JP2017025352A - Steel sheet for can and production method therefor - Google Patents

Steel sheet for can and production method therefor Download PDF

Info

Publication number
JP2017025352A
JP2017025352A JP2015141986A JP2015141986A JP2017025352A JP 2017025352 A JP2017025352 A JP 2017025352A JP 2015141986 A JP2015141986 A JP 2015141986A JP 2015141986 A JP2015141986 A JP 2015141986A JP 2017025352 A JP2017025352 A JP 2017025352A
Authority
JP
Japan
Prior art keywords
less
steel
mass
cans
ferrite phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015141986A
Other languages
Japanese (ja)
Inventor
霊玲 楊
ling ling Yang
霊玲 楊
勇人 齋藤
Isato Saito
勇人 齋藤
克己 小島
Katsumi Kojima
克己 小島
裕樹 中丸
Hiroki Nakamaru
裕樹 中丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2015141986A priority Critical patent/JP2017025352A/en
Publication of JP2017025352A publication Critical patent/JP2017025352A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a steel sheet for a can, providing excellent can shape after being spinned, and a production method therefor.SOLUTION: The steel sheet for a can is provided that has: a component composition containing, by mass%, C:0.0015% to less than 0.010%, Si:0.01 to 0.10%, Mn:0.10 to 1.00%, P:0.03% or less, N:0.005% or less, S:0.03% or less, Al:0.020 to 0.100% and the balance Fe with inevitable impurities; a structure in which a ferrite phase accounts for 95% or more by an area ratio, average crystal particle diameter of the ferrite phase is 15.0 μm or less, amount of solid solution carbon in the steel is over 15 mass.ppm and 60 mass.ppm or less; and a yield strength (YP) of 300 MPa or more and an elongation (El) of 15% or more.SELECTED DRAWING: None

Description

本発明は、飲料品や食品の容器材料として用いられる缶容器材料に適した缶用鋼板およびその製造方法に関するものである。特に、スピニング加工後、缶形状が優れる缶用鋼板およびその製造方法に関するものである。   The present invention relates to a steel plate for cans suitable as a can container material used as a container material for beverages and foods, and a method for producing the same. In particular, the present invention relates to a steel plate for cans having a good can shape after spinning and a method for producing the same.

3ピース缶は、表面処理鋼板を円筒状に曲げ、端部を接合して缶胴を形成したのち、ネックイン加工およびフランジ加工を経て天蓋と底蓋を取り付けた3部品からなる缶であり、内部が負圧となる陰圧缶として多用されている。   The 3-piece can is a can made up of 3 parts, which is formed by bending a surface-treated steel plate into a cylindrical shape, joining the ends and forming a can body, and then attaching a canopy and a bottom cover through neck-in processing and flange processing, Widely used as a negative pressure can with negative pressure inside.

近年、アルミ缶の使用が拡大しているため、スチール缶のコスト削減の観点から、スチール缶用鋼板の薄肉化が進められている。素材の薄肉化による缶強度の低下を抑制するため缶胴にくびれをいれ、形状の効果で缶強度を補償する観点から、缶胴にスピニング加工を行う場合がある。具体的には、缶胴部を回転させ、回転する圧子を缶胴に押し当て周方向に圧縮ひずみを付与し加工する。しかし、この加工法では、鋼板の板厚方向にせん断変形が生じ、加工部のわれやしわなどが発生する。   In recent years, since the use of aluminum cans has been expanded, the steel plate for steel cans is being made thinner from the viewpoint of reducing the cost of steel cans. From the viewpoint of constricting the can body in order to suppress a decrease in can strength due to the thinning of the material and compensating the can strength by the effect of the shape, the can body may be subjected to spinning processing. Specifically, the can body portion is rotated, the rotating indenter is pressed against the can body, and compressive strain is applied in the circumferential direction for processing. However, in this processing method, shear deformation occurs in the plate thickness direction of the steel sheet, and the processed portion is cracked or wrinkled.

上記問題を解決するために多くの研究が行われてきた。例えば、特許文献1には、スピニングネック加工時のわれを防止するため、鋼中の固溶炭素を低減し、局部延性を増大させることによりネック加工における鋼板変形時の介在物等による局部的な応力集中を緩和する方法が開示されている。   Many studies have been conducted to solve the above problems. For example, in Patent Document 1, in order to prevent cracking at the time of spinning neck processing, the solute carbon in the steel is reduced, and the local ductility is increased to increase local ductility. A method for mitigating stress concentration is disclosed.

また、特許文献2には、缶高さ方向の鋼板のランクフォード値、加工前後の降伏強度の比を制御し、介在物の数を低減させることによりくびれ加工部でのしわやわれを防ぎ、缶高さの減少を抑制する方法が開示されている。   Further, Patent Document 2 controls the rankford value of the steel sheet in the can height direction, the ratio of the yield strength before and after the processing, and reduces the number of inclusions to prevent wrinkling in the constricted portion, A method for suppressing the decrease in thickness is disclosed.

特開平7−207406号公報JP 7-207406 A 特開2003−183776号公報JP2003-183776

しかしながら、上記従来技術は、いずれも問題がある。   However, all of the above conventional techniques have problems.

特許文献1の技術によって得られた鋼板は、鋼中の固溶炭素量が少ないため、缶強度が低下し、運送中に缶が変形し、破損するという問題があった。   Since the steel sheet obtained by the technique of Patent Document 1 has a small amount of dissolved carbon in the steel, the strength of the can is lowered, and the can is deformed and broken during transportation.

また、特許文献2の技術によって得られた鋼板は、粒径について何ら考慮されていない。粒径が増大すると、スピニング加工する時に、粒界で缶胴部の破断が生じやすくなる。また、加工部表面に発生する肌荒れが顕著となる問題がある。   Further, the steel sheet obtained by the technique of Patent Document 2 does not take into consideration any particle size. When the particle size increases, the can body portion is likely to break at the grain boundary during spinning. In addition, there is a problem that rough skin generated on the surface of the processed part becomes remarkable.

このように、従来の技術は、いずれも問題がある。また、スピニング加工は、回転する圧子を缶胴に押し当て周方向に圧縮歪を付与する加工だが、この加工では、鋼板の変形は高さ方向と円周方向の両方に生じる。缶の高さ方向への変形量が大きくなる場合、加工部が缶半径方向へ凹み、缶の形が崩れ、真円度が劣化し、缶強度が下がる。また、円周方向への変形量が大きくなる場合、板厚が不均一になり、座屈変形しやすくなり、破胴する可能性がある。いずれもスピニング加工する時、鋼板の板厚変動量を最低限にし、缶形状を保つことが重要である。   Thus, all of the conventional techniques have problems. Spinning is a process in which a rotating indenter is pressed against a can body to impart compressive strain in the circumferential direction. In this process, deformation of the steel sheet occurs both in the height direction and in the circumferential direction. When the amount of deformation in the height direction of the can increases, the processed portion is recessed in the radial direction of the can, the shape of the can collapses, the roundness deteriorates, and the strength of the can decreases. Further, when the amount of deformation in the circumferential direction becomes large, the plate thickness becomes non-uniform, the buckling deformation is likely to occur, and there is a possibility of being broken. In any case, it is important to keep the can shape by minimizing the thickness variation of the steel sheet when spinning.

