ドットを複数回励起させることができ、また、外部ヘイズ値をより小さくすることができる。光波長変換シートにおいては、外部ヘイズ値が5%以下であり、かつ内部ヘイズ値が90%以上であってもよい。
光波長変換シート10の両面の算術平均粗さ(Ra)は、それぞれ0.1μm以上であることが好ましく、0.5μm以上であることがより好ましい。光波長変換シート10の両面のRaが0.1μmであることが好ましいとしたのは、以下の理由からである。光波長変換シートはバックライト装置内では後述する光学板やレンズシートと接触するが、光波長変換シートと光学板やレンズシートとが貼り付いてしまうと、光波長変換シートと光学板との間の界面や光波長変換シートとレンズシートとの間の界面にウエットアウトと呼ばれる水で濡らしたようなパターンが形成されてしまうおそれがあるので、光波長変換シート10と光学板やレンズシートとの貼り付きを防止するために、Raは、0.1μm以上であることがより好ましい。
上記「Ra」の定義は、JIS B0601−1994に従うものとする。Raは、例えば、表面粗さ測定器(製品名「SE−3400」、小坂研究所社製)を用いて測定することができる。
青色光を発する光源を用い、青色光を緑色光に変換する量子ドットおよび青色光を赤色光に変換する量子ドットの両方を含む光波長変換シート10に照射したとき、光波長変換シートにおける透過光のうち青色光の光強度のピーク値に対する緑色光の光強度のピーク値の割合(緑色光の光強度のピーク値/青色光の光強度のピーク値)は、0.3以上2.0以下であることが好ましく、0.5以上1.5以下であることがより好ましい。
また光波長変換シートにおける透過光のうち青色光の光強度のピーク値に対する赤色光の光強度のピーク値の割合(赤色光の光強度のピーク値/青色光の光強度のピーク値)は、0.3以上2.0以下であることが好ましく、0.5以上1.5以下であることがより好ましい。
本明細書における「青色光」とは、380nm以上480nm未満の波長域を有する光であり、「緑色光」とは、480nm以上590nm未満の波長域を有する光であり、「赤色光」とは、590nm以上750nm以下の波長域を有する光である。また、上記各光の光強度は、分光放射輝度計(例えば、製品名「CS2000」、コニカミノルタ社製)を用いて測定することができる。
青色光を発する光源を用い、青色光を緑色光に変換する量子ドットおよび青色光を赤色光に変換する量子ドットの両方を含む光波長変換シート10に照射したとき、光波長変換シートにおける透過光の色度x、yは、それぞれ0.1以上0.35以下であることが好ましく、0.15以上0.25以下であることがより好ましい。光波長変換シートにおける透過光の色度がこの範囲にあることにより、白色光または白色に近い色の光を得ることができる。色度x、yはCIE1931−XYZ表色系の色度である。光波長変換シートにおける透過光の色度x、yは、分光放射計(製品名「SR−UL2」、トプコン社製)を用いてJIS Z8701に準拠して測定することができる。
光波長変換シート10の平均厚みは、10μm以上500μm以下となっていることが好ましい。光波長変換シート10の厚みがこの範囲であれば、バックライト装置の軽量化および薄膜化に適している。
光波長変換シート10の平均厚みは、例えば、走査型電子顕微鏡(SEM)、透過型電子顕微鏡(TEM)又は走査透過型電子顕微鏡(STEM)でランダムに20ヶ所撮影した断面の画像を用いて算出できる。これらの中でも、光波長変換シート10の膜厚がμmオーダーであることを考慮すると、SEMを用いることが好ましい。SEMの場合、加速電圧は30kV、倍率は1000〜7000倍とすることが好ましく、TEM又はSTEMの場合、加速電圧は30kV、倍率は5万〜30万倍とすることが好ましい。
<<光波長変換層>>
光波長変換層11は、ホストマトリクス16と、ホストマトリクス16に分散された量子ドット17とを備えている。また、光波長変換層11は、光散乱性粒子18をさらに含んでいてもよい。光散乱性粒子18を含むことにより、内部ヘイズを高めることができる。
<ホストマトリクス>
ホストマトリクス16としては、特に限定されないが、バインダ樹脂、シリカガラス等のガラス、およびシリカゲルの少なくともいずれかが挙げられる。バインダ樹脂としては、特に限定されないが、硬化性バインダ樹脂前駆体の硬化物(重合物、架橋物)が挙げられる。硬化性バインダ樹脂前駆体としては、光重合性化合物の重合物(架橋物)および/または熱硬性樹脂が挙げられる。光重合性化合物は、光重合性官能基を少なくとも1つ有するものである。本明細書における、「光重合性官能基」とは、光照射により重合反応し得る官能基である。光重合性官能基としては、例えば、(メタ)アクリロイル基、ビニル基、アリル基等のエチレン性二重結合が挙げられる。なお、「(メタ)アクリロイル基」とは、「アクリロイル基」および「メタクリロイル基」の両方を含む意味である。また、光重合性化合物を重合する際に照射される光としては、可視光線、並びに紫外線、X線、電子線、α線、β線、およびγ線のような電離放射線が挙げられる。
光重合性化合物としては、光重合性モノマー、光重合性オリゴマー、または光重合性プレポリマーが挙げられ、これらを適宜調整して、用いることができる。光重合性化合物としては、光重合性モノマーと、光重合性オリゴマーまたは光重合性プレポリマーとの組み合わせが好ましい。
光重合性モノマーは、重量平均分子量が1000以下のものである。光重合性モノマーとしては、例えば、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート等の水酸基を含むモノマーや、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、テトラメチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)ア
クリレート、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、グリセロール(メタ)アクリレート等の(メタ)アクリル酸エステル類が挙げられる。
光重合性オリゴマーは、重量平均分子量が1000を超え10000以下のものである。上記光重合性オリゴマーとしては、2官能以上の多官能オリゴマーが好ましく、光重合性官能基が3つ(3官能)以上の多官能オリゴマーが好ましい。上記多官能オリゴマーとしては、例えば、ポリエステル(メタ)アクリレート、ウレタン(メタ)アクリレート、ポリエステル−ウレタン(メタ)アクリレート、ポリエーテル(メタ)アクリレート、ポリオール(メタ)アクリレート、メラミン(メタ)アクリレート、イソシアヌレート(メタ)アクリレート、エポキシ(メタ)アクリレート等が挙げられる。
光重合性プレポリマーは、重量平均分子量が1万を超えるものであり、重量平均分子量としては1万以上8万以下が好ましく、1万以上4万以下がより好ましい。重量平均分子量が8万を超える場合は、粘度が高いため塗工適性が低下してしまい、得られる光波長変換層の外観が悪化するおそれがある。このため、重量平均分子量が8万を超える光重合性プレポリマーを用いている場合には、上記光重合性モノマーや上記光重合性オリゴマーを混合して用いることが好ましい。多官能プレポリマーとしては、ウレタン(メタ)アクリレート、イソシアヌレート(メタ)アクリレート、ポリエステル−ウレタン(メタ)アクリレート、エポキシ(メタ)アクリレート等が挙げられる。
熱硬化性樹脂としては、特に限定されず、例えば、フェノール樹脂、尿素樹脂、ジアリルフタレート樹脂、メラミン樹脂、グアナミン樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、エポキシ樹脂、アミノアルキッド樹脂、メラミン−尿素共縮合樹脂、ケイ素樹脂、ポリシロキサン樹脂等が挙げられる。熱硬化性樹脂は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。これらの中でも、硬化性や耐熱性の観点から、エポキシ樹脂やウレタン樹脂が好ましい。
エポキシ樹脂としては、例えば、エポキシ樹脂(主剤)と、酸無水物、アミン化合物、又はアミノ樹脂(硬化剤)と、光カチオン重合開始剤との組み合わせが挙げられる。主剤としてのエポキシ樹脂としては、一分子中にエポキシ基を有するものであれば特に制限はなく、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、臭素化ビスフェノールA型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ジフェニルエーテル型エポキシ樹脂、ハイドロキノン型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、フルオレン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂、トリスヒドロキシフェニルメタン型エポキシ樹脂、3官能型エポキシ樹脂、テトラフェニロールエタン型エポキシ樹脂、ジシクロペンタジエンフェノール型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、ビスフェノールA含核ポリオール型エポキシ樹脂、ポリプロピレングリコール型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、グリオキザール型エポキシ樹脂、脂環型エポキシ樹脂、複素環型エポキシ樹脂などを使用できる。
ウレタン樹脂としては、ポリオール化合物(主剤)と、イソシアネート系化合物(硬化剤)の組み合わせが挙げられる。ウレタン樹脂において、主剤として使用されるポリオール化合物については、特に制限されないが、例えば、ポリエステルポリオール、ポリエステルポリウレタンポリオール、ポリエーテルポリオール、ポリエーテルポリウレタンポリオール等が挙げられる。これらのポリオール化合物は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。
