JP2017011352A - 撮像装置、光量変化特性の算出方法、プログラム及び記憶媒体 - Google Patents

撮像装置、光量変化特性の算出方法、プログラム及び記憶媒体 Download PDF

Info

Publication number
JP2017011352A
JP2017011352A JP2015121911A JP2015121911A JP2017011352A JP 2017011352 A JP2017011352 A JP 2017011352A JP 2015121911 A JP2015121911 A JP 2015121911A JP 2015121911 A JP2015121911 A JP 2015121911A JP 2017011352 A JP2017011352 A JP 2017011352A
Authority
JP
Japan
Prior art keywords
photometric
value
frequency
sad
evaluation value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015121911A
Other languages
English (en)
Other versions
JP6525757B2 (ja
Inventor
菅原 淳史
Junji Sugawara
淳史 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2015121911A priority Critical patent/JP6525757B2/ja
Priority to US15/181,654 priority patent/US9800792B2/en
Priority to CN201610439738.7A priority patent/CN106257918B/zh
Publication of JP2017011352A publication Critical patent/JP2017011352A/ja
Application granted granted Critical
Publication of JP6525757B2 publication Critical patent/JP6525757B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/71Circuitry for evaluating the brightness variation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/745Detection of flicker frequency or suppression of flicker wherein the flicker is caused by illumination, e.g. due to fluorescent tube illumination or pulsed LED illumination
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/53Control of the integration time
    • H04N25/531Control of the integration time by controlling rolling shutters in CMOS SSIS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/745Circuitry for generating timing or clock signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)
  • Exposure Control For Cameras (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

【課題】撮像時の光量変化特性を高精度に検知する。【解決手段】デジタルカメラ100での撮像時に、測光センサ108により一定の周期で測光を複数回行い(S101)、測光結果に基づいてn回目とn+m回目の各測光値の類似性を示す評価値(SAD(m))を算出し(S102)、算出した評価値から周波数100Hzのフリッカがあるか否かを判定する(S103)。測光周期を1.667msとした場合、n回目とn+6回目とは同位相となり、n回目とn+3回目とはほぼ逆位相となるため、ゼロに近い小さい値を取るSAD(6)と、比較的大きな値を取るSAD(3)とを求め、SAD(6)とSAD(3)との関係から100Hzフリッカ環境下か否かを判定する。同様に、ゼロに近い小さい値を取るSAD(5)と比較的大きな値を取るSAD(3)との関係から120Hzフリッカ環境下か否かを判定する。【選択図】図4