本発明は、かかる事情に鑑みなされたもので、上述した従来技術の問題を解決し、スピニング加工後、缶形状が優れる缶用鋼板およびその製造方法を提供することを目的とする。   This invention is made | formed in view of this situation, and it aims at solving the problem of the prior art mentioned above, and providing the steel plate for cans which can shape is excellent after a spinning process, and its manufacturing method.

本発明者らは、前記課題を解決するために鋭意研究を行った。その結果、スピニング加工時の鋼板の板厚変動および缶形状の変化を低減するためには、結晶粒径の増大を抑制し、十分な伸びと強度を確保し、鋼中の固溶炭素量を適切に制御することが極めて有効なことを見出した。   The present inventors have intensively studied to solve the above problems. As a result, in order to reduce plate thickness fluctuation and can shape change during spinning, the increase in crystal grain size is suppressed, sufficient elongation and strength are secured, and the amount of solute carbon in the steel is reduced. We have found that proper control is extremely effective.

本発明は、以上の知見に基づきなされたもので、その要旨は以下のとおりである。
[1]成分組成は、質量%で、C:0.0015%〜0.010%未満、Si:0.01〜0.10%、Mn:0.10〜1.00%、P:0.03%以下、N:0.005%以下、S:0.03%以下、Al:0.020〜0.100%を含有し、残部はFeおよび不可避的不純物からなり、組織はフェライト相が面積率で95%以上であり、前記フェライト相の平均結晶粒径が15.0μm以下、鋼中の固溶炭素量が15質量ppm超え60質量ppm以下であり、降伏強度(YP)が300MPa以上、伸び(El)が15%以上であることを特徴とする缶用鋼板。
[2]さらに、質量%で、Nb:0.01〜0.10%、Ti:0.01〜0.20%のいずれか一種以上を含有することを特徴とする上記[1]に記載の缶用鋼板。
[3]成分組成は、質量%で、C:0.010〜0.10%、Si:0.01〜0.10%、Mn:0.10〜1.00%、P:0.03%以下、N:0.005%以下、S:0.03%以下、Al:0.020〜0.100%、Nb:0.01〜0.10%および/またはTi:0.01〜0.20%を含有し、残部はFeおよび不可避的不純物からなり、組織はフェライト相が面積率で95%以上であり、前記フェライト相の平均結晶粒径が15.0μm以下、鋼中の固溶炭素量が15ppm超え60ppm以下であり、降伏強度(YP)が300MPa以上、伸び(El)が15%以上であることを特徴とする缶用鋼板。
[4]上記[1]〜[3]のいずれかに記載の成分組成を有する鋼を、840℃以上の仕上げ温度で熱間圧延し、500〜700℃の巻取温度で巻取り、80%以上の圧下率で冷間圧延し、790℃以下の焼鈍温度で焼鈍を行い、0.6〜5.0%の圧下率で調質圧延を行うことを特徴とする缶用鋼板の製造方法。
[5]前記焼鈍後調質圧延を行う前に、250℃超500℃以下の温度域にて30秒以上10分間以下滞留することを特徴とする上記[4]に記載の缶用鋼板の製造方法。
なお、本明細書において、鋼の成分を示す%は、すべて質量%である。
The present invention has been made based on the above findings, and the gist thereof is as follows.
[1] Component composition is mass%, C: 0.0015% to less than 0.010%, Si: 0.01 to 0.10%, Mn: 0.10 to 1.00%, P: 0.03% or less, N: 0.005% or less, S: 0.03% In the following, Al: 0.020 to 0.100% is contained, the balance is made of Fe and inevitable impurities, and the structure has a ferrite phase area ratio of 95% or more, and the ferrite crystal has an average grain size of 15.0 μm or less, steel A steel sheet for cans characterized in that the amount of solid solution carbon exceeds 15 mass ppm and is 60 mass ppm or less, the yield strength (YP) is 300 MPa or more, and the elongation (El) is 15% or more.
[2] The steel plate for cans according to [1], further containing at least one of Nb: 0.01 to 0.10% and Ti: 0.01 to 0.20% by mass%.
[3] Component composition is mass%, C: 0.010-0.10%, Si: 0.01-0.10%, Mn: 0.10-1.00%, P: 0.03% or less, N: 0.005% or less, S: 0.03% or less, Al: 0.020 to 0.100%, Nb: 0.01 to 0.10% and / or Ti: 0.01 to 0.20%, the balance consists of Fe and inevitable impurities, the structure is ferrite phase is 95% or more in area ratio, The ferrite phase has an average grain size of 15.0 μm or less, the amount of solid solution carbon in the steel is more than 15 ppm and 60 ppm or less, the yield strength (YP) is 300 MPa or more, and the elongation (El) is 15% or more. Steel sheet for cans.
[4] A steel having the composition described in any one of [1] to [3] above is hot-rolled at a finishing temperature of 840 ° C. or higher and wound at a winding temperature of 500 to 700 ° C., 80% A method for producing a steel plate for cans, comprising cold rolling at the above rolling reduction, annealing at an annealing temperature of 790 ° C. or less, and temper rolling at a rolling reduction of 0.6 to 5.0%.
[5] Manufacture of steel plate for can according to [4], wherein the steel plate stays for 30 seconds to 10 minutes in a temperature range of more than 250 ° C. and 500 ° C. or less before the temper rolling after annealing. Method.
In addition, in this specification,% which shows the component of steel is mass% altogether.

本発明によれば、スピニング加工後、缶形状が優れる缶用鋼板が得られる。
本発明の鋼板では、鋼中の固溶炭素量を適切に制御し、スピニング加工する際の鋼板強度を高めることで、缶半径方向への凹みが小さく、真円度が良好になり、缶高さのバラツキが小さくなる。また、高強度と高伸びを完備することにより、円周方向への鋼板の板厚変動を最小限に抑制し缶強度が高めることができる。
したがって、本発明の缶用鋼板を飲料品や食品の容器材料として使用することで、鋼板の更なる薄肉化が可能になり、低コスト化を達成することができる。
According to the present invention, a steel plate for cans having an excellent can shape is obtained after spinning.
In the steel plate of the present invention, by appropriately controlling the amount of solute carbon in the steel and increasing the strength of the steel plate when spinning, the dent in the can radial direction is small, the roundness is good, and the can height The variation in thickness is reduced. In addition, by providing high strength and high elongation, it is possible to increase the can strength by minimizing the plate thickness fluctuation in the circumferential direction.
Therefore, by using the steel plate for cans of the present invention as a container material for beverages and foods, it is possible to further reduce the thickness of the steel plate and achieve cost reduction.

