JP2009246172A - Plasma treatment device - Google Patents

Plasma treatment device Download PDF

Info

Publication number
JP2009246172A
JP2009246172A JP2008091633A JP2008091633A JP2009246172A JP 2009246172 A JP2009246172 A JP 2009246172A JP 2008091633 A JP2008091633 A JP 2008091633A JP 2008091633 A JP2008091633 A JP 2008091633A JP 2009246172 A JP2009246172 A JP 2009246172A
Authority
JP
Japan
Prior art keywords
conductive member
processing apparatus
plasma
plasma processing
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008091633A
Other languages
Japanese (ja)
Other versions
JP5217569B2 (en
Inventor
Akira Sato
亮 佐藤
Hitoshi Saito
均 齊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2008091633A priority Critical patent/JP5217569B2/en
Priority to KR1020090025456A priority patent/KR101058310B1/en
Priority to TW98110467A priority patent/TWI469213B/en
Priority to CN2009101295926A priority patent/CN101552188B/en
Publication of JP2009246172A publication Critical patent/JP2009246172A/en
Priority to KR1020110023652A priority patent/KR20110040806A/en
Application granted granted Critical
Publication of JP5217569B2 publication Critical patent/JP5217569B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32807Construction (includes replacing parts of the apparatus)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32623Mechanical discharge control means
    • H01J37/32633Baffles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a parallel flat plate type plasma treatment device that suppresses abnormal discharge between a cathode electrode and a mesh member that covers an exhaust port. <P>SOLUTION: In the plasma treatment device 2, which applies high-frequency electric power between an anode electrode (gas shower head 40) and the cathode electrode (placement table 3), which are provided oppositely in a treatment container 20 to change a processing gas into plasma, and performs plasma treatment on a workpiece S; a conductive member (mesh member 51) having an opening is disposed at a periphery of the cathode electrode and covers the exhaust port for discharging the treatment gas; and a dielectric 52 is interposed between the conductive member and a conductive wall portion of the treatment container 20. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、高周波電力により処理ガスをプラズマ化し、そのプラズマにより被処理体に対してエッチング等の処理を施すプラズマ処理装置に関する。   The present invention relates to a plasma processing apparatus that converts a processing gas into plasma using high-frequency power and performs processing such as etching on an object to be processed using the plasma.

半導体デバイスや液晶表示装置等のフラットパネルの製造工程においては、半導体ウエハやガラス基板といった被処理基板にエッチング処理や成膜処理等のプロセス処理を施すために、プラズマエッチング装置やプラズマCVD成膜装置等のプラズマ処理装置が用いられる。   In the manufacturing process of a flat panel such as a semiconductor device or a liquid crystal display device, a plasma etching apparatus or a plasma CVD film forming apparatus is used to perform a process such as an etching process or a film forming process on a substrate to be processed such as a semiconductor wafer or a glass substrate. Or the like is used.

図8に示したプラズマ処理装置は、例えばFPD(Flat Panel Display)用のガラス基板上に形成された薄膜に対してエッチング処理を施すプラズマエッチング装置の構成例を示している。このプラズマエッチング装置は、例えばアルミニウム等からなる接地された処理容器10内に、ガス供給部をなすガスシャワーヘッドを兼用した上部電極12が設けられると共に、この上部電極12に対向するように基板Sの載置台を兼用する下部電極11が設けられた平行平板型のプラズマ処理装置として構成されている。上部電極12は処理容器10に接続されアノード電極として構成される一方、下部電極11は、絶縁材14により処理容器10に対して電気的に十分に浮いている状態にあり、不図示の整合回路(マッチング回路)を介して高周波電源15に接続されたカソード電極となっている。またこの下部電極11表面の周縁部及び側面は、図8に示すように下部電極11の上方にプラズマを均一に形成するための例えばセラミクスなどの絶縁体からなるシールドリング18により覆われている場合もある。   The plasma processing apparatus shown in FIG. 8 shows a configuration example of a plasma etching apparatus that performs an etching process on a thin film formed on a glass substrate for an FPD (Flat Panel Display), for example. In this plasma etching apparatus, an upper electrode 12 that also serves as a gas shower head serving as a gas supply unit is provided in a grounded processing vessel 10 made of, for example, aluminum, and the substrate S is opposed to the upper electrode 12. It is comprised as a parallel plate type plasma processing apparatus provided with the lower electrode 11 which also serves as a mounting table. The upper electrode 12 is connected to the processing vessel 10 and configured as an anode electrode, while the lower electrode 11 is in a state of being sufficiently electrically floated with respect to the processing vessel 10 by the insulating material 14, and a matching circuit (not shown). The cathode electrode is connected to the high-frequency power supply 15 via the (matching circuit). Further, as shown in FIG. 8, the periphery and side surfaces of the surface of the lower electrode 11 are covered with a shield ring 18 made of an insulator such as ceramics for uniformly forming plasma above the lower electrode 11. There is also.

このプラズマエッチング装置における高周波電流の導電路の等価回路を図9に示す。処理容器10内に処理ガスを供給し、高周波電源15により上部電極12-下部電極11間に高周波電力を印加して処理ガスをプラズマ化すると、下部電極11と上部電極12との間には、容量結合C1が形成されるので、高周波電源15からの高周波電流は、下部電極11→プラズマ→上部電極12→処理容器10の壁部→アースの経路を流れ、このプラズマ化した処理ガスを利用して下部電極11上に載置された基板Sに対してエッチングが行われる。なお詳しくは高周波電流は処理容器10の壁部から図示しないマッチング回路の筐体(マッチングボックス)を介して高周波電源15のアースに戻っている。   FIG. 9 shows an equivalent circuit of a conductive path for high-frequency current in this plasma etching apparatus. When processing gas is supplied into the processing vessel 10 and high-frequency power is applied between the upper electrode 12 and the lower electrode 11 by the high-frequency power source 15 to convert the processing gas into plasma, the lower electrode 11 and the upper electrode 12 are Since the capacitive coupling C1 is formed, the high-frequency current from the high-frequency power source 15 flows through the path of the lower electrode 11 → plasma → the upper electrode 12 → the wall of the processing vessel 10 → the ground, and uses this plasmaized processing gas. Then, the substrate S placed on the lower electrode 11 is etched. More specifically, the high-frequency current returns from the wall of the processing vessel 10 to the ground of the high-frequency power supply 15 through a matching circuit housing (matching box) (not shown).

ところで当該装置の処理対象である例えばFPD用の基板Sは益々大型化する傾向にあり、これに伴って処理容器10も大型化している。処理容器10が大型化すると、処理容器10のインダクタンス成分が大きくなり、上記の高周波電流の経路のインピーダンスが大きくなる。このためカソード電極に対してアノード電極よりも距離の近い処理容器10の壁部等がカソード電極から見てアノード電極に見え、両部材が容量結合しやすくなる。そこでアノード電極と処理容器との間の電流経路にインピーダンス調整機構を介在させて前記インピーダンスを相対的に小さくする手法も知られている(特許文献1)。しかしながら上述のプラズマエッチング装置のように例えば下部電極11がカソード電極となっている場合には、下部電極11の周辺の処理容器10の側面や底面と下部電極11との間で依然として容量結合しやすい状態となっている。   By the way, for example, the substrate S for FPD, which is a processing target of the apparatus, tends to increase in size, and accordingly, the processing container 10 also increases in size. When the processing container 10 is enlarged, the inductance component of the processing container 10 is increased, and the impedance of the high-frequency current path is increased. For this reason, the wall portion of the processing vessel 10 that is closer to the cathode electrode than the anode electrode looks like the anode electrode when viewed from the cathode electrode, and the two members are easily capacitively coupled. Therefore, a technique is known in which an impedance adjustment mechanism is interposed in the current path between the anode electrode and the processing container to relatively reduce the impedance (Patent Document 1). However, when the lower electrode 11 is a cathode electrode as in the above-described plasma etching apparatus, capacitive coupling is still likely to occur between the side and bottom surfaces of the processing vessel 10 around the lower electrode 11 and the lower electrode 11. It is in a state.

ここで処理容器10の底面には、基板Sを処理した後のガスを排気するための排気路16が設けられており、当該排気路16の排気口には排気路16内への異物の落下、侵入を防ぐと共に、排気路16内へのプラズマの侵入や発生を抑えるための防護用のメッシュ部材17が設けられている。このメッシュ部材17としては加工性や強度の観点から金属材が用いられている。そして均一なプラズマを形成するためには、下部電極11から見てその周囲が同電位である方が好ましいであろうという、いわば先入観的な設計思想に基づいてメッシュ部材17は処理容器10に接触し当該処理容器10と同電位となっていた。   Here, an exhaust path 16 for exhausting the gas after processing the substrate S is provided on the bottom surface of the processing container 10, and foreign substances fall into the exhaust path 16 at the exhaust port of the exhaust path 16. A protective mesh member 17 is provided for preventing intrusion and suppressing intrusion and generation of plasma into the exhaust passage 16. As the mesh member 17, a metal material is used from the viewpoint of workability and strength. In order to form a uniform plasma, the mesh member 17 is in contact with the processing vessel 10 based on a preconceived design philosophy that it is preferable that the surroundings have the same potential as viewed from the lower electrode 11. However, it was at the same potential as the processing container 10.