ウレタン樹脂において、硬化剤として使用されるイソシアネート系化合物については、特に制限されないが、例えば、例えば、ポリイソシアネート、そのアダクト体、そのイソシアヌレート変性体、そのカルボジイミド変性体、そのアロハネート変性体、そのビュレット変性体等が挙げられる。前記ポリイソシアネートとしては、具体的には、ジフェニルメタンジイソシアネート(MDI)、ポリフェニルメタンジイソシアネート(ポリメリックMDI)、トルエンジイソシアネート(TDI)、ヘキサメチレンジイソシアネート(HDI)、ビス(4−イソシアネートシクロヘキシル)メタン(H12MDI)、イソホロンジイソシアネート(IPDI)、1,5−ナフタレンジイソシアネート(1,5−NDI)、3,3'−ジメチル−4,4'−ジフェニレンジイソシアネート(TODI)、キシレンジイソシアネート(XDI)等の芳香族ジイソシアネート;トラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、イソホロンジイソシアネート等の脂肪族ジイソシアネート;4,4’−メチレンビス(シクロヘキシルイソシアネート)、イソホロンジイソシアネート等の脂環族ジイソシアネート等が挙げられる。前記アダクト体としては、具体的には、前記ポリイソシアネートに、トリメチロールプロパン、グリコール等を付加したものが挙げられる。これらのイソシアネート系化合物は、1種単独で使用してもよく、また2種以上を組み合わせて使用してもよい。
<量子ドット>
量子ドット17は、量子閉じ込め効果(quantum confinement effect)を有するナノサイズの半導体粒子である。量子ドット17の粒子径および平均粒子径は、例えば、1nm以上20nm以下となっている。量子ドット17は、励起源から光を吸収してエネルギー励起状態に達すると、量子ドット17のエネルギーバンドギャップに該当するエネルギーを放出する。よって、量子ドット17の粒子径又は物質の組成を調節すると、エネルギーバンドギャップを調節することができ、様々なレベルの波長帯のエネルギーを得ることができる。とりわけ、量子ドット15は、狭い波長帯で強い蛍光を発生することができる。
具体的には、量子ドット17は粒子径が小さくなるに従い、エネルギーバンドギャップが大きくなる。すなわち、結晶サイズが小さくなるにつれて、量子ドットの発光は青色側へ、つまり、高エネルギー側へとシフトする。そのため、量子ドットの粒子径を変化させることにより、紫外領域、可視領域、赤外領域のスペクトルの波長全域にわたって、その発光波長を調節することができる。例えば、量子ドットの粒子径が2.0nm以上3.5nm以下の場合は青色光を発し、量子ドットの粒子径が4.0nm以上5.0nm以下の場合は緑色光を発し、量子ドットの粒子径が5.5nm以上6.5nm以下の場合は赤色光を発する。
量子ドット17としては、1種類の量子ドットを用いてもよいが、粒子径または材料等が異なることにより、それぞれ単独の波長域の発光帯を有する2種類以上の量子ドットを用いることも可能である。光波長変換シート10は、図1に示されるように、量子ドット17として、第1の量子ドット17Aと、第1の量子ドット17Aとは異なる波長域の発光体を有する第2の量子ドット17Bとを含んでいる。
図2に示されるように、光波長変換シート10の入光面10Aから光を入射させた場合には、量子ドット17に入射した光L1は光L1とは異なる波長の光L2に変換されて、入光面10Aとは反対側の面である出光面10Bから出射する。一方、入光面10Aから光を入射させた場合であっても、量子ドット17間を通過する光L1は波長変換されずに、出光面10Bから出射する。
上記したように光波長変換シート10から出射される光としては波長変換されない光も存在するので、光源として青色光を発する光源を用い、第1の量子ドット17Aとして青色光を緑色光に変換する量子ドットを用い、第2の量子ドット17Bとして青色光を赤色光に変換する量子ドットを用いた場合には、光波長変換シート10から、青色光、緑色光、赤色光が混合した光を出射させることができる。
量子ドット17は、所望の狭い波長域で強い蛍光を発生することができる。このため、光波長変換シート10を用いたバックライト装置は、色純度の優れた三原色の光で、表示パネルを照明することができる。この場合、表示パネルは、優れた色再現性を有することになる。
量子ドット17は、主に、約2nm以上10nm以下の半導体化合物からなるコアと、このコアと異なる半導体化合物からなるシェルとを有するコアシェル型構造を有していてもよい。シェルはコアを保護する保護層としての機能を有する。
コアとなる材料としては、例えば、MgS、MgSe、MgTe、CaS、CaSe、CaTe、SrS、SrSe、SrTe、BaS、BaSe、BaTe、ZnS、ZnSe、ZnTe、CdS、CdSe、CdTe、HgS、HgSe及びHgTeのようなII−VI族半導体化合物、AlN、AlP、AlAs、AlSb、GaAs、GaP、GaN、GaSb、InN、InAs、InP、InSb、TiN、TiP、TiAs及びTiSbのようなIII−V族半導体化合物、Si、Ge及びPbのようなIV族半導体、等の半導体化合物又は半導体を含有する半導体結晶が挙げられる。また、InGaPのような3元素以上を含んだ半導体化合物を含む半導体結晶を用いることもできる。これらの中もで、作製の容易性、可視域での発光を得られる粒子径の制御性等の観点から、CdS、CdSe、CdTe、InP、InGaP等の半導体結晶が好適である。
シェルは、励起子がコアに閉じ込められるように、コアを形成する半導体化合物よりもバンドギャップの高い半導体化合物を用いることで、量子ドットの発光効率を高めることができる。このようなバンドギャップの大小関係を有するコアシェル構造(コア/シェル)としては、例えば、CdSe/ZnS、CdSe/ZnSe、CdSe/CdS、CdTe/CdS、InP/ZnS、Gap/ZnS、Si/ZnS、InN/GaN、InP/CdSSe、InP/ZnSeTe、InGaP/ZnSe、InGaP/ZnS、Si/AlP、InP/ZnSTe、InGaP/ZnSTe、InGaP/ZnSSe等が挙げられる。
量子ドット17の形状は特に限定されず、例えば、球状、棒状、円盤状、その他の形状であってもよい。量子ドット16の粒子径は、量子ドット17の形状が球状でない場合、同体積を有する真球状の値とすることができる。
量子ドット17の粒子径、平均粒子径、形状、分散状態等の情報については、透過型電子顕微鏡(TEM、STEM)により得ることができる。量子ドットの平均粒子径は、透過型電子顕微鏡による光波長変換層の断面観察により測定された20個の量子ドットの直径の平均値として求めることができる。また、量子ドットの結晶構造、粒子径については、X線結晶回折(XRD)により知ることができる。さらには、紫外−可視(UV−Vis)吸収スペクトルによって、量子ドットの粒子径等に関する情報を得ることもできる。
<光散乱性粒子>
光散乱性粒子18は、光波長変換シート10に進入した光を散乱させることによって光の進行方向を変化させる作用を有する粒子である。
光散乱性粒子18の平均粒子径は、量子ドット17の平均粒子径の20倍以上2000倍以下であることが好ましく、50〜1000倍であることがより好ましい。光散乱性粒子の平均粒子径が量子ドットの平均粒子径の20倍未満であると、光波長変換層において充分な光散乱性能が得られないことがあり、光散乱性粒子の平均粒子径が量子ドットの平均粒子径の2000倍を超えると、添加量が同じであっても光散乱性粒子の数が少なくなるため、散乱点の数が減り充分な光散乱効果が得られない。なお、光散乱性粒子の平均粒子径は、上述した量子ドットの平均粒子径と同様の方法で測定することができる。
具体的には、光散乱性粒子18の平均粒子径は、例えば、0.1μm以上10μm以下であることが好ましく、0.3μm以上5μm以下であることがより好ましい。光散乱性粒子の平均粒子径が0.1μm未満であると、光波長変換シートの光波長変換効率が不充分となることがあり、充分な光散乱性を出すためには光散乱性粒子の添加量を多くする必要がある。一方、光散乱性粒子の平均粒子径が10μmを超えると、添加量(質量%)が同じであっても光散乱粒子の数が少なくなるため、散乱点の数が減り充分な光散乱効果が得られない。
光散乱性粒子18とホストマトリクス16との屈折率差の絶対値は、充分な光散乱を得る観点から、0.05以上であることが好ましく、0.10以上であることがより好ましい。なお、光散乱性粒子18の屈折率とホストマトリクス16の屈折率とは、いずれの方が大きくてもよい。ここで、光波長変換層に含有させる前の光散乱性粒子の屈折率の測定方法としては、例えば、ベッケ法、最小偏角法、偏角解析、モード・ライン法、エリプソメトリ法等によって測定することができる。光波長変換層中のホストマトリクス(硬化物)、光散乱性粒子の屈折率の測定方法としては、例えば、硬化作製した光波長変換層中から光散乱性粒子のかけら、あるいはホストマトリクスのかけらをなんらかの形で取り出したものについてベッケ法を用いることができる。このほか、位相シフトレーザー干渉顕微鏡(エフケー光学研究所製の位相シフトレーザー干渉顕微鏡や溝尻光学工業所製の二光束干渉顕微鏡等)を用いてホストマトリクスと光散乱性粒子との屈折率差を測定することができる。なお、ホストマトリクスが、上述する(メタ)アクリレートとそれ以外の樹脂とを含有する場合、ホストマトリクスの屈折率とは、量子ドットおよび光散乱性粒子を除いた含有する全ての樹脂成分による硬化物の平均屈折率を意味する。