Description

本発明は、撮像素子を備える撮像装置、撮像時の光量変化特性の算出方法、光量変化特性の算出方法をコンピュータに実行させるプログラム及び記憶媒体に関する。
近年、デジタルカメラ等の撮像装置では、撮像素子の高感度化に伴い、室内のような比較的暗い環境下においても高速のシャッタ速度でブレのない写真を撮像することができるようになってきている。ここで、室内光源として普及している一般的な蛍光灯では、電源(一般的に、商用電源)の周波数の影響により、周期的に照明光がゆらぐフリッカと呼ばれる現象が生じる。そして、フリッカが生じる光源(以下「フリッカ光源」と記す)下での高速シャッタ撮像では、フリッカの影響によって、フレーム毎に画像の露出や色温度にばらつきが生じてしまい、また、1フレーム内で露出むらや色むらが発生してしまうことがある。
このような問題に対して、照明光のフリッカを検知し、露光時間の中心が照明光の光量が極大値を示すタイミングと略一致するように撮像タイミングを調節する技術が提案されている。例えば、特許文献1に記載された技術では、フリッカとその周波数を検知するために、先ず、600fps以上の高速なフレームレートで複数の画像を取得(撮像)し、各フレーム画像から輝度評価値を求める。続いて、輝度評価値の時間的変化を2値化処理し、2値化処理後の輝度評価値が0(ゼロ)から1へ立ち上がるタイミングの間隔が10ms(ミリ秒)であれば100Hzのフリッカがあり、8.4msであれば120Hzのフリッカがあると判定している。
特開2012−120132号公報
上記特許文献1に開示された技術は、フリッカ光量がsinカーブを描くように理想的に変化する場合には有用である。しかし、フリッカ光量が、電源や点灯(照明)装置の特性等に起因して不規則に変化した場合には、正しくフリッカとその周波数を判定することができない可能性がある。
本発明は、撮像時の光量変化特性を高精度に検知することができる撮像装置を提供することを目的とする。
本発明に係る撮像装置は、測光手段と、前記測光手段による測光値に基づいて測光対象からの光の光量変化特性を算出する算出手段と、前記算出手段が算出した光量変化特性に所定の周期での変化があるか否かを判定する判定手段と、を備える撮像装置であって、前記測光手段は、一定の周期で測光を複数回行い、前記算出手段は、前記測光手段により測光を複数回行って得られた複数の測光値のうち、所定の測光値と該所定の測光値から第1の間隔にある測光値とから第1の評価値を算出すると共に、前記所定の測光値から第2の間隔にある測光値と前記所定の測光値とから第2の評価値を算出し、前記判定手段は、前記第1の評価値および前記第2の評価値に基づいて前記光量変化特性における第1の周波数の周期での変化の有無を判定し、前記第1の間隔は、前記第1の周波数の同位相に近い間隔に設定され、前記第2の間隔は、前記第1の周波数の逆位相に近い間隔に設定されることを特徴とする。
本発明によれば、撮像時の光量変化特性を高精度に検知することが可能となる。
本発明の実施形態に係るデジタルカメラの概略構成を示す図である。 図1に示すデジタルカメラで実行される第1実施形態に係るフリッカ検知方法のフローチャートである。 周波数が50Hz,60Hzの各電源で点灯させたフリッカ光源に対するフリッカ検知のための蓄積、読み出し及び測光値の推移を示す図である。 図2のステップS103において、SAD(6),SAD(5),SAD(3)の値に基づき周波数判定を実行するために用いられる領域マップである。 撮像対象からの光の種類を判定するためのテーブルである。 図2のステップS103において、SAD(10),SAD(12)の値に基づき周波数判定を実行するために用いられる領域マップである。 図1に示すデジタルカメラで実行される第2実施形態に係るフリッカ検知方法のフローチャートである。 実際に観測される、撮像対象からの光の光量変化を示す波形例である。 図7のステップS205において周波数判定を実行するために用いられる領域マップである。
以下、本発明の実施形態について、添付図面を参照して詳細に説明する。ここでは、本発明に係る撮像装置として、所謂、デジタルカメラを取り上げることとする。但し、本発明はこれに限定されるものではなく、カメラ機能を備える各種の電子機器であってもよい。例えば、本発明に係る撮像装置は、携帯電話やスマートフォン等のカメラ機能付き携帯通信端末、カメラ機能付き携帯型コンピュータ、カメラ機能付き携帯ゲーム機等であってもよい。
図1は、本発明の実施形態に係るデジタルカメラ100の概略構成を示す図である。デジタルカメラ100は、大略的に、カメラ本体100A及びレンズ鏡筒100Bから構成される。撮像光学系であるレンズ鏡筒100Bは、カメラ本体100Aと一体となっていてもよいし、カメラ本体100Aに対して着脱自在であってもよい。以下、撮像対象からの光(撮像時の環境光)の光量変化特性を算出することを「フリッカ検知」と称呼して説明を行うものとする。
カメラ本体100Aは、CPU101、メモリ102、撮像素子103、シャッタ104、ハーフミラー105、ピント板106、表示素子107及び測光センサ108を備える。また、カメラ本体100Aは、ペンタプリズム109、不図示の光学ファインダ、AFセンサ110、AFミラー111、ICPU112及びメモリ113を備える。レンズ鏡筒100Bは、複数のレンズ121と、不図示の絞りと、LPU122とを備える。
