JP2017017180A - Plasma processing apparatus and exhaust structure used therefor - Google Patents

Plasma processing apparatus and exhaust structure used therefor Download PDF

Info

Publication number
JP2017017180A
JP2017017180A JP2015132475A JP2015132475A JP2017017180A JP 2017017180 A JP2017017180 A JP 2017017180A JP 2015132475 A JP2015132475 A JP 2015132475A JP 2015132475 A JP2015132475 A JP 2015132475A JP 2017017180 A JP2017017180 A JP 2017017180A
Authority
JP
Japan
Prior art keywords
baffle plate
opening baffle
exhaust
opening
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015132475A
Other languages
Japanese (ja)
Other versions
JP6548484B2 (en
Inventor
康史 宇津木
Yasufumi Utsugi
康史 宇津木
利洋 東条
Toshihiro Tojo
利洋 東条
山涌 純
Jun Yamawaki
山涌  純
元毅 藤永
Mototake Fujinaga
元毅 藤永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2015132475A priority Critical patent/JP6548484B2/en
Priority to TW105120566A priority patent/TWI702650B/en
Priority to CN201610516168.7A priority patent/CN106328473B/en
Priority to KR1020160083250A priority patent/KR101925972B1/en
Publication of JP2017017180A publication Critical patent/JP2017017180A/en
Application granted granted Critical
Publication of JP6548484B2 publication Critical patent/JP6548484B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32816Pressure
    • H01J37/32834Exhausting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02312Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour
    • H01L21/02315Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • H01L21/0234Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/60Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation
    • H01L2021/60007Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation involving a soldering or an alloying process
    • H01L2021/60022Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation involving a soldering or an alloying process using bump connectors, e.g. for flip chip mounting
    • H01L2021/60097Applying energy, e.g. for the soldering or alloying process
    • H01L2021/60172Applying energy, e.g. for the soldering or alloying process using static pressure
    • H01L2021/60187Isostatic pressure, e.g. degassing using vacuum or pressurised liquid

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Analytical Chemistry (AREA)
  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To effectively prevent plasma from entering an exhaust part and a discharge from becoming unstable above a baffle plate when high-frequency high electric power is applied to a mount base.SOLUTION: A plasma processing device which performs plasma processing on a substrate G mounted on a mount surface of a mount base 23 in a processing chamber 4 while applying a high-frequency bias to the mount base 23 has a first opening baffle plate 34 and a second opening baffle plate 35 provided at an exhaust port 30. The first opening baffle plate 34 is provided on an exhaust path downstream side, and the second opening baffle plate 35 is provided on an exhaust path upstream side; and the first opening baffle plate 34 is grounded, and the second opening baffle plate 35 is in an electrical floating state, the first and second opening baffle plates 34 and 35 being provided at such an interval that a stable discharge can be generated therebetween.SELECTED DRAWING: Figure 3

Description

本発明は、基板に対してプラズマ処理を行うプラズマ処理装置およびそれに用いる排気構造に関する。   The present invention relates to a plasma processing apparatus for performing plasma processing on a substrate and an exhaust structure used therefor.

半導体デバイスやフラットパネルディスプレイ(FPD)の製造工程においては、基板に対しプラズマエッチングや成膜処理等のプラズマ処理を行う工程が存在する。   In a manufacturing process of a semiconductor device or a flat panel display (FPD), there is a process of performing plasma processing such as plasma etching or film formation on a substrate.

このようなプラズマ処理には、プラズマエッチング装置やプラズマCVD成膜装置等の種々のプラズマ処理装置が用いられる。プラズマ処理装置でプラズマ処理を行う際には、真空に保持される処理室内に設けられた載置台上に基板を載置した状態で、処理室内に所定のガスのプラズマを生成し、基板に対してプラズマ処理を施す。   Various plasma processing apparatuses such as a plasma etching apparatus and a plasma CVD film forming apparatus are used for such plasma processing. When performing plasma processing with a plasma processing apparatus, a plasma of a predetermined gas is generated in the processing chamber in a state where the substrate is mounted on a mounting table provided in a processing chamber held in a vacuum, Apply plasma treatment.

プラズマ処理装置においては、処理室内の処理領域で生成された異物やプラズマが排気領域に侵入することを防止するために、メッシュ構造やスリット構造等の開口部を形成して通気性を確保した構造のバッフル板を設けることが一般的に行われている(例えば特許文献1)。   In the plasma processing apparatus, in order to prevent foreign matter and plasma generated in the processing region in the processing chamber from entering the exhaust region, a structure with a mesh structure, a slit structure, etc. to ensure air permeability The baffle plate is generally provided (for example, Patent Document 1).

また、特許文献1では開口部を有するバッフル板を電気的にフローティング状態で設けているが、特許文献2には、このようなバッフル板を接地することが開示されている。   In Patent Document 1, a baffle plate having an opening is provided in an electrically floating state. However, Patent Document 2 discloses grounding such a baffle plate.

特開平6−252245号公報JP-A-6-252245 特開2010−238980号公報JP 2010-238980 A

ところで、このようなプラズマ処理装置では、プラズマ中のイオンを効果的に引き込むために、載置台に高周波バイアスを印加する場合がある。大型基板のプラズマ処理においては、このような高周波バイアスを高パワーにする必要がある。   By the way, in such a plasma processing apparatus, in order to draw ions in plasma effectively, a high frequency bias may be applied to the mounting table. In plasma processing of a large substrate, it is necessary to make such a high frequency bias high power.

このように載置台に高周波バイアスを印加すると、排気口が対向電極となり、排気口部分に容量結合プラズマが発生する。   When a high frequency bias is applied to the mounting table in this manner, the exhaust port becomes a counter electrode, and capacitively coupled plasma is generated at the exhaust port portion.

バッフル板が電気的にフローティング状態の場合には、このプラズマが失活しないため、プラズマが排気部に入り込んで、圧力制御バルブ(APC)や真空ポンプの入り口部分に局所的なグロー放電が生じて部材が消耗してしまう。   When the baffle plate is in an electrically floating state, this plasma is not deactivated, so that the plasma enters the exhaust section and local glow discharge occurs at the inlet of the pressure control valve (APC) or vacuum pump. The member is consumed.

一方、バッフル板が接地されている場合には、プラズマがバッフル板で失活するため、排気部での放電は抑制される。しかし、接地されたバッフル板上でグロー放電が発生して動き回り、排気空間の放電が不安定になってしまう。   On the other hand, when the baffle plate is grounded, the plasma is deactivated by the baffle plate, so that discharge in the exhaust section is suppressed. However, glow discharge is generated and moved around on the grounded baffle plate, and the discharge of the exhaust space becomes unstable.

したがって、本発明は、載置台に高パワーの高周波電力を印加する場合に、排気部へのプラズマ浸入すること、およびバッフル板の上方で放電が不安定になることを効果的に防止することができるプラズマ処理装置、およびそのようなプラズマ処理装置に用いられる排気構造を提供することを課題とする。   Therefore, the present invention can effectively prevent plasma intrusion into the exhaust section and unstable discharge above the baffle plate when high power high frequency power is applied to the mounting table. It is an object of the present invention to provide a plasma processing apparatus that can be used and an exhaust structure used for such a plasma processing apparatus.

上記課題を解決するため、本発明の第1の観点は、基板を収容してプラズマ処理を施す処理室と、前記処理室内で基板が載置される載置面を有する載置台と、前記処理室内に処理ガスを供給する処理ガス供給系と、前記処理室内を排気する排気部と、前記載置台に載置された基板に対してプラズマ処理を行うためのプラズマを生成するプラズマ生成機構と、前記載置台にバイアス用の高周波電力を印加するための高周波電源と、前記処理室から前記排気部へ至る排気口部分またはその近傍に設けられた、複数の開口を有する第1の開口バッフル板および第2の開口バッフル板とを有し、前記第1の開口バッフル板は排気経路の下流側、前記第2の開口バッフル板は排気経路の上流側に設けられ、前記第1の開口バッフル板および前記第2の開口バッフル板はいずれも導電性材料からなり、前記第1の開口バッフル板は接地され、前記第2の開口バッフル板は電気的にフローティング状態であり、前記第1の開口バッフル板および前記第2の開口バッフル板は、これらの間に安定放電が生成可能な間隔で設けられていることを特徴とするプラズマ処理装置を提供する。   In order to solve the above problems, a first aspect of the present invention is to provide a processing chamber that accommodates a substrate and performs plasma processing, a mounting table having a mounting surface on which the substrate is mounted in the processing chamber, and the processing A processing gas supply system for supplying a processing gas into the chamber, an exhaust section for exhausting the processing chamber, a plasma generation mechanism for generating plasma for performing plasma processing on the substrate placed on the mounting table, A high-frequency power source for applying high-frequency power for bias to the mounting table, a first opening baffle plate having a plurality of openings provided in or near an exhaust port portion extending from the processing chamber to the exhaust unit; A second opening baffle plate, wherein the first opening baffle plate is provided downstream of the exhaust path, and the second opening baffle plate is provided upstream of the exhaust path, and the first opening baffle plate and Said second opening Each of the baffle plates is made of a conductive material, the first opening baffle plate is grounded, the second opening baffle plate is in an electrically floating state, the first opening baffle plate and the second opening baffle plate The opening baffle plate is provided with an interval between them so that a stable discharge can be generated.