光散乱性粒子18の形状は特に限定されず、例えば、球状(真球状、略真球状、楕円球状等)、多面体状、棒状(円柱状、角柱状等)、平板状、りん片状、不定形状等が挙げられる。なお、光散乱性粒子18の粒子径は、光散乱性粒子の形状が球状でない場合、同体積を有する真球状の値とすることができる。
光散乱性粒子18は、光散乱性粒子18をホストマトリクス16中に強固に固定する観点から、ホストマトリクス16と化学結合していることが好ましい。この化学結合は、シランカップリング剤で表面処理された光散乱性粒子を用いることによって実現できる。
シランカップリング剤としては、用いる硬化性バインダ樹脂前駆体の種類にもよるが、ビニル基、エポキシ基、スチリル基、メタクリル基、アクリル基、アミノ基、ウレイド基、メルカプト基、スルフィド基およびイソシアネート基からなる群から選択される1種以上の反応性官能基を有するものを使用することが可能である。硬化性バインダ樹脂前駆体として(メタ)アクリロイル基を有する化合物を用いる場合には、カップリング剤は、メルカプト基、(メタ)アクリロイル基、ビニル基およびスチリル基からなる群から選択される少なくとも1種の反応性官能基を有することが好ましい。また、硬化性バインダ樹脂前駆体としてエポキシ基、イソシアネート基、および水酸基からなる群から選択される少なくとも1種の基を有する化合物を用いる場合には、シランカップリング剤はエポキシ基、イソシアネート基、メルカプト基およびアミノ基からなる群から選択される少なくとも1種の反応性官能基を有することが好ましい。
メルカプト基を有するシランカップリング剤としては、例えば、3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルメチルジメトキシシラン、3−メルカプトプロピルトリエトキシシラン等が挙げられる。
(メタ)アクリル基を有するシランカップリング剤としては、例えば、3−メタクリロイルオキシプロピルメチルジメトキシシラン、3−メタクリロイルオキシプロピルトリメトキシシラン、3−メタクリロイルオキシプロピルメチルジエトキシシラン、3−メタクリロイルオキシプロピルトリエトキシシラン、3−アクリロイルオキシプロピルトリエトキシシラン等が挙げられる。
ビニル基を有するシランカップリング剤としては、ビニルトリクロルシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン等が挙げられる。スチリル基含有シランカップリング剤としては、例えば、p−スチリルトリメトキシシランが挙げられる。
エポキシ基を有するシランカップリング剤としては、3−グリシドキシプロピルトリメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、3−グリシドキシプロピルトリエトキシシラン等が挙げられる。
イソシアネート基を有するシランカップリング剤としては、例えば、3−イソシアナトプロピルトリメトキシシラン、3−イソシアナトプロピルトリエトキシシラン等が挙げられる。
アミノ基を有するシランカップリング剤としては、3−アミノプロピルトリメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリメオキシシラン、3−アミノプロピルトリエトキシシラン、3−トリエトキシシリル−N−(1,3−ジメチル−ブチリデン)プロピルアミン、N−フェニル−3−アミノプロピルトリメトキシシラン、N−(ビニルベンジル)−2−アミノエチル−3−アミノプロピルトリメトキシシランの塩酸塩などが挙げられる。
光散乱性粒子18をシランカップリング剤で表面処理する方法としては、光散乱性粒子18にシランカップリング剤をスプレーする乾式法や、光散乱性粒子18を溶剤に分散させてからシランカップリング剤を加えて反応させる湿式法等が挙げられる。
光散乱性粒子18は、無機粒子および/または有機粒子であることが好ましく、具体的には、ホストマトリクスとの屈折率差の観点から、光散乱性粒子18は、アンチモンドープ酸化スズ(ATO)粒子、酸化インジウムスズ(ITO)粒子、MgO粒子、Al2O3粒子、TiO2粒子、BaTiO3粒子、Sb2O5粒子、SiO2粒子、MgF2粒子、ZrO2粒子、ZnO粒子、アクリル樹脂粒子、スチレン樹脂粒子、メラミン樹脂粒子、およびウレタン樹脂粒子からなる群より選択される少なくとも1種の粒子であることが好ましい。ホストマトリクスとの屈折率差を大きくすることで、大きなミー散乱強度を得ることができる。
光散乱性粒子18が無機粒子である場合、光波長変換シート10への入射光を好適に散乱させることが可能となり、該入射光に対する光波長変換効率の向上を好適に図ることが可能となる。特に、光散乱性粒子18はAl2O3粒子、TiO2粒子、BaTiO3粒子、Sb2O5粒子及びZrO2粒子からなる群より選択される少なくとも1種であること好ましい。光波長変換シート10による入射光に対する光波長変換効率の向上をより好適に図ることができることから、光散乱性粒子18は、2種以上の材料からなるものであってもよい。
光波長変換層11中の光散乱性粒子18の含有量は、1質量%以上50質量%以下であることが好ましく、3質量%以上30質量%以下であることがより好ましい。光散乱性粒子の含有量が1質量%未満であると、光散乱効果が充分に得られないおそれがあり、また、光散乱性粒子の含有量が50質量%を超えると、ミー散乱が起こり難くなるので、光散乱効果を充分に得られないおそれがあり、さらに光散乱性粒子が多すぎるために加工性が低下するおそれがある。なお、硬化物である光波長変換層中の量子ドットや光散乱性粒子(無機の場合)の質量%は、以下の方法によって概略算出することができる。まず、光波長変換シートから光波長変換層の一部をサンプリングし、次いでサンプリングした部分に含まれるホストマトリクスを溶剤に溶解または燃焼により灰化させて、ホストマトリクスの成分を除去する。残った量子ドットと光散乱性粒子の成分は粒子径が大きく異なるので、粒子径の相違から量子ドットの成分と光散乱性粒子の成分を分離する。次いで、分離した量子ドットの成分の質量および分離した光散乱性粒子の成分の質量をそれぞれ測定する。そして、サンプリングした光波長変換層の一部の質量と量子ドットの成分の質量に基づいてサンプリングした光波長変換層の一部に含まれる量子ドットの質量の割合を算出する。また、サンプリングした光波長変換層の一部の質量と光散乱性粒子の成分の質量に基づいてサンプリングした光波長変換層の一部に含まれる光散乱性粒子の質量の割合を算出する。
<<バリアフィルム>>
バリアフィルム12、13は、量子ドット17を水分や酸素から保護するためのフィルムである。バリアフィルム12、13は、量子ドット17を水分や酸素から保護する機能を有する光透過性基材またはバリア層のみであってもよいが、図1に示されるように量子ドット17を水分や酸素から保護する機能を有する光透過性基材19、20と光透過性基材19、20の表面に設けられ、かつ量子ドット17を水分や酸素から保護する機能を有するバリア層21、22との多層構造が好ましい。
バリアフィルム12、13の酸素透過率(OTR: Oxygen Transmission Rate)は、23℃、相対湿度90%の条件下において、1.0×10−1cc/m2/day/atm以下であることが好ましく、1.0×10−2cc/m2/day/atm以下であることが更に好ましい。なお、上記酸素透過率は、酸素ガス透過率測定装置(MOCON社製、OX−TRAN 2/21)を用いて測定することができる。
バリアフィルム12、13の水蒸気透過率(WVTR:Water Vaper Transmission Rate)は、40℃、相対湿度90%の条件下において、1.0×10−1g/m2/day以下であることが好ましく、1.0×10−2g/m2/day以下であることが更に好ましい。なお、上記水蒸気透過率は、水蒸気透過率測定装置(DELTAPERM(Technolox社製))を用いて測定することができる。
バリアフィルムに光散乱性粒子を添加する場合には、光散乱性粒子は光透過性基材に練り込むことによってバリアフィルムに光散乱性粒子を添加することができる。バリアフィルムに光散乱性粒子を添加する場合には、光拡散層は設ける必要がない。なお、この場合、光透過性基材における光波長変換層側とは反対側に傷つき防止のためのオーバーコート層を形成してもよい。
<光透過性基材>
光透過性基材19、20の厚みは、特に限定されないが、10μm以上500μm以下であることが好ましい。光透過性基材19、20の厚みが、10μm未満であると、光波長変換シートのアッセンブリ、取扱い時における皺や折れが発生するおそれがあり、また150μmを超えると、ディスプレイの軽量化および薄膜化に適さないおそれがある。光透過性基材19、20の厚みのより好ましい下限は50μm以上、より好ましい上限は400μm以下である。
光透過性基材19、20の平均厚みは、例えば、走査型電子顕微鏡(SEM)、透過型電子顕微鏡(TEM)又は走査透過型電子顕微鏡(STEM)で撮影した断面の画像を用いて算出できる。
光透過性基材19、20の構成原料としては、例えば、ポリエステル(例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート)、セルローストリアセテート、セルロースジアセテート、セルロースアセテートブチレート、ポリアミド、ポリイミド、ポリエーテルスルフォン、ポリスルフォン、ポリプロピレン、ポリメチルペンテン、ポリ塩化ビニル、ポリビニルアセタール、ポリエーテルケトン、ポリメタクリル酸メチル、ポリカーボネート、又は、ポリウレタン等の熱可塑性樹脂が挙げられる。基材フィルムの構成材料としては、好ましくは、ポリエステル(例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート)、セルローストリアセテートが挙げられる。