このため、処理容器10の底部の下部電極11に近い位置に設けられたメッシュ部材17は、下部電極11から見て上部電極12よりも近いアノード電極となっており、下部電極11とメッシュ部材17との間には容量結合(図9中にC2と表示してある)が形成され、例えばグロー放電を生じやすい。そして本発明者らは、この現象が発生する代表的な条件が、処理容器11内の圧力が0.67Pa〜27Pa(5mtorr〜200mtorr)の範囲内であって、処理ガスが塩素ガスなどのハロゲン系のガスやCFガス、Oガスなどを代表とする負性ガス、即ち当該ガスを構成する分子が電子と付着して多くの負イオンを生成し、この負イオンが電子よりも多いプラズマを生成するガスであり、また基板Sの1辺が1mを超える大型のものであると共に、既述のように下部電極11が載置台に備わっている場合であることを確認している。 For this reason, the mesh member 17 provided at a position near the lower electrode 11 at the bottom of the processing vessel 10 is an anode electrode closer to the upper electrode 12 when viewed from the lower electrode 11, and the lower electrode 11 and the mesh member 17. Capacitive coupling (indicated as C2 in FIG. 9) is formed between the two and, for example, glow discharge is likely to occur. The inventors of the present invention have typical conditions for the occurrence of this phenomenon in which the pressure in the processing container 11 is in the range of 0.67 Pa to 27 Pa (5 mtorr to 200 mtorr), and the processing gas is a halogen such as chlorine gas. A negative gas typified by a system gas, CF 4 gas, O 2 gas, etc., that is, a plasma in which molecules constituting the gas adhere to electrons to generate many negative ions, and these negative ions are more than electrons. In addition, it is confirmed that the substrate S is large in size with one side of the substrate S exceeding 1 m and the lower electrode 11 is provided on the mounting table as described above.

また処理容器10内のガスが流れ込む排気路16の排気口付近は、ガス流量や圧力等のプロセス条件により様々な圧力雰囲気となるが、一般に、電極間にてプラズマを発生させるために必要な最低電圧は、電極間に形成される空間の圧力の関数となっていることから、上述の要因と相俟ってカソード電極である下部電極11と、特にメッシュ部材17との間でグロー放電が起こりやすい。   In addition, the vicinity of the exhaust port of the exhaust passage 16 through which the gas in the processing vessel 10 flows is in various pressure atmospheres depending on the process conditions such as the gas flow rate and pressure, but in general, the minimum required for generating plasma between the electrodes. Since the voltage is a function of the pressure in the space formed between the electrodes, in combination with the above-described factors, glow discharge occurs between the lower electrode 11 serving as the cathode electrode and particularly the mesh member 17. Cheap.

このように下部電極11とメッシュ部材17との間で不必要な容量結合が形成され、局部的に強いグロー放電を生じると、本来のプラズマ発生空間である下部電極11と上部電極12との間のプラズマが不安定になるおそれがあり、例えば処理容器10内の部材や基板Sの表面にアーク状の異常放電が発生するいわゆるアーキングを誘発してこれらの部材や基板Sの損傷、あるいは損耗を進行させ、また偏ったプラズマの発生によって基板S処理の面内均一性が悪化するおそれがある。   In this way, when unnecessary capacitive coupling is formed between the lower electrode 11 and the mesh member 17 and a strong glow discharge is locally generated, the lower electrode 11 and the upper electrode 12, which are the original plasma generation spaces, are formed. For example, so-called arcing in which an arc-like abnormal discharge is generated on the surface of the member in the processing vessel 10 or the substrate S is induced to damage or wear these members or the substrate S. There is a possibility that the in-plane uniformity of the processing of the substrate S is deteriorated due to the generation of a biased plasma.

特開2005−340760;第0027段落、図1JP 2005-340760; paragraph 0027, FIG.

本発明はこのような事情に鑑みてなされたものであり、その目的は平行平板型のプラズマ処理装置において、カソード電極と排気口を覆うメッシュ部材との間における異常放電の発生を抑えることができるプラズマ処理装置を提供することにある。   The present invention has been made in view of such circumstances, and an object thereof is to suppress the occurrence of abnormal discharge between the cathode electrode and the mesh member covering the exhaust port in the parallel plate type plasma processing apparatus. It is to provide a plasma processing apparatus.

本発明に係るプラズマ処理装置は、処理容器内に互いに対向して設けられたアノード電極及びカソード電極間に高周波電力を印加して処理ガスをプラズマ化し、被処理体に対してプラズマ処理を行うプラズマ処理装置において、
前記カソード電極周辺に配置され、前記処理ガスを排気する排気口と、
この排気口を覆い、当該排気口へ排気される処理ガスを通流させる開口部を備えた導電性部材と、
この導電性部材と前記処理容器の導電性の壁部との間に介在して設けられた誘電体と、を備えたことを特徴とする。
また、前記導電性部材は例えば金属であり、前記誘電体はセラミクスである場合が好適であり、当該導電性部材はメッシュ形状であることが好ましい。
The plasma processing apparatus according to the present invention is a plasma for applying a high-frequency power between an anode electrode and a cathode electrode provided opposite to each other in a processing container to convert the processing gas into plasma and performing plasma processing on the object to be processed. In the processing device,
An exhaust port disposed around the cathode electrode and exhausting the processing gas;
A conductive member that covers the exhaust port and has an opening through which the processing gas exhausted to the exhaust port flows;
And a dielectric provided between the conductive member and the conductive wall portion of the processing container.
The conductive member is preferably a metal, for example, and the dielectric is preferably ceramic, and the conductive member is preferably mesh-shaped.

また前記排気口を覆い、当該排気口の周辺部に設けられた第1の導電性部材と、この第1の導電性部材の上方側空間を覆うように、かつ当該第1の導電性部材とは離間して設けられた第2の導電性部材と、を備え、前記導電性部材を当該第2の導電性部材として構成してもよい。この場合にも、前記第1の導電性部材及び前記第2の導電性部材は金属であり、前記誘電体はセラミクスであることが好適である。そして、前記第1の導電性部材及び前記第2の導電性部材がメッシュ形状である場合や、また前記第1の導電性部材がメッシュ形状であり、前記第2の導電性部材は平板状である場合などが好ましい。さらにまた、前記第1の導電性部材と前記処理容器の導電性の壁部との間に介在して設けられた第2の誘電体を備えていてもよい。   Further, the first conductive member that covers the exhaust port, is provided in the peripheral portion of the exhaust port, and covers the upper space of the first conductive member, and the first conductive member, And a second conductive member provided apart from each other, and the conductive member may be configured as the second conductive member. Also in this case, it is preferable that the first conductive member and the second conductive member are metal, and the dielectric is ceramic. When the first conductive member and the second conductive member have a mesh shape, the first conductive member has a mesh shape, and the second conductive member has a flat plate shape. Some cases are preferred. Furthermore, a second dielectric provided between the first conductive member and the conductive wall portion of the processing container may be provided.

以上の各プラズマ処理装置について、前記カソード電極及び排気口は、前記処理容器の下部に設けられていることが好ましく、当該プラズマ処理装置は、前記被処理体は面積が4.0m以上の角型基板、処理ガスが負性ガス、前記プラズマ処理の行われる圧力雰囲気が0.67Pa以上、27Pa以下の範囲内である場合に好適である。 In each of the plasma processing apparatuses described above, the cathode electrode and the exhaust port are preferably provided in a lower part of the processing container, and the plasma processing apparatus has a corner having an area of 4.0 m 2 or more. It is suitable when the mold substrate and the processing gas are a negative gas, and the pressure atmosphere in which the plasma processing is performed is in the range of 0.67 Pa to 27 Pa.

本発明によれば、平行平板型のプラズマ処理装置において、処理容器に設けられた排気口を覆うメッシュ部材と処理容器の導電性の壁部との間に誘電体を設けた状態としている。この結果、載置台を備えたカソード電極からメッシュ部材を介して処理容器に至るいわば異常な経路のインピーダンスが大きくなり、カソード電極とメッシュ部材とが容量結合しにくくなり、異常放電が抑えられる。このためアーキングの発生が抑えられて処理容器内の部材や基板の損傷、損耗を抑制することができる。   According to the present invention, in the parallel plate type plasma processing apparatus, the dielectric is provided between the mesh member covering the exhaust port provided in the processing container and the conductive wall portion of the processing container. As a result, the impedance of an abnormal path from the cathode electrode provided with the mounting table to the processing vessel via the mesh member increases, so that the capacitive coupling between the cathode electrode and the mesh member becomes difficult, and abnormal discharge is suppressed. For this reason, generation | occurrence | production of arcing is suppressed and the damage and wear of the member in a processing container and a board | substrate can be suppressed.

以下、本発明のプラズマ処理装置をFPD基板のエッチング処理装置2に適用した実施形態について図1〜図4を参照しながら説明する。このエッチング処理装置2は、その内部において被処理体、例えばFPD基板である基板Sに対してエッチング処理を施すための真空チャンバである処理容器20を備えており、この処理容器20は、例えば平面形状が四角形状に形成されていると共に、当該処理容器20は後述のマッチングボックスの筐体64を介して接地されている。   Hereinafter, an embodiment in which a plasma processing apparatus of the present invention is applied to an FPD substrate etching processing apparatus 2 will be described with reference to FIGS. The etching processing apparatus 2 includes a processing container 20 which is a vacuum chamber for performing an etching process on an object to be processed, for example, a substrate S which is an FPD substrate. The processing container 20 is grounded via a matching box casing 64 which will be described later.