また、本発明の第2の観点は、基板を収容してプラズマ処理を施す処理室と、前記処理室内で基板が載置される載置面を有する載置台と、前記処理室内に処理ガスを供給する処理ガス供給系と、前記処理室内を排気する排気部と、前記載置台に載置された基板に対してプラズマ処理を行うためのプラズマを生成するプラズマ生成機構と、前記載置台にバイアス用の高周波電力を印加するための高周波電源とを有するプラズマ処理装置において、前記処理室に供給された処理ガスを前記排気部に導く排気構造であって、前記処理室から前記排気部へ至る排気口部分またはその近傍に設けられた、複数の開口を有する第1の開口バッフル板および第2の開口バッフル板を有し、前記第1の開口バッフル板は排気経路の下流側、前記第2の開口バッフル板は排気経路の上流側に設けられ、前記第1の開口バッフル板および前記第2の開口バッフル板はいずれも導電性材料からなり、前記第1の開口バッフル板は接地され、前記第2の開口バッフル板は電気的にフローティング状態であり、前記第1の開口バッフル板および前記第2の開口バッフル板は、これらの間に安定放電が生成可能な間隔で設けられていることを特徴とする排気構造を提供する。   According to a second aspect of the present invention, there is provided a processing chamber for accommodating a substrate and performing plasma processing, a mounting table having a mounting surface on which the substrate is mounted in the processing chamber, and a processing gas in the processing chamber. A processing gas supply system to supply, an exhaust unit for exhausting the processing chamber, a plasma generation mechanism for generating plasma for performing plasma processing on the substrate placed on the mounting table, and a bias to the mounting table A plasma processing apparatus having a high-frequency power source for applying a high-frequency power for use, wherein the processing gas supplied to the processing chamber is led to the exhaust unit and is exhausted from the processing chamber to the exhaust unit A first opening baffle plate having a plurality of openings and a second opening baffle plate provided at or near the mouth portion, wherein the first opening baffle plate is located downstream of the exhaust path, and the second opening baffle plate Opening bag The first aperture baffle plate and the second aperture baffle plate are both made of a conductive material, the first aperture baffle plate is grounded, and the second aperture baffle plate is grounded. The opening baffle plate is electrically floating, and the first opening baffle plate and the second opening baffle plate are provided at an interval between which stable discharge can be generated. An exhaust structure is provided.

前記第1の開口バッフル板は、前記排気部の排気配管の入口部分を覆うように設けられていることが好ましい。また、前記第1の開口バッフル板と前記第2の開口バッフル板との間隔は、1〜10mmであることが好ましい。   The first opening baffle plate is preferably provided so as to cover an inlet portion of an exhaust pipe of the exhaust section. Moreover, it is preferable that the space | interval of a said 1st opening baffle board and a said 2nd opening baffle board is 1-10 mm.

前記第1の開口バッフル板および前記第2の開口バッフル板は、スリット状もしくはメッシュ状に構成されるか、または多数のパンチング孔を有するものとすることができる。   The first opening baffle plate and the second opening baffle plate may be configured in a slit shape or a mesh shape, or may have a number of punching holes.

前記第1の開口バッフル板および前記第2の開口バッフル板の開口率は、61.5%以下であることが好ましい。   The opening ratio of the first opening baffle plate and the second opening baffle plate is preferably 61.5% or less.

また、基板に対してプラズマ処理を行う処理領域と前記排気部に繋がる排気領域とに仕切る、導電性材料からなり開口部を有さない複数の仕切り部材をさらに有し、前記複数の仕切り部材は、接地電位に接続され、隣接するものどうしが、その間に、前記処理領域に供給された処理ガスを前記排気領域に導く間口が形成されるように離間して配置されている構成とすることができる。この場合に、前記仕切り部材と異なる高さ位置に、平面視した場合に前記間口の少なくとも一部を遮蔽するように設けられ、導電性材料からなるとともに開口部を有さず、かつ接地電位に接続された遮蔽部材をさらに有することが好ましい。   Further, the substrate further includes a plurality of partition members made of a conductive material and having no openings, which are divided into a processing region for performing plasma processing on the substrate and an exhaust region connected to the exhaust unit. The adjacent ones connected to the ground potential are arranged so as to be spaced apart so as to form an opening for guiding the processing gas supplied to the processing region to the exhaust region. it can. In this case, it is provided at a height different from that of the partition member so as to shield at least a part of the frontage when viewed in plan, is made of a conductive material, has no opening, and has a ground potential. It is preferable to further have a connected shielding member.

前記処理室は平面形状が矩形状の空間を有し、前記載置台は平面形状が矩形状をなし、矩形状の基板が載置される構成とすることができる。   The processing chamber has a space having a rectangular planar shape, and the mounting table has a rectangular planar shape, and a rectangular substrate can be placed thereon.

前記プラズマ生成機構は、前記処理領域に誘導結合プラズマを生成するため高周波アンテナを有する構成とすることができる。前記高周波アンテナは、前記処理室の上部に誘電体窓を介して設置されてもよいし、前記処理室の上部に金属窓を介して設置されてもよい。   The plasma generation mechanism may have a high frequency antenna for generating inductively coupled plasma in the processing region. The high-frequency antenna may be installed in the upper part of the processing chamber through a dielectric window, or may be installed in the upper part of the processing chamber through a metal window.

本発明によれば、処理室から排気部へ至る排気口部分またはその近傍に第1の開口バッフル板を接地した状態で設け、かつその排気経路上流側に第2の開口バッフル板をフローティング状態で設け、かつ、第1の開口バッフル板および第2の開口バッフル板を、これらの間で安定放電が形成される程度の間隔で配置したので、排気部へのプラズマリークを抑制することができ、かつバッフル板上方での不安定なグロー放電を抑制して処理室内に安定したプラズマを生成することができる。   According to the present invention, the first opening baffle plate is provided in a grounded state at or near the exhaust port portion extending from the processing chamber to the exhaust portion, and the second opening baffle plate is floated upstream of the exhaust path. Since the first opening baffle plate and the second opening baffle plate are disposed at such an interval that a stable discharge is formed between them, plasma leakage to the exhaust part can be suppressed, In addition, it is possible to suppress unstable glow discharge above the baffle plate and generate stable plasma in the processing chamber.

本発明の一実施形態に係るプラズマ処理装置を示す垂直断面図である。1 is a vertical sectional view showing a plasma processing apparatus according to an embodiment of the present invention. 本発明の一実施形態に係るプラズマ処理装置を示す水平断面図である。It is a horizontal sectional view showing a plasma treatment apparatus concerning one embodiment of the present invention. 本発明の一実施形態に係るプラズマ処理装置の排気部の詳細を示す断面図である。It is sectional drawing which shows the detail of the exhaust part of the plasma processing apparatus which concerns on one Embodiment of this invention. 第1および第2の開口バッフル板の構造例を示す図である。It is a figure which shows the structural example of the 1st and 2nd opening baffle board. 排気口の配置の別の例を示す水平断面図である。It is a horizontal sectional view which shows another example of arrangement | positioning of an exhaust port. 載置台に高周波バイアスを印加した際に容量結合プラズマが発生する様子を示す模式図である。It is a schematic diagram which shows a mode that capacitive coupling plasma generate | occur | produces when a high frequency bias is applied to a mounting base. 本実施形態における二段の開口バッフル板を設けた場合の作用効果を説明するための図である。It is a figure for demonstrating the effect at the time of providing the two-stage opening baffle board in this embodiment. 変形例に係るプラズマ処理装置を示す図であり、(a)は水平断面図、(b)は仕切り部材と遮蔽部材との位置関係を示す斜視図である。It is a figure which shows the plasma processing apparatus which concerns on a modification, (a) is a horizontal sectional view, (b) is a perspective view which shows the positional relationship of a partition member and a shielding member.

以下、添付図面を参照して、本発明の実施形態について説明する。図1は本発明の一実施形態に係るプラズマ処理装置を示す垂直断面図、図2はその水平断面図、図3は排気部の詳細を示す断面図である。   Embodiments of the present invention will be described below with reference to the accompanying drawings. 1 is a vertical sectional view showing a plasma processing apparatus according to an embodiment of the present invention, FIG. 2 is a horizontal sectional view thereof, and FIG. 3 is a sectional view showing details of an exhaust section.

本実施形態のプラズマ処理装置は、誘導結合プラズマを生成して、例えばFPD用ガラス基板のような矩形基板に対しエッチング処理やアッシング処理等の誘導結合プラズマ処理を行う誘導結合プラズマ処理装置として構成される。   The plasma processing apparatus of the present embodiment is configured as an inductively coupled plasma processing apparatus that generates inductively coupled plasma and performs inductively coupled plasma processing such as etching and ashing on a rectangular substrate such as a glass substrate for FPD. The

このプラズマ処理装置は、導電性材料、例えば、内壁面が陽極酸化処理されたアルミニウムからなる角筒形状の気密な本体容器1を有する。この本体容器1は分解可能に組み立てられており、接地線1aにより接地されている。本体容器1は、誘電体壁2により上下にアンテナ室3および処理室4に区画されている。誘電体壁2は処理室4の天井壁を構成している。誘電体壁2は、Al23等のセラミックス、石英等で構成されている。 This plasma processing apparatus has a rectangular tube-shaped airtight main body container 1 made of a conductive material, for example, aluminum whose inner wall surface is anodized. The main body container 1 is assembled so as to be disassembled, and is grounded by a ground wire 1a. The main body container 1 is divided into an antenna chamber 3 and a processing chamber 4 by a dielectric wall 2 in the vertical direction. The dielectric wall 2 constitutes the ceiling wall of the processing chamber 4. The dielectric wall 2 is made of ceramics such as Al 2 O 3 , quartz, or the like.

本体容器1におけるアンテナ室3の側壁3aと処理室4の側壁4aとの間には内側に突出する支持棚5が設けられており、この支持棚5の上に誘電体壁2が載置される。   A support shelf 5 protruding inward is provided between the side wall 3 a of the antenna chamber 3 and the side wall 4 a of the processing chamber 4 in the main body container 1, and the dielectric wall 2 is placed on the support shelf 5. The

誘電体壁2の下側部分には、処理ガス供給用のシャワー筐体11が嵌め込まれている。シャワー筐体11は十字状に設けられており、誘電体壁2を下から支持する構造、例えば梁構造となっている。なお、上記誘電体壁2を支持するシャワー筐体11は、複数本のサスペンダ(図示せず)により本体容器1の天井に吊された状態となっている。支持棚5およびシャワー筐体11は誘電体部材で被覆されていてもよい。   A shower casing 11 for supplying a processing gas is fitted into the lower portion of the dielectric wall 2. The shower housing 11 is provided in a cross shape, and has a structure that supports the dielectric wall 2 from below, for example, a beam structure. The shower housing 11 that supports the dielectric wall 2 is suspended from the ceiling of the main body container 1 by a plurality of suspenders (not shown). The support shelf 5 and the shower housing 11 may be covered with a dielectric member.