光透過性基材19、20は、単一の基材から構成されていてもよいが、複数の基材から構成される積層基材であってもよい。このような積層基材は、用途に応じて、同種の構成原料の層からなる複数の層から構成されていてもよく、異なる種類の構成原料の層からなる複数の層から構成されていてもよい。
<バリア層>
バリア層21、22の形成材料としては、バリア性が得られるものであれば特に限定されないが、例えば、無機酸化物、金属、ゾルゲル材料等が挙げられる。具体的には、上記無機酸化物としては、例えば、酸化ケイ素(SiOx)、酸化アルミニウム(AlnOm)、酸化チタン(TiO2)、酸化イットリウム、酸化ホウ素(B2O3)、酸化カルシウム(CaO)、酸化窒化炭化ケイ素(SiOxNyCz)等が挙げられ、上記金属としては、例えば、Ti、Al、Mg、Zr等が挙げられ、上記ゾルゲル材料としては、例えば、シロキサン系ゾルゲル材料等が挙げられる。これらの材料は、単独で用いられてもよく2種以上を組み合わせて用いられてもよい。
バリア層21、22の厚みは、特に限定されないが、0.01μm以上1μm以下であることが好ましい。0.01μm未満であると、バリア層のバリア性能が不充分となることがあり、1μmを超えると、バリア層のクラック等によりバリア性能の劣化が起こりやすくなることがある。上記バリア層の厚みのより好ましい下限は0.03μmであり、より好ましい上限は0.5μmである。
バリア層の厚みは、断面顕微鏡観察において、20箇所について測定したバリア層の厚みの平均値として求めることができる。また、バリア層12、13は、単一の層であってもよく、複数の層が積層されたものであってもよい。バリア層が複数層積層されたものである場合、バリア層を構成する各層は、直接積層形成されていてもよく、貼り合わされていてもよい。
バリア層21、22の形成方法としては、例えば、スパッタリング法、イオンプレーティング法等の物理気相成長(PVD)法や化学気相成長(CVD)法等の蒸着法、又は、ロールコート法、スピンコート法等が挙げられる。また、これらの方法を組み合わせてもよい。
バリア層21、22としては、上述したバリア性を有する層であれば特に限定されるものではないが、そのバリア性の高さ等の観点から、蒸着法により形成された蒸着層を用いることが好ましい。
このような蒸着層としては、蒸着法により形成される層であれば、その蒸着法の種類等は特に限定されるものではなく、CVD法によって形成した層であってもよく、またPVD法によって形成した層であってもよい。
上記蒸着層が、例えばプラズマCVD法等のCVD法により形成される場合、緻密でバリア性の高い層を形成することが可能となるが、製造効率やコスト等の面からはPVD法で蒸着層を形成することが好ましい。
PVD法としては、例えば、真空蒸着法、スパッタリング法、イオンプレーティング法等が挙げられるが、そのなかでも、そのバリア性等の面から真空蒸着法を用いることが好ましい。真空蒸着法としては、例えば、エレクトロンビーム(EB)加熱方式による真空蒸着法、又は、高周波誘電加熱方式による真空蒸着法等が挙げられる。
上記蒸着層の材料としては、金属又は無機酸化物が好ましく、具体的には、Ti、Al、Mg、Zr等の金属、酸化ケイ素、酸化アルミニウム、酸化窒化ケイ素、酸化窒化アルミニウム、酸化マグネシウム、酸化亜鉛、酸化インジウム、酸化スズ、酸化イットリウム、B2O3、CaO等の無機酸化物等が挙げられる。そのなかでも、高いバリア性及び透明性を有する点から、酸化ケイ素や酸化アルミニウムが好ましい。
上記蒸着層の厚さは、用いられる材料の種類や構成により最適条件が異なり適宜選択されるが、0.01μm以上1μm以下であることが好ましく、より好ましい上限は200nmである。上記蒸着層の厚さが上記の範囲より薄い場合には、均一な層とすることが困難な場合があり、上記バリア性を得ることができないことがある。また、上記蒸着層の厚さが上記の範囲より厚い場合、蒸着層の成膜後に引っ張り等の外的要因により蒸着層に亀裂が生じること等により、バリア性が著しく損なわれる可能性があり、また、形成に時間を要し、生産性も低下することがある。
バリア層21、22の下地層として、アンカー層が形成されていてもよい。これにより、バリア性や耐候性を高めることができる。アンカー層の形成材料としては、例えば、接着性樹脂、無機酸化物、有機酸化物、金属等が挙げられる。
上記アンカー層の形成方法としては、例えば、スパッタリング法、イオンプレーティング法等のPVD法、CVD法、ロールコート法、スピンコート法などが挙げられる。また、これらの方法を組み合わせてもよい。量産性に優れ、アンカー層の密着性を高めることができることから、そのなかでも、成膜時のインラインコートが好ましい。
<<光拡散層>>
光拡散層14、15は、表面に凹凸形状を有しており、この凹凸形状によって光波長変換シート10に入射する光および出射する光を拡散させることができる。光拡散層14、15を設けることにより、光波長変換シート10における光波長変換効率をより高めることができる。光拡散層14、15は、表面凹凸形成粒子とバインダ樹脂とを含んでいる。
<表面凹凸形成粒子>
表面凹凸形成粒子は、主に、光拡散層の表面に凹凸形状を形成するためのものである。ただし、表面凹凸形成粒子自体が光散乱性能を発揮することもある。
表面凹凸形成粒子の平均粒子径は、上述した量子ドット17の平均粒子径の10倍以上2万倍以下であることが好ましく、10〜5000倍であることがより好ましい。表面凹凸形成粒子の平均粒子径が量子ドットの平均粒子径の10倍未満であると、光拡散層に充分な光拡散性が得られないことがあり、また表面凹凸形成粒子の平均粒子径が量子ドットの平均粒子径の2万倍を超えると、光拡散層の光拡散性能は優れたものとなるが、光拡散層の光の透過率が大幅にダウンしやすくなる。なお、表面凹凸形成粒子の平均粒子径は、上述した量子ドットの平均粒子径と同様の方法で測定することができる。
具体的には、表面凹凸形成粒子の平均粒子径は、例えば、1μm以上30μm以下であることが好ましく、1μm以上20μm以下であることがより好ましい。表面凹凸形成粒子の平均粒子径が1μm未満であると、光波長変換シートの光波長変換効率が不充分となることがあり、充分な光拡散性を出すためには表面凹凸形成粒子の添加量を多くする必要がある。一方、表面凹凸形成粒子の平均粒子径が30μmを超えると、光拡散性能は優れたものとなるが、光拡散層の光の透過率が大幅にダウンしやすくなる。
表面凹凸形成粒子とバインダ樹脂との屈折率差の絶対値は、0.02以上0.15以下であることが好ましい。0.02未満であると、光学的に表面凹凸形成粒子の持つ屈折率による光拡散性が得られず、光波長変換シートの光波長変換効率の向上が不充分となることがあり、0.15を超えると、光拡散層の透過率が低下してしまうことがある。表面凹凸形成粒子とバインダ樹脂との屈折率差のより好ましい下限は0.03以上、より好ましい上限は0.12以下である。なお、表面凹凸形成粒子の屈折率とバインダ樹脂の屈折率とは、いずれの方が大きくてもよい。表面凹凸形成粒子およびバインダ樹脂の屈折率は、光散乱性粒子18およびホストマトリクスの屈折率と同様の手法によって測定することができる。
表面凹凸形成粒子の形状は特に限定されず、例えば、球状(真球状、略真球状、楕円球状等)、多面体状、棒状(円柱状、角柱状等)、平板状、りん片状、不定形状等が挙げられる。なお、表面凹凸形成粒子の粒子径は、表面凹凸形成粒子の形状が球状でない場合、同体積を有する真球状の値とすることができる。
表面凹凸形成粒子は、表面凹凸形成粒子をバインダ樹脂中に強固に固定する観点から、バインダ樹脂と化学結合していることが好ましい。この化学結合は、シランカップリング剤で表面修飾された表面凹凸形成粒子を用いることによって実現できる。シランカップリング剤は、光散乱性粒子の欄で説明したシランカップリング剤と同様であるので、ここでは説明を省略するものとする。
表面凹凸形成粒子は、有機材料からなる粒子または無機材料からなる粒子であってもよい。表面凹凸形成粒子を構成する有機材料としては特に限定されず、例えば、ポリエステル、ポリスチレン、メラミン樹脂、(メタ)アクリル樹脂、アクリル−スチレン共重合体樹脂、シリコーン樹脂、ベンゾグアナミン樹脂、ベンゾグアナミン・ホルムアルデヒド縮合樹脂、ポリカーボネート、ポリエチレン、ポリオレフィン等が挙げられる。なかでも、架橋アクリル樹脂が好適に用いられる。また、上記光拡散粒子を構成する無機材料としては特に限定されず、例えば、シリカ、アルミナ、チタニア、酸化スズ、アンチモンドープ酸化スズ(ATO)、酸化亜鉛微粒子等の無機酸化物等が挙げられる。なかでも、シリカ及び/又はアルミナが好適に用いられる。
<バインダ樹脂>
バインダ樹脂としては、特に限定されないが、光波長変換層の欄で説明したバインダ樹脂と同様のバインダ樹脂を用いることができるので、ここでは説明を省略するものとする。
<<<他の光波長変換シート>>>
図1においては、光拡散層14、バリアフィルム12、光波長変換層11、バリアフィルム13、光拡散層15がこの順で積層された光波長変換シート10が図示されているが、光波長変換シートは、波長変換層11とバリアフィルム12、13との間の密着性をより向上させるために図3に示される構造としてもよく、またこの密着性をより一層向上させるために図4に示される構造としてもよい。
図3に示される光波長変換シート30においては、バリアフィルム12、13と光波長変換層11との間にプライマー層31、32が配置されている。図3において、図1と同じ符号が付されている部材は、図1で示した部材と同じものであるので、説明を省略するものとする。
<<プライマー層>>