CPU101は、デジタルカメラ100の各部を制御する演算処理装置である。メモリ102は、CPU101が実行するプログラムや変数等を格納するROMと、CPU101がプログラムを展開する作業領域や一時的な画像データ等の記憶領域を有するRAMを含む。LPU122は、鏡筒内CPUであり、被写体に対する距離情報等をCPU101へ送信し、また、CPU101からの指令に基づいてレンズ121の駆動制御等を行う。撮像素子103は、赤外カットフィルタやローパスフィルタ等を含むCMOS等の光電変換素子からなるイメージセンサである。シャッタ104は、非撮影時には閉じて撮像素子103を遮光し、撮影時には開いてレンズ鏡筒100Bを通過した入射光(光束)を撮像素子103へ導く。
撮像素子103の前面側(被写体側)に設けられたハーフミラー105は、非撮影時にレンズ121を通して入射する光の一部を反射して、ピント板106に光学像を結像させる。表示素子107は、PN液晶等のAF測距枠を表示し、被写体のどの位置に対してAF動作の制御が行われているかを、光学ファインダを通じて撮影者(使用者)に示す。測光センサ108は、CCD或いはCMOS等の光電変換素子からなり、露出制御のために測光対象(被写界)に対する測光を行い、測光対象の明るさ(輝度)を測定する。なお、測光対象は、一般的には、撮像対象である被写体であるが、光源を測光対象とすることもできる。以下、測光対象は、撮像対象であるとして説明する。
ペンタプリズム109は、ピント板106の被写体像を測光センサ108と光学ファインダへ導く。なお、測光センサ108は、ペンタプリズム109を介してピント板106に結像された被写体像を斜め方向の位置から見ている。AFミラー111は、レンズ鏡筒100Bから入射してハーフミラー105を通過した光束の一部をAFセンサ110へ導く。AFセンサ110は、受光した光束に基づいて、被写体に対する自動合焦のための測距を行う。
ICPU112は、測光センサ108の駆動制御や測光演算、顔検知演算や追跡演算等の被写体認識処理、フリッカ検知演算等の各種の演算処理を行うCPUである。メモリ113は、ICPU112が実行するプログラムや変数等を格納するROMと、ICPU112がプログラムを展開する作業領域や一時的に演算結果を記憶するRAMを含む。
なお、図1には不図示であるが、デジタルカメラ100は、電源スイッチ及びシャッタスイッチを備える。シャッタスイッチは、半押し(第1ストローク)でオンするスイッチSW1と、全押し(第2ストローク)でオンするスイッチSW2とを備える。スイッチSW1がオンすることで、測光センサ108からの出力に基づく露出制御とAFセンサ110からの出力に基づく自動合焦制御が実行される。また、スイッチSW2がオンすることで、本撮影が行われる。本撮影では、撮像素子103に結像した光学像が撮像素子103によってアナログ電気信号に変換され、そのアナログ電気信号が不図示の画像処理手段によりデジタル画像データに変換され、不図示のメモリカード等の記憶手段に記憶される。
<フリッカ検知方法の第1実施形態>
図2は、デジタルカメラ100で実行される第1実施形態に係るフリッカ検知方法のフローチャートである。図2に示す各処理は、CPU101がメモリ102のROMに格納されたプログラムをRAMに展開することにより、デジタルカメラ100の各構成要素の動作を制御することにより実現される。ステップS101においてCPU101は、測光センサ108によるフリッカ検知のための電荷蓄積(以下、単に「蓄積」という)と、蓄積した電荷の読み出し(以下、単に「読み出し」という)を行う。
図3(a),(b)はそれぞれ、周波数が50Hz,60Hzの各電源で点灯させたフリッカ光源に対するフリッカ検知のための蓄積、読み出し及び測光値の推移を示す図である。フリッカ検知では、測光センサ108による測光を、所定の周期で複数回行って、複数の測光値を取得する。具体的には、予想されるフリッカの周波数は、商用電源の周波数である50Hzと60Hzに基づき100Hz(第1の周波数)又は120Hz(第2の周波数)である。そこで、図3の各図に示すように、約600fps(=約1.667msミリ秒)の周期で、蓄積・読み出しを連続して12回行う。この600fpsという周期は、予想されるフリッカの周波数(100Hz又は120Hz)の公倍数周波数となっている。そのため、フリッカ検知で連続的な画像データを得るための撮像の蓄積時間は、予想されるフリッカ光源の光量変化周期の短い方の時間である1/120秒よりも短い蓄積時間となる。
周波数が50Hzの電源で点灯させたフリッカ光源(フリッカの周波数は100Hz)が存在する場合(以下「100Hzフリッカ環境」という)、フリッカ光源の光量変化の2周期分としてAE(1)〜AE(12)の測光値が得られる。また、周波数が60Hzの電源で点灯させたフリッカ光源(フリッカの周波数は120Hz)が存在する場合(以下「120Hzフリッカ環境」という)、フリッカ光源の光量変化の2周期分としてAE(1)〜AE(10)の測光値が得られる。なお、図3には、n回目の蓄積が「蓄積n」、蓄積nの読み出しが「読出n」、読出nの結果から得られる測光値が「AE(n)」で示されている。また、測光値AE(n)は、蓄積期間中の中央値で代表させている。