このシャワー筐体11は導電性材料、望ましくは金属、例えば汚染物が発生しないようにその内面または外面が陽極酸化処理されたアルミニウムで構成されている。このシャワー筐体11には水平に伸びるガス流路12が形成されており、このガス流路12には、下方に向かって延びる複数のガス吐出孔12aが連通している。一方、誘電体壁2の上面中央には、このガス流路12に連通するようにガス供給管20aが設けられている。ガス供給管20aは、本体容器1の天井からその外側へ貫通し、処理ガス供給源およびバルブシステム等を含む処理ガス供給系20に接続されている。したがって、プラズマ処理においては、処理ガス供給系20から供給された処理ガスがガス供給管20aを介してシャワー筐体11内に供給され、その下面のガス吐出孔12aから処理室4内へ吐出される。   This shower casing 11 is made of a conductive material, preferably a metal, for example, aluminum whose inner surface or outer surface is anodized so as not to generate contaminants. The shower casing 11 is formed with a gas channel 12 extending horizontally, and a plurality of gas discharge holes 12 a extending downward are communicated with the gas channel 12. On the other hand, a gas supply pipe 20 a is provided at the center of the upper surface of the dielectric wall 2 so as to communicate with the gas flow path 12. The gas supply pipe 20a penetrates from the ceiling of the main body container 1 to the outside and is connected to a processing gas supply system 20 including a processing gas supply source and a valve system. Therefore, in the plasma processing, the processing gas supplied from the processing gas supply system 20 is supplied into the shower housing 11 through the gas supply pipe 20a and discharged into the processing chamber 4 from the gas discharge hole 12a on the lower surface thereof. The

アンテナ室3内には、高周波(RF)アンテナ13が配設されている。高周波アンテナ13は、銅やアルミニウム等の良導電性の金属からなるアンテナ線13aを環状や渦巻状等の従来用いられる任意の形状に配置して構成される。複数のアンテナ部を有する多重アンテナであってもよい。   A radio frequency (RF) antenna 13 is disposed in the antenna chamber 3. The high-frequency antenna 13 is configured by arranging antenna wires 13a made of a highly conductive metal such as copper or aluminum in an arbitrary shape such as an annular shape or a spiral shape. A multiple antenna having a plurality of antenna units may be used.

アンテナ線13aの端子22にはアンテナ室3の上方へ延びる給電部材16が接続されている。給電部材16の上端には、給電線19より高周波電源15が接続されている。また、給電線19には整合器14が介装されている。さらに、高周波アンテナ13は絶縁部材からなるスペーサ17により誘電体壁2から離間している。そして、高周波アンテナ13に、高周波電源15から例えば周波数が13.56MHzの高周波電力が供給されることにより、処理室4内に誘導電界が形成され、この誘導電界によりシャワー筐体11から供給された処理ガスがプラズマ化され、誘導結合プラズマが生成される。   A power feeding member 16 extending above the antenna chamber 3 is connected to the terminal 22 of the antenna wire 13a. A high frequency power supply 15 is connected to the upper end of the power supply member 16 through a power supply line 19. A matching unit 14 is interposed in the power supply line 19. Further, the high frequency antenna 13 is separated from the dielectric wall 2 by a spacer 17 made of an insulating member. Then, a high frequency power having a frequency of 13.56 MHz, for example, is supplied to the high frequency antenna 13 from the high frequency power supply 15, whereby an induction electric field is formed in the processing chamber 4, and the induction electric field is supplied from the shower casing 11. The processing gas is turned into plasma and inductively coupled plasma is generated.

処理室4内の底壁4b上には、誘電体壁2を挟んで高周波アンテナ13と対向するように、矩形状の基板Gを載置するための載置面を有する載置台23が絶縁体部材24を介して固定されている。絶縁体部材24は額縁状をなしている。載置台23は、導電性材料、例えば表面が陽極酸化処理されたアルミニウムで構成された本体23aと、本体23aの外周を囲むように設けられた絶縁体枠23bとを有している。載置台23に載置された基板Gは、静電チャック(図示せず)により吸着保持される。   On the bottom wall 4 b in the processing chamber 4, a mounting table 23 having a mounting surface for mounting a rectangular substrate G so as to face the high-frequency antenna 13 with the dielectric wall 2 interposed therebetween is an insulator. It is fixed via the member 24. The insulator member 24 has a frame shape. The mounting table 23 includes a main body 23a made of a conductive material, for example, aluminum whose surface is anodized, and an insulator frame 23b provided so as to surround the outer periphery of the main body 23a. The substrate G mounted on the mounting table 23 is attracted and held by an electrostatic chuck (not shown).

載置台23は、基板Gの搬入出のためのリフターピン(図示せず)が、本体容器1の底壁、絶縁体部材24を介して挿通されている。リフターピンは、本体容器1外に設けられた昇降機構(図示せず)により昇降駆動して基板Gの搬入出を行うようになっている。なお、載置台23は、昇降機構により昇降可能な構造としてもよい。   In the mounting table 23, lifter pins (not shown) for loading and unloading the substrate G are inserted through the bottom wall of the main body container 1 and the insulator member 24. The lifter pins are moved up and down by an elevating mechanism (not shown) provided outside the main body container 1 to carry in and out the substrate G. The mounting table 23 may have a structure that can be lifted and lowered by a lifting mechanism.

載置台23の本体23aには、給電線25により、整合器26を介してバイアス用高周波電源27が接続されている。この高周波電源27は、プラズマ処理中に、高周波バイアス(バイアス用高周波電力)を載置台に印加する。高周波バイアスの周波数は、例えば周波数が6MHzである。このバイアス用の高周波電力により、処理室4内に生成されたプラズマ中のイオンが効果的に基板Gに引き込まれる。   A bias high-frequency power source 27 is connected to the main body 23 a of the mounting table 23 through a matching unit 26 by a power supply line 25. The high frequency power source 27 applies a high frequency bias (bias high frequency power) to the mounting table during plasma processing. The frequency of the high frequency bias is, for example, 6 MHz. The ions in the plasma generated in the processing chamber 4 are effectively drawn into the substrate G by the high frequency power for bias.

また、載置台23内には、基板Gの温度を制御するため、セラミックヒータ等の加熱手段や冷媒流路等からなる温度制御機構と、温度センサーとが設けられている(いずれも図示せず)。   In addition, a temperature control mechanism including a heating means such as a ceramic heater, a refrigerant flow path, and the like, and a temperature sensor are provided in the mounting table 23 (not shown). ).

さらに、載置台23は、基板Gが載置された際に、その裏面側に冷却空間(図示せず)が形成されるようになっており、この冷却空間に熱伝達用ガスとしてのHeガスを所定の圧力で供給するためのHeガス流路28が接続されている。このように基板Gの裏面側に熱伝達用ガスを供給することにより、真空下において基板Gの温度制御性を良好にすることができる。   Further, when the substrate G is placed on the mounting table 23, a cooling space (not shown) is formed on the back side thereof, and a He gas as a heat transfer gas is formed in the cooling space. Is connected at a predetermined pressure. Thus, by supplying the heat transfer gas to the back side of the substrate G, the temperature controllability of the substrate G can be improved under vacuum.

処理室4の底壁4bの底部中央には開口部4cが形成されており、給電線25、Heガス流路28、および温度制御機構の配管や配線は、開口部4cを通して本体容器1外に導出される。   An opening 4c is formed in the center of the bottom of the bottom wall 4b of the processing chamber 4, and the power supply line 25, the He gas flow path 28, and the piping and wiring of the temperature control mechanism are outside the main body container 1 through the opening 4c. Derived.

処理室4の四つの側壁4aのうち一つには、基板Gを搬入出するための搬入出口29aおよびそれを開閉するゲートバルブ29が設けられている。   One of the four side walls 4a of the processing chamber 4 is provided with a loading / unloading port 29a for loading / unloading the substrate G and a gate valve 29 for opening / closing the loading / unloading port 29a.

処理室4の内壁(側壁4aの内側部分)と載置台23との間には、処理室4内を処理領域41と排気領域42とに仕切る4枚の仕切り部材50が設けられている。仕切り部材50は、開口部を有さない矩形状をなす金属等の導電性材料からなる板材で構成されている。各仕切り部材50は、載置台23の各側面に対応して設けられており、接地線50aにより接地電位に接続されている。なお、仕切り部材50を側壁4aと電気的に接続させて、本体容器1を介して接地するようにしてもよい。   Between the inner wall of the processing chamber 4 (the inner part of the side wall 4a) and the mounting table 23, four partition members 50 that partition the processing chamber 4 into a processing region 41 and an exhaust region 42 are provided. The partition member 50 is made of a plate material made of a conductive material such as a metal having a rectangular shape having no opening. Each partition member 50 is provided corresponding to each side surface of the mounting table 23, and is connected to a ground potential by a ground wire 50a. Note that the partition member 50 may be electrically connected to the side wall 4 a and grounded via the main body container 1.

隣接する仕切り部材50どうしは、その間に、処理領域41に供給されたガスを排気領域に導く間口60が形成されるように離間して配置されており、間口60は仕切り部材50形成面の四隅に存在している。   Adjacent partition members 50 are spaced apart from each other so as to form a front opening 60 that guides the gas supplied to the processing region 41 to the exhaust region, and the front ports 60 are formed at the four corners of the partition member 50 forming surface. Exists.

処理領域41は、処理室4のうち仕切り部材50よりも上の領域であり、基板Gをプラズマ処理するための誘導結合プラズマが形成される領域である。また、排気領域42は、処理室4のうち仕切り部材50よりも下の領域であり、処理領域41からの処理ガスが導かれ、それを排気するための領域である。   The processing region 41 is a region above the partition member 50 in the processing chamber 4 and is a region where inductively coupled plasma for plasma processing the substrate G is formed. The exhaust area 42 is an area below the partition member 50 in the processing chamber 4 and is an area for introducing the processing gas from the processing area 41 and exhausting it.