プライマー層31、32はバリアフィルム12、13と光波長変換層11との間の密着性を高める層であり、バリアフィルム12、13と光波長変換層11に密着している。プライマー層31、32の構成材料としては、公知のものを適宜選択して用いて良く、例えば、熱硬化性又は熱可塑性のポリエステル樹脂及びポリウレタン樹脂が挙げられる。なお、プライマー層31、32にはそれぞれ異なる構成材料を用いてもよい。また、プライマー層31、32の厚さは、特に限定されないが、例えば、100nm以上3000nm以下とすることが可能である。
図4に示される光波長変換シート40においては、バリアフィルム12、13と光波長変換層11との間に、接着層41、42および光透過性基材43、44が配置されている接着層41、42および光透過性基材43、44は、バリアフィルム12、13と光波長変換層11との間の密着性をさらに向上させるためのものである。図4において、図1と同じ符号が付されている部材は、図1で示した部材と同じものであるので、説明を省略するものとする。
<<接着層>>
接着層41、42は、バリアフィルム12、13と光透過性基材43、44との間に配置され、かつバリアフィルム12、13と光透過性基材43、44に密着している。接着層41、42の構成材料としては、特に限定されないが、例えば、ポリウレタン樹脂、ポリエステル樹脂、ポリ塩化ビニル系樹脂、ポリ酢酸ビニル系樹脂、塩化ビニル−酢酸ビニル共重合体、アクリル樹脂、ポリビニルアルコール系樹脂、ポリビニルアセタール樹脂、エチレンと酢酸ビニルまたはアクリル酸などとの共重合体、エチレンとスチレンおよび/またはブタジエンなどとの共重合体、オレフィン樹脂などの熱可塑性樹脂および/またはその変性樹脂、光重合性化合物の重合体、およびエポキシ樹脂などの熱硬化性樹脂等の少なくともいずれかを用いることが可能である。接着層41、42の構成材料としてアクリル樹脂、エポキシ樹脂またはポリエステル樹脂を用いることが、耐熱性や接着性の観点から好ましい。なお、接着層41、42にはそれぞれ異なる構成材料を用いてもよい。また、接着層41、42の厚さは、特に限定されないが、例えば、100nm以上5000nm以下とすることが可能である。
<<光透過性基材>>
光透過性基材43、44は、接着層41、42と光波長変換層11との間に配置され、かつ接着層41、42と光波長変換層11に密着している。光透過性基材43、44は、光透過性基材19、20と同様のものであるので、ここでは説明を省略するものとする。
<<<光波長変換シートの製造方法>>>
光波長変換シート10は、例えば、以下のようにして作製することができる。なお、以下、ホストマトリクス16がバインダ樹脂である例について説明する。まず、光透過性基材19の一方の面に蒸着法等によりバリア層21を形成し、バリアフィルム12を形成する。また、同様にして、光透過性基材20の一方の面に蒸着法等によりバリア層22を形成して、バリアフィルム13を形成する。
次いで、バリアフィルム12におけるバリア層21側の面とは反対側の面に、表面凹凸形成粒子および硬化性バインダ樹脂前駆体を含む光拡散層用組成物を塗布し、乾燥させて、光拡散層用組成物の塗膜を形成する。また同様に、バリアフィルム13におけるバリア層22側の面とは反対側の面に、光拡散層用組成物の塗膜を形成する。
光波長変換層用組成物には重合開始剤を含ませることが好ましい。重合開始剤は、光または熱により分解されて、ラジカルやイオン種を発生させて硬化性樹脂前駆体の重合(架橋)を開始または進行させる成分である。光波長変換層用組成物に用いられる重合開始剤は、光重合開始剤(例えば、光ラジカル重合開始剤、光カチオン重合開始剤、光アニオン重合開始剤)、熱重合開始剤(例えば、熱ラジカル重合開始剤、熱カチオン重合開始剤、熱アニオン重合開始剤)、またはこれらの混合物が挙げられる。
上記光ラジカル重合開始剤としては、例えば、ベンゾフェノン系化合物、アセトフェノン系化合物、アシルフォスフィンオキサイド系化合物、チタノセン系化合物、オキシムエステル系化合物、ベンゾインエーテル系化合物、チオキサントン等が挙げられる。
上記光ラジカル重合開始剤のうち市販されているものとしては、例えば、IRGACURE184、IRGACURE369、IRGACURE379、IRGACURE651、IRGACURE819、IRGACURE907、IRGACURE2959、IRGACURE OXE01、ルシリンTPO(いずれもBASFジャパン社製)、NCI−930(ADEKA社製)、SPEEDCURE EMK(日本シーベルヘグナー社製)、ベンソインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル(いずれも東京化成工業社製)等が挙げられる。
上記光カチオン重合開始剤としては、例えば、芳香族ジアゾニウム塩、芳香族ヨードニウム塩、芳香族スルホニウム塩等が挙げられる。上記光カチオン重合開始剤のうち市販されているものとしては、例えば、アデカオプトマーSP−150、アデカオプトマーSP−170(いずれもADEKA社製)等が挙げられる。
上記熱ラジカル重合開始剤としては、例えば、過酸化物やアゾ化合物等が挙げられる。これらの中でも、高分子アゾ化合物からなる高分子アゾ開始剤が好ましい。高分子アゾ開始剤としては、例えば、アゾ基を介してポリアルキレンオキサイドやポリジメチルシロキサン等のユニットが複数結合した構造を有するものが挙げられる。
上記アゾ基を介してポリアルキレンオキサイド等のユニットが複数結合した構造を有する高分子アゾ開始剤としては、例えば、4,4'−アゾビス(4−シアノペンタン酸)とポリアルキレングリコールの重縮合物や、4,4'−アゾビス(4−シアノペンタン酸)と末端アミノ基を有するポリジメチルシロキサンの重縮合物等が挙げられる。
上記過酸化物としては、例えば、ケトンパーオキサイド、パーオキシケタール、ハイドロパーオキサイド、ジアルキルパーオキサイド、パーオキシエステル、ジアシルパーオキサイド、パーオキシジカーボネート等が挙げられる。
上記熱ラジカル重合開始剤のうち市販されているものとしては、例えば、パーブチルO、パーヘキシルO、パーブチルPV(いずれも日油社製)、V−30、V−501、V−601、VPE−0201、VPE−0401、VPE−0601(いずれも和光純薬工業社製)等が挙げられる。
上記熱カチオン重合開始剤としては、例えば、第四級アンモニウム塩、ホスホニウム塩、スルホニウム塩等の各種オニウム塩類等が挙げられる。上記熱カチオン重合開始剤のうち市販されているものとしては、例えば、アデカオプトンCP−66、アデカオプトンCP−77(いずれもADEKA社製)、サンエイドSI−60L、サンエイドSI−80L、サンエイドSI−100L(いずれも三新化学工業社製)、CIシリーズ(日本曹達社製)等が挙げられる。
次いで、光照射等によって、光拡散層用組成物の塗膜を硬化させる。これにより、バリアフィルム12におけるバリア層21側の面とは反対側の面に光拡散層14が形成されて、光拡散層14付きバリアフィルム19が形成される。また、同様にして、光拡散層15付きバリアフィルム20を形成する。
次いで、光拡散層15付きバリアフィルム13における光拡散層15側の面とは反対側の面(バリア層22の表面)に、量子ドット17および硬化性バインダ樹脂前駆体を含む光波長変換層用組成物を塗布し、乾燥させて、光波長変換層用組成物の塗膜を形成する。
そして、光拡散層14付きバリアフィルム12における光拡散層14側の面とは反対側の面(バリア層21の表面)が光波長変換層用組成物の塗膜と接するように、光波長変換層用組成物の塗膜上に光拡散層14付きバリアフィルム12を配置する。これにより、光波長変換層用組成物の塗膜が、バリアフィルム12、13間で挟まれる。
次いで、バリアフィルム12を介して光波長変換層用組成物の塗膜に光を照射して、または熱を加えて、硬化性バインダ樹脂前駆体を硬化させて、光波長変換層11を形成するとともに、光波長変換層11と、光拡散層14付きバリアフィルム12および光拡散層15付きバリアフィルム13とを一体化させる。これにより、図1に示される光波長変換シート10が得られる。
光波長変換シート10、30、40は、バックライト装置および画像表示装置に組み込んで使用することができる。以下、光波長変換シート10をバックライト装置および画像表示装置に組み込んだ例について説明する。図5は本実施形態に係るバックライト装置を含む画像表示装置の概略構成図であり、図6は図5に示されるレンズシートの斜視図であり、図7は図6のレンズシートのI−I線に沿った断面図であり、図8は本実施形態に係る他のバックライト装置の概略構成図である。
<<<画像表示装置>>>
図5に示される画像表示装置60は、バックライト装置70と、バックライト装置70の出光側に配置された表示パネル110とを備えている。画像表示装置60は、画像を表示する表示面60Aを有している。図5に示される画像表示装置60においては、表示パネル110の表面が表示面60Aとなっている。
バックライト装置60は、表示パネル110を背面側から面状に照らすものである。表示パネル110は、バックライト装置60からの光の透過または遮断を画素毎に制御するシャッターとして機能し、表示面60Aに像を表示するように構成されている。
<<表示パネル>>
図5に示される表示パネル110は、液晶表示パネルであり、入光側に配置された偏光板111と、出光側に配置された偏光板112と、偏光板111と偏光板112との間に配置された液晶セル113とを備えている。偏光板111、112は、入射した光を直交する二つの直線偏光成分(S偏光およびP偏光)に分解し、一方の方向(透過軸と平行な方向)に振動する直線偏光成分(例えば、P偏光)を透過させ、前記一方の方向に直交する他方の方向(吸収軸と平行な方向)に振動する直線偏光成分(例えば、S偏光)を吸収する機能を有している。