くびれ部を設けた変形3ピース缶の外観を示す図である。It is a figure which shows the external appearance of the deformation | transformation 3 piece can which provided the constriction part.

以下、本発明を詳細に説明する。
本発明の缶用鋼板は、成分組成が質量%で、C:0.0015%〜0.010%未満、Si:0.01〜0.10%、Mn:0.10〜1.00%、P:0.03%以下、N:0.005%以下、S:0.03%以下、Al:0.020〜0.100%を含有し、残部はFeおよび不可避的不純物からなり、組織はフェライト相が面積率で95%以上であり、前記フェライト相の平均結晶粒径が15.0μm以下、鋼中の固溶炭素量が15質量ppm超え60質量ppm以下であり、降伏強度(YP)が300MPa以上、伸び(El)が15%以上である。または、成分組成が質量%で、C:0.010〜0.10%、Si:0.01〜0.10%、Mn:0.10〜1.00%、P:0.03%以下、N:0.005%以下、S:0.03%以下、Al:0.020〜0.100%、Nb:0.01〜0.10%および/またはTi:0.01〜0.20%を含有し、残部はFeおよび不可避的不純物からなり、組織はフェライト相が面積率で95%以上であり、前記フェライト相の平均結晶粒径が15.0μm以下、鋼中の固溶炭素量が15質量ppm超え60質量ppm以下であり、降伏強度(YP)が300MPa以上、伸び(El)が15%以上である。そして、このような缶用鋼板は、上記成分組成を有する鋼を、840℃以上の仕上げ温度で熱間圧延し、500〜700℃の巻取温度で巻取り、80%以上の圧下率で冷間圧延し、790℃以下の焼鈍温度で焼鈍を行い、0.6〜5.0%の圧下率で調質圧延を行うことで製造可能となる。これらは、本発明の重要な要件である。
Hereinafter, the present invention will be described in detail.
The steel plate for cans of the present invention has a component composition of mass%, C: 0.0015% to less than 0.010%, Si: 0.01 to 0.10%, Mn: 0.10 to 1.00%, P: 0.03% or less, N: 0.005% or less, S: not more than 0.03%, Al: 0.020-0.100%, the balance is composed of Fe and inevitable impurities, the structure has a ferrite phase area ratio of 95% or more, the average grain size of the ferrite phase is 15.0 μm or less, the amount of solute carbon in steel is more than 15 ppm by mass and 60 ppm by mass or less, the yield strength (YP) is 300 MPa or more, and the elongation (El) is 15% or more. Alternatively, the component composition is mass%, C: 0.010 to 0.10%, Si: 0.01 to 0.10%, Mn: 0.10 to 1.00%, P: 0.03% or less, N: 0.005% or less, S: 0.03% or less, Al: 0.020 to 0.100%, Nb: 0.01 to 0.10% and / or Ti: 0.01 to 0.20%, the balance is composed of Fe and inevitable impurities, and the structure has a ferrite phase area ratio of 95% or more, and the ferrite The average crystal grain size of the phase is 15.0 μm or less, the amount of solute carbon in the steel is more than 15 ppm by mass and 60 ppm by mass or less, the yield strength (YP) is 300 MPa or more, and the elongation (El) is 15% or more. Such a steel sheet for cans is obtained by hot rolling steel having the above composition at a finishing temperature of 840 ° C. or higher, winding at a winding temperature of 500 to 700 ° C., and cooling at a rolling reduction of 80% or higher. It becomes possible to manufacture by performing hot rolling, annealing at an annealing temperature of 790 ° C. or less, and temper rolling at a rolling reduction of 0.6 to 5.0%. These are important requirements of the present invention.

まず、本発明の缶用鋼板の成分組成について説明する。   First, the component composition of the steel plate for cans of this invention is demonstrated.

C:0.0015〜0.10%
Cは固溶炭素として存在することで、強度を向上させる。また、微細炭化物を形成し、鋼板の高強度化に寄与するとともに、加工硬化率を向上させる。そのため、C 含有量は0.0015%以上とする必要がある。一方、C 含有量は0.10%を超えると鋼板が過剰に硬質化するため、スピニング加工時に破断しやすくなる。したがって、C含有量は0.10%以下とする。また、上記範囲のうち、C:0.010〜0.10%の場合は、固溶炭素量を制御するために、成分組成として、炭化物として析出し鋼中に存在する固溶炭素の一部を固定する効果を有するNb:0.01〜0.10%および/またはTi:0.01〜0.20%を含有することとする。一方、C:0.0015〜0.010%未満の場合は、Nb:0.01〜0.10%および/またはTi:0.01〜0.20%を含有することは必須としない。Nb:0.01〜0.10%および/またはTi:0.01〜0.20%を含有しなくても本発明の効果を得ることができる。
C: 0.0015-0.10%
C is present as solid solution carbon, thereby improving the strength. Moreover, it forms fine carbides and contributes to increasing the strength of the steel sheet, and improves the work hardening rate. Therefore, the C content needs to be 0.0015% or more. On the other hand, if the C content exceeds 0.10%, the steel sheet becomes excessively hardened, so that it tends to break during spinning. Therefore, the C content is 0.10% or less. Moreover, in the case of C: 0.010-0.10% among the said range, in order to control the amount of solid solution carbon, as a component composition, the effect which fixes a part of solid solution carbon which precipitates as a carbide | carbonized_material and exists in steel Nb: 0.01 to 0.10% and / or Ti: 0.01 to 0.20%. On the other hand, in the case of C: 0.0015 to less than 0.010%, it is not essential to contain Nb: 0.01 to 0.10% and / or Ti: 0.01 to 0.20%. The effect of the present invention can be obtained without containing Nb: 0.01 to 0.10% and / or Ti: 0.01 to 0.20%.

Si:0.01〜0.10%
Siは固溶強化により鋼板の硬度を高める作用を有する元素である。降伏強度を安定的に確保するために、Siは0.01%以上の含有を必要とする。一方、Siは缶用としての耐食性に有害な元素であるので、上限は0.10%とする。
Si: 0.01-0.10%
Si is an element that has the effect of increasing the hardness of a steel sheet by solid solution strengthening. In order to ensure the yield strength stably, Si needs to contain 0.01% or more. On the other hand, since Si is an element harmful to corrosion resistance for cans, the upper limit is made 0.10%.