処理室4の底壁4bには、処理室4の底壁4bの四隅にそれぞれ排気口30が設けられており、各排気口30には排気部40が設けられている。排気部40は、排気口30に接続された排気配管31と、排気配管31の開度を調整することにより処理室4内の圧力を制御する自動圧力制御バルブ(APC)32と、処理室4内を排気配管31を介して排気するための真空ポンプ33とを有している。そして、真空ポンプ33により処理室4内が排気され、プラズマ処理中、自動圧力制御バルブ(APC)32の開度を調整して処理室4内を所定の真空雰囲気に設定、維持される。   On the bottom wall 4 b of the processing chamber 4, exhaust ports 30 are provided at the four corners of the bottom wall 4 b of the processing chamber 4, and an exhaust part 40 is provided at each exhaust port 30. The exhaust unit 40 includes an exhaust pipe 31 connected to the exhaust port 30, an automatic pressure control valve (APC) 32 that controls the pressure in the processing chamber 4 by adjusting the opening degree of the exhaust pipe 31, and the processing chamber 4. And a vacuum pump 33 for exhausting the inside through an exhaust pipe 31. Then, the inside of the processing chamber 4 is exhausted by the vacuum pump 33, and the opening of the automatic pressure control valve (APC) 32 is adjusted and the inside of the processing chamber 4 is set and maintained in a predetermined vacuum atmosphere during the plasma processing.

図3に示すように、排気口30部分には、排気配管31の入口部分を覆うように、第1の開口バッフル板34が設けられており、第1の開口バッフル板34の上方(つまり排気経路の上流側)の所定長離隔した位置に第1の開口バッフル板34と対向して第2の開口バッフル板35が設けられている。すなわち、排気口30に上下二段の開口バッフル板が設けられている。第1の開口バッフル板34および第2の開口バッフル板35は、金属等の導電性材料からなり、多数の開口を有しており、例えば、図4の(a)に示すようなスリット状、または(b)に示すようなメッシュ状、または(c)に示すような多数のパンチング孔を有する構造をなしている。   As shown in FIG. 3, a first opening baffle plate 34 is provided at the exhaust port 30 so as to cover the inlet portion of the exhaust pipe 31, and is located above the first opening baffle plate 34 (that is, exhaust gas). A second opening baffle plate 35 is provided facing the first opening baffle plate 34 at a position separated by a predetermined length on the upstream side of the path. That is, the exhaust port 30 is provided with two upper and lower opening baffle plates. The first opening baffle plate 34 and the second opening baffle plate 35 are made of a conductive material such as metal and have a large number of openings. For example, a slit shape as shown in FIG. Alternatively, it has a mesh shape as shown in (b) or a structure having a large number of punching holes as shown in (c).

第1の開口バッフル板34は、排気配管31の上部の内周を構成する絶縁部材36に取り付けられており、接地線34aにより接地されている。一方、第1の開口バッフル板34と第2の開口バッフル板35との間にはリング状をなす絶縁スペーサ37が設けられており、第2の開口バッフル板35は電気的にフローティング状態となっている。これら二段の開口バッフル板は、これらの間で安定放電可能な間隔で配置されている。第1の開口バッフル板34と第2の開口バッフル板35により、後述するように、排気部40へのプラズマリークを抑制することができるとともに、安定したプラズマを形成することができるようになっている。   The first opening baffle plate 34 is attached to an insulating member 36 that constitutes the inner periphery of the upper portion of the exhaust pipe 31, and is grounded by a ground wire 34a. On the other hand, a ring-shaped insulating spacer 37 is provided between the first opening baffle plate 34 and the second opening baffle plate 35, and the second opening baffle plate 35 is in an electrically floating state. ing. These two-stage opening baffle plates are arranged at intervals at which stable discharge is possible between them. As will be described later, the first opening baffle plate 34 and the second opening baffle plate 35 can suppress plasma leakage to the exhaust portion 40 and can form stable plasma. Yes.

自動圧力制御バルブ(APC)32と真空ポンプ33との間には、真空ポンプ33への異物の侵入を防止するためのメッシュ部材38が設けられている。メッシュ部材38は、金属等の導電性材料で構成されており、接地されている。   A mesh member 38 is provided between the automatic pressure control valve (APC) 32 and the vacuum pump 33 to prevent foreign matter from entering the vacuum pump 33. The mesh member 38 is made of a conductive material such as metal and is grounded.

第1の開口バッフル板34および第2の開口バッフル板35の間隔の好ましい範囲は、1〜10mmである。また、第1の開口バッフル板34および第2の開口バッフル板35の開口率は、61.5%以下であることが好ましい。   A preferable range of the distance between the first opening baffle plate 34 and the second opening baffle plate 35 is 1 to 10 mm. Moreover, it is preferable that the aperture ratio of the 1st opening baffle board 34 and the 2nd opening baffle board 35 is 61.5% or less.

なお、排気口30の数や位置は、装置の大きさに応じて適宜設定される。例えば、図5の水平断面図に示すように、排気口30を処理室4の各側壁4aに沿って2個ずつ、合計8個設けるようにしてもよい。   The number and positions of the exhaust ports 30 are appropriately set according to the size of the device. For example, as shown in the horizontal cross-sectional view of FIG. 5, two exhaust ports 30 may be provided in total, two along each side wall 4 a of the processing chamber 4.

本実施形態のプラズマ処理装置は、マイクロプロセッサ(コンピュータ)からなる制御部100、ユーザーインターフェース101、記憶部102を有している。制御部100は、プラズマ処理装置の各構成部、例えばバルブ、高周波電源、真空ポンプ等に指令を送り、これらを制御するようになっている。また、ユーザーインターフェース101は、オペレータによるプラズマ処理装置を管理するためのコマンド入力等の入力操作を行うキーボードや、プラズマ処理装置の稼働状況を可視化して表示するディスプレイ等を有し、制御部100に接続されている。記憶部102は、プラズマ処理装置で実行される各種処理を制御部100の制御にて実現するための制御プログラムや、処理条件に応じてプラズマ処理装置の各構成部に処理を実行させるためのプログラムすなわち処理レシピが格納されており、制御部100に接続されている。処理レシピは記憶部102の中の記憶媒体に記憶されている。記憶媒体は、コンピュータに内蔵されたハードディスクや半導体メモリであってもよいし、CDROM、DVD、フラッシュメモリ等の可搬性のものであってもよい。また、他の装置から、例えば専用回線を介してレシピを適宜伝送させるようにしてもよい。そして、必要に応じて、ユーザーインターフェース101からの指示等にて任意の処理レシピを記憶部102から呼び出して制御部100に実行させることで、制御部100の制御下で、プラズマ処理装置での所望の処理が行われる。   The plasma processing apparatus of this embodiment includes a control unit 100 including a microprocessor (computer), a user interface 101, and a storage unit 102. The controller 100 sends commands to and controls the components of the plasma processing apparatus, such as valves, high frequency power supplies, vacuum pumps, and the like. The user interface 101 includes a keyboard for performing an input operation such as command input for managing the plasma processing apparatus by an operator, a display for visualizing and displaying the operating status of the plasma processing apparatus, and the like. It is connected. The storage unit 102 is a control program for realizing various processes executed by the plasma processing apparatus under the control of the control unit 100, and a program for causing each component of the plasma processing apparatus to execute processes according to processing conditions. That is, a processing recipe is stored and connected to the control unit 100. The processing recipe is stored in a storage medium in the storage unit 102. The storage medium may be a hard disk or semiconductor memory built in the computer, or may be portable such as a CDROM, DVD, or flash memory. Moreover, you may make it transmit a recipe suitably from another apparatus via a dedicated line, for example. Then, if desired, an arbitrary processing recipe is called from the storage unit 102 by an instruction from the user interface 101 and is executed by the control unit 100, so that the desired processing in the plasma processing apparatus is performed under the control of the control unit 100. Is performed.

次に、以上のように構成されるプラズマ処理装置を用いて基板Gに対してプラズマ処理、例えばプラズマエッチングやプラズマアッシングを施す際の処理動作について説明する。   Next, a processing operation when performing plasma processing, for example, plasma etching or plasma ashing, on the substrate G using the plasma processing apparatus configured as described above will be described.

まず、ゲートバルブ29を開にした状態で搬入出口29aから搬送機構(図示せず)により基板Gを処理室4内に搬入し、載置台23の載置面に載置した後、静電チャック(図示せず)により基板Gを載置台23上に固定する。次に、処理ガス供給系20からシャワー筐体11のガス吐出孔12aを介して処理ガスを処理室4内に供給するとともに、自動圧力制御バルブ(APC)32により圧力を制御しつつ排気口30から排気配管31を介して真空ポンプ33により処理室4内を真空排気することにより、処理室内を例えば0.66〜26.6Pa程度の圧力雰囲気に維持する。   First, after the gate valve 29 is opened, the substrate G is loaded into the processing chamber 4 from the loading / unloading port 29a by the transfer mechanism (not shown) and placed on the placement surface of the placement table 23, and then the electrostatic chuck The substrate G is fixed on the mounting table 23 (not shown). Next, the processing gas is supplied into the processing chamber 4 from the processing gas supply system 20 through the gas discharge hole 12a of the shower housing 11 and the pressure is controlled by the automatic pressure control valve (APC) 32 while the exhaust port 30 is controlled. Then, the inside of the processing chamber 4 is evacuated by the vacuum pump 33 through the exhaust pipe 31 to maintain the processing chamber in a pressure atmosphere of about 0.66 to 26.6 Pa, for example.

また、このとき基板Gの裏面側の冷却空間には、基板Gの温度上昇や温度変化を回避するために、Heガス流路28を介して、熱伝達用ガスとしてのHeガスを供給する。   At this time, He gas as heat transfer gas is supplied to the cooling space on the back surface side of the substrate G through the He gas flow path 28 in order to avoid temperature rise and temperature change of the substrate G.