基板Sは一辺の長さが1mを超える角型のガラス基板であり、処理容器20はこの基板Sの形状に対応して例えば水平断面の一辺が3.5m、他辺が3.0m程度の大きさに構成され、また例えばアルミニウム等の熱伝導性の良好な導電性の材料により構成されている。処理容器20の一つの側壁部21には、基板Sを処理容器20内に搬入するための搬入出口22が形成されており、この搬入出口22はゲートバルブ23により開閉自在に構成されている。   The substrate S is a square glass substrate having a side length of more than 1 m, and the processing container 20 has a horizontal cross section of, for example, one side of 3.5 m and the other side of about 3.0 m corresponding to the shape of the substrate S. It is comprised by the magnitude | size and is comprised by the electroconductive material with favorable heat conductivity, such as aluminum, for example. A loading / unloading port 22 for loading the substrate S into the processing chamber 20 is formed in one side wall portion 21 of the processing chamber 20, and the loading / unloading port 22 is configured to be opened and closed by a gate valve 23.

処理容器20の内部には、その上面に基板Sを載置するための載置台3が配置されている。載置台3は、プラズマ発生用の第1の高周波電源部311及びプラズマ中のイオン引き込み用の第2の高周波電源部312と各々マッチング回路62、63を介して電気的に接続されており、処理容器20内にプラズマを発生させ、当該プラズマ中のイオンを基板S表面に引き込むカソード電極としての役割を果たす。またマッチング回路62、63はマッチングボックスである導電性の筐体64内に収納されており、この筐体64は導電性の管路部材65を介して処理容器20の底壁に接続されている。筐体64は第1、第2の高周波電源部311、312の接地側に接続されており、従って処理容器20はこの筐体64を介して接地されている状態となっている。   Inside the processing container 20, a mounting table 3 for mounting the substrate S is disposed on the upper surface thereof. The mounting table 3 is electrically connected to the first high-frequency power supply unit 311 for generating plasma and the second high-frequency power supply unit 312 for drawing ions in the plasma via matching circuits 62 and 63, respectively. It serves as a cathode electrode that generates plasma in the container 20 and draws ions in the plasma to the surface of the substrate S. The matching circuits 62 and 63 are housed in a conductive casing 64 which is a matching box, and the casing 64 is connected to the bottom wall of the processing vessel 20 via a conductive conduit member 65. . The casing 64 is connected to the ground side of the first and second high-frequency power supply units 311 and 312, so that the processing container 20 is grounded via the casing 64.

載置台3は、処理容器20の底面上に誘電体32を介して配設されており、これにより下部電極である載置台3は処理容器20から電気的に浮いた状態となっている。また載置台3表面の周縁部及び側面は、プラズマを載置台3上方にて均一に形成するための、セラミクス材料により構成されたシールドリング33により覆われている。   The mounting table 3 is disposed on the bottom surface of the processing container 20 via a dielectric 32, whereby the mounting table 3, which is a lower electrode, is in an electrically floating state from the processing container 20. Further, the peripheral edge and the side surface of the surface of the mounting table 3 are covered with a shield ring 33 made of a ceramic material for forming plasma uniformly above the mounting table 3.

さらに載置台3には、エッチング処理装置2の外部の図示しない搬送装置と、当該載置台3との間で基板Sの受け渡しを行うための昇降ピン34が設けられている。昇降ピン34は昇降機構35によって載置台3の表面から突没自在に構成されており、外部の搬送手段との間で基板Sの受け渡しを行う位置と、載置台3の表面に設けられ、基板Sが載置される位置との間で基板Sを昇降させることができる。   Further, the mounting table 3 is provided with lifting / lowering pins 34 for transferring the substrate S between the transfer device (not shown) outside the etching processing apparatus 2 and the mounting table 3. The elevating pins 34 are configured so as to protrude and retract from the surface of the mounting table 3 by the elevating mechanism 35, and are provided on the surface of the mounting table 3 and the position where the substrate S is transferred to and from the external transfer means. The board | substrate S can be raised / lowered between the positions where S is mounted.

一方、処理容器20内部の載置台3の上方には、この載置台3の表面と対向するように、アノード電極である平板状の上部電極4が設けられており、この上部電極4は角板状の上部電極ベース41に支持されている。これら上部電極4及び上部電極ベース41は、例えばアルミニウムにより構成されている。また上部電極ベース41の上面は誘電体45を介して処理容器20の天井部に固定されており、上部電極4およびそのベース41はインピーダンス調整機構6及び導電性のカバー体61を介して処理容器20に対し電気的に接続されている。   On the other hand, a flat plate-like upper electrode 4 that is an anode electrode is provided above the mounting table 3 inside the processing container 20 so as to face the surface of the mounting table 3. The upper electrode 4 is a square plate. It is supported by the upper electrode base 41 having a shape. The upper electrode 4 and the upper electrode base 41 are made of, for example, aluminum. The upper surface of the upper electrode base 41 is fixed to the ceiling portion of the processing container 20 via a dielectric 45, and the upper electrode 4 and its base 41 are connected to the processing container via the impedance adjusting mechanism 6 and the conductive cover body 61. 20 is electrically connected.

インピーダンス調整機構6は、上部電極4から処理容器20に至るまでのインピーダンスを調整する役割を果たし、コンデンサを含む回路、例えば可変容量コンデンサが用いられ、プラズマのキャパシタンス(C1)及び上部電極4から処理容器20の下部に至るまでの経路のインダクタンス(L)をインピーダンス調整機構6の容量成分(C)により相殺させている。これによりインピーダンス調整機構6は、載置台3(下部電極)→プラズマ→上部電極4→インピーダンス調整機構6→処理容器20→接地の経路のインピーダンスをj(−1/ωC1+ωL−1/ωC)として、後述の異常な経路のインピーダンスよりも小さくする役割を果たしている。   The impedance adjustment mechanism 6 plays a role of adjusting the impedance from the upper electrode 4 to the processing container 20, and a circuit including a capacitor, for example, a variable capacitance capacitor is used, and the plasma capacitance (C 1) and the processing from the upper electrode 4 are performed. The inductance (L) of the path to the lower part of the container 20 is canceled by the capacitance component (C) of the impedance adjustment mechanism 6. Thereby, the impedance adjustment mechanism 6 makes the impedance of the path of the mounting table 3 (lower electrode) → plasma → upper electrode 4 → impedance adjustment mechanism 6 → processing vessel 20 → ground as j (−1 / ωC1 + ωL−1 / ωC), It plays the role of making it smaller than the impedance of the abnormal path described later.

また上部電極ベース41及び上部電極4により囲まれた空間はエッチングガスのガス拡散空間42を構成している。以下、これら上部電極4、上部電極ベース41等を纏めてガスシャワーヘッド40と呼ぶ。また処理容器20の天井部には、前記ガス拡散空間42に接続されるように処理ガス供給路43が設けられており、この処理ガス供給路43の他端側は、ガス拡散空間42を介して処理容器20内にエッチングガスを供給するための処理ガス供給部44と接続されている。   A space surrounded by the upper electrode base 41 and the upper electrode 4 constitutes a gas diffusion space 42 for the etching gas. Hereinafter, the upper electrode 4 and the upper electrode base 41 are collectively referred to as a gas shower head 40. A processing gas supply path 43 is provided on the ceiling of the processing container 20 so as to be connected to the gas diffusion space 42, and the other end side of the processing gas supply path 43 is interposed via the gas diffusion space 42. And a processing gas supply unit 44 for supplying an etching gas into the processing container 20.

ここで図1及び図2に示すように、載置台3の側面と側壁部21との間の空間には、例えば表面をアルマイト処理されたアルミニウム製の部材からなる平板状のバッフル板25が配設されている。バッフル板25は、載置台3の4辺の外方側の領域に配設され、載置台3とガスシャワーヘッド40との間のプラズマの形成される空間から見て、後述する排気口241の前面を遮る位置に配置されている。バッフル板25は、載置台3上の基板S表面に供給されたエッチングガスが排気口241へと直接流れ込むことを規制してガスの流れの偏りを抑え、基板S表面全体にエッチングガスが均一に流れるようにする役割を果たす。図2に示すように、バッフル板25の外方側の四隅には、バッフル板25の設けられていない通流口251が開口しており、処理容器20内に供給されたエッチングガスは、このバッフル板25を介して下流側へと流れていくようになっている。   Here, as shown in FIGS. 1 and 2, a flat baffle plate 25 made of, for example, an aluminum member whose surface is anodized is disposed in the space between the side surface of the mounting table 3 and the side wall portion 21. It is installed. The baffle plate 25 is disposed in a region on the outer side of the four sides of the mounting table 3, and is viewed from a space where plasma is formed between the mounting table 3 and the gas shower head 40. It is arranged at a position that blocks the front. The baffle plate 25 prevents the etching gas supplied to the surface of the substrate S on the mounting table 3 from flowing directly into the exhaust port 241 to suppress the gas flow unevenness, and the etching gas is uniformly distributed over the entire surface of the substrate S. It plays the role of making it flow. As shown in FIG. 2, at the four corners on the outer side of the baffle plate 25, flow holes 251 that are not provided with the baffle plate 25 are opened, and the etching gas supplied into the processing container 20 is It flows to the downstream side through the baffle plate 25.