Mn:0.10〜1.00%
Mnは固溶強化により鋼板の硬度を高める作用を有する元素であり、降伏強度を安定的に確保するために必要である。また、粒径微細化に効果がある。これらの効果を得るため、Mnは0.10%以上の含有を必要とする。一方、Mn量が多くなると、原料のコストが上昇するので、Mnの上限は1.00%とする。ただし、食品容器に用いられるブリキ原板のMnの上限は0.6%と規定されているので、食品容器として用いる場合、好ましくは0.60%以下である。
Mn: 0.10 to 1.00%
Mn is an element having an effect of increasing the hardness of the steel sheet by solid solution strengthening, and is necessary for stably securing the yield strength. Moreover, it is effective in reducing the particle size. In order to acquire these effects, Mn needs to contain 0.10% or more. On the other hand, as the amount of Mn increases, the cost of the raw material increases, so the upper limit of Mn is set to 1.00%. However, since the upper limit of Mn of the tin plate used for food containers is defined as 0.6%, when used as food containers, it is preferably 0.60% or less.

P:0.03%以下
Pは固溶強化により鋼板の硬度を高める作用を有する元素である。この効果を得るためには、0.01%以上が好ましい。一方、粒界に偏析して、鋼板の延性および靱性を低下させる。また、耐食性を低下させる有害な元素でもある。よって、Pの上限は0.03%とする。
P: 0.03% or less
P is an element having an effect of increasing the hardness of the steel sheet by solid solution strengthening. In order to obtain this effect, 0.01% or more is preferable. On the other hand, it segregates at the grain boundaries and reduces the ductility and toughness of the steel sheet. It is also a harmful element that reduces corrosion resistance. Therefore, the upper limit of P is 0.03%.

N:0.005%以下
Nは、多量に含まれると過剰な窒化物が生成し、鋼板の延性や靱性が低下する。また、加工性を劣化させる。このような理由により、Nの上限は、0.005%とする。
N: 0.005% or less
When N is contained in a large amount, excessive nitride is generated, and the ductility and toughness of the steel sheet are lowered. Moreover, workability is deteriorated. For these reasons, the upper limit of N is set to 0.005%.

S:0.03%以下
Sは、Mnと結合して粗大なMnSを形成し、表面性状を劣化させるとともに、熱間圧延での延性を低下させるため、上限を0.03%とする。
S: 0.03% or less
S combines with Mn to form coarse MnS, which degrades the surface properties and lowers the ductility in hot rolling, so the upper limit is made 0.03%.

Al:0.020〜0.100%
Alは脱酸剤として作用する有用な元素であり、その効果を得るために、0.020%以上含有する必要がある。一方、0.100%を超えると、鋼板の表面欠陥を誘発するので、Alの上限は0.10%とする。
Al: 0.020 to 0.100%
Al is a useful element that acts as a deoxidizer, and in order to obtain the effect, it is necessary to contain 0.020% or more. On the other hand, if it exceeds 0.100%, surface defects of the steel sheet are induced, so the upper limit of Al is 0.10%.

さらに、強度、伸びを向上させることと固溶炭素量を制御することを目的として、以下の元素(Nb、Ti)を、C:0.010〜0.10%の場合は必須な元素として、C:0.0015〜0.010%未満の場合は任意添加元素として含有することができる。   Furthermore, for the purpose of improving strength and elongation and controlling the amount of dissolved carbon, the following elements (Nb, Ti) are considered as essential elements in the case of C: 0.010 to 0.10%, and C: 0.0015 to If it is less than 0.010%, it can be contained as an optional additive element.

Nb:0.01〜0.10%
NbはCと結合し、炭化物として析出し、鋼中に存在する固溶炭素の一部を固定し固溶炭素量を制御するために用いる。また、Nbは析出強化により、硬度の向上に寄与する元素である。さらに、フェライト粒の微細化に寄与して、伸びを改善させる。これらの効果を得るための、Nbの含有量は0.01%以上である。一方、0.10%を超えると、合金コストが増加するだけではなく、圧延負荷を高めるため、安定した鋼板製造が困難になる。このため、Nbの上限は0.10%とする。
Nb: 0.01-0.10%
Nb combines with C, precipitates as carbide, and is used to fix a part of the solid solution carbon present in the steel and control the amount of the solid solution carbon. Nb is an element contributing to the improvement of hardness by precipitation strengthening. Furthermore, it contributes to the refinement of ferrite grains and improves elongation. In order to obtain these effects, the Nb content is 0.01% or more. On the other hand, if it exceeds 0.10%, not only the alloy cost increases, but also the rolling load is increased, so that stable steel plate production becomes difficult. For this reason, the upper limit of Nb is set to 0.10%.

Ti:0.01〜0.20%
TiはNbと同様、Cと結合し、炭化物として析出し、鋼中に存在する固溶炭素の一部を固定し固溶炭素量を制御するために用いる。また、Tiの微細な炭窒化物は、硬度の上昇に効果がある。これらの効果を得るための、Tiの含有量は0.01%以上である。一方、0.20%を超えると、再結晶修了温度が上昇し、未再結晶となりやすくなる。未再結晶となった場合伸びが低い可能性がある。このため、Tiの上限は0.20%とする。
Ti: 0.01-0.20%
Ti, like Nb, binds with C and precipitates as carbide, and is used to fix a part of the solute carbon present in the steel and control the amount of solute carbon. Further, the fine carbonitride of Ti is effective in increasing the hardness. In order to obtain these effects, the Ti content is 0.01% or more. On the other hand, if it exceeds 0.20%, the recrystallization completion temperature rises and non-recrystallization tends to occur. When it is not recrystallized, the elongation may be low. For this reason, the upper limit of Ti is 0.20%.

残部はFeおよび不可避的不純物とする。   The balance is Fe and inevitable impurities.

次に、本発明の集合組織および材質特性について説明する。
本発明では、伸びの確保のため、フェライト相の面積率を95%以上とする。さらに好ましくは98%以上である。フェライト相以外のその他の相としてはセメンタイト、パーライト、マルテンサイト、ベイナイト等が挙げられる。
ここで、フェライト相の面積率は、後述するように、フェライト相の平均結晶粒径を測定する際にフェライト相の面積率も併せて測定することができる。
Next, the texture and material characteristics of the present invention will be described.
In the present invention, the area ratio of the ferrite phase is set to 95% or more in order to ensure elongation. More preferably, it is 98% or more. Examples of phases other than the ferrite phase include cementite, pearlite, martensite, and bainite.
Here, the area ratio of the ferrite phase can be measured together with the area ratio of the ferrite phase when measuring the average crystal grain size of the ferrite phase, as will be described later.