次いで、高周波電源15から例えば13.56MHzの高周波を高周波アンテナ13に印加し、これにより誘電体壁2を介して処理室4内に均一な誘導電界を形成する。このようにして形成された誘導電界により、処理室4内で処理ガスがプラズマ化し、高密度の誘導結合プラズマが生成される。このプラズマにより、基板Gに対してプラズマ処理、例えば基板Gの所定の膜に対しプラズマエッチングやプラズマアッシングが行われる。このとき同時に、高周波電源27から高周波バイアスとして、例えば周波数が6MHzの高周波電力を載置台23に印加して、処理室4内に生成されたプラズマ中のイオンが効果的に基板Gに引き込まれるようにする。   Next, a high frequency of 13.56 MHz, for example, is applied from the high frequency power supply 15 to the high frequency antenna 13, thereby forming a uniform induction electric field in the processing chamber 4 via the dielectric wall 2. Due to the induction electric field formed in this manner, the processing gas is turned into plasma in the processing chamber 4 to generate high-density inductively coupled plasma. With this plasma, plasma processing is performed on the substrate G, for example, plasma etching or plasma ashing is performed on a predetermined film of the substrate G. At the same time, high-frequency power having a frequency of 6 MHz, for example, is applied to the mounting table 23 as a high-frequency bias from the high-frequency power source 27 so that ions in the plasma generated in the processing chamber 4 are effectively drawn into the substrate G. To.

処理ガスは、処理室4内の処理領域41でプラズマ化してプラズマ処理に供された後、真空ポンプ33により吸引されることにより、隣接する仕切り部材50の間に形成された間口60から排気領域42に至り、排気口30から排気配管31を経て排気される。   The processing gas is converted into plasma in the processing region 41 in the processing chamber 4, subjected to plasma processing, and then sucked by the vacuum pump 33, whereby the processing gas is exhausted from the opening 60 formed between the adjacent partition members 50. 42 and exhausted from the exhaust port 30 through the exhaust pipe 31.

載置台23に高周波バイアスを印加することにより、図6に示すように、処理室4の内壁や排気口30近傍の接地された導電体を対向電極として容量結合プラズマが発生する。このとき、基板Gが大型基板である場合には、載置台23に高パワーの高周波電力を印加する必要があり、対向電極が小さいとアーキングを生じたりして電気的に不安定になる。このため、処理室4の内壁(側壁4aの内側部分)と載置台23との間の位置に、開口部を有さない複数の仕切り部材50を接地して設けて対向電極として機能するようにし、対向電極を拡大することにより電気的安定性を確保する。また、隣接する仕切り部材50の間に排気領域42に至る間口60が形成されており、仕切り部材50によって排気の制御も行うようになっている。   By applying a high frequency bias to the mounting table 23, capacitively coupled plasma is generated using the grounded conductor near the inner wall of the processing chamber 4 and the exhaust port 30 as a counter electrode, as shown in FIG. At this time, if the substrate G is a large substrate, it is necessary to apply high-power high-frequency power to the mounting table 23. If the counter electrode is small, arcing may occur and electrical unstable. For this reason, a plurality of partition members 50 having no openings are grounded at positions between the inner wall of the processing chamber 4 (inside part of the side wall 4a) and the mounting table 23 so as to function as counter electrodes. Ensuring electrical stability by enlarging the counter electrode. Further, an opening 60 reaching the exhaust region 42 is formed between the adjacent partition members 50, and the exhaust is controlled by the partition member 50.

ただし、このように複数の接地された仕切り部材50を設けても、処理条件によっては、真空ポンプ33で吸引することによりプラズマが排気口30近傍に引き寄せられ、このプラズマが排気部40の内部に侵入すると、例えば、自動圧力制御バルブ(APC)32近傍で放電による発光(アーキング)が生じ、その表面の陽極酸化皮膜や、真空ポンプ33上のメッシュ部材38が消耗してしまう。   However, even if a plurality of grounded partition members 50 are provided in this way, depending on the processing conditions, the plasma is attracted to the vicinity of the exhaust port 30 by being sucked by the vacuum pump 33, and this plasma is brought into the exhaust unit 40. Intrusion, for example, light emission (arcing) occurs due to discharge near the automatic pressure control valve (APC) 32, and the anodic oxide film on the surface and the mesh member 38 on the vacuum pump 33 are consumed.

これに対して、図7(a)に示すように、排気口30に接地された第1の開口バッフル板34のみを設けると、プラズマは第1の開口バッフル板34で失活するため、排気部40へのプラズマの侵入が抑制され、自動圧力制御バルブ(APC)32近傍での放電による発光(アーキング)を抑制することができる。しかし、処理室4で接地電位に偏りが生じ、その上方領域に不安定なグロー放電が発生して、放電が動き回るちらつきが発生し、処理室4内のプラズマが不安定になってしまう。   On the other hand, as shown in FIG. 7A, if only the first opening baffle plate 34 that is grounded is provided at the exhaust port 30, the plasma is deactivated by the first opening baffle plate 34. Intrusion of plasma into the portion 40 is suppressed, and light emission (arcing) due to discharge in the vicinity of the automatic pressure control valve (APC) 32 can be suppressed. However, the ground potential is biased in the processing chamber 4, an unstable glow discharge is generated in the upper region thereof, flickering occurs when the discharge moves around, and the plasma in the processing chamber 4 becomes unstable.

一方、図7(b)に示すように、排気口30にフローティング状態の第2の開口バッフル板35のみを設けると、第2の開口バッフル板35はプラズマ電位であるから、その上方領域に不安定なグロー放電が発生することはない。しかし、フローティング状態の第2の開口バッフル板35ではプラズマは失活しないので、排気部40へのプラズマの侵入を有効に防止することができず、自動圧力制御バルブ(APC)32の近傍での放電による発光(アーキング)を十分に抑制することができない。   On the other hand, as shown in FIG. 7B, if only the second opening baffle plate 35 in the floating state is provided at the exhaust port 30, the second opening baffle plate 35 is at a plasma potential, so that the upper opening baffle plate 35 is not in the upper region. Stable glow discharge does not occur. However, since the plasma is not deactivated in the second opening baffle plate 35 in the floating state, it is not possible to effectively prevent the plasma from entering the exhaust part 40, and the vicinity of the automatic pressure control valve (APC) 32. Light emission (arcing) due to discharge cannot be sufficiently suppressed.

そこで、本実施形態では、図7(c)に示すように、下段側の接地された第1の開口バッフル板34と、上段側(排気経路の上流側)のフローティング状態の第2の開口バッフル板35とを、これらの間で安定放電可能な間隔で二段に設ける。つまり、フローティング状態の第2の開口バッフル板35はプラズマ電位となり、接地された第1のバッフル板との間で電位差を生じる。このため、これらの開口バッフル間の間隔を適切に調整することによりこれらの間に安定的な放電が形成されプラズマが保持される。そして、第2の開口バッフル板35を透過したイオンや電子は、このプラズマによりトラップされる。これにより、第1の開口バッフル板34と第2の開口バッフル板35との間でちらつきのない安定的なグロー放電が形成されるものと推測される。また、排気口30に引き寄せられたプラズマは、下段側の第1の開口バッフル板34で失活するため、自動圧力制御バルブ(APC)32の近傍での放電による発光(アーキング)を抑制することができる。さらに、上段側の第2の開口バッフル板35はプラズマ電位であるから処理室4の接地電位の偏りが緩和される。そして、これらによって処理室4内に安定的なプラズマを生成することができる。   Therefore, in the present embodiment, as shown in FIG. 7C, the first opening baffle plate 34 grounded on the lower stage side and the second opening baffle in the floating state on the upper stage side (upstream side of the exhaust path). The plates 35 are provided in two stages at intervals that enable stable discharge between them. That is, the floating second floating baffle plate 35 has a plasma potential, and generates a potential difference with the grounded first baffle plate. For this reason, by appropriately adjusting the interval between the opening baffles, a stable discharge is formed between them to maintain the plasma. The ions and electrons that have passed through the second opening baffle plate 35 are trapped by this plasma. Thereby, it is estimated that a stable glow discharge without flickering is formed between the first opening baffle plate 34 and the second opening baffle plate 35. Further, since the plasma attracted to the exhaust port 30 is deactivated by the first opening baffle plate 34 on the lower stage side, light emission (arcing) due to discharge in the vicinity of the automatic pressure control valve (APC) 32 is suppressed. Can do. Furthermore, since the second opening baffle plate 35 on the upper stage side has a plasma potential, the unevenness of the ground potential of the processing chamber 4 is alleviated. And stable plasma can be produced | generated in the process chamber 4 by these.

このとき、第1の開口バッフル板34と第2の開口バッフル板35との間隔は、上述したように、これらの間で安定放電が生成可能な程度の間隔にする。間隔が広すぎるとこれらの間に安定放電が生じず、接地された第1の開口バッフル板34上での不安定なグロー放電が発生する現象を抑制することが困難となる。また、これらの間隔が狭すぎると、第1の開口バッフル板34によりプラズマを十分に死活させることができず、排気部40へのプラズマの侵入を防止することが困難となる。このような観点から、第1の開口バッフル板34と第2の開口バッフル板35との間隔は、1〜10mmの範囲が好ましい。   At this time, the interval between the first opening baffle plate 34 and the second opening baffle plate 35 is set to such an extent that stable discharge can be generated between them as described above. If the interval is too wide, stable discharge does not occur between them, and it becomes difficult to suppress the phenomenon that unstable glow discharge occurs on the grounded first opening baffle plate 34. If these intervals are too narrow, the first opening baffle plate 34 cannot sufficiently activate the plasma, and it is difficult to prevent the plasma from entering the exhaust part 40. From such a viewpoint, the distance between the first opening baffle plate 34 and the second opening baffle plate 35 is preferably in the range of 1 to 10 mm.