図1〜図3に示すように処理容器20の底壁には、横長の排気口241をなす開口部が形成されている。この排気口の下方には、排気路24をなす排気管が接続されており、当該排気管の上流端は横長の排気口241の形状に対応した形状に拡開部242にて拡開されていると共に、この拡開部242の開口縁に形成されたフランジ部分が処理容器20の底壁の下面側に気密に接合されている。この排気口241は、例えば載置台3と側壁部21との間の処理容器20の底壁に各側壁部21に沿って2箇所ずつ合計8箇所に設けられており、これら各排気口241の下流側の排気管には例えばバタフライ弁などから構成される圧力調節機構26が介設されている。そしてこの排気管は、圧力調節機構26の下流側にて合流した後、下流端にて真空ポンプ27と接続されている。   As shown in FIGS. 1 to 3, an opening that forms a horizontally long exhaust port 241 is formed on the bottom wall of the processing vessel 20. An exhaust pipe forming the exhaust path 24 is connected to the lower side of the exhaust port, and the upstream end of the exhaust pipe is expanded by the expanding portion 242 to a shape corresponding to the shape of the horizontally long exhaust port 241. In addition, a flange portion formed at the opening edge of the expanded portion 242 is airtightly joined to the lower surface side of the bottom wall of the processing vessel 20. The exhaust ports 241 are provided at a total of eight locations, for example, two locations along the side wall portions 21 on the bottom wall of the processing container 20 between the mounting table 3 and the side wall portions 21. A pressure adjusting mechanism 26 composed of, for example, a butterfly valve is interposed in the downstream exhaust pipe. The exhaust pipe joins on the downstream side of the pressure adjusting mechanism 26 and is connected to the vacuum pump 27 at the downstream end.

各排気口241は、図3、図4(a)に示すように導電性部材である例えばアルミニウムなどの金属製のメッシュ部材51により覆われており、背景技術にて説明したようにこのメッシュ部材51は排気路24内への異物の落下、侵入、さらには排気路24内へのプラズマの侵入や発生を抑える役割を果たしている。本例においては、メッシュ部材51の網の目が導電性部材の開口部に相当する。   Each exhaust port 241 is covered with a mesh member 51 made of metal such as aluminum, which is a conductive member, as shown in FIGS. 3 and 4A, and as described in the background art, this mesh member. 51 plays a role in suppressing the fall and intrusion of foreign matter into the exhaust passage 24 and further the intrusion and generation of plasma into the exhaust passage 24. In this example, the mesh of the mesh member 51 corresponds to the opening of the conductive member.

メッシュ部材51は、図3、図4(b)に示すように例えばアルミナなど例えばセラミクスからなる小片状の誘電体52を介して例えばセラミクスからなる誘電体からなるボルト511などによって処理容器20の底壁面に締結されており、当該底壁面から例えば5mm〜20mmの隙間を介して固定されている。この誘電体52は、例えば排気口241の周囲の8箇所にてメッシュ部材51を局部的に支持しており、金属製の処理容器20とメッシュ部材51との間に誘電体52が介在した状態となっている。   As shown in FIG. 3 and FIG. 4B, the mesh member 51 is connected to the processing container 20 by, for example, a bolt 511 made of a dielectric material made of ceramic, for example, via a small piece of dielectric material 52 made of ceramic, eg, alumina. It is fastened to the bottom wall surface, and is fixed from the bottom wall surface through a gap of, for example, 5 mm to 20 mm. For example, the dielectric member 52 locally supports the mesh member 51 at eight locations around the exhaust port 241, and the dielectric member 52 is interposed between the metal processing vessel 20 and the mesh member 51. It has become.

図1に示すように、エッチング処理装置2は制御部7と接続されている。制御部7は例えば図示しないCPUと記憶部とを備えたコンピュータからなり、記憶部には当該エッチング処理装置2の作用、つまり、処理容器20内に基板Sを搬入し、載置台3上に載置された基板Sにエッチング処理を施してから搬出するまでの動作に係わる制御等についてのステップ(命令)群が組まれたプログラムが記録されている。このプログラムは、例えばハードディスク、コンパクトディスク、マグネットオプティカルディスク、メモリーカード等の記憶媒体に格納され、そこからコンピュータにインストールされる。   As shown in FIG. 1, the etching processing apparatus 2 is connected to a control unit 7. The control unit 7 includes, for example, a computer including a CPU and a storage unit (not shown). The operation of the etching processing apparatus 2, that is, the substrate S is carried into the processing container 20 and loaded on the mounting table 3. A program in which a group of steps (commands) regarding control and the like related to operations from when the placed substrate S is subjected to an etching process to when it is carried out is recorded. This program is stored in a storage medium such as a hard disk, a compact disk, a magnetic optical disk, or a memory card, and installed in the computer therefrom.

以下、本実施の形態に係わるエッチング処理装置2の動作について説明する。初めに不図示の操作部を介してユーザが制御部7に対して目的のエッチング処理のプロセスレシピを選択すると、制御部7ではこのプロセスレシピに基づいてエッチング処理装置2の各部に制御信号を出力し、こうして基板Sに対して所定のエッチング処理が行われることとなる。   Hereinafter, the operation of the etching processing apparatus 2 according to the present embodiment will be described. First, when the user selects a process recipe for a target etching process with respect to the control unit 7 via an operation unit (not shown), the control unit 7 outputs a control signal to each unit of the etching processing apparatus 2 based on the process recipe. Thus, a predetermined etching process is performed on the substrate S.

具体的には、先ずゲートバルブ23を開いて、表面にAl膜が形成された基板Sを、図示しない外部の搬送手段により処理容器20内に搬入し、載置台3の載置領域の上方側の受け渡し位置まで搬送する。そして昇降ピン34を上昇させて、この受け渡し位置にて搬送手段から当該昇降ピン34に基板Sを受け渡し、昇降ピン34を下降させて基板Sを載置台3上の載置領域に載置する。この間、基板Sを受け渡した搬送手段は、処理容器20外に退出し、ゲートバルブ23により搬入出口22を閉じる。   Specifically, first, the gate valve 23 is opened, and the substrate S on which the Al film is formed is carried into the processing container 20 by an external transfer means (not shown), and above the mounting area of the mounting table 3. To the delivery position. Then, the lift pins 34 are raised, the substrate S is transferred from the transfer means to the lift pins 34 at this transfer position, and the lift pins 34 are lowered to place the substrate S on the placement region on the placement table 3. During this time, the transfer means that delivered the substrate S moves out of the processing container 20 and closes the loading / unloading port 22 by the gate valve 23.

次いで処理ガス供給部44から、エッチング処理用のエッチングガス例えば塩素ガスなどのハロゲン系の負性ガスを基板Sに向けて吐出すると共に、処理容器20の内部空間を所定の圧力に調整する。そしてプラズマ発生用の第1の高周波電源部311から例えば13.56MHzの高周波電力を5.5kW、またプラズマ中のイオン引き込み用の第2の高周波電源部312から例えば3.2MHzの高周波電力を1.0kWそれぞれ載置台3に印加し、基板Sの上方側の空間に形成されたプラズマを利用して、下記(1)式に示す主要な反応に基づいて基板Sに対するエッチング処理を実行する。
3Cl+Al→AlCl …(1)
Next, an etching gas for etching processing, for example, a halogen-based negative gas such as chlorine gas is discharged from the processing gas supply unit 44 toward the substrate S, and the internal space of the processing container 20 is adjusted to a predetermined pressure. Then, a high frequency power of, for example, 13.56 MHz is supplied from the first high frequency power supply unit 311 for generating plasma to 5.5 kW, and a high frequency power of, for example, 3.2 MHz is supplied from the second high frequency power supply unit 312 for drawing ions into the plasma. An etching process is performed on the substrate S based on the main reaction expressed by the following equation (1) by applying 0.0 kW to the mounting table 3 and using plasma formed in the space above the substrate S.
3Cl * + Al → AlCl 3 (1)

この際の処理容器20内におけるエッチングガスの流れについて説明すると、ガスシャワーヘッド40から供給されたエッチングガスは、上下の電極4、3間を降下しながらプラズマ化され、基板Sに到達した後、基板S表面及びバッフル板25上を流れて通流口251へと流入する。そして、バッフル板25下方の空間より各排気口241を介して排気路24へと排気される。   The flow of the etching gas in the processing container 20 at this time will be described. The etching gas supplied from the gas shower head 40 is converted into plasma while descending between the upper and lower electrodes 4 and 3 and reaches the substrate S. It flows on the surface of the substrate S and the baffle plate 25 and flows into the flow port 251. Then, the air is exhausted from the space below the baffle plate 25 to the exhaust path 24 via each exhaust port 241.