続いて、ステップS102においてCPU101は、フリッカの周波数を判定するために使用する評価値であるSAD(m)を、下記式1により算出する。なお、SADは、Sum of Absolute Difference の略であり、類似度を表す指標の1つで、例えば、パターンマッチングの分野等で用いられる。「m」は、本実施形態では、12回の測光を行ったうちのn回目の測光値AE(n)に対して何回先の測光値との類似度を算出するか、を意味する数値である。したがって、SAD(m)は、(1.667×m)ms経過後の測光値AE(n+m)との類似度を算出する。
Figure 2017011352
式1から分かるように、類似度が高くなるにしたがってSAD(m)の値は小さくなる。例えば、100Hzフリッカ環境下でのフリッカ周期(10ms)と測光周期(1.667ms)との関係は、10/1.667≒6、であり、フリッカ周期はフレーム周期の整数倍とみなせる。つまり、100Hzフリッカ環境において、10msずれたタイミング(第1の間隔)での測光値は、完全な同位相の関係となる。この場合、図3(a)に示すように、蓄積タイミングによらずに6回周期で略同じ測光値が得られ、AE(n)≒AE(n+6)、の関係となる。この性質より、100Hzフリッカ環境下でSAD(6)(第1の評価値)を算出すると、SAD(6)≒0となる。したがって、簡易的には、所定の閾値SAD_50を設定し、SAD(6)≦SAD_50、の関係が満たされれば、100Hzフリッカ環境下にあることを検知することができる。
ここで、本実施形態では、デジタルカメラ100の撮像環境が100Hzフリッカ環境下にあることをより高精度に検知するために、SAD(3)(第2の評価値)を算出する。SAD(3)は、1.667×3=5ms経過後の測光値との類似度を示す値となる。100Hzフリッカ環境において、5msずれたタイミング(第2の間隔)での測光値は完全な逆位相の関係となるため、SAD(3)はSAD(6)に対して非常に大きな値となる。
同様の考え方に基づき、120Hzフリッカ環境下では、SAD(5)(第3の評価値)とSAD(3)(第4の評価値)とを算出する。120Hzフリッカ環境下では、点灯周期は8.333msであるため、AE(n)≒AE(n+5)となり、SAD(5)≒0となる。つまり、120Hzフリッカ環境において、8.333msずれたタイミング(第3の間隔)での測光値は、同位相の関係となる。なお、簡易的には、所定の閾値SAD_60を設定し、SAD(5)≦SAD_60、の関係が満たされれば、120Hzフリッカ環境下にあることを検知することができる。
ここで、120Hzフリッカ環境下では、完全に逆位相の関係になるのは4.16ms経過後であるため、4.16ms経過後の波形との類似度を判定するのが理想的である。しかし、4.16msはフレーム周期1.667msの整数倍ではないため、これに比較的近い値として、5ms(第4の間隔)の経過後の波形との類似度を示すSAD(3)の値を用いる。120Hzフリッカ環境下でも、SAD(3)は逆位相に近い関係で測光値変化の類似度を示すため、SAD(3)はSAD(5)に対して非常に大きな値となる。
こうして、ステップS102においてSAD(6),SAD(5),SAD(3)の値を算出した後、ステップS103においてCPU101は、周波数判定を行う。この周波数判定について、図4を参照して説明する。図4は、SAD(6),SAD(5),SAD(3)の値に基づき、ステップS103で周波数判定を実行するために用いられる領域マップである。図4(a)は100Hzフリッカ環境か否かの判定に用いられる領域マップ400であり、図4(b)は120Hzフリッカ環境か否かの判定に用いられる領域マップ410である。
上述の通り、100Hzフリッカ環境下では、SAD(3)はSAD(6)に対して非常に大きな値となる。よって、横軸にSAD(3)を、縦軸にSAD(6)を取った平面では、100Hzフリッカ環境は、相対的に右下の領域にプロットされる。そこで、100Hzフリッカ環境であると判定する領域と100Hzフリッカ環境ではないと判定する領域とを、領域マップ400のように設定する。これにより、SAD(3)とSAD(6)の値のプロット位置から、高い精度で100Hzフリッカ環境である否かを判定することができる。
同様に、横軸にSAD(3)を、縦軸にSAD(5)を取った平面において、120Hzフリッカ環境は、相対的に右下の領域にプロットされる。よって、120Hzフリッカ環境であると判定する領域と120Hzフリッカ環境ではないと判定する領域とを、領域マップ410のように設定する。これにより、SAD(3)とSAD(5)の値のプロット位置から、高い精度で120Hzフリッカ環境である否かを判定することができる。なお、領域マップ400,410は一例であって、領域を分割する境界線の位置、傾き、屈曲点等は、図示の限りではない。
領域マップ400,410を用いて、フリッカ環境の有無、また、フリッカ環境下である場合に100Hzフリッカ環境かであるか120Hzフリッカ環境下であるかを総合的に判定する。図5は、撮像対象からの光の種類を判定するためのテーブルである。図5中の「DC」は、フリッカ環境になく、太陽光等の定常光による撮像環境であることを示している。
定常光の場合、測光値は時間的に変化しないため、AE(1)≒AE(2)≒AE(3)≒・・・・・≒AE(12)、となる。つまり、SAD(6)≒SAD(5)≒SAD(3)≒0、となるため、定常光環境では、領域マップ400,410の原点付近にプロットが得られることとなる。したがって、図4(a)による判定結果は「100Hzでない」となり、図4(b)の判定結果は「120Hzでない」となるため、図5のテーブルでは、右下欄の「DC」と判定される。