また、プラズマをトラップする効果、および第1の開口バッフル板34と第2の開口バッフル板35との間に安定した放電を形成する効果を得る観点からは、第1の開口バッフル板34および第2の開口バッフル板35の開口率は、61.5%以下が好ましい。   Further, from the viewpoint of obtaining the effect of trapping plasma and the effect of forming a stable discharge between the first aperture baffle plate 34 and the second aperture baffle plate 35, the first aperture baffle plate 34 and the second aperture baffle plate 34 The aperture ratio of the two open baffle plates 35 is preferably 61.5% or less.

このように本実施形態によれば、排気口30部分に排気配管31の入口部分を覆うように第1の開口バッフル板34を接地した状態で設け、かつその排気経路上流側に第2の開口バッフル板35をフローティング状態で設け、かつ、第1の開口バッフル板34および第2の開口バッフル板35を、これらの間で安定放電が形成される程度の間隔で配置したので、排気部40へのプラズマリークを抑制することができ、かつバッフル板上方での不安定なグロー放電を抑制して処理室4内に安定したプラズマを生成することができる。   Thus, according to the present embodiment, the first opening baffle plate 34 is provided in a grounded state so as to cover the inlet portion of the exhaust pipe 31 at the exhaust port 30 portion, and the second opening is provided upstream of the exhaust path. Since the baffle plate 35 is provided in a floating state, and the first opening baffle plate 34 and the second opening baffle plate 35 are arranged at an interval at which a stable discharge is formed between them, the exhaust portion 40 is provided. The plasma leakage can be suppressed, and unstable glow discharge above the baffle plate can be suppressed, and stable plasma can be generated in the processing chamber 4.

次に、本実施形態の変形例について説明する。図8(a)は変形例に係るプラズマ処理装置を示す水平断面図、(b)はそのプラズマ処理装置における仕切り部材と遮蔽部材との位置関係を示す斜視図である。このプラズマ処理装置は、隣接する仕切り部材50の間に形成される間口60の下方位置に遮蔽部材52が設けられている他は、図1のプラズマ処理装置と同様に構成されている。   Next, a modification of this embodiment will be described. FIG. 8A is a horizontal sectional view showing a plasma processing apparatus according to a modification, and FIG. 8B is a perspective view showing the positional relationship between a partition member and a shielding member in the plasma processing apparatus. This plasma processing apparatus is configured in the same manner as the plasma processing apparatus of FIG. 1 except that a shielding member 52 is provided at a position below an opening 60 formed between adjacent partition members 50.

遮蔽部材52は金属等の導電性材料からなる板材で構成され、処理室4の内壁(側壁4aの内側部分)と載置台23との間の四隅であって、仕切り部材50の下方位置にそれぞれ配置されている。遮蔽部材52は、平面視した場合に、その少なくとも一部が仕切り部材50と重なるように配置され、間口60を遮蔽するようになっている。また、遮蔽部材52は、接地線52aにより接地電位に接続されている。遮蔽部材52を本体容器1または仕切り部材50を介して接地してもよい。   The shielding members 52 are made of a plate material made of a conductive material such as metal, and are at the four corners between the inner wall of the processing chamber 4 (the inner portion of the side wall 4a) and the mounting table 23, and below the partition members 50, respectively. Has been placed. The shielding member 52 is arranged so that at least a part of the shielding member 52 overlaps the partition member 50 when seen in a plan view and shields the frontage 60. Further, the shielding member 52 is connected to the ground potential by a ground line 52a. The shielding member 52 may be grounded via the main body container 1 or the partition member 50.

このように、仕切り部材50の下方位置に、間口60を遮蔽するように、接地された遮蔽部材52を設けることにより、排気経路を処理領域41に存在するプラズマから遮蔽することができ、プラズマが排気口30に引き寄せられることを抑制することがでる。   Thus, by providing the grounded shielding member 52 at the lower position of the partition member 50 so as to shield the frontage 60, the exhaust path can be shielded from the plasma existing in the processing region 41, and the plasma is The attraction to the exhaust port 30 can be suppressed.

なお、遮蔽部材52は間口60を完全に遮蔽するのではなく、間口60の一部を遮蔽してもある程度の遮蔽効果を得ることができる。また、遮蔽部材52は、仕切り部材50と異なる高さ位置に設けられていればよく、仕切り部材50の上方位置に設けてもよい。   Note that the shielding member 52 does not completely shield the frontage 60, but a certain degree of shielding effect can be obtained even if a part of the frontage 60 is shielded. Further, the shielding member 52 only needs to be provided at a height position different from that of the partition member 50, and may be provided above the partition member 50.

なお、本発明は上記実施形態に限定されることなく種々変形可能である。例えば、上記実施形態では、誘導結合型のプラズマ処理装置として処理室の上部に誘電体窓を介して高周波アンテナが設けられた場合について示したが、誘電体窓ではなく金属窓を介して高周波アンテナが設けられた場合についても適用できる。この場合、処理ガスの供給は、梁構造等の十字状のシャワー筐体からではなく金属窓にガスシャワーを設けて供給してもよい。   The present invention can be variously modified without being limited to the above embodiment. For example, in the above embodiment, the case where a high frequency antenna is provided via a dielectric window at the top of the processing chamber as an inductively coupled plasma processing apparatus has been described. However, a high frequency antenna is not provided via a metal window but a dielectric window. This can also be applied to the case where is provided. In this case, the processing gas may be supplied by providing a gas shower on a metal window instead of from a cross-shaped shower housing such as a beam structure.

また、上記実施形態では、バイアス用高周波電力が印加される載置台に対する対向電極の面積が小さい誘導結合型のプラズマ処理装置に本発明が特に効果的に適用できることを示したが、これに限らず、載置台にバイアス用高周波電力が印加されるプラズマ処理装置であれば適用可能であり、例えば、マイクロ波を用いたプラズマ処理装置や、対向電極の面積が比較的大きい容量結合型(平行平板型)のプラズマ処理装置であっても適用可能である。   Further, in the above-described embodiment, it has been shown that the present invention can be particularly effectively applied to an inductively coupled plasma processing apparatus in which the area of the counter electrode with respect to the mounting table to which the high frequency bias power is applied is not limited thereto. Any plasma processing apparatus in which a high frequency power for bias is applied to the mounting table is applicable. For example, a plasma processing apparatus using microwaves or a capacitively coupled type (parallel plate type) having a relatively large counter electrode area. It is also applicable to the plasma processing apparatus.

また、上記実施形態では、第1の開口バッフル板および第2の開口バッフル板を排気口部分に設けた例を示したが、これに限らず、排気口の近傍であってもよい。また、第1の開口バッフル板は必ずしも排気配管の入口部分を覆う必要はなく、排気部にプラズマがリークすることを抑制できる位置に配置されればよい。さらに、第1の開口バッフル板および第2の開口バッフル板を、処理室4の内壁(側壁4aの内側部分)と載置台23との間の全面に亘って設けてもよい。   Moreover, although the example which provided the 1st opening baffle board and the 2nd opening baffle board in the exhaust port part was shown in the said embodiment, it may not be restricted to this but the vicinity of an exhaust port. Further, the first opening baffle plate does not necessarily need to cover the inlet portion of the exhaust pipe, and may be disposed at a position where the plasma can be prevented from leaking into the exhaust portion. Furthermore, the first opening baffle plate and the second opening baffle plate may be provided over the entire surface between the inner wall of the processing chamber 4 (the inner portion of the side wall 4a) and the mounting table 23.

さらにまた、上記実施形態では、隣接する仕切り部材の間の間口を処理室の四隅に形成した例について示したが、これに限るものではない。   Furthermore, in the above-described embodiment, an example in which the frontage between adjacent partition members is formed at the four corners of the processing chamber is shown, but the present invention is not limited to this.

さらにまた、上記実施形態では、第1および第2の開口バッフル板を、排気機構の穴部分に適用した例について示したが、ビューポートや基板搬入出口など、プラズマ処理装置の処理容器に設けられた開口であれば適用することができる。   Furthermore, in the above-described embodiment, an example in which the first and second opening baffle plates are applied to the hole portion of the exhaust mechanism has been described. Any opening can be used.

さらにまた、上記実施形態では本発明をプラズマエッチングやプラズマアッシングを行う装置に適用した場合について示したが、CVD成膜等の他のプラズマ処理装置に適用することができる。さらに、上記実施形態では、基板としてFPD用の矩形基板を用いた例を示したが、他の矩形基板を処理する場合にも適用可能であるし、矩形に限らず例えば半導体ウエハ等の円形の基板にも適用可能である。   Furthermore, although the case where the present invention is applied to an apparatus for performing plasma etching or plasma ashing is shown in the above embodiment, the present invention can be applied to other plasma processing apparatuses such as CVD film formation. Furthermore, in the above-described embodiment, an example in which a rectangular substrate for FPD is used as a substrate has been shown. However, the present invention can be applied to processing other rectangular substrates, and is not limited to a rectangular shape, for example, a circular shape such as a semiconductor wafer. It can also be applied to a substrate.