フェライト相の平均結晶粒径:15.0μm以下
フェライト相の平均結晶粒径が15.0μm超えになると、スピニング加工時にフェライト相の粒界により破断が生じやすくなる。また、降伏強度が出にくくなる。したがって、フェライト相の平均結晶粒径は15.0μm以下とする。好ましくは10.0μm以下である。
ここで、フェライト相の平均結晶粒径は、組織写真を400倍で撮影し、JIS G 0552の鋼−結晶粒度の顕微鏡試験方法に準拠して、切断法により測定することができる。
また、後述する製造条件のうち、焼鈍条件を制御することで、フェライト相の平均結晶粒径15.0μm以下が得られる。
Average crystal grain size of ferrite phase: 15.0 μm or less When the average crystal grain size of ferrite phase exceeds 15.0 μm, breakage tends to occur due to the grain boundary of the ferrite phase during spinning. In addition, the yield strength is difficult to be obtained. Therefore, the average crystal grain size of the ferrite phase is 15.0 μm or less. Preferably it is 10.0 μm or less.
Here, the average crystal grain size of the ferrite phase can be measured by a cutting method in accordance with a steel-crystal grain size microscopic test method of JIS G 0552 by taking a structure photograph at 400 times.
Further, by controlling the annealing conditions among the manufacturing conditions described later, an average crystal grain size of 15.0 μm or less of the ferrite phase can be obtained.

鋼中の固溶炭素量:15質量ppm超え60質量ppm以下
スピニング加工時の鋼板の板厚変動および缶形状の変化を低減するためには、鋼中の固溶炭素量を適切に制御することが重要である。鋼中の固溶炭素量が15質量ppm以下では缶強度が低下し、運送中に缶が変形、破損する可能性がある。一方、60質量ppm超えではスピニング加工する時のわれが生じやすくなる。したがって鋼中の固溶炭素量は15質量ppm超え60質量ppm以下とする。好ましくは20質量ppm以上50質量ppm以下である。
ここで、鋼中の固溶炭素量は、後述する実施例の方法にて測定することができる。
また、C、Nb、Tiを中心とする成分組成を規定する、過時効処理を適切な条件で行うこと等で、鋼中の固溶炭素量15質量ppm超え60質量ppm以下が得られる。
The amount of solute carbon in steel: 15 mass ppm to 60 mass ppm or less In order to reduce the plate thickness variation and can shape change during spinning, the solute carbon content in steel should be controlled appropriately. is important. If the amount of solute carbon in steel is 15 mass ppm or less, the strength of the can decreases, and the can may be deformed or damaged during transportation. On the other hand, if it exceeds 60 mass ppm, cracks are likely to occur during spinning. Therefore, the amount of solute carbon in the steel is made to exceed 15 ppm by mass and not more than 60 ppm by mass. Preferably they are 20 mass ppm or more and 50 mass ppm or less.
Here, the amount of solid solution carbon in steel can be measured by the method of the Example mentioned later.
Moreover, the amount of solid solution carbon in steel exceeds 15 mass ppm and 60 mass ppm or less is obtained by carrying out the overaging treatment under appropriate conditions that define the component composition centering on C, Nb, and Ti.

降伏強度(YP):300MPa以上
本発明の缶用鋼板は、降伏強度(YP)は300MPa以上とする。YPを300MPa以上とすることで、スピニング加工の時に、板厚の変動を抑制することができる。ここで、降伏強度(YP)は圧延方向よりJIS5号引張試験片を切り出し、JIS Z 2241に準拠した引張試験によって測定することができる。
Yield strength (YP): 300 MPa or more The steel sheet for cans of the present invention has a yield strength (YP) of 300 MPa or more. By setting YP to 300 MPa or more, fluctuations in the plate thickness can be suppressed during spinning processing. Here, the yield strength (YP) can be measured by cutting a JIS No. 5 tensile test piece from the rolling direction and performing a tensile test in accordance with JIS Z 2241.

伸び(El):15%以上
本発明の缶用鋼板では、伸びは15%以上とする。伸びを15%以上とすることで、スピニング加工時に歪が集中するのを抑制し、板厚の変動を抑制できる。
Elongation (El): 15% or more In the steel sheet for cans of the present invention, the elongation is 15% or more. By setting the elongation to 15% or more, it is possible to suppress the concentration of strain during the spinning process, and it is possible to suppress variations in the plate thickness.

次に、本発明の缶用鋼板の製造方法の一例について説明する。
本発明の缶用鋼板は、上記組成からなる鋼を、840℃以上の仕上げ温度で熱間圧延し、500〜700℃の巻取温度で巻取り、80%以上の圧下率で冷間圧延し、790℃以下の焼鈍温度で焼鈍を行い、0.6〜5.0%の圧下率で調質圧延を行うことで製造される。
Next, an example of the manufacturing method of the steel plate for cans of this invention is demonstrated.
The steel plate for cans of the present invention is hot rolled at a finishing temperature of 840 ° C. or higher, wound at a winding temperature of 500 to 700 ° C., and cold rolled at a reduction rate of 80% or higher. , Annealing is performed at an annealing temperature of 790 ° C. or less, and temper rolling is performed at a rolling reduction of 0.6 to 5.0%.

スラブ再加熱温度:1150〜1300℃(好適条件)
熱間圧延前のスラブ再加熱温度は、高すぎると製品表面の欠陥やエネルギーコストが上昇するなどの問題が発生する。一方、 低すぎると、最終仕上圧延温度の確保が難しくなる。よって、スラブ再加熱温度は1150〜1300℃が好ましい。
Slab reheating temperature: 1150-1300 ° C (preferred conditions)
If the slab reheating temperature before hot rolling is too high, problems such as product surface defects and increased energy costs occur. On the other hand, if it is too low, it will be difficult to ensure the final finish rolling temperature. Therefore, the slab reheating temperature is preferably 1150 to 1300 ° C.

仕上げ圧延温度:840℃以上
圧延温度が840℃を下回ると、肌粗さが粗くなり、表面の凹凸が生じやすくなり、スピニング加工時に回転する圧子を缶胴に押し当てた時、板厚方向にせん断変形が生じ、しわが発生しやすくなる。また、板厚が薄い缶用鋼板として使用される場合、コイルのエッジ側の温度が下がりやすくなる。このような理由により、仕上げ圧延温度は840℃以上とする。
Finishing rolling temperature: 840 ° C or higher If the rolling temperature is lower than 840 ° C, the surface roughness becomes rough and surface irregularities are likely to occur. When the indenter that rotates during spinning is pressed against the can body, Shear deformation occurs and wrinkles are likely to occur. Moreover, when it uses as a steel plate for cans with thin plate | board thickness, the temperature of the edge side of a coil tends to fall. For these reasons, the finish rolling temperature is set to 840 ° C. or higher.