図5のテーブルの左上欄は、100Hzフリッカ環境であり、且つ、120Hzフリッカ環境であると判定される場合である。この判定結果は、通常は得られることはないが、被写体の移動やデジタルカメラ100のパンニング動作等によってAE(1)〜AE(12)を取得中の撮像対象(被写体)が同じではない場合に得られることがある。この場合には、フリッカ検知をエラー終了させるために「DC」判定としている。この場合、エラー終了したことを、光学ファインダを通してユーザ(撮影者)に知らせる構成としてもよい。図5のテーブルの右上欄は、120Hzフリッカ環境であると判定され、左下欄は100Hzフリッカ環境であると判定される。このようにしてフリッカの周期を判断することで、高い精度でフリッカを検知することができる。
次に、上述したフリッカ検知方法の変形例について説明する。この変形例は、図2に示したフローチャートの各ステップでの処理内容を変更するもので、処理の流れは図2のフローチャートと同じである。よって、以下、図2のフローチャートを引用し、各ステップでの処理内容について説明する。
ステップS101においてCPU101は、測光センサ108によるフリッカ検知のための蓄積と読み出しを一定の周期で行う。ここでは、1.667ms(600fps)の周期で18回の蓄積と読み出しを行い、AE(1)〜AE(18)を取得する。
続いて、ステップS102においてCPU101は、SAD(12),(10)の2つの値のみを算出する。次いで、ステップS103においてCPU101は、SAD(12),(10)の値に基づき、撮像対象からの光の種類を判定する。ここで、SAD(12)は、20ms(=1.667×12)経過後の測光値との類似度を示す値となる。よって、周期が10msの100Hzフリッカ環境では、丁度同位相のタイミングであるから、SAD(12)≒0となる。一方、周期が8.33msの120Hzフリッカ環境では、20ms経過後のタイミングは、位相で表すと144度のずれに相当し、逆位相に近いタイミングとなるため、SAD(12)の値は相対的に大きな値となる。このように、SAD(12)の値は、100Hzフリッカ環境では小さく、120Hz環境では大きな値を取る。
同様に、SAD(10)は、16.67ms(=1.667×10)経過後の測光値との類似度を示す値となる。よって、周期が8.33msの120Hzフリッカ環境下では、丁度、同位相のタイミングであるから、SAD(10)≒0となる。一方、周期が10msの100Hzフリッカ環境下では、16.67ms経過後のタイミングは、位相で表すと120度のずれに相当し、SAD(10)の値は相対的に大きな値となる。このように、SAD(10)の値は、100Hzフリッカ環境下では大きな値を取り、120Hz環境下では小さな値を取る。
図6は、SAD(10),(12)の値に基づき、ステップS103で周波数判定を実行するために用いられる領域マップ420であり、横軸にSAD(12)の値が取られ、縦軸にSAD(10)の値が取られている。100Hzフリッカ環境下では、図6の領域マップの左上領域にプロットが得られ、120Hzフリッカ環境下では領域マップ420の右下領域にプロットが得られる。よって、図6に示すように100Hzフリッカ環境(図中の「100Hz」)、120Hzフリッカ環境(図中の「120Hz」)及びDCの各領域を設定しておき、算出したSAD(10),(12)の値を領域マップ420と照合する。これにより、撮像対象からの光の種類(光量変化周期)を高精度に判定することができる。
<フリッカ検知方法の第2実施形態>
図7は、デジタルカメラ100で実行される第2実施形態に係るフリッカ検知方法のフローチャートである。図7に示す各処理は、CPU101がメモリ102のROMに格納されたプログラムをRAMに展開することにより、デジタルカメラ100の各構成要素の動作を制御することにより実現される。
ステップS201においてCPU101は、測光センサ108によるフリッカ検知のための蓄積と読み出しを行う。ここでは、約1.667ms(600fps)の周期で24回の蓄積と読み出しを連続して行い、AE(1)〜AE(24)を取得する。続くステップS202においてCPU101は、デジタルカメラ100の電源投入後、初めてのフリッカ検知動作であるかを判定する。CPU101は、初回のフリッカ検知である場合(S202でYES)、処理をステップS203へ進め、初回のフリッカ検知ではない場合(S202でNO)、処理をステップS206へ進める。
ステップS203においてCPU101は、複数の評価値(SAD(m))を算出する。具体的には、SAD(5),SAD(10),SAD(15),SAD(6),SAD(12),SAD(18),SAD(3)の7つ値を算出する。その理由について、図8を参照して説明する。図8は、実際に観測される、撮像対象からの光の光量変化を示す波形例であり、120Hzフリッカ環境で観測されたものである。
この場合、周波数120Hzの周期SAD(5),SAD(10),SAD(15)の値はいずれも、ゼロ(0)に近い小さな値を取ることが期待される。しかし、光量変化の振幅に着目すると、振幅の大きな山と小さな山が交互に現れていることが分かる。この場合、2周期(16.67ms)経過後の波形との類似度を求めるSAD(10)が、SAD(5)やSAD(15)よりも相対的によりゼロ(0)に近い値となる。よって、120Hzフリッカ環境であるか否かを判定するパラメータとしては、SAD(10)が最も適切であると考えられる。