1;本体容器
2;誘電体壁(誘電体部材)
3;アンテナ室
4;処理室
13;高周波アンテナ
14;整合器
15;高周波電源
16;給電部材
19;給電線
20;処理ガス供給系
22;端子
23;載置台
27;バイアス用高周波電源
30;排気口
31;排気配管
32;自動圧力制御バルブ(APC)
33;真空ポンプ
34;第1の開口バッフル板
35;第2の開口バッフル板
40;排気部
41;処理領域
42;排気領域
50;仕切り部材
34a,50a,52a;接地線
52;遮蔽部材
60;間口
100;制御部
G;基板
1; Main body container 2; Dielectric wall (dielectric member)
DESCRIPTION OF SYMBOLS 3; Antenna room 4; Processing chamber 13; High frequency antenna 14; Matching device 15; High frequency power supply 16; Feeding member 19; Feeding line 20; Process gas supply system 22; Port 31; Exhaust piping 32; Automatic pressure control valve (APC)
33; vacuum pump 34; first opening baffle plate 35; second opening baffle plate 40; exhaust part 41; treatment region 42; exhaust region 50; partition member 34a, 50a, 52a; ground wire 52; Frontage 100; Control part G; Board

Claims (19)

基板を収容してプラズマ処理を施す処理室と、
前記処理室内で基板が載置される載置面を有する載置台と、
前記処理室内に処理ガスを供給する処理ガス供給系と、
前記処理室内を排気する排気部と、
前記載置台に載置された基板に対してプラズマ処理を行うためのプラズマを生成するプラズマ生成機構と、
前記載置台にバイアス用の高周波電力を印加するための高周波電源と、
前記処理室から前記排気部へ至る排気口部分またはその近傍に設けられた、複数の開口を有する第1の開口バッフル板および第2の開口バッフル板と
を有し、
前記第1の開口バッフル板は排気経路の下流側、前記第2の開口バッフル板は排気経路の上流側に設けられ、
前記第1の開口バッフル板および前記第2の開口バッフル板はいずれも導電性材料からなり、前記第1の開口バッフル板は接地され、前記第2の開口バッフル板は電気的にフローティング状態であり、
前記第1の開口バッフル板および前記第2の開口バッフル板は、これらの間に安定放電が生成可能な間隔で設けられていることを特徴とするプラズマ処理装置。
A processing chamber for accommodating a substrate and performing plasma processing;
A mounting table having a mounting surface on which a substrate is mounted in the processing chamber;
A processing gas supply system for supplying a processing gas into the processing chamber;
An exhaust section for exhausting the processing chamber;
A plasma generating mechanism for generating plasma for performing plasma processing on the substrate mounted on the mounting table;
A high frequency power source for applying a high frequency power for bias to the mounting table;
A first opening baffle plate and a second opening baffle plate having a plurality of openings provided in or near the exhaust port portion extending from the processing chamber to the exhaust unit;
The first opening baffle plate is provided on the downstream side of the exhaust path, and the second opening baffle plate is provided on the upstream side of the exhaust path,
The first opening baffle plate and the second opening baffle plate are both made of a conductive material, the first opening baffle plate is grounded, and the second opening baffle plate is in an electrically floating state. ,
The plasma processing apparatus, wherein the first opening baffle plate and the second opening baffle plate are provided at an interval between which a stable discharge can be generated.
前記第1の開口バッフル板は、前記排気部の排気配管の入口部分を覆うように設けられていることを特徴とする請求項1に記載のプラズマ処理装置。   The plasma processing apparatus according to claim 1, wherein the first opening baffle plate is provided so as to cover an inlet portion of an exhaust pipe of the exhaust section. 前記第1の開口バッフル板と前記第2の開口バッフル板との間隔は、1〜10mmであることを特徴とする請求項1または請求項2に記載のプラズマ処理装置。   The plasma processing apparatus according to claim 1 or 2, wherein a distance between the first opening baffle plate and the second opening baffle plate is 1 to 10 mm. 前記第1の開口バッフル板および前記第2の開口バッフル板は、スリット状もしくはメッシュ状に構成されるか、または多数のパンチング孔を有することを特徴とする請求項1から請求項3のいずれか1項に記載のプラズマ処理装置。   The first opening baffle plate and the second opening baffle plate are configured in a slit shape or a mesh shape, or have a number of punching holes. 2. The plasma processing apparatus according to item 1. 前記第1の開口バッフル板および前記第2の開口バッフル板の開口率は、61.5%以下であることを特徴とする請求項1から請求項4のいずれか1項に記載のプラズマ処理装置。   5. The plasma processing apparatus according to claim 1, wherein an opening ratio of the first opening baffle plate and the second opening baffle plate is 61.5% or less. 6. . 基板に対してプラズマ処理を行う処理領域と前記排気部に繋がる排気領域とに仕切る、導電性材料からなり開口部を有さない複数の仕切り部材をさらに有し、前記複数の仕切り部材は、接地電位に接続され、隣接するものどうしが、その間に、前記処理領域に供給された処理ガスを前記排気領域に導く間口が形成されるように離間して配置されていることを特徴とする請求項1から請求項5のいずれか1項に記載のプラズマ処理装置。   The apparatus further includes a plurality of partition members made of a conductive material and having no openings, which are divided into a processing region for performing plasma processing on the substrate and an exhaust region connected to the exhaust unit, wherein the plurality of partition members are grounded. The adjacent ones connected to the potential are arranged apart from each other so as to form a front opening for guiding the processing gas supplied to the processing region to the exhaust region. The plasma processing apparatus according to any one of claims 1 to 5. 前記仕切り部材と異なる高さ位置に、平面視した場合に前記間口の少なくとも一部を遮蔽するように設けられ、導電性材料からなるとともに開口部を有さず、かつ接地電位に接続された遮蔽部材をさらに有することを特徴とする請求項6に記載のプラズマ処理装置。   A shield that is provided at a different height from the partition member so as to shield at least a part of the frontage when viewed in plan, is made of a conductive material, has no opening, and is connected to a ground potential. The plasma processing apparatus according to claim 6, further comprising a member. 前記処理室は平面形状が矩形状の空間を有し、前記載置台は平面形状が矩形状をなし、矩形状の基板が載置されることを特徴とする請求項1から請求項7のいずれか1項に記載のプラズマ処理装置。   8. The method according to claim 1, wherein the processing chamber has a space having a rectangular planar shape, the mounting table has a rectangular planar shape, and a rectangular substrate is placed thereon. The plasma processing apparatus according to claim 1. 前記プラズマ生成機構は、前記処理領域に誘導結合プラズマを生成するため高周波アンテナを有することを特徴とする請求項1から請求項8のいずれか1項に記載のプラズマ処理装置。   The plasma processing apparatus according to claim 1, wherein the plasma generation mechanism includes a high-frequency antenna for generating inductively coupled plasma in the processing region. 前記高周波アンテナは、前記処理室の上部に誘電体窓を介して設置されることを特徴とする請求項9に記載のプラズマ処理装置。   The plasma processing apparatus according to claim 9, wherein the high-frequency antenna is installed in an upper part of the processing chamber via a dielectric window. 前記高周波アンテナは、前記処理室の上部に金属窓を介して設置されることを特徴とする請求項9に記載のプラズマ処理装置。   The plasma processing apparatus according to claim 9, wherein the high-frequency antenna is installed on an upper portion of the processing chamber through a metal window. 基板を収容してプラズマ処理を施す処理室と、前記処理室内で基板が載置される載置面を有する載置台と、前記処理室内に処理ガスを供給する処理ガス供給系と、前記処理室内を排気する排気部と、前記載置台に載置された基板に対してプラズマ処理を行うためのプラズマを生成するプラズマ生成機構と、前記載置台にバイアス用の高周波電力を印加するための高周波電源とを有するプラズマ処理装置において、前記処理室に供給された処理ガスを前記排気部に導く排気構造であって、
前記処理室から前記排気部へ至る排気口部分またはその近傍に設けられた、複数の開口を有する第1の開口バッフル板および第2の開口バッフル板を有し、
前記第1の開口バッフル板は排気経路の下流側、前記第2の開口バッフル板は排気経路の上流側に設けられ、
前記第1の開口バッフル板および前記第2の開口バッフル板はいずれも導電性材料からなり、前記第1の開口バッフル板は接地され、前記第2の開口バッフル板は電気的にフローティング状態であり、
前記第1の開口バッフル板および前記第2の開口バッフル板は、これらの間に安定放電が生成可能な間隔で設けられていることを特徴とする排気構造。
A processing chamber for accommodating a substrate and performing plasma processing, a mounting table having a mounting surface on which the substrate is mounted in the processing chamber, a processing gas supply system for supplying a processing gas into the processing chamber, and the processing chamber An exhaust section for exhausting air, a plasma generation mechanism for generating plasma for performing plasma processing on a substrate placed on the mounting table, and a high-frequency power source for applying bias high-frequency power to the mounting table A plasma processing apparatus having an exhaust structure that guides the processing gas supplied to the processing chamber to the exhaust part,
A first opening baffle plate and a second opening baffle plate having a plurality of openings provided in or near the exhaust port portion extending from the processing chamber to the exhaust unit;
The first opening baffle plate is provided on the downstream side of the exhaust path, and the second opening baffle plate is provided on the upstream side of the exhaust path,
The first opening baffle plate and the second opening baffle plate are both made of a conductive material, the first opening baffle plate is grounded, and the second opening baffle plate is in an electrically floating state. ,
The exhaust structure according to claim 1, wherein the first opening baffle plate and the second opening baffle plate are provided at intervals at which stable discharge can be generated.
前記第1の開口バッフル板は、前記排気部の排気配管の入口部分を覆うように設けられていることを特徴とする請求項12に記載の排気構造。   The exhaust structure according to claim 12, wherein the first opening baffle plate is provided so as to cover an inlet portion of an exhaust pipe of the exhaust section. 前記第1の開口バッフル板と前記第2の開口バッフル板との間隔は、1〜10mmであることを特徴とする請求項12または請求項13に記載の排気構造。   The exhaust structure according to claim 12 or 13, wherein an interval between the first opening baffle plate and the second opening baffle plate is 1 to 10 mm. 前記第1の開口バッフル板および前記第2の開口バッフル板は、スリット状もしくはメッシュ状に構成されるか、または多数のパンチング孔を有することを特徴とする請求項12から請求項14のいずれか1項に記載の排気構造。   The said 1st opening baffle board and the said 2nd opening baffle board are comprised in slit shape or mesh shape, or have many punching holes, The any one of Claims 12-14 characterized by the above-mentioned. The exhaust structure according to item 1. 前記第1の開口バッフル板および前記第2の開口バッフル板の開口率は、61.5%以下であることを特徴とする請求項12から請求項14のいずれか1項に記載の排気構造。   The exhaust structure according to any one of claims 12 to 14, wherein an opening ratio of the first opening baffle plate and the second opening baffle plate is 61.5% or less. 基板に対してプラズマ処理を行う処理領域と前記排気部に繋がる排気領域とに仕切る、導電性材料からなり開口部を有さない複数の仕切り部材をさらに有し、前記複数の仕切り部材は、接地電位に接続され、隣接するものどうしが、その間に、前記処理領域に供給された処理ガスを前記排気領域に導く間口が形成されるように離間して配置されていることを特徴とする請求項12から請求項16のいずれか1項に記載の排気構造。   The apparatus further includes a plurality of partition members made of a conductive material and having no openings, which are divided into a processing region for performing plasma processing on the substrate and an exhaust region connected to the exhaust unit, wherein the plurality of partition members are grounded The adjacent ones connected to the potential are arranged apart from each other so as to form a front opening for guiding the processing gas supplied to the processing region to the exhaust region. The exhaust structure according to any one of claims 12 to 16. 前記仕切り部材と異なる高さ位置に、平面視した場合に前記間口の少なくとも一部を遮蔽するように設けられ、導電性材料からなるとともに開口部を有さず、かつ接地電位に接続された遮蔽部材をさらに有することを特徴とする請求項17に記載の排気構造。   A shield that is provided at a different height from the partition member so as to shield at least a part of the frontage when viewed in plan, is made of a conductive material, has no opening, and is connected to a ground potential. The exhaust structure according to claim 17, further comprising a member. 前記処理室は平面形状が矩形状の空間を有し、前記載置台は平面形状が矩形状をなし、矩形状の基板が載置されることを特徴とする請求項12から請求項18のいずれか1項に記載の排気構造。   19. The method according to claim 12, wherein the processing chamber has a space having a rectangular planar shape, the mounting table has a rectangular planar shape, and a rectangular substrate is placed thereon. The exhaust structure according to claim 1.
JP2015132475A 2015-07-01 2015-07-01 Plasma processing apparatus and exhaust structure used therefor Active JP6548484B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015132475A JP6548484B2 (en) 2015-07-01 2015-07-01 Plasma processing apparatus and exhaust structure used therefor
TW105120566A TWI702650B (en) 2015-07-01 2016-06-29 Plasma processing device and exhaust structure used here
CN201610516168.7A CN106328473B (en) 2015-07-01 2016-07-01 Plasma processing apparatus and the exhaust structure wherein used
KR1020160083250A KR101925972B1 (en) 2015-07-01 2016-07-01 Plasma processing apparatus and exhaust structure thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015132475A JP6548484B2 (en) 2015-07-01 2015-07-01 Plasma processing apparatus and exhaust structure used therefor