巻取温度:500〜700℃
巻取温度が500℃を下回ると、伸びを低下させ、スピニング加工時に破断を引き起こす。そのため、巻取温度は500℃以上とする。一方、巻取温度が700℃を超えると熱延板段階でのフェライト粒が粗大となり、硬度が低下し、異方性が劣化する。よって、好ましくは、700℃以下である。
Winding temperature: 500 ~ 700 ℃
When the coiling temperature is below 500 ° C., the elongation is reduced and breakage occurs during spinning. Therefore, the coiling temperature is 500 ° C. or higher. On the other hand, when the coiling temperature exceeds 700 ° C., the ferrite grains in the hot-rolled sheet stage become coarse, the hardness is lowered, and the anisotropy is deteriorated. Therefore, it is preferably 700 ° C. or lower.

冷間圧延前に表層スケールを除去することが好ましい。表層スケールを除去する方法は、限定するものではないが、酸洗や機械的除去等各種の方法が適用できる。   It is preferable to remove the surface scale before cold rolling. The method for removing the surface scale is not limited, but various methods such as pickling and mechanical removal can be applied.

冷間圧延における圧下率:80%以上
冷間圧延における圧下率が80%に満たないと、異方性が大きくなる可能性がある。その結果、スピニング加工に伴い板厚が不均一となり、われが生じやすくなる。そのため、冷間圧延における圧下率は80%以上とする。
Rolling reduction in cold rolling: 80% or more If the rolling reduction in cold rolling is less than 80%, the anisotropy may increase. As a result, the plate thickness becomes non-uniform along with the spinning process, and cracks are likely to occur. Therefore, the rolling reduction in cold rolling is 80% or more.

焼鈍温度:790℃以下
焼鈍温度が790℃を上回ると、結晶粒が粗大化し、硬度が低下する。よって、焼鈍温度は790℃以下とする。一方、焼鈍温度が630℃を下回ると圧延方向に展伸したフェライト粒が残留してスピニング加工に伴い缶胴にわれが発生する可能性がある。よって、好ましくは、630℃以上である。焼鈍温度での保持時間は、強度確保の点から20〜200秒が好ましい。
Annealing temperature: 790 ° C. or less When the annealing temperature exceeds 790 ° C., the crystal grains become coarse and the hardness decreases. Therefore, the annealing temperature is 790 ° C. or less. On the other hand, if the annealing temperature is lower than 630 ° C., ferrite grains stretched in the rolling direction may remain, and cracking may occur in the can body due to the spinning process. Therefore, it is preferably 630 ° C. or higher. The holding time at the annealing temperature is preferably 20 to 200 seconds from the viewpoint of securing the strength.

さらに、790℃以下の焼鈍温度で焼鈍後(保持後)、冷却を行う。この時、冷却途中250℃超500℃以下の温度域にて30秒以上10分間以下滞留させる過時効処理を行うことが好ましい。過時効処理を行うことで、本発明における固溶炭素量の制御がしやすくなる。   Further, after annealing (after holding) at an annealing temperature of 790 ° C. or lower, cooling is performed. At this time, it is preferable to perform an overaging treatment in which a residence time of not less than 250 ° C. and not more than 500 ° C. is maintained for 30 seconds to 10 minutes during cooling. By performing the overaging treatment, it becomes easy to control the amount of dissolved carbon in the present invention.

調質圧延の圧下率:0.6〜5.0%
調質圧延は板形状の調整と表面粗さ調節のために行う。調質圧延の圧下率が0.6%未満では調質圧延の効果が十分でない。一方、5.0%を超えると、加工硬化により伸びが低下するため、スピニング加工性が低下する。好ましくは1.0〜3.0%である。
Temper rolling reduction: 0.6-5.0%
Temper rolling is performed to adjust the plate shape and surface roughness. If the rolling reduction of temper rolling is less than 0.6%, the effect of temper rolling is not sufficient. On the other hand, if it exceeds 5.0%, the elongation decreases due to work hardening, so that the spinning processability decreases. Preferably it is 1.0 to 3.0%.

表1に示す成分組成を含有し、残部がFeおよび不可避的不純物からなる鋼スラブに対して、表2に示す条件で熱間圧延を行った。次いで、酸洗後、表2に示す条件で、冷間圧延、焼鈍および調質圧延を施し、板厚:0.180〜0.225mmの缶用鋼板を製造した。なお、焼鈍は、連続焼鈍炉にて保持時間30秒で行った。また、固溶炭素量を制御するため、C量が0.010%以上のサンプルの一部では、焼鈍後の冷却途中にて300℃の温度に30秒保持する過時効処理を行った。   Hot rolling was performed under the conditions shown in Table 2 on a steel slab containing the component composition shown in Table 1 and the balance being Fe and inevitable impurities. Next, after pickling, cold rolling, annealing and temper rolling were performed under the conditions shown in Table 2 to produce a steel plate for cans having a plate thickness of 0.180 to 0.225 mm. The annealing was performed in a continuous annealing furnace with a holding time of 30 seconds. In addition, in order to control the amount of dissolved carbon, some samples with a C content of 0.010% or more were subjected to an overaging treatment that was maintained at a temperature of 300 ° C. for 30 seconds during cooling after annealing.

上記にて得られた缶用鋼板について、フェライト相の平均結晶粒径および固溶炭素量を測定した。また、各性能を測定、調査した。各試験方法および測定方法は次の通りである。   About the steel plate for cans obtained above, the average crystal grain size and the amount of solute carbon of the ferrite phase were measured. Each performance was measured and investigated. Each test method and measurement method are as follows.

(1)組織観察
得られた缶用鋼板の圧延方向に平行な板厚断面を鏡面研磨して、3%ナイタール腐食液でエッチングしてフェライト粒界を現出させた。
フェライト相の平均結晶粒径については、組織写真を光学顕微鏡を用いて400倍で撮影し、JIS G 0551の鋼−結晶粒度の顕微鏡試験方法に準拠して、切断法によりフェライト相の平均結晶粒径を測定した。また、画像解析にて、フェライト相の面積率を測定した。
(1) Microstructure observation The plate thickness cross section parallel to the rolling direction of the obtained steel plate for cans was mirror-polished and etched with 3% nital corrosion solution to reveal ferrite grain boundaries.
Regarding the average crystal grain size of the ferrite phase, a microstructure photograph was taken at 400 times using an optical microscope, and in accordance with the steel-grain size microscopic test method of JIS G 0551, the average grain size of the ferrite phase was cut by a cutting method. The diameter was measured. Further, the area ratio of the ferrite phase was measured by image analysis.

(2)固溶炭素量
電解抽出法によりNbC、TiCおよびセメンタイトを鋼より抽出して、定量分析を行い、定量分析結果の値を全C含有量から減じることで固溶炭素量を測定した。
(2) Solid solution carbon content NbC, TiC and cementite were extracted from steel by electrolytic extraction, quantitative analysis was performed, and the amount of solid solution carbon was measured by subtracting the value of the quantitative analysis result from the total C content.