これに対して、仮に光量が3つの山毎に同じ振幅の山が現れるように変化する波形であった場合、SAD(5),SAD(10),SAD(15)の中でSAD(15)が最もゼロ(0)に近い値となる。したがって、この場合には、120Hzフリッカ環境であるか否かを判定するパラメータとしてはSAD(15)が最も適切なものとなる。このように、3種の評価値(SAD(5),SAD(10),SAD(15))を算出して、最適な評価値(最小値となる評価値)を選択することにより、図8に示す特徴を有する光量変化に対するフリッカ環境の判定をより高精度に行うことができる。
同様に、100Hzフリッカ環境であるか否かを判定するために、SAD(6),SAD(12),SAD(18)を算出する。図8のような、振幅の大きな山と小さな山が交互に現れるような100Hzの波形であれば、SAD(6),SAD(12),SAD(18)のうち、SAD(12)が最もゼロ(0)に近い値となる。
更に、第1実施形態と同様に、100Hzフリッカ環境と120Hzフリッカ環境のいずれでも逆位相に近い関係で測光値変化の類似度を示すSAD(3)を算出する。なお、ここでは、ステップS201においてAE(24)までの値しか取得していないため、SAD(18)までしか算出することができない。これに対して、ステップS201でのフリッカ検知のための蓄積・読み出し回数を増やして、SAD(24)やSAD(30)等を算出して、最も小さい値を取るものを120Hzフリッカ環境であるか否かを判定するパラメータとして採用するようにしてもよい。
ステップS203の後のステップS204においてCPU101は、ステップS203で算出した評価値の中から、フリッカ検知に最も適切な評価値(最小値となる評価値と、これと逆位相の関係となる評価値)を決定する。本実施形態では、上述したように、SAD(10),SAD(12),SAD(3)が選択される。
続いてステップS205においてCPU101は、周波数判定を行う。図9は、ステップS205において周波数判定を実行するために用いられる領域マップである。図9(a)の領域マップ430は、100Hzフリッカ環境か否かの判定に用いられ、図9(b)の領域マップ440は、120Hzフリッカ環境か否かの判定に用いられる。
領域マップ430では、横軸にSAD(3)が、縦軸にSAD(6),SAD(12),SAD(18)の中の最小値が取られており、ここでは、SAD(12)が領域マップ430中のどの領域にプロットされるかで100Hzフリッカ環境か否かが判定される。領域マップ440では、横軸にSAD(3)が、縦軸にSAD(5),SAD(10),SAD(15)の中の最小値が取られており、ここでは、SAD(10)が領域マップ440中のどの領域にプロットされるかで120Hzフリッカ環境か否かが判定される。領域マップ430,440による判定結果は、第1実施形態と同様に図5のテーブルに統合されて、撮像対象からの光の種類(光量変化周期)が最終的に判定される。ステップS205により本処理は終了となる。
CPU101は、デジタルカメラ100の電源投入後の2回目以降のフリッカ検知動作である場合に、処理をステップS202からステップS206へ進める。ステップS206においてCPU101は、ステップS204で決定した評価値の時間間隔で評価値を算出する。したがって、上記説明に従って、SAD(10),SAD(12)と、これらと逆位相の関係となるSAD(3)が算出される。このような処理を行う理由は、以下の通りである。
即ち、図8の光量変化を示す120Hzフリッカ環境下において最初のフリッカ検知が行われたとき、ステップS204では、SAD(5),SAD(10),SAD(15)のうち最も値がゼロ(0)に近いSAD(10)が最適な評価値として決定されている。ここで、2回目以降のフリッカ検知時における光量変化の波形は、初回のフリッカ検知時から変わっていないことが期待されるので、2回目以降のフリッカ検知ではSAD(10)のみを算出する。そして、SAD(10)は、120Hzフリッカ環境下での2周期先の測光値との類似度を示すものであるから、100Hzフリッカ環境下であるか否かを検知するための評価値としても、同様に、2周期先との類似度を算出するSAD(12)を用いる。よって、ステップS206では、SAD(10)及びSAD(12)と、これらと逆位相の関係にあるSAD(3)のみを算出することとし、これにより算出処理時間を短縮することができる。ステップS206の終了後には、処理はステップS205へ進められて、周波数判定が行われる。
<その他の実施形態>
以上、本発明をその好適な実施形態に基づいて詳述してきたが、本発明はこれら特定の実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の様々な形態も本発明に含まれる。
本発明は、上述の実施形態の1以上の機能を実現するプログラムをネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサがプログラムを読み出し、実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
100 デジタルカメラ
100A カメラ本体
100B レンズ鏡筒
101 CPU
102,113 メモリ
103 撮像素子
108 測光センサ
112 ICPU
122 LPU