Publications (2)

Publication Number Publication Date
JP2017017180A true JP2017017180A (en) 2017-01-19
JP6548484B2 JP6548484B2 (en) 2019-07-24

Family

ID=57739154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015132475A Active JP6548484B2 (en) 2015-07-01 2015-07-01 Plasma processing apparatus and exhaust structure used therefor

Country Status (4)

Country Link
JP (1) JP6548484B2 (en)
KR (1) KR101925972B1 (en)
CN (1) CN106328473B (en)
TW (1) TWI702650B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020080395A (en) * 2018-11-14 2020-05-28 東京エレクトロン株式会社 Plasma processing apparatus
JP2020188194A (en) * 2019-05-16 2020-11-19 東京エレクトロン株式会社 Plasma processing apparatus
JP2021052140A (en) * 2019-09-26 2021-04-01 東京エレクトロン株式会社 Plasma processing apparatus
KR20220065683A (en) 2020-11-13 2022-05-20 도쿄엘렉트론가부시키가이샤 Plasma processing apparatus, manufacturing method thereof, and plasma processing method
JP7418285B2 (en) 2020-05-27 2024-01-19 東京エレクトロン株式会社 Substrate processing equipment, its manufacturing method, and exhaust structure

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6630649B2 (en) 2016-09-16 2020-01-15 株式会社日立ハイテクノロジーズ Plasma processing method
JP6804392B2 (en) * 2017-06-05 2020-12-23 東京エレクトロン株式会社 Plasma processing equipment and gas shower head
WO2019053836A1 (en) * 2017-09-14 2019-03-21 株式会社日立ハイテクノロジーズ Plasma processing device and wet cleaning method
CN112117176B (en) * 2019-06-20 2023-03-07 中微半导体设备(上海)股份有限公司 Plasma processing apparatus and plasma processing system

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6289137U (en) * 1985-11-22 1987-06-08
JPH1140398A (en) * 1997-07-23 1999-02-12 Kokusai Electric Co Ltd Plasma producing device
JPH11214195A (en) * 1997-10-24 1999-08-06 Internatl Business Mach Corp <Ibm> Plazma sealing structure of high conductance
JP2002299324A (en) * 2001-04-04 2002-10-11 Matsushita Electric Ind Co Ltd Plasma processing method and apparatus
JP2004006574A (en) * 2002-03-29 2004-01-08 Tokyo Electron Ltd Plasma processing apparatus
JP2004342703A (en) * 2003-05-13 2004-12-02 Tokyo Electron Ltd Device and method for plasma treatment
US20080035605A1 (en) * 2006-08-11 2008-02-14 Tokyo Electron Limited Exhaust Assembly for Plasma Processing System and Method
JP2009246172A (en) * 2008-03-31 2009-10-22 Tokyo Electron Ltd Plasma treatment device
JP2011029584A (en) * 2009-01-14 2011-02-10 Tokyo Electron Ltd Inductively coupled plasma processing apparatus
US20130256268A1 (en) * 2012-03-30 2013-10-03 Tokyo Electron Limited Plasma source pumping and gas injection baffle

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06252245A (en) 1993-02-26 1994-09-09 Tokyo Electron Yamanashi Kk Vacuum processing equipment
US5891350A (en) * 1994-12-15 1999-04-06 Applied Materials, Inc. Adjusting DC bias voltage in plasma chambers
KR100503388B1 (en) * 2003-11-14 2005-07-22 주식회사 에이디피엔지니어링 Processing chamber of FPD manufacturing machine for forming uniform plasma
JP5256866B2 (en) * 2008-02-05 2013-08-07 東京エレクトロン株式会社 Processing equipment
JP5086192B2 (en) * 2008-07-01 2012-11-28 東京エレクトロン株式会社 Plasma processing equipment
JP5350043B2 (en) 2009-03-31 2013-11-27 東京エレクトロン株式会社 Plasma processing apparatus and plasma processing method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6289137U (en) * 1985-11-22 1987-06-08
JPH1140398A (en) * 1997-07-23 1999-02-12 Kokusai Electric Co Ltd Plasma producing device
JPH11214195A (en) * 1997-10-24 1999-08-06 Internatl Business Mach Corp <Ibm> Plazma sealing structure of high conductance
JP2002299324A (en) * 2001-04-04 2002-10-11 Matsushita Electric Ind Co Ltd Plasma processing method and apparatus
JP2004006574A (en) * 2002-03-29 2004-01-08 Tokyo Electron Ltd Plasma processing apparatus
JP2004342703A (en) * 2003-05-13 2004-12-02 Tokyo Electron Ltd Device and method for plasma treatment
US20080035605A1 (en) * 2006-08-11 2008-02-14 Tokyo Electron Limited Exhaust Assembly for Plasma Processing System and Method
JP2009246172A (en) * 2008-03-31 2009-10-22 Tokyo Electron Ltd Plasma treatment device
JP2011029584A (en) * 2009-01-14 2011-02-10 Tokyo Electron Ltd Inductively coupled plasma processing apparatus
US20130256268A1 (en) * 2012-03-30 2013-10-03 Tokyo Electron Limited Plasma source pumping and gas injection baffle

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020080395A (en) * 2018-11-14 2020-05-28 東京エレクトロン株式会社 Plasma processing apparatus
JP7166147B2 (en) 2018-11-14 2022-11-07 東京エレクトロン株式会社 Plasma processing equipment
JP2020188194A (en) * 2019-05-16 2020-11-19 東京エレクトロン株式会社 Plasma processing apparatus
JP7232705B2 (en) 2019-05-16 2023-03-03 東京エレクトロン株式会社 Plasma processing equipment
JP2021052140A (en) * 2019-09-26 2021-04-01 東京エレクトロン株式会社 Plasma processing apparatus
JP7308711B2 (en) 2019-09-26 2023-07-14 東京エレクトロン株式会社 Plasma processing equipment
JP7418285B2 (en) 2020-05-27 2024-01-19 東京エレクトロン株式会社 Substrate processing equipment, its manufacturing method, and exhaust structure
KR20220065683A (en) 2020-11-13 2022-05-20 도쿄엘렉트론가부시키가이샤 Plasma processing apparatus, manufacturing method thereof, and plasma processing method

Also Published As

Publication number Publication date
JP6548484B2 (en) 2019-07-24
CN106328473B (en) 2018-11-13
CN106328473A (en) 2017-01-11
KR101925972B1 (en) 2018-12-06
TW201717277A (en) 2017-05-16
KR20170004888A (en) 2017-01-11
TWI702650B (en) 2020-08-21

Similar Documents

Publication Publication Date Title
JP6305825B2 (en) Plasma processing apparatus and exhaust structure used therefor
KR101925972B1 (en) Plasma processing apparatus and exhaust structure thereof
JP5666991B2 (en) Inductively coupled plasma antenna unit and inductively coupled plasma processing apparatus
TW201513159A (en) Inductively coupled plasma processing apparatus
JP5597071B2 (en) Antenna unit and inductively coupled plasma processing apparatus
JP2016225018A (en) Gas processing device and multi-division shower head used for the same
TWI600048B (en) Inductively coupled plasma processing device
KR101775751B1 (en) Inductive coupled plasma processing apparatus
JP2013162034A (en) Inductive coupling plasma processing method, and inductive coupling plasma processing device
KR102485714B1 (en) Plasma processing apparatus
KR102214790B1 (en) Plasma processing apparatus
KR102310388B1 (en) Plasma processing apparatus
KR20210116259A (en) Substrate processing apparatus and substrate processing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190528

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190625

R150 Certificate of patent or registration of utility model

Ref document number: 6548484

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250