一方、エッチングガスをプラズマ化することによって高周波電力は、載置台(下部電極)3→プラズマ→上部電極4(ガスシャワーヘッド40)→インピーダンス調整機構6→処理容器20→マッチングボックスである筐体64→第1、第2の高周波電源311、312側の接地のいわば正常な経路を流れる。このとき下部電極である載置台3の近傍には、排気路24の排気口241を覆うメッシュ部材51が設けられており、このメッシュ部材51周辺の雰囲気は背景技術においても説明したように排気されるガスが排気口241へ向けて流れ込むことにより、プロセスレシピに応じて様々な圧力雰囲気が形成される。このため、メッシュ部材51が載置台3との間でグロー放電を発生しやすい圧力雰囲気となるおそれもあるが、載置台3から見える導電体であるメッシュ部材51が誘電体52によって支持された状態となっていることにより、シールドリング33を含む載置台3→プラズマ→メッシュ部材51→処理容器20→接地のいわば異常な経路に、誘電体52を介してメッシュ部材51と処理容器20との間に形成される容量が加わることとなり、当該異常な経路のインピーダンスが大きくなる。この結果メッシュ部材51は、カソード電極である載置台3から見て直近のアノード電極には見にくくなり、載置台3とメッシュ部材51との間でのグロー放電の発生を抑え、また放電が生じたとしてもその程度を小さく抑えることができる。   On the other hand, by converting the etching gas into plasma, the high frequency power is changed from the mounting table (lower electrode) 3 to plasma → the upper electrode 4 (gas shower head 40) → the impedance adjusting mechanism 6 → the processing vessel 20 → the casing 64 which is a matching box. → The first and second high-frequency power supplies 311 and 312 are grounded so to speak. At this time, a mesh member 51 that covers the exhaust port 241 of the exhaust path 24 is provided in the vicinity of the mounting table 3 that is the lower electrode, and the atmosphere around the mesh member 51 is exhausted as described in the background art. As the gas flows toward the exhaust port 241, various pressure atmospheres are formed according to the process recipe. For this reason, there is a possibility that the mesh member 51 may be in a pressure atmosphere in which glow discharge is easily generated between the mesh member 51 and the mounting table 3, but the mesh member 51 that is a conductor visible from the mounting table 3 is supported by the dielectric 52. As a result, the mounting table 3 including the shield ring 33 → plasma → the mesh member 51 → the processing container 20 → the ground between the mesh member 51 and the processing container 20 via the dielectric 52 in an abnormal path. As a result, the capacitance of the abnormal path is increased. As a result, the mesh member 51 is difficult to see on the anode electrode closest to the mounting table 3 that is the cathode electrode, suppresses the occurrence of glow discharge between the mounting table 3 and the mesh member 51, and discharge occurs. However, the degree can be kept small.

本実施の形態に係わるエッチング処理装置2によれば以下の効果がある。平行平板型のプラズマ処理装置であるエッチング処理装置2において、処理容器20に設けられた排気口241を覆うメッシュ部材51と導電性の処理容器20との間に誘電体52を設けた状態としている。この結果、載置台3を備えたカソード電極からメッシュ部材51を介して処理容器20に至るいわば異常な経路のインピーダンスが大きくなり、カソード電極とメッシュ部材51とが容量結合しにくくなり、異常放電が抑えられる。このためアーキングの発生が抑えられて処理容器20内の部材や基板Sの損傷、損耗を抑制することができる。また載置台3、上部電極4間の容量結合の不安定化によるプラズマの偏りを抑制し、面内均一性の高い基板S処理を行うことが可能となる。   The etching processing apparatus 2 according to the present embodiment has the following effects. In the etching processing apparatus 2 which is a parallel plate type plasma processing apparatus, a dielectric 52 is provided between the mesh member 51 covering the exhaust port 241 provided in the processing container 20 and the conductive processing container 20. . As a result, the impedance of a so-called abnormal path from the cathode electrode provided with the mounting table 3 to the processing vessel 20 via the mesh member 51 becomes large, and the cathode electrode and the mesh member 51 are difficult to capacitively couple, and abnormal discharge is caused. It can be suppressed. For this reason, generation | occurrence | production of arcing is suppressed and the damage and wear of the member in the processing container 20 and the board | substrate S can be suppressed. In addition, it is possible to suppress the plasma bias due to destabilization of capacitive coupling between the mounting table 3 and the upper electrode 4 and perform the substrate S processing with high in-plane uniformity.

さらにこの効果について詳述すると、基板面積が1m以上、とりわけ4m2以上もの大型基板Sの場合には、カソード電極と処理容器20や周囲の部材との間で容量結合をしやすいことから、アノード電極と処理容器20との間にインピーダンス調整機構6を介在させることが行われている。しかしこのような処理容器20の排気口241付近はプロセスレシピにより種々の圧力雰囲気となり、特に0.67Pa〜27Pa(5mtorr〜200mtorr)の圧力範囲ではグロー放電を起こしやすい。塩素ガスなどのハロゲン系のガスのように負性ガスを処理ガスとして用いた場合には、ガスの解離度が大きいことからなおさらグロー放電を起こしやすく、こうした条件が整っているエッチング処理装置2においてメッシュ部材51を処理容器20に対して電気的に浮かした構造は、大型基板Sについて面内均一性の高い処理を行ううえで極めて有効である。 Further, this effect will be described in detail. In the case of a large substrate S having a substrate area of 1 m 2 or more, particularly 4 m 2 or more, it is easy to perform capacitive coupling between the cathode electrode and the processing vessel 20 and surrounding members. An impedance adjusting mechanism 6 is interposed between the anode electrode and the processing container 20. However, the vicinity of the exhaust port 241 of such a processing vessel 20 has various pressure atmospheres depending on the process recipe. In particular, glow discharge is likely to occur in a pressure range of 0.67 Pa to 27 Pa (5 mtorr to 200 mtorr). When a negative gas such as a halogen-based gas such as chlorine gas is used as a processing gas, the gas dissociation is large, so that a glow discharge is more likely to occur. In the etching processing apparatus 2 that satisfies these conditions, The structure in which the mesh member 51 is electrically floated with respect to the processing container 20 is extremely effective in performing processing with high in-plane uniformity on the large substrate S.

このほか、上述の実施の形態においてはインピーダンス調整機構6を備えたタイプのプラズマ処理装置2を例示したが、このようなインピーダンス調整機構6を備えていないタイプのプラズマ処理装置にも本発明を適用することにより、既述の異常な経路のインピーダンスを大きくして異常放電の発生を抑えることができる。但し、インピーダンス調整機構6を備えていることにより、異常な経路のインピーダンスに対して正常な経路のインピーダンスを小さくする調整が容易となり、メッシュ部材51と処理容器20との間に誘電体52を配置することによる本発明の有効性が増すといった効果が得られる。   In addition, in the above-described embodiment, the plasma processing apparatus 2 of the type provided with the impedance adjustment mechanism 6 is exemplified. However, the present invention is also applied to a plasma processing apparatus of a type not provided with such an impedance adjustment mechanism 6. By doing so, it is possible to suppress the occurrence of abnormal discharge by increasing the impedance of the abnormal path described above. However, the provision of the impedance adjustment mechanism 6 facilitates adjustment to reduce the impedance of the normal path relative to the impedance of the abnormal path, and the dielectric 52 is disposed between the mesh member 51 and the processing container 20. As a result, the effect of increasing the effectiveness of the present invention can be obtained.

ここでメッシュ部材や誘電体の構成は、図4(a)、図4(b)に例示したものに限定されない。例えば図5(a)、図5(b)に示すように排気路24の排気口241の全周を囲む誘電体52aを設けて、例えば当該誘電体52aの形状に適合したフランジ部512を有するメッシュ部材51aを支持するようにしてもよい。処理容器20の底壁面とメッシュ部材51aとの間の隙間を誘電体52aによって埋めているので、この隙間を介して異物が排気路24へと落下、侵入することを防止できる。   Here, the configurations of the mesh member and the dielectric are not limited to those illustrated in FIGS. 4A and 4B. For example, as shown in FIGS. 5 (a) and 5 (b), a dielectric 52a surrounding the entire circumference of the exhaust port 241 of the exhaust path 24 is provided, and for example, a flange portion 512 adapted to the shape of the dielectric 52a is provided. The mesh member 51a may be supported. Since the gap between the bottom wall surface of the processing container 20 and the mesh member 51a is filled with the dielectric 52a, it is possible to prevent foreign matter from falling into and entering the exhaust path 24 through this gap.