Claims (12)

  1. 測光手段と、
    前記測光手段による測光値に基づいて測光対象からの光の光量変化特性を算出する算出手段と、
    前記算出手段が算出した光量変化特性に所定の周期での変化があるか否かを判定する判定手段と、を備える撮像装置であって、
    前記測光手段は、一定の周期で測光を複数回行い、
    前記算出手段は、前記測光手段により測光を複数回行って得られた複数の測光値のうち、所定の測光値と該所定の測光値から第1の間隔にある測光値とから第1の評価値を算出すると共に、前記所定の測光値から第2の間隔にある測光値と前記所定の測光値とから第2の評価値を算出し、
    前記判定手段は、前記第1の評価値および前記第2の評価値に基づいて前記光量変化特性における第1の周波数の周期での変化の有無を判定し、
    前記第1の間隔は、前記第1の周波数の同位相に近い間隔に設定され、
    前記第2の間隔は、前記第1の周波数の逆位相に近い間隔に設定されることを特徴とする撮像装置。
  2. 前記第1の間隔は、前記第1の周波数の周期の整数倍であることを特徴とする請求項1に記載の撮像装置。
  3. 前記算出手段は、前記測光手段により測光を複数回行って得られた複数の測光値のうち、所定の測光値と該所定の測光値から第3の間隔にある測光値とから第3の評価値を算出すると共に、前記所定の測光値と前記所定の測光値から第4の間隔にある測光値とから第4の評価値を算出し、
    前記第3の間隔は、前記第1の周波数とは異なる第2の周波数の同位相に近い間隔に設定され、
    前記第4の間隔は、前記第2の周波数の逆位相に近い間隔に設定され、
    前記判定手段は、さらに前記第3の評価値および前記第4の評価値に基づいて、前記光量変化特性における前記第2の周波数の周期での変化の有無を判定することを特徴とする請求項1又は2に記載の撮像装置。
  4. 前記第3の間隔は、前記第2の周波数の周期の整数倍であることを特徴とする請求項3に記載の撮像装置。
  5. 前記第1の間隔は、前記第1の周波数の同位相に近く、且つ、前記第1の周波数とは異なる第2の周波数の逆位相に近い間隔に設定され、
    前記第2の間隔は、前記第2の周波数の同位相に近く、前記第1の周波数の逆位相に近い間隔に設定され、
    前記判定手段は、前記第1の評価値および前記第2の評価値に基づいて、前記光量変化特性における前記第1の周波数での変化の有無と前記第2の周波数の変化の有無を判定することを特徴とする請求項1又は2に記載の撮像装置。
  6. 前記第1の評価値および前記第2の評価値はSAD値であり、
    前記算出手段は、前記第1の周波数の周期の所定の整数倍の間隔で複数の前記第1の評価値を算出し、
    前記判定手段は、前記複数の第1の評価値のうち最小値となる評価値と前記第2の評価値とに基づいて前記光量変化特性における前記第1の周波数での変化の有無を判定することを特徴とする請求項1又は2に記載の撮像装置。
  7. 前記算出手段は、前記撮像装置の電源が入れられた後に前記判定手段によって初めての判定が行われた後には、前記複数の第1の評価値のうち最小値となる評価値および前記第2の評価値のみを算出することを特徴とする請求項6に記載の撮像装置。
  8. 前記算出手段は、
    前記測光手段により測光を複数回行って得られた複数の測光値のうち、所定の測光値と該所定の測光値から前記第1の周波数とは異なる第2の周波数の周期の所定の整数倍の間隔にある測光値とから複数の第3の評価値を算出すると共に、前記所定の測光値から前記第2の周波数の逆位相に近い間隔にある測光値と前記所定の測光値とから第4の評価値を算出し、
    前記判定手段は、さらに前記複数の第3の評価値のうち最小値となる評価値および前記第4の評価値に基づいて、前記光量変化特性における前記第2の周波数の周期での変化の有無を判定し、
    前記第3の評価値および前記第4の評価値はSAD値であることを特徴とする請求項6又は7に記載の撮像装置。
  9. 前記算出手段は、前記撮像装置の電源が入れられた後に前記判定手段によって初めての判定が行われた後には、前記複数の第3の評価値のうち最小値となる評価値および前記第4の評価値のみを算出することを特徴とする請求項8に記載の撮像装置。
  10. 撮像装置による撮像時における光量変化特性の算出方法であって、
    測光手段により一定の周期で測光を複数回行う測光ステップと、
    前記測光ステップで得られた測光値に基づいて測光対象からの光の光量変化特性を算出する算出ステップと、
    前記算出ステップで算出した光量変化特性に所定の周期での変化があるか否かを判定する判定ステップとを有し、
    前記算出ステップでは、前記測光手段により測光を複数回行って得られた複数の測光値のうち、所定の測光値と該所定の測光値から第1の周波数の同位相に近い間隔にある測光値から第1の評価値を算出すると共に、前記所定の測光値から前記第1の周波数の逆位相に近い間隔にある測光値と前記所定の測光値とから第2の評価値を算出し、
    前記判定ステップでは、前記第1の評価値および前記第2の評価値に基づいて前記光量変化特性における前記第1の周波数の周期での変化の有無を判定することを特徴とする光量変化特性の算出方法。
  11. 撮像装置による撮像時における光量変化特性の算出方法をコンピュータに実行させるプログラムであって、
    前記光量変化特性の算出方法は、
    一定の周期で取得された測光値に基づいて測光対象からの光の光量変化特性を算出する算出ステップと、
    前記算出ステップで算出した光量変化特性に所定の周期での変化があるか否かを判定する判定ステップとを有し、
    前記算出ステップでは、測光手段により測光を複数回行って得られた複数の測光値のうち、所定の測光値と該所定の測光値から第1の周波数の同位相に近い間隔にある測光値とから第1の評価値を算出すると共に、前記所定の測光値から前記第1の周波数の逆位相に近い第2の間隔にある測光値と前記所定の測光値とから第2の評価値を算出し、
    前記判定ステップでは、前記第1の評価値および前記第2の評価値に基づいて前記光量変化特性における前記第1の周波数の周期での変化の有無を判定することを特徴とするプログラム。
  12. 請求項11に記載のプログラムがコンピュータより読み出し可能に記憶されていることを特徴とする記憶媒体。
JP2015121911A 2015-06-17 2015-06-17 撮像装置、光量変化特性の算出方法、プログラム及び記憶媒体 Active JP6525757B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015121911A JP6525757B2 (ja) 2015-06-17 2015-06-17 撮像装置、光量変化特性の算出方法、プログラム及び記憶媒体
US15/181,654 US9800792B2 (en) 2015-06-17 2016-06-14 Image pickup apparatus capable of determining light amount change characteristic, method of determining light amount change characteristic, and storage medium
CN201610439738.7A CN106257918B (zh) 2015-06-17 2016-06-17 摄像设备和光量变化特性的判断方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015121911A JP6525757B2 (ja) 2015-06-17 2015-06-17 撮像装置、光量変化特性の算出方法、プログラム及び記憶媒体