(3) 引張試験
得られた缶用鋼板から、圧延方向に対して平行方向を引張方向とするJIS 5号引張試験片(JIS Z 2201)を採取し、JIS Z 2241の規定に準拠した引張試験を行って、降伏強度および伸びを測定した。
(3) Tensile test From the obtained steel plate for cans, a JIS No. 5 tensile test piece (JIS Z 2201) whose tensile direction is parallel to the rolling direction is collected, and a tensile test in accordance with the provisions of JIS Z 2241. And yield strength and elongation were measured.

(4)スピニング加工後の缶サイズの測定
スピニング加工後の板厚変動を評価するために、鋼板に対して、3ピース缶成形を行った。具体的には、得られた缶用鋼板を用いて、圧延方向に巻く3ピース缶(直径:52.4mm、缶胴長さ:100mm)を成形した。その後、缶胴を回転させながら、曲面の工具の先端を缶銅に押し付けながら缶高さ方向と円周方向に伸びひずみを与えてスピニング加工した。図1に、缶の中央部に直径48mm、長さ40mmのくびれをいれるようにスピニング加工を行い、くびれ部を設けた変形3ピース缶の外観の一例を示す。
評価項目として、スピニング加工後の真円度、スピニング加工前後の缶高さおよびスピニング加工部の板厚の変化の有無を調査した。
真円度は、円形体を2つの同心円で挟んだとき同心二円の間隔が最小となる場合の二円の半径の差で表される。真円度が小さいほど、真円に近く、形状が良好になる。本発明では、真円度が200μm以下を○、200μmを超えるものを×とした。
缶高さの判定は、スピニング加工前後における缶高さの差が1mm以下を○、1mmを超えるものを×とした。
板厚の測定は、周方向30°ピッチでマイクロメーターを用いて、計12箇所を測定した。スピニング加工前後における板厚の差が12箇所すべてにおいて0.005mm以下である場合を◎と判定し、スピニング加工前後における板厚の差が平均で0.005mm以下であり、かつ、板厚の差が0.005mm超となる箇所が3箇所以下の場合を○と判定し、スピニング加工前後における板厚の差が平均で0.005mm以下であり、かつ、板厚の差が0.005mm超となる箇所が4箇所以上の場合を△と判定し、スピニング加工前後における板厚の差が平均で0.005mm超えの場合を×とした。
(4) Measurement of can size after spinning processing In order to evaluate the plate thickness variation after the spinning processing, a three-piece can was formed on the steel plate. Specifically, a 3-piece can (diameter: 52.4 mm, can body length: 100 mm) wound in the rolling direction was formed using the obtained steel plate for cans. Thereafter, while rotating the can body, the tip of the curved tool was pressed against the can copper and subjected to spinning processing by applying an elongation strain in the can height direction and the circumferential direction. FIG. 1 shows an example of the appearance of a deformed three-piece can that has been subjected to spinning processing so that a constriction with a diameter of 48 mm and a length of 40 mm is placed in the center of the can, and the constriction is provided.
As evaluation items, the roundness after the spinning process, the height of the can before and after the spinning process, and the change in the thickness of the spinning part were investigated.
Roundness is represented by the difference in radius between two circles when the distance between the two concentric circles is minimum when the circular body is sandwiched between two concentric circles. The smaller the roundness, the closer to the perfect circle and the better the shape. In the present invention, a roundness of 200 μm or less is indicated by “◯”, and a roundness exceeding 200 μm is indicated by “x”.
For the can height determination, the difference in the can height before and after the spinning process was 1 mm or less, and the case where it exceeded 1 mm was rated as x.
The plate thickness was measured at a total of 12 locations using a micrometer at a circumferential pitch of 30 °. The case where the difference in plate thickness before and after spinning processing is 0.005 mm or less at all 12 locations is judged as ◎, the difference in plate thickness before and after spinning processing is 0.005 mm or less on average, and the difference in plate thickness is 0.005 If there are 3 or less locations exceeding mm, it will be judged as ○, and the average thickness difference before and after spinning will be 0.005 mm or less, and 4 locations where the thickness difference will be more than 0.005 mm The above case was determined to be Δ, and the case where the difference in the plate thickness before and after the spinning process exceeded 0.005 mm on average was rated as x.

以上により得られた結果を表3に示す。   The results obtained as described above are shown in Table 3.

Figure 2017025352
Figure 2017025352

Figure 2017025352
Figure 2017025352

Figure 2017025352
Figure 2017025352

表3より、本発明例では、缶用鋼板を用いて3ピース缶を成形したのちスピニング加工を行う製造において、板厚変動および缶形状の変化を生じることなく、缶を成形することができた。すなわち、スピニング加工後、缶形状が優れる缶用鋼板が得られた。   From Table 3, in the example of the present invention, the can was formed without producing the fluctuation of the plate thickness and the change of the can shape in the production of performing the spinning process after forming the three-piece can using the steel plate for can. . That is, a steel plate for cans having an excellent can shape was obtained after spinning.

Claims (5)