また図6に示すように金属製のメッシュ部材53を排気口241の周辺部に接触させた状態で、例えば金属製のボルトで固定し、さらに当該メッシュ部材53の上方の空間を覆うように凸状に形成され、このメッシュ部材53とは離間して設けられた第2のメッシュ部材51bを設け、この第2のメッシュ部材51bを誘電体52上に固定した状態としてもよい。本例では第2のメッシュ部材51bは、請求項の第2の導電性部材に相当し、メッシュ部材53は請求項の第1の導電性部材に相当する。この場合、排気口241の周辺部に接触させた状態で設置されている既存のメッシュ部材53を備えた処理容器20内に、第2のメッシュ部材51bを追加することで対応ができるので、装置の改造が容易であるという利点がある。なお、本例においてメッシュ部材53と処理容器20との間に第2の誘電体を介在させてもよいことは勿論である。   Further, as shown in FIG. 6, in a state where the metal mesh member 53 is in contact with the peripheral portion of the exhaust port 241, the metal mesh member 53 is fixed with, for example, a metal bolt and further protruded so as to cover the space above the mesh member 53. A second mesh member 51b formed in a shape and spaced apart from the mesh member 53 may be provided, and the second mesh member 51b may be fixed on the dielectric 52. In this example, the second mesh member 51b corresponds to the second conductive member in the claims, and the mesh member 53 corresponds to the first conductive member in the claims. In this case, since the second mesh member 51b is added to the processing container 20 including the existing mesh member 53 that is installed in contact with the peripheral portion of the exhaust port 241, the apparatus can be used. There is an advantage that remodeling is easy. In this example, it is needless to say that a second dielectric may be interposed between the mesh member 53 and the processing container 20.

このほか、第1の導電性部材及び第2の導電性部材を設ける他の例として、例えばバッフル板25を第2の導電性部材とし、誘電体を介して処理容器20の側壁面にバッフル板25を固定する構成としてもよい。この場合には、例えば載置台3周囲の四隅に設けられた通流口251が導電性部材の開口部に相当するが、通流口251を設けずにバッフル板25自体に開口部を設けてもよく、また通流口251に加えてバッフル板25自体に開口部を設けてもよい。   In addition, as another example in which the first conductive member and the second conductive member are provided, for example, the baffle plate 25 is a second conductive member, and the baffle plate is formed on the side wall surface of the processing vessel 20 via a dielectric. 25 may be fixed. In this case, for example, the flow openings 251 provided at the four corners around the mounting table 3 correspond to the openings of the conductive member, but the baffle plate 25 itself is provided with openings without providing the flow openings 251. Alternatively, an opening may be provided in the baffle plate 25 itself in addition to the flow opening 251.

さらにまた本発明のカソード電極は、既述のプラズマ処理装置2のように載置台3に備わっている場合に限定されない。例えば上部電極4にプラズマ発生用の高周波電源部を接続し、この上部電極との間で容量結合を生じ得る位置、例えば処理容器の側壁部に排気口241を設けた上下2周波タイプ、側方排気型のプラズマ処理装置にも本発明は適用することができる。   Furthermore, the cathode electrode of the present invention is not limited to the case where the mounting table 3 is provided as in the plasma processing apparatus 2 described above. For example, a high frequency power source for plasma generation is connected to the upper electrode 4 and a position where capacitive coupling can occur with the upper electrode, for example, an upper and lower two frequency type in which an exhaust port 241 is provided on the side wall of the processing vessel, side The present invention can also be applied to an exhaust type plasma processing apparatus.

そして、本発明を適用できるカソード電極は、実施の形態中に例示した載置台3に限定されるものではない。例えば、セラミクス製の載置台に埋設したシート状電極をカソード電極としてもよいし、上部電極のみに高周波を印加するプラズマ処理装置や上部電極と下部電極の両方に高周波を印加する上下2周波タイプのプラズマ処理装置では、上部電極をカソード電極としてもよい。また、導電性部材の材質についても金属に限られるものではなく、例えば導電性樹脂や導電性セラミクスなどであってもよい。   And the cathode electrode which can apply this invention is not limited to the mounting base 3 illustrated in embodiment. For example, a sheet-like electrode embedded in a ceramic mounting table may be used as a cathode electrode, a plasma processing apparatus that applies a high frequency only to the upper electrode, or an upper and lower two-frequency type that applies a high frequency to both the upper electrode and the lower electrode. In the plasma processing apparatus, the upper electrode may be a cathode electrode. The material of the conductive member is not limited to metal, and may be, for example, a conductive resin or conductive ceramics.

また本発明のプラズマ処理装置はアルミニウム膜のエッチング処理のみならず、アルミニウム合金、チタン、チタン合金などの金属膜や絶縁膜、半導体膜やこれらの積層膜のエッチングにも適用される。またエッチング処理以外の例えばアッシングやプラズマCVD(Chemical Vapor Deposition)等、他の処理ガスを用いて被処理体に対して処理を行うプラズマ処理に適用することもできる。さらにまた被処理体としては角型の基板には限られず、FPD基板の他、半導体ウエハ等であってもよい。   The plasma processing apparatus of the present invention is applicable not only to etching an aluminum film, but also to etching a metal film such as an aluminum alloy, titanium, or titanium alloy, an insulating film, a semiconductor film, or a laminated film thereof. Further, the present invention can be applied to plasma processing for processing a target object using other processing gases such as ashing and plasma CVD (Chemical Vapor Deposition) other than etching processing. Furthermore, the object to be processed is not limited to a square substrate, and may be a semiconductor wafer in addition to an FPD substrate.

(実験1)
実施の形態中に示したエッチング処理装置2のモデル機を製作し、処理容器20とメッシュ部材との間に誘電体52を設けた場合と設けなかった場合とにおいて、載置台3に高周波電力を印加した際の載置台3-メッシュ部材間の状態を観察した。排気路24の排気口241には、図6に示した凸状の第2のメッシュ部材51b(アルミニウム製、以下、単に「メッシュ部材51b」と記す)を設け、処理ガスとしては酸素ガスを6000sccmで供給した。処理容器20内の圧力は13Pa(100mtorr)とし、第1の高周波電源部311からは13.56MHz、10kW、第2の高周波電源部312からは3.2MHz、10kWの高周波電力を印加した。
A.実験条件
(実施例1)
メッシュ部材51bと処理容器20の底壁面との間にアルミナ製の誘電体52を設けた。
(比較例1)
処理容器20の底壁面にメッシュ部材51bを直接固定し、両部材を電気的に導通した状態とした。
(Experiment 1)
The model machine of the etching processing apparatus 2 shown in the embodiment is manufactured, and the high frequency power is applied to the mounting table 3 in the case where the dielectric 52 is provided between the processing container 20 and the mesh member. The state between the mounting table 3 and the mesh member when applied was observed. A convex second mesh member 51b (made of aluminum, hereinafter simply referred to as “mesh member 51b”) shown in FIG. 6 is provided at the exhaust port 241 of the exhaust path 24, and oxygen gas is 6000 sccm as a processing gas. Supplied with. The pressure in the processing container 20 was 13 Pa (100 mtorr), and 13.56 MHz and 10 kW were applied from the first high frequency power supply unit 311 and 3.2 MHz and 10 kW were applied from the second high frequency power supply unit 312.
A. Experimental conditions
Example 1
A dielectric 52 made of alumina was provided between the mesh member 51 b and the bottom wall surface of the processing container 20.
(Comparative Example 1)
The mesh member 51b was directly fixed to the bottom wall surface of the processing container 20, and both members were in an electrically conductive state.

B.実験結果
(実施例1)における載置台3-メッシュ部材51b間の状態を撮影した結果を図7(a)に示し、(比較例1)の結果を図7(b)に示す。図7(a)に示した画像によれば、メッシュ部材51b近傍には顕著な発光は観察されず、(実施例1)の実験においては載置台3-メッシュ部材51b間の放電が抑制されていることが分かる。一方、図7(b)に示した画像によれば、メッシュ部材51bの上面に輝度の高い発光が確認され、(比較例1)の実験においては載置台3-メッシュ部材51b間で比較的強いグロー放電が発生していることが分かった。以上の実験結果から、メッシュ部材51bと処理容器20との間に誘電体52を設けた場合には、これを設けない場合と比較して載置台3-メッシュ部材51b間の放電を抑制できることが確認できた。
B. Experimental result
FIG. 7A shows the result of photographing the state between the mounting table 3 and the mesh member 51b in (Example 1), and FIG. 7B shows the result of (Comparative Example 1). According to the image shown in FIG. 7A, no remarkable light emission is observed in the vicinity of the mesh member 51b, and in the experiment of (Example 1), the discharge between the mounting table 3 and the mesh member 51b is suppressed. I understand that. On the other hand, according to the image shown in FIG. 7B, light emission with high luminance is confirmed on the upper surface of the mesh member 51b, and in the experiment of (Comparative Example 1), the mounting table 3 is relatively strong between the mesh member 51b. It was found that glow discharge occurred. From the above experimental results, when the dielectric 52 is provided between the mesh member 51b and the processing container 20, it is possible to suppress the discharge between the mounting table 3 and the mesh member 51b as compared with the case where this is not provided. It could be confirmed.

(実験2)
(実験1)と同じ条件において、メッシュ部材51b上にシリコンウエハの小片を置いて載置台3に高周波電力を7分間印加し、誘電体52を設けた場合と設けなかった場合とにおける当該期間中の小片の削れ量を計測した。
A.実験条件
(実施例2)
メッシュ部材51bと処理容器20との間に誘電体52を設けた。
(比較例2)
処理容器20の底壁面にメッシュ部材51bを直接固定し、両部材を電気的に導通した状態とした。
(Experiment 2)
Under the same conditions as in (Experiment 1), a small piece of silicon wafer was placed on the mesh member 51b and high frequency power was applied to the mounting table 3 for 7 minutes. The amount of shaving of each small piece was measured.
A. Experimental conditions
(Example 2)
A dielectric 52 is provided between the mesh member 51 b and the processing container 20.
(Comparative Example 2)
The mesh member 51b was directly fixed to the bottom wall surface of the processing container 20, and both members were in an electrically conductive state.