液晶セル113には、一つの画素を形成する領域毎に、電圧の印加がなされ得るように構成されている。そして、電圧印加の有無によって液晶セル113中の液晶分子の配向方向が変化するようになる。一例として、入光側に配置された偏光板111を透過した特定方向の直線偏光成分は、電圧印加がなされた液晶セル113を通過する際にその偏光方向を90°回転させ、その一方で、電圧印加がなされていない液晶セル113を通過する際にその偏光方向を維持する。この場合、液晶セル113への電圧印加の有無によって、偏光板111を透過した特定方向に振動する直線偏光成分を偏光板112に対して透過させ、または偏光板112で吸収して遮断することができる。このようにして、表示パネル110では、バックライト装置70からの光の透過または遮断を画素毎に制御し得るように構成されている。なお、液晶表示パネルの詳細については、種々の公知文献(例えば、「フラットパネルディスプレイ大辞典(内田龍男、内池平樹監修)」2001年工業調査会発行)に記載されており、ここではこれ以上の詳細な説明を省略する。
<<バックライト装置>>
図5に示されるバックライト装置70は、エッジライト型のバックライト装置として構成され、光源75と、光源75の側方に配置された導光板としての光学板80と、光学板80の出光側に配置された光波長変換シート10と、光波長変換シート10の出光側に配置されたレンズシート85と、レンズシート85の出光側に配置されたレンズシート90と、レンズシート90の出光側に配置された反射型偏光分離シート95と、光学板80の出光側とは反対側に配置された反射シート100とを備えている。バックライト装置70は、光学板80、レンズシート85、90、反射型偏光分離シート95、反射シート100を備えているが、これらのシート等は備えられていなくともよい。本明細書において、「出光側」とは、各部材においてバックライト装置から出射する方向に向かう光が出射される側を意味する。
バックライト置70は、面状に光を発光する発光面70Aを有している。図5に示されるバックライト装置70においては、反射型偏光分離シート95の出光面がバックライト装置70の発光面70Aとなっている。
光波長変換シート10における光学板80側の面が入光面10Aとなっており、光波長変換シート10におけるレンズシート85側の面が出光面10Bとなっている。
<光源>
光源75は、例えば、線状の冷陰極管等の蛍光灯や、点状の発光ダイオード(LED)や白熱電球等の種々の態様で構成され得る。本実施の形態において、光源75は、光学板60の後述する入光面80C側に、線状に並べて配置された多数の点状発光体、具体的には、多数の発光ダイオード(LED)によって、構成されている。
バックライト装置70においては光波長変換シート10が配置されていることに伴い、光源75は、単一の波長域の光を放出する発光体のみを用いることができる。例えば、光源は、色純度の高い青色光を発する青色発光ダイオードのみを用いることができる。
<光学板>
導光板としての光学板80は、平面視形状が四角形形状に形成されている。光学板80は、表示パネル110側の一方の主面によって構成された出光面80Aと、出光面80Aに対向するもう一方の主面からなる裏面80Bと、出光面80Aおよび裏面80Bの間を延びる側面と、を有している。側面のうちの光源75側の側面が、光源75からの光を受ける入光面80Cとなっている。入光面80Cから光学板80内に入射した光は、入光面80Cと、入光面80Cと対向する反対面とを結ぶ方向(導光方向)に光学板内を導光され、出光面80Aから出射される。
光学板80を構成する材料としては、画像表示装置に組み込まれる光学シート用の材料として広く使用され、優れた機械的特性、光学特性、安定性および加工性等を有するとともに安価に入手可能な材料、例えば、アクリル樹脂、ポリスチレン、ポリカーボネート、ポリエチレンテレフタレート、ポリアクリロニトリル等の一以上を主成分とする透明樹脂や、エポキシアクリレートやウレタンアクリレート系の反応性樹脂(電離放射線硬化型樹脂等)が好適に使用され得る。なお、必要に応じて、光学板60中に光を拡散させる機能を有する光拡散材を添加することもできる。光拡散材としては、例えば、平均粒子径が0.5μm以上100μm以下のシリカ(二酸化珪素)、アルミナ(酸化アルミニウム)、アクリル樹脂、ポリカーボネート樹脂、シリコーン樹脂等の透明物質からなる粒子を用いることができる。
<<レンズシート>>
レンズシート85、90は、入射した光の進行方向を変化させて出光側から出射させる機能を有する。本実施形態においては、図7に示されるように、入射角度が大きい光L3の進行方向を変化させて出光側から出射させて、正面方向の輝度を集中的に向上させる機能(集光機能)とともに、入射角度が小さい光L4を反射させて、光波長変換シート10側に戻す機能(再帰反射機能)を有している。レンズシート85、90は、光透過性基材86と、光透過性基材86の一方の面に設けられたレンズ層87とを備えている。
光波長変換シート10の入光面10Aや出光面10Bが凹凸面となっている場合には、光学板80の出光面80Aは、入光面10Aの一部(例えば、凸部)と光学的に密着し、また入光面10Aの他の部分(例えば、凹部)と離間していることが好ましく、またレンズシート85の入光面85Aは、出光面10Bの一部(例えば、凸部)と光学的に密着し、また出光面10Bの他の部分(例えば、凹部)と離間していることが好ましい。この場合、出光面80Aと入光面10Aの他の部分との隙間および入光面85Aと出光面10Bの他の部分との隙間は空気層となっている。この空気層を設けることにより、出光面80Aと入光面10Aおよび入光面85Aと出光面10Bが光学的に密着するように光波長変換シート10と光学板80およびレンズシート85とを固定した場合であっても、光波長変換シート10と光学板80およびレンズシート85とが貼り付くことを抑制できるので、光波長変換シート10と光学板80との間の界面および光波長変換シート10とレンズシート85との間の界面にウエットアウトが形成されることを抑制できる。
<光透過性基材>
光透過性基材86は、光透過性基材19、20と同様のものであるので、ここでは説明を省略するものとする。
<レンズ層>
レンズ層87は、図6および図7に示されるように、シート状の本体部88、および本体部88の出光側に並べて配置された複数の単位レンズ89を備えている。
本体部88は、単位レンズ89を支持するシート状部材として機能する。図6および図7に示されるように、本体部88の出光側面88A上には、単位レンズ89が隙間をあけることなく並べられている。したがって、レンズシート85、90の出光面85B、90Bは、レンズ面によって形成されている。その一方で、図7に示すように、本実施の形態において、本体部88は、出光側面88Aに対向する入光側面88Bとして、レンズ層87の入光側面をなす平滑な面を有している。
単位レンズ89は、本体部88の出光側面88A上に並べて配列されている。図6に示されるように単位レンズ89は、単位レンズ89の配列方向ADと交差する方向に線状、とりわけ本実施の形態においては直線状に、延びている。また本実施の形態において、一つのレンズシート85、90に含まれる多数の単位レンズ89は、互いに平行に延びている。また、レンズシート85、90の単位レンズ89の長手方向LDは、レンズシート85、90における単位レンズ89の配列方向ADと直交している。
単位レンズ89は、三角柱状であってもよいし、波状や例えば半球状のような椀状であってもよい。具体的には、単位レンズとしては、単位プリズム、単位シリンドリカルレンズ、単位マイクロレンズ等が挙げられる。本実施形態では、単位レンズとして、出光側に向けて幅が狭くなる三角柱状の単位プリズムについて説明する。本体部88のシート面の法線方向NDおよび単位レンズ89の配列方向ADの両方に平行な断面(レンズシートの主切断面とも呼ぶ)の形状は、出光側に突出する三角形形状となっている。とりわけ、正面方向輝度を集中的に向上させるという観点から、主切断面における単位レンズ89の断面形状は二等辺三角形形状であるとともに、等辺の間に位置する頂角が本体部88の出光側面88Aから出光側に突出するように、各単位レンズ89が構成されている。
単位レンズ89は、光の利用効率を向上させる観点から、80°以上100°以下の頂角を有することが好ましく、約90°の頂角を有することがより好ましい。ただし、光波長変換シートの巻き取りの際における単位レンズの先端の破損を考慮すると、単位レンズ89の先端は曲面であってもよい。
レンズシート85、90の寸法は、一例として、以下のように設定され得る。まず、単位レンズ89の具体例として、単位レンズ89の配列ピッチ(図示された例では、単位レンズ94の幅に相当)を10μm以上200μm以下とすることができる。ただし、昨今においては、単位レンズ89の配列の高精細化が急速に進んでおり、単位レンズ89の配列ピッチを10μm以上50μm以下とすることが好ましい。また、レンズシート85、90のシート面への法線方向NDに沿った本体部88からの単位レンズ89の突出高さを5μm以上100μm以下とすることができる。さらに、単位レンズ89の頂角θを60°以上120°以下とすることができる。
図5から理解され得るように、レンズシート85の単位レンズ89の配列方向とレンズシート90の単位レンズ89の配列方向とは交差、さらに限定的には直交している。
<反射型偏光分離シート>