成分組成は、質量%で、C:0.0015%〜0.010%未満、Si:0.01〜0.10%、Mn:0.10〜1.00%、P:0.03%以下、N:0.005%以下、S:0.03%以下、Al:0.020〜0.100%を含有し、残部はFeおよび不可避的不純物からなり、
組織はフェライト相が面積率で95%以上であり、前記フェライト相の平均結晶粒径が15.0μm以下、鋼中の固溶炭素量が15質量ppm超え60質量ppm以下であり、
降伏強度(YP)が300MPa以上、伸び(El)が15%以上であることを特徴とする缶用鋼板。
Component composition is mass%, C: 0.0015% to less than 0.010%, Si: 0.01 to 0.10%, Mn: 0.10 to 1.00%, P: 0.03% or less, N: 0.005% or less, S: 0.03% or less, Al : Containing 0.020-0.100%, the balance consists of Fe and inevitable impurities,
In the structure, the ferrite phase has an area ratio of 95% or more, the average crystal grain size of the ferrite phase is 15.0 μm or less, the amount of solute carbon in the steel is more than 15 mass ppm and 60 mass ppm or less,
Steel sheet for cans, characterized by yield strength (YP) of 300 MPa or more and elongation (El) of 15% or more.
さらに、質量%で、Nb:0.01〜0.10%、Ti:0.01〜0.20%のいずれか一種以上を含有することを特徴とする請求項1に記載の缶用鋼板。   The steel plate for cans according to claim 1, further comprising at least one of Nb: 0.01 to 0.10% and Ti: 0.01 to 0.20% in mass%. 成分組成は、質量%で、C:0.010〜0.10%、Si:0.01〜0.10%、Mn:0.10〜1.00%、P:0.03%以下、N:0.005%以下、S:0.03%以下、Al:0.020〜0.100%、Nb:0.01〜0.10%および/またはTi:0.01〜0.20%を含有し、残部はFeおよび不可避的不純物からなり、
組織はフェライト相が面積率で95%以上であり、前記フェライト相の平均結晶粒径が15.0μm以下、鋼中の固溶炭素量が15ppm超え60ppm以下であり、
降伏強度(YP)が300MPa以上、伸び(El)が15%以上であることを特徴とする缶用鋼板。
Ingredient composition is mass%, C: 0.010-0.10%, Si: 0.01-0.10%, Mn: 0.10-1.00%, P: 0.03% or less, N: 0.005% or less, S: 0.03% or less, Al: 0.020 -0.100%, Nb: 0.01-0.10% and / or Ti: 0.01-0.20%, the balance consists of Fe and inevitable impurities,
In the structure, the ferrite phase has an area ratio of 95% or more, the average crystal grain size of the ferrite phase is 15.0 μm or less, the amount of solute carbon in the steel is more than 15 ppm and 60 ppm or less,
Steel sheet for cans, characterized by yield strength (YP) of 300 MPa or more and elongation (El) of 15% or more.
請求項1〜3のいずれか一項に記載の成分組成を有する鋼を、840℃以上の仕上げ温度で熱間圧延し、500〜700℃の巻取温度で巻取り、80%以上の圧下率で冷間圧延し、790℃以下の焼鈍温度で焼鈍を行い、0.6〜5.0%の圧下率で調質圧延を行うことを特徴とする缶用鋼板の製造方法。   The steel having the component composition according to any one of claims 1 to 3 is hot-rolled at a finishing temperature of 840 ° C or higher, wound at a winding temperature of 500 to 700 ° C, and a reduction rate of 80% or higher. A method for producing a steel plate for cans, characterized in that the steel plate is cold-rolled and annealed at an annealing temperature of 790 ° C. or lower, and temper-rolled at a rolling reduction of 0.6 to 5.0%. 前記焼鈍後調質圧延を行う前に、250℃超500℃以下の温度域にて30秒以上10分間以下滞留することを特徴とする請求項4に記載の缶用鋼板の製造方法。   The method for producing a steel plate for a can according to claim 4, wherein the steel plate stays for 30 seconds to 10 minutes in a temperature range of more than 250 ° C and 500 ° C or less before performing the temper rolling after the annealing.
JP2015141986A 2015-07-16 2015-07-16 Steel sheet for can and production method therefor Pending JP2017025352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015141986A JP2017025352A (en) 2015-07-16 2015-07-16 Steel sheet for can and production method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015141986A JP2017025352A (en) 2015-07-16 2015-07-16 Steel sheet for can and production method therefor

Publications (1)

Publication Number Publication Date
JP2017025352A true JP2017025352A (en) 2017-02-02

Family

ID=57949120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015141986A Pending JP2017025352A (en) 2015-07-16 2015-07-16 Steel sheet for can and production method therefor

Country Status (1)

Country Link
JP (1) JP2017025352A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019088044A1 (en) * 2017-10-31 2019-05-09 Jfeスチール株式会社 High-strength steel sheet and method for producing same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019088044A1 (en) * 2017-10-31 2019-05-09 Jfeスチール株式会社 High-strength steel sheet and method for producing same
JP6569840B1 (en) * 2017-10-31 2019-09-04 Jfeスチール株式会社 High strength steel plate and manufacturing method thereof
TWI672383B (en) * 2017-10-31 2019-09-21 日商杰富意鋼鐵股份有限公司 High-strength steel plate and manufacturing method thereof
KR20200028427A (en) * 2017-10-31 2020-03-16 제이에프이 스틸 가부시키가이샤 High-strength steel sheet and its manufacturing method
AU2018359467B2 (en) * 2017-10-31 2021-03-25 Jfe Steel Corporation High-strength steel sheet and method for producing same
KR102387484B1 (en) 2017-10-31 2022-04-15 제이에프이 스틸 가부시키가이샤 High-strength steel sheet and its manufacturing method
US11913087B2 (en) 2017-10-31 2024-02-27 Jfe Steel Corporation High-strength steel sheet and method for producing same

Similar Documents

Publication Publication Date Title
JP5549307B2 (en) Cold-rolled steel sheet excellent in aging and bake hardenability and method for producing the same
EP3214193A1 (en) High-strength steel sheet, high-strength hot-dip galvanized steel sheet, high-strength hot-dip aluminum-coated steel sheet, and high-strength electrogalvanized steel sheet, and methods for manufacturing same
JP5453884B2 (en) Steel plate for high-strength container and manufacturing method thereof
EP3447160A1 (en) Steel plate, plated steel plate, and production method therefor
JP6028884B1 (en) Steel plate for cans and method for producing steel plate for cans
JP5712479B2 (en) Steel plate for cans excellent in rough skin resistance and method for producing the same
EP3447159B1 (en) Steel plate, plated steel plate, and production method therefor
WO2012144213A1 (en) Steel sheet for can with high barrel-part buckling strength under external pressure and with excellent formability and excellent surface properties after forming, and process for producing same
KR20170029635A (en) Steel sheet for cans and method for producing same
JP2018059196A (en) High strength ultrathin steel sheet and manufacturing method therefor
JP5811686B2 (en) Steel plate for high-strength can and manufacturing method thereof
JP6806284B2 (en) Steel sheet for cans and its manufacturing method
JP6066023B1 (en) Hot-rolled steel sheet, full-hard cold-rolled steel sheet, and hot-rolled steel sheet manufacturing method
JP5713146B2 (en) Steel plate for 3-piece can and manufacturing method thereof
JP5262242B2 (en) Manufacturing method of steel plate for can manufacturing
JP5803660B2 (en) High-strength, high-formability steel plate for cans and method for producing the same
JP2017025352A (en) Steel sheet for can and production method therefor
JP6225733B2 (en) High strength hot rolled steel sheet and method for producing the same
WO2017150066A1 (en) Steel sheet for cans and manufacturing method therefor
JP2007211337A (en) Cold-rolled steel sheet having excellent strain-aging resistance and low in-plane anisotropy and method for manufacture thereof
CN113950536B (en) Steel sheet for can and method for producing same
JP6627745B2 (en) Steel plate for can and method for producing the same
JP2016160438A (en) Steel sheet for can and manufacturing method therefor
JP6439666B2 (en) Steel plate for 3-piece can excellent in roll form workability and roundness after welding, manufacturing method thereof, and manufacturing method of 3-piece can
JP2021155849A (en) Steel plate for can and method for manufacturing the same

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180502

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180509