B.実験結果
(実施例2)、(比較例2)の結果によれば、誘電体52を設けた(実施例2)における小片の削れ量(741Å)は、誘電体52を設けなかった(比較例2)の削れ量(1,186Å)と比較しておよそ40%程度少なかった。これは、誘電体52を設けることにより載置台3-メッシュ部材51b間の放電の発生が抑制され、この周囲の部材に与える損傷、損耗を低減できた結果といえる。ここで(実施例2)及び(比較例2)の実験を行った比較的短い時間内では、エッチング処理装置2内でのアーキングは確認されなかった。しかしながら背景技術でも説明したように、実際の基板Sのエッチング工程においてはエッチング処理装置2を長期間連続運転するため、誘電体52を設けない場合には、この期間中に載置台3-上部電極4間の容量結合が不安定化してアーキングが発生する確率が高くなる。アーキングが発生した場合には、発生した部位の損傷、損耗は上述の(比較例2)に示した削れ量と比較して格段に大きいことが予想され、また、アーキングが発生しなくとも、図7(b)に示す画像のような発光が発生した状態においても、メッシュ部材表面の消耗は促進されてしまうことから、これらの点においても誘電体52を設ける効果は大きい。
B. Experimental result
According to the results of (Example 2) and (Comparative Example 2), the amount of chipping (741 mm) of the small piece in (Example 2) provided with the dielectric 52 did not provide the dielectric 52 (Comparative Example 2). Was about 40% less than the amount of shaving (1,186 mm). This can be said to be a result of the occurrence of electric discharge between the mounting table 3 and the mesh member 51b is suppressed by providing the dielectric 52, and damage and wear on the surrounding members can be reduced. Here, arcing in the etching processing apparatus 2 was not confirmed within a relatively short time when the experiments of (Example 2) and (Comparative Example 2) were performed. However, as described in the background art, in the actual etching process of the substrate S, the etching apparatus 2 is continuously operated for a long period of time. Therefore, when the dielectric 52 is not provided, the mounting table 3-the upper electrode during this period. The probability that arc coupling will occur due to destabilization of the capacitive coupling between 4 increases. When arcing occurs, the damage and wear of the generated site are expected to be much larger than the amount of wear shown in the above (Comparative Example 2), and even if arcing does not occur, Even in the state where light emission such as the image shown in FIG. 7B occurs, the consumption of the surface of the mesh member is promoted, so that the effect of providing the dielectric 52 is great also in these respects.

本発明の実施の形態に係わるエッチング処理装置の構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of the etching processing apparatus concerning embodiment of this invention. 前記エッチング処理装置の処理容器内部の構造を示す平面図である。It is a top view which shows the structure inside the processing container of the said etching processing apparatus. 前記処理容器の排気部付近の構造を示す拡大縦断面図である。It is an enlarged vertical sectional view showing the structure near the exhaust part of the processing container. 前記処理容器内に設けられているメッシュ部材及びその支持部材の平面図である。It is a top view of the mesh member provided in the said processing container, and its support member. メッシュ部材及びその支持部材の変形例を示す平面図である。It is a top view which shows the modification of a mesh member and its supporting member. メッシュ部材の第2の変形例を示す拡大縦断面図である。It is an expanded longitudinal cross-sectional view which shows the 2nd modification of a mesh member. 第1の実験に係わる実験結果を示す説明図である。It is explanatory drawing which shows the experimental result regarding a 1st experiment. 従来のエッチング処理装置の構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of the conventional etching processing apparatus. 前記従来のエッチング処理装置の等価回路を示す回路図である。It is a circuit diagram which shows the equivalent circuit of the said conventional etching processing apparatus.

符号の説明Explanation of symbols

S FPD基板(基板)
2 エッチング処理装置
3 載置台
4 上部電極
7 制御部
20 処理容器
21 側壁部
22 搬入出口
23 ゲートバルブ
24 排気路
25 バッフル板
32 誘電体
34 昇降ピン
35 昇降機構
40 ガスシャワーヘッド
41 上部電極ベース
42 ガス拡散空間
43 処理ガス供給路
44 処理ガス供給部
51、51a、51b
メッシュ部材
52、52a
誘電体
53 第2のメッシュ部材
241 排気口
242 排気路接続部
251 通流口
311 第1の高周波電源部
312 第2の高周波電源部
511 ボルト
512 フランジ部
S FPD substrate (substrate)
DESCRIPTION OF SYMBOLS 2 Etching apparatus 3 Mounting base 4 Upper electrode 7 Control part 20 Processing container 21 Side wall part 22 Carry-in / out port 23 Gate valve 24 Exhaust path 25 Baffle plate 32 Dielectric 34 Lifting pin 35 Lifting mechanism 40 Gas shower head 41 Upper electrode base 42 Gas Diffusion space 43 Process gas supply path 44 Process gas supply parts 51, 51a, 51b
Mesh members 52, 52a
Dielectric 53 Second mesh member 241 Exhaust port 242 Exhaust path connection unit 251 Flow port 311 First high frequency power supply unit 312 Second high frequency power supply unit 511 Bolt 512 Flange

Claims (12)

処理容器内に互いに対向して設けられたアノード電極及びカソード電極間に高周波電力を印加して処理ガスをプラズマ化し、被処理体に対してプラズマ処理を行うプラズマ処理装置において、
前記カソード電極周辺に配置され、前記処理ガスを排気する排気口と、
この排気口を覆い、当該排気口へ排気される処理ガスを通流させる開口部を備えた導電性部材と、
この導電性部材と前記処理容器の導電性の壁部との間に介在して設けられた誘電体と、を備えたことを特徴とするプラズマ処理装置。
In a plasma processing apparatus that applies high frequency power between an anode electrode and a cathode electrode that are provided to face each other in a processing container to convert a processing gas into plasma and perform plasma processing on an object to be processed,
An exhaust port disposed around the cathode electrode and exhausting the processing gas;
A conductive member that covers the exhaust port and has an opening through which the processing gas exhausted to the exhaust port flows;
A plasma processing apparatus comprising: a conductive material provided between the conductive member and a conductive wall of the processing container.
前記導電性部材は金属であり、前記誘電体はセラミクスであることを特徴とする請求項1に記載のプラズマ処理装置。   The plasma processing apparatus according to claim 1, wherein the conductive member is a metal, and the dielectric is ceramic. 前記導電性部材はメッシュ形状であることを特徴とする請求項1または2に記載のプラズマ処理装置。   The plasma processing apparatus according to claim 1, wherein the conductive member has a mesh shape. 前記排気口を覆い、当該排気口の周辺部に設けられた第1の導電性部材と、この第1の導電性部材の上方側空間を覆うように、かつ当該第1の導電性部材とは離間して設けられた第2の導電性部材と、を備え、前記導電性部材は第2の導電性部材であることを特徴とする請求項1に記載のプラズマ処理装置。   What is the first conductive member that covers the exhaust port and that is provided in the periphery of the exhaust port, and covers the upper space of the first conductive member, and the first conductive member 2. The plasma processing apparatus according to claim 1, further comprising a second conductive member provided to be spaced apart, wherein the conductive member is a second conductive member. 前記第1の導電性部材及び前記第2の導電性部材は金属であり、前記誘電体はセラミクスであることを特徴とする請求項4に記載のプラズマ処理装置。   The plasma processing apparatus according to claim 4, wherein the first conductive member and the second conductive member are metal, and the dielectric is ceramic. 前記第1の導電性部材及び前記第2の導電性部材はメッシュ形状であることを特徴とする請求項4または5に記載のプラズマ処理装置。   6. The plasma processing apparatus according to claim 4, wherein the first conductive member and the second conductive member have a mesh shape. 前記第1の導電性部材はメッシュ形状であり、前記第2の導電性部材は平板状であることを特徴とする請求項4または5に記載のプラズマ処理装置。   The plasma processing apparatus according to claim 4, wherein the first conductive member has a mesh shape, and the second conductive member has a flat plate shape. さらに、前記第1の導電性部材と前記処理容器の導電性の壁部との間に介在して設けられた第2の誘電体を備えていることを特徴とする請求項4ないし7に記載のプラズマ処理装置。   The second dielectric material provided between the first conductive member and a conductive wall portion of the processing container. Plasma processing equipment. 前記カソード電極及び排気口は、前記処理容器の下部に設けられていることを特徴とする請求項1ないし8のいずれか一つに記載のプラズマ処理装置。   The plasma processing apparatus according to claim 1, wherein the cathode electrode and the exhaust port are provided in a lower portion of the processing container. 前記被処理体は面積が4.0m以上の角型基板であることを特徴とする請求項1ないし9のいずれか一つに記載のプラズマ処理装置。 The plasma processing apparatus according to claim 1, wherein the object to be processed is a square substrate having an area of 4.0 m 2 or more. 前記ガスは負性ガスであることを特徴とする請求項1ないし10のいずれか一つに記載のプラズマ処理装置。   The plasma processing apparatus according to claim 1, wherein the gas is a negative gas. 前記プラズマ処理は、0.67Pa以上、27Pa以下の範囲内の圧力雰囲気で行われることを特徴とする請求項1ないし11のいずれか一つに記載のプラズマ処理装置。   The plasma processing apparatus according to claim 1, wherein the plasma processing is performed in a pressure atmosphere in a range of 0.67 Pa to 27 Pa.
JP2008091633A 2008-03-31 2008-03-31 Plasma processing equipment Active JP5217569B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008091633A JP5217569B2 (en) 2008-03-31 2008-03-31 Plasma processing equipment
KR1020090025456A KR101058310B1 (en) 2008-03-31 2009-03-25 Plasma processing equipment
TW98110467A TWI469213B (en) 2008-03-31 2009-03-30 Plasma processing device
CN2009101295926A CN101552188B (en) 2008-03-31 2009-03-31 Plasma processing apparatus
KR1020110023652A KR20110040806A (en) 2008-03-31 2011-03-17 Plasma processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008091633A JP5217569B2 (en) 2008-03-31 2008-03-31 Plasma processing equipment