反射型偏光分離シート95は、レンズシート85から出射される光のうち、第1の直線偏光成分(例えば、P偏光)のみを透過し、かつ第1の直線偏光成分と直交する第2の直線偏光成分(例えば、S偏光)を吸収せずに反射する機能を有する。反射型偏光分離シート95で反射された第2の直線偏光成分は再度反射され、偏光が解消された状態(第1の直線偏光成分と第2の直線偏光成分とを両方含んだ状態)で、再度、反射型偏光分離シート95に入射する。よって、反射型偏光分離シート95は再度入射する光のうち第1の直線偏光成分を透過し、第1の直線偏光成分と直交する第2の直線偏光成分は再度反射される。以下、同上の過程を繰り返す事により、レンズシート75から出光した光の70〜80%程度が第1の直線偏光成分となった光源光として出光される。したがって、反射型偏光分離シート95の第1の直線偏光成分(透過軸成分)の偏光方向と表示パネル110の偏光板111の透過軸方向とを一致させることにより、バックライト装置50からの出射光は全て表示パネル110で画像形成に利用可能となる。したがって、光源75から投入される光エネルギーが同じであっても、反射型偏光分離シート95を未配置の場合に比べて、より高輝度の画像形成が可能となり、又光源75のエネルギー利用効率も向上する。とりわけ、反射型偏光分離シート95で反射された光は、光波長変換シート10で波長変換が行われ得る。したがって、反射型偏光分離シート95を配置することによって、光波長変換シート10の波長変換効率がさらに上昇させることができる。したがって、更なる光の利用効率の改善を期待することができる。
反射型偏光分離シート95としては、3M社から入手可能な「DBEF」(登録商標)を用いることができる。また、「DBEF」以外にも、Shinwha Intertek社から入手可能な高輝度偏光シート「WRPS」やワイヤーグリッド偏光子等を、反射型偏光分離シート95として用いることができる。
<反射シート>
反射シート100は、光学板80の裏面80Bから漏れ出した光を反射して、再び光学板80内に入射させる機能を有する。反射シート100は、白色の散乱反射シート、金属等の高い反射率を有する材料からなるシート、高い反射率を有する材料からなる薄膜(例えば金属薄膜)を表面層として含んだシート等から、構成され得る。反射シート100での反射は、正反射(鏡面反射)でもよく、拡散反射でもよい。反射シート100での反射が拡散反射の場合には、当該拡散反射は、等方性拡散反射であってもよいし、異方性拡散反射であってもよい。
<<他のバックライト装置>>
光波長変換シート10を組み込むバックライト装置は、図8に示されるような直下型のバックライト装置であってもよい。図8に示されるバックライト装置120は、光源75と、光源75の光を受け、かつ光拡散板として機能する光学板121と、光学板121の出光側に配置された光波長変換シート10、光波長変換シート10の出光側に配置されたレンズシート85と、レンズシート85の出光側に配置された反射型偏光分離シート95とを備えている。本実施形態においては、光源75は、光学板121の側方ではなく、光学板121の直下に配置されている。図8において、図5と同じ符号が付されている部材は、図5で示した部材と同じものであるので、説明を省略するものとする。なお、バックライト装置120においては、反射シート100は備えられていない。
<光学板>
光拡散板としての光学板121は、平面視形状が四角形形状に形成されている。光学板121は、光源75側の一方の主面によって構成された入光面121Aと、光波長変換シート10側の他方の主面によって構成された出光面121Bとを有している。入光面121Aから光学板121内に入射した光は、光学板121内で拡散され、出光面121Bから出射される。
光学板121としては、光源75からの光を拡散させることができれば、特に限定されないが、例えば、透明材料中に光拡散性粒子を分散させた板が挙げられる。透明材料としては、特に限定されないが、例えば透明樹脂、無機ガラス等が挙げられる。前記透明樹脂としては、成形が容易である点で、透明熱可塑性樹脂が好適に用いられる。この透明熱可塑性樹脂としては、特に限定されるものではないが、例えば、ポリスチレン樹脂、スチレン−メタクリル酸メチル共重合体樹脂、スチレン−メタクリル酸共重合体樹脂、スチレン−無水マレイン酸共重合体樹脂、メタクリル樹脂、アクリル樹脂、ポリカーボネート樹脂、ABS樹脂(アクリロニトリル−ブタジエン−スチレン共重合体樹脂)、AS樹脂(アクリロニトリル−スチレン共重合体樹脂)、ポリオレフィン樹脂(ポリエチレン樹脂、ポリプロピレン樹脂等)などが挙げられる。これらのうちの1種を用いても良いし、或いはこれらの2種以上を混合して用いても良い。
<光拡散性粒子>
光学板121中の光拡散性粒子としては、拡散板として一般的に用いられる光拡散性粒子が挙げられる。
本実施形態においては、光波長変換シート10をバックライト装置70、120に組み込んだ例について説明しているが、光波長変換シート10に代えて、光波長変換シート30、40をバックライト装置70、120に組み込んでもよい。
本実施形態によれば、光波長変換シート10の外部ヘイズ値が光波長変換シート10の内部ヘイズ値よりも小さくなっているので、光波長変換効率をさらに向上させることができる。すなわち、光源から発せられる光は直進性を有しているので、光波長変換シートに入射して、量子ドットによって波長変換されずに、光波長変換シートを出射する光も直進性を有している。ここで、光波長変換シートの外部ヘイズ値が高いと、光波長変換シートの表面で直進性を有する波長変換されていない光が屈折し、光波長変換シートから出射する波長変換されていない光においては出射角度が大きい成分が多くなってしまう。一方、集光機能および再帰反射機能を有するレンズシートは、レンズシートへの入射角度が小さい光ほどレンズシートを再帰反射させやすい傾向がある。すなわち、レンズシートへの入射角度が大きい光ほどレンズシートを透過しやすいという傾向がある。本実施形態においては、光波長変換シート10においては、外部ヘイズ値が内部ヘイズ値よりも小さくなっているので、光波長変換シート10の表面で波長変換されていない光が屈折したとしても、出射角度が小さい状態で出射させることができ、これにより、光波長変換シート10から出射される波長変換されていない光においては出射角度が小さい成分を多くすることができる。したがって、レンズシート85によって、波長変換されずに光波長変換シートから出射した光を再帰反射させて、光波長変換シート10側に戻すことができるので、波長変換される機会が増える。また、内部ヘイズ値が外部ヘイズ値より大きくなっているので、光波長変換シート内部で光が複数回散乱されることにより光路長が伸び、波長変換される機会がさらに増える。これにより、光波長変換効率を向上させることができる。なお、量子ドット18は等方的に発光するので、量子ドット18によって波長変換された光は様々な方向を向いており、光波長変換シート10の表面に到達すると、さらに光波長変換シートの表面で光が屈折し、波長変換された光は角度が大きい光となって光波長変換シートから出射しやすい。このため、波長変換された光は比較的レンズシート85を透過しやすい。
本発明において、外部ヘイズ値を用いて光波長変換シートの表面における光拡散特性(外部拡散特性)を表したのは、以下の理由からである。まず、光波長変換シートの光拡散特性はゴニオフォトメータのような公知の変角光度計により透過光の光強度を角度毎に測定することによって評価することができるが、測定された透過光の光強度の結果を用いて光波長変換シートの光拡散特性を規定することは極めて困難である。一方、上記したように、ヘイズの定義においては入射光に対し2.5°以上それた透過光はヘイズとして測定されるが、入射光に対し2.5°未満の透過光であればヘイズとして測定されない。このようにヘイズとしては入射光に対し2.5°未満の透過光は測定されないが、上記したようにレンズシートへの入射角度が大きい光、すなわち光波長変換シートにおける出射角度が大きい透過光が問題となっているので、入射光に対し2.5°未満の透過光よりも2.5°以上それた透過光がどの程度存在するかが重要である。このため、光波長変換シートの光拡散特性は、変角光度計による透過光の角度毎の光強度を測定しなくとも、光波長変換シートのヘイズ値の大きさで表すことができる。一方で、光波長変換シートの表面で光が屈折してしまい、出射角度が大きくなるということを考慮する必要があるので、光波長変換シートの表面での光拡散特性を表すために、外部ヘイズ値を用いた。
本実施形態によれば、光波長変換層11が光散乱性粒子18を含んでいるので、光波長変換効率を一層向上させることができる。したがって、例えば、光源75として青色光を発する光源を用い、第1の量子ドット17Aとして青色光を緑色光に変換する量子ドットを用い、第2の量子ドット17Bとして青色光を赤色光に変換する量子ドットを含む光波長変換シートに青色光を照射した場合、光散乱性粒子を含んでいない光波長変換シートと比べて、色度x、yを上昇させることでき、白色光または白色に近い色味の光を得ることができる。
本実施形態によれば、光波長変換層シート11が光散乱性粒子18を含んでいるので、緑色の発光が赤色の発光よりも優先的に増強させることができる。この理由は明確ではないが、光散乱性粒子は、青色光を緑色光に変換する第1の量子ドットから、青色光を赤色光に変換する第2の量子ドットへのエネルギー移動を阻害するような役割を果たしていると考えられ、本来上記エネルギー移動により失活していた緑色の発光が失活することなく発光過程に至り、結果として緑色の発光が増加するためであると考えられる。
本発明を詳細に説明するために、以下に実施例を挙げて説明するが、本発明はこれらの記載に限定されない。
<光波長変換層用組成物の調製>
まず、下記に示す組成となるように各成分を配合して、光波長変換層用組成物を得た。
(光波長変換層用組成物1)
・エポキシアクリレート(製品名「ユニディックV−5500」、DIC社製):99質量部
・緑色光発光量子ドット(製品名「CdSe/ZnS 530」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径3.3nm):0.20質量部
・赤色光発光量子ドット(製品名「CdSe/ZnS 610」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径5.2nm):0.20質量部
・光重合開始剤(1−ヒドロキシシクロヘキシルフェニルケトン、製品名「Irgacure(登録商標)184」、BASFジャパン社製):1質量部
(光波長変換層用組成物2)
・エポキシアクリレート(製品名「ユニディックV−5500」、DIC社製):99質量部
・緑色光発光量子ドット(製品名「CdSe/ZnS 530」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径3.3nm):0.20質量部
・赤色光発光量子ドット(製品名「CdSe/ZnS 610」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径5.2nm):0.20質量部
・アルミナ粒子(製品名「DAM−03」、電気化学工業社製、平均粒子径4μm):5質量部
・光重合開始剤(1−ヒドロキシシクロヘキシルフェニルケトン、製品名「Irgacure(登録商標)184」、BASFジャパン社製):1質量部
(光波長変換層用組成物3)
・エポキシアクリレート(製品名「ユニディックV−5500」、DIC社製):99質量部
・緑色光発光量子ドット(製品名「CdSe/ZnS 530」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径3.3nm):0.20質量部
・赤色光発光量子ドット(製品名「CdSe/ZnS 610」、SIGMA−ALDRICH社製、コア:CdSe、シェル:ZnS、平均粒径5.2nm):0.20質量部
・アルミナ粒子(製品名「DAM−03」、電気化学工業社製、平均粒子径4μm):10質量部
・光重合開始剤(1−ヒドロキシシクロヘキシルフェニルケトン、製品名「Irgacure(登録商標)184」、BASFジャパン社製):1質量部
<光拡散層用組成物の調製>
下記に示す組成となるように各成分を配合して、光拡散層用組成物を得た。
(光拡散層用組成物)
・ペンタエリスリトールトリアクリレート:99質量部
・表面凹凸形成粒子(架橋ポリスチレン樹脂ビーズ、製品名「SBX−4」、積水化成品工業株式会社製、平均粒子径4μm):158質量部
・光重合開始剤(1−ヒドロキシシクロヘキシルフェニルケトン、製品名「Irgacure(登録商標)184、BASFジャパン社製):1質量部
・溶剤(メチルイソブチルケトン:シクロヘキサノン=1:1(質量比)):170質量部
<実施例1>
まず、2枚のバリアフィルムを次のような方法で作製した。高周波スパッタリング装置において、電極に周波数13.56MHz、電力5kWの高周波電力を印加することにより、チャンバー内で放電を生じさせて、大きさ7インチおよび厚みが50μmの光透過性基材としてのポリエチレンテレフタレートフィルム(製品名「ルミラーT60」、東レ社製)の片面にターゲット物質(シリカ)からなる、厚みが50nmであり、かつ屈折率が1.46であるバリア層としてのシリカ蒸着層を形成し、これにより、ポリエチレンテレフタレートフィルムの一方の面にシリカ蒸着層が形成されたバリアフィルムを2枚形成した。
次いで、両方のバリアフィルムにおけるシリカ蒸着層側の面とは反対側の面に光拡散層用組成物を、塗布し、塗膜を形成した。次いで、形成した塗膜に対して、80℃の乾燥空気を30秒間流通させて乾燥させることにより塗膜中の溶剤を蒸発させた。その後、紫外線を積算光量が500mJ/cm2になるように照射して塗膜を硬化させることにより膜厚が10μmの光拡散層を形成し、光拡散層付きバリアフィルムを形成した。
次いで、一方の光拡散層付きバリアフィルムのシリカ蒸着層側に光波長変換層用組成物1を塗布し、80℃で乾燥させて、塗膜を形成した。そして、塗膜における光拡散層付きバリアフィルムのシリカ蒸着層の面に、シリカ蒸着層が接するように他方の光拡散層付きバリアフィルムを積層した。この状態で、紫外線を積算光量が500mJ/cm2になるように照射して塗膜を硬化させることにより、両方の光拡散層付きバリアフィルムに密着した膜厚が100μmの光波長変換層を形成した。これにより、実施例1に係る光波長変換シートを得た。なお、光波長変換層の膜厚は、光波長変換シートの断面を、走査型電子顕微鏡(SEM)を用いて、20箇所ランダムに撮影し、その断面の画像から求めた。
<実施例2>
実施例2においては、光波長変換層用組成物1の代わりに光波長変換層用組成物2を用いたこと以外は、実施例1と同様にして、光波長変換シートを作製した。
<実施例3>
実施例3においては、両方の光拡散層を形成しなかったこと以外は、実施例2と同様にして、光波長変換シートを作製した。
<実施例4>
実施例4においては、光波長変換層用組成物2の代わりに光波長変換層用組成物3を用いたこと以外は、実施例3と同様にして、光波長変換シートを作製した。
<実施例5>
実施例5においては、光拡散層の膜厚を1.5μmとしたこと以外は、実施例2と同様にして、光波長変換シートを作製した。
<比較例1>
比較例1においては、両方の光拡散層を形成しなかったこと以外は、実施例1と同様にして、光波長変換シートを作製した。
<比較例2>
比較例2においては、両方の光拡散層の膜厚を1.5μmとしたこと以外は、実施例1と同様にして、光波長変換シートを作製した。
<比較例3>
比較例3においては、両方の光拡散層の膜厚を2μmとしたこと以外は、実施例1と同様にして、光波長変換シートを作製した。
<全ヘイズ、内部ヘイズ、外部ヘイズ測定>
上記実施例および比較例に係る光波長変換シートにおいて、以下のようにして、全ヘイズ、内部ヘイズ、外部ヘイズを測定した。まず、ヘイズメーター(製品名「HM−150」、村上色彩技術研究所製)を用いて、JIS K7136に従って光波長変換シートの全ヘイズ値を測定した。その後、光波長変換シートにおける両方の光拡散層の表面に、膜厚が25μmの透明光学粘着層(製品名「パナクリーンPD−S1」、パナック社製)を介して厚みが60μmのトリアセチルセルロース基材(製品名「TD60UL」、富士フイルム社製)を貼り付けた。これによって、光波長変換シートにおける表面の凹凸形状が潰れ、光波長変換シートの表面が平坦になった。この状態で、ヘイズメーター(製品名「HM−150」、村上色彩技術研究所製)を用いて、JIS K7136に従ってヘイズ値を測定して内部ヘイズ値を求めた。そして、全ヘイズ値から内部ヘイズ値を差し引くことにより、外部ヘイズ値を求めた。なお、透明光学粘着層およびトリアセチルセルロース基材も光波長変換シートの内部ヘイズ値や外部ヘイズ値に影響を与えるおそれがあるが、光波長変換シートの内部散乱が極めて大きい場合には、これらが内部ヘイズ値や外部ヘイズ値に与える影響は極めて小さくなるので、無視できる。また、光波長変換シートの内部散乱が極めて大きい場合には、内部ヘイズ値が全ヘイズ値と同じ値になることがあるので、外部ヘイズ値が0%になることもある。
<算術平均粗さ(Ra)測定>
実施例及び比較例に係る光波長変換シートにおいて、光波長変換シートの表面のRaを測定した。Raの定義は、JIS B0601−1994に従うものとする。Raは、具体的には、表面粗さ測定器(製品名「SE−3400」、小坂研究所社製)を用いて、下記の測定条件により測定された。
1)表面粗さ検出部の触針(小坂研究所社製の商品名SE2555N(2μ標準))
・先端曲率半径2μm、頂角90度、材質ダイヤモンド
2)表面粗さ測定器の測定条件
・基準長さ(粗さ曲線のカットオフ値λc):2.5mm
・評価長さ(基準長さ(カットオフ値λc)×5):12.5mm
・触針の送り速さ:0.5mm/s
・予備長さ:(カットオフ値λc)×2
・縦倍率:2000倍
・横倍率:10倍
<輝度測定および色度測定>
上記実施例および比較例に係る光波長変換シートをそれぞれバックライト装置に組み込み、実施例および比較例に係る光波長変換シートを組み込んだバックライト装置において、輝度および色度を測定した。
実施例および比較例に係る光波長変換シートをバックライト装置に組み込む際に、まず、Kindle Fire(登録商標)HDX7のバックライトユニット(発光ピーク波長が450nmの青色発光ダイオード、光拡散板、2枚のプリズムシート)を用意した。2枚のプリズムシートは、シート状の本体部と、この本体部上に並べて配置され、かつ各々が配列方向と交差する方向に延びた三角柱状の複数の単位プリズムとを備え、単位プリズムの頂角が90°となっているものであった。
そして、バックライト側が入光面となるように導光板を配置するとともに、導光板の出光面上に、実施例1に係る光波長変換シート、プリズムシートをこの順で配置して、バックライト装置を得た。なお、観察者側のプリズムシートは、単位プリズムの配列方向とプリズムシートの単位プリズムの配列方向と直交するように配置された。同様にして、実施例2〜4および比較例1〜3に係る光波長変換シートが組み込まれたバックライト装置を得た。
このような実施例および比較例に係る光波長変換シートを組み込んだバックライト装置を用いて、それぞれのバックライト装置から出射する光の輝度および色度x、yを測定した。測定には、分光放射輝度計(製品名「CS2000」、コニカミノルタ社製)を用いた。
以下、結果について述べる。比較例1〜3に係る光波長変換シートは、外部ヘイズ値が内部ヘイズ値よりも大きかったので、バックライト装置から出射された光の輝度が低かった。また比較例1〜3に係る光波長変換シートにおいては、バックライト装置から出射された光の色度yも小さく、適切な範囲に入っていなかった。これに対し、実施例1〜5に係る光波長変換シートは、外部ヘイズ値が内部ヘイズ値よりも小さかったので、バックライト装置から出射された光の輝度が高く、またバックライト装置から出射された光の色度x、yがそれぞれ適切な範囲に入っていた。これにより、実施例1〜5においては、優れた光波長変換効率が得られることが確認された。