Publications (2)

Publication Number Publication Date
JP2009246172A true JP2009246172A (en) 2009-10-22
JP5217569B2 JP5217569B2 (en) 2013-06-19

Family

ID=41156341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008091633A Active JP5217569B2 (en) 2008-03-31 2008-03-31 Plasma processing equipment

Country Status (4)

Country Link
JP (1) JP5217569B2 (en)
KR (2) KR101058310B1 (en)
CN (1) CN101552188B (en)
TW (1) TWI469213B (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010016021A (en) * 2008-07-01 2010-01-21 Tokyo Electron Ltd Plasma processing apparatus
JP2012238858A (en) * 2011-05-09 2012-12-06 Samsung Electronics Co Ltd Plasma device
JP2015072792A (en) * 2013-10-03 2015-04-16 東京エレクトロン株式会社 Plasma processing apparatus
US20150190831A1 (en) * 2013-12-31 2015-07-09 Shenzhen China Star Optoelectronics Technology Co., Ltd. Dry etcher and etching method of the same
JP2015216260A (en) * 2014-05-12 2015-12-03 東京エレクトロン株式会社 Plasma processing apparatus and exhaust structure for use therein
JP2017017180A (en) * 2015-07-01 2017-01-19 東京エレクトロン株式会社 Plasma processing apparatus and exhaust structure used therefor
JP2017533582A (en) * 2014-09-19 2017-11-09 北京北方華創微電子装備有限公司Beijing Naura Microelectronics Equipment Co., Ltd. Bearing device and semiconductor processing equipment
KR20210146797A (en) * 2020-05-27 2021-12-06 도쿄엘렉트론가부시키가이샤 Substrate processing apparatus and method for manufacturing same, and exhaust structure

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170071477A (en) * 2014-08-13 2017-06-23 고쿠리츠켄큐카이하츠호진 상교기쥬츠 소고켄큐쇼 Processing device for metal material
JP6570993B2 (en) * 2015-12-16 2019-09-04 東京エレクトロン株式会社 Plasma processing equipment
JP6394641B2 (en) * 2016-04-25 2018-09-26 トヨタ自動車株式会社 Plasma device
JP7232705B2 (en) * 2019-05-16 2023-03-03 東京エレクトロン株式会社 Plasma processing equipment
JP7500397B2 (en) * 2020-11-13 2024-06-17 東京エレクトロン株式会社 Plasma processing apparatus, its manufacturing method, and plasma processing method
US20240344199A1 (en) * 2023-04-11 2024-10-17 Applied Materials, Inc. Semiconductor processing chamber lid and coating

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0653177A (en) * 1992-03-26 1994-02-25 Toshiba Corp Plasma generator, surface treatment apparatus, and surface treatment method
JPH07245295A (en) * 1994-03-07 1995-09-19 Tokyo Electron Ltd Processing system
JPH0955374A (en) * 1995-06-08 1997-02-25 Tokyo Electron Ltd Plasma treatment apparatus
JPH11121437A (en) * 1997-10-14 1999-04-30 Sony Corp Vacuum processing apparatus
JP2005353812A (en) * 2004-06-10 2005-12-22 Tokyo Electron Ltd Device and method for plasma processing

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3238082B2 (en) * 1996-05-16 2001-12-10 シャープ株式会社 Electronic device manufacturing equipment
JP3647303B2 (en) * 1998-09-22 2005-05-11 キヤノン株式会社 Plasma processing apparatus and processing method using the same
US20030079983A1 (en) * 2000-02-25 2003-05-01 Maolin Long Multi-zone RF electrode for field/plasma uniformity control in capacitive plasma sources
TW511158B (en) * 2000-08-11 2002-11-21 Alps Electric Co Ltd Plasma processing apparatus and system, performance validation system thereof
US6706138B2 (en) * 2001-08-16 2004-03-16 Applied Materials Inc. Adjustable dual frequency voltage dividing plasma reactor
TW200300649A (en) * 2001-11-27 2003-06-01 Alps Electric Co Ltd Plasma processing apparatus, its driving method, matching circuit design system, and plasma processing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0653177A (en) * 1992-03-26 1994-02-25 Toshiba Corp Plasma generator, surface treatment apparatus, and surface treatment method
JPH07245295A (en) * 1994-03-07 1995-09-19 Tokyo Electron Ltd Processing system
JPH0955374A (en) * 1995-06-08 1997-02-25 Tokyo Electron Ltd Plasma treatment apparatus
JPH11121437A (en) * 1997-10-14 1999-04-30 Sony Corp Vacuum processing apparatus
JP2005353812A (en) * 2004-06-10 2005-12-22 Tokyo Electron Ltd Device and method for plasma processing

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010016021A (en) * 2008-07-01 2010-01-21 Tokyo Electron Ltd Plasma processing apparatus
JP2012238858A (en) * 2011-05-09 2012-12-06 Samsung Electronics Co Ltd Plasma device
KR101814013B1 (en) * 2011-05-09 2018-01-03 삼성디스플레이 주식회사 Plasma device
JP2015072792A (en) * 2013-10-03 2015-04-16 東京エレクトロン株式会社 Plasma processing apparatus
US20150190831A1 (en) * 2013-12-31 2015-07-09 Shenzhen China Star Optoelectronics Technology Co., Ltd. Dry etcher and etching method of the same
JP2015216260A (en) * 2014-05-12 2015-12-03 東京エレクトロン株式会社 Plasma processing apparatus and exhaust structure for use therein
TWI657476B (en) * 2014-05-12 2019-04-21 日商東京威力科創股份有限公司 Plasma processing device and exhaust structure used by same
JP2017533582A (en) * 2014-09-19 2017-11-09 北京北方華創微電子装備有限公司Beijing Naura Microelectronics Equipment Co., Ltd. Bearing device and semiconductor processing equipment
JP2017017180A (en) * 2015-07-01 2017-01-19 東京エレクトロン株式会社 Plasma processing apparatus and exhaust structure used therefor
TWI702650B (en) * 2015-07-01 2020-08-21 日商東京威力科創股份有限公司 Plasma processing device and exhaust structure used here
KR20210146797A (en) * 2020-05-27 2021-12-06 도쿄엘렉트론가부시키가이샤 Substrate processing apparatus and method for manufacturing same, and exhaust structure
KR102597893B1 (en) 2020-05-27 2023-11-03 도쿄엘렉트론가부시키가이샤 Substrate processing apparatus and method for manufacturing same, and exhaust structure

Also Published As

Publication number Publication date
JP5217569B2 (en) 2013-06-19
CN101552188A (en) 2009-10-07
KR101058310B1 (en) 2011-08-22
CN101552188B (en) 2011-06-22
KR20090104679A (en) 2009-10-06
TWI469213B (en) 2015-01-11
KR20110040806A (en) 2011-04-20
TW201003774A (en) 2010-01-16

Similar Documents

Publication Publication Date Title
JP5217569B2 (en) Plasma processing equipment
JP6869034B2 (en) Plasma processing equipment
TWI505753B (en) Inductively Coupled Plasma Processing Unit
TWI523099B (en) Plasma processing apparatus and method of manufacturing semiconductor device
JP5317424B2 (en) Plasma processing equipment
TWI559357B (en) Electrode generation electrode and plasma processing device
JP6423706B2 (en) Plasma processing equipment
US8864936B2 (en) Apparatus and method for processing substrate
JP5064707B2 (en) Plasma processing equipment
KR101720670B1 (en) Substrate processing apparatus, cleaning method thereof and storage medium storing program
KR101176745B1 (en) Plasma process apparatus
KR100876010B1 (en) Plasma Etching Method and Computer-readable Storage Media
JP2007242474A (en) Plasma treatment device
JP5141520B2 (en) Plasma processing equipment
JP6769127B2 (en) Plasma processing equipment
JP2018026507A (en) Plasma etching method and plasma etching system
JP4546303B2 (en) Plasma processing equipment
CN115172163A (en) Plasma etching method
CN104517797B (en) Plasma processing apparatus
US20070221332A1 (en) Plasma processing apparatus
JP2011146409A (en) Plasma processing apparatus and plasma processing method
JP2004228182A (en) Inductively coupled plasma treatment apparatus
JP2006135029A (en) Dry etching device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5217569

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250