Publications (2)

Publication Number Publication Date
JP2017011352A true JP2017011352A (ja) 2017-01-12
JP6525757B2 JP6525757B2 (ja) 2019-06-05

Family

ID=57588687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015121911A Active JP6525757B2 (ja) 2015-06-17 2015-06-17 撮像装置、光量変化特性の算出方法、プログラム及び記憶媒体

Country Status (3)

Country Link
US (1) US9800792B2 (ja)
JP (1) JP6525757B2 (ja)
CN (1) CN106257918B (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB202107561D0 (en) 2020-05-29 2021-07-14 Canon Kk Image capturing apparatus, method for driving image capturing apparatus, and storage medium
US11184554B2 (en) 2018-11-14 2021-11-23 Canon Kabushiki Kaisha Apparatus for transmitting a control signal for driving a driving mode
US11678062B2 (en) 2021-04-20 2023-06-13 Canon Kabushiki Kaisha Image capturing apparatus, control method thereof, and storage medium for performing exposure control by prioritizing increasing an image capturing sensitivity
US11838647B2 (en) 2021-02-22 2023-12-05 Canon Kabushiki Kaisha Image capture apparatus capable of suppressing flicker reduction when detecting flicker during live view display, and method of controlling same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002084467A (ja) * 2000-09-08 2002-03-22 Mitsubishi Electric Corp 撮像装置および自動レベル調整方法
JP2014220763A (ja) * 2013-05-10 2014-11-20 キヤノン株式会社 撮像装置、制御方法、プログラム及び記憶媒体

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008276115A (ja) * 2007-05-07 2008-11-13 Olympus Imaging Corp デジタルカメラ及びフォーカス制御プログラム
EP2170154B1 (de) * 2007-07-17 2019-02-27 Heidelberg Engineering GmbH Verfharen und vorrichtung zum bewerten des gesichtsfelds
TW200926767A (en) * 2007-12-07 2009-06-16 Sunplus Mmedia Inc Automatic flicker detection and correction apparatus and method in a video capture device
JP4626689B2 (ja) * 2008-08-26 2011-02-09 ソニー株式会社 撮像装置、補正回路および補正方法
JP5202270B2 (ja) * 2008-12-12 2013-06-05 キヤノン株式会社 撮像装置
JP2010160284A (ja) * 2009-01-07 2010-07-22 Hoya Corp 撮像装置
NO331527B1 (no) * 2009-12-23 2012-01-23 Cisco Systems Int Sarl Metode for a fjerne flimring i videoopptak
US8330829B2 (en) * 2009-12-31 2012-12-11 Microsoft Corporation Photographic flicker detection and compensation
JP2012120132A (ja) 2010-12-03 2012-06-21 Nikon Corp 撮像装置およびプログラム
US8711245B2 (en) * 2011-03-18 2014-04-29 Digitaloptics Corporation Europe Ltd. Methods and systems for flicker correction
US9648249B2 (en) * 2013-11-20 2017-05-09 Canon Kabushiki Kaisha Image capturing apparatus, method of controlling the same, and storage medium

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002084467A (ja) * 2000-09-08 2002-03-22 Mitsubishi Electric Corp 撮像装置および自動レベル調整方法
JP2014220763A (ja) * 2013-05-10 2014-11-20 キヤノン株式会社 撮像装置、制御方法、プログラム及び記憶媒体

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11184554B2 (en) 2018-11-14 2021-11-23 Canon Kabushiki Kaisha Apparatus for transmitting a control signal for driving a driving mode
GB202107561D0 (en) 2020-05-29 2021-07-14 Canon Kk Image capturing apparatus, method for driving image capturing apparatus, and storage medium
DE102021113677A1 (de) 2020-05-29 2021-12-02 Canon Kabushiki Kaisha Bilderfassungsvorrichtung, Verfahren zum Ansteuern einer Bilderfassungsvorrichtung und Speichermedium
CN113747005A (zh) * 2020-05-29 2021-12-03 佳能株式会社 摄像设备、控制方法和存储介质
GB2599764A (en) 2020-05-29 2022-04-13 Canon Kk Image capturing apparatus, method for driving image capturing apparatus, and storage medium
US11516408B2 (en) 2020-05-29 2022-11-29 Canon Kabushiki Kaisha Image capturing apparatus, method for driving image capturing apparatus to detect flicker during shooting
CN113747005B (zh) * 2020-05-29 2024-02-27 佳能株式会社 摄像设备、控制方法和存储介质
US11838647B2 (en) 2021-02-22 2023-12-05 Canon Kabushiki Kaisha Image capture apparatus capable of suppressing flicker reduction when detecting flicker during live view display, and method of controlling same
US11678062B2 (en) 2021-04-20 2023-06-13 Canon Kabushiki Kaisha Image capturing apparatus, control method thereof, and storage medium for performing exposure control by prioritizing increasing an image capturing sensitivity

Also Published As

Publication number Publication date
JP6525757B2 (ja) 2019-06-05
US9800792B2 (en) 2017-10-24
US20160373632A1 (en) 2016-12-22
CN106257918A (zh) 2016-12-28
CN106257918B (zh) 2019-09-10

Similar Documents

Publication Publication Date Title
US7593053B2 (en) Autofocus device method
JP6370134B2 (ja) 撮像装置、その制御方法、および制御プログラム
JP6460829B2 (ja) 撮像装置、電子機器及び光量変化特性の算出方法
US11080863B2 (en) Imaging apparatus, image processing device, and control method
JP6391352B2 (ja) 撮像装置、制御方法、プログラム及び記憶媒体
JP6525757B2 (ja) 撮像装置、光量変化特性の算出方法、プログラム及び記憶媒体
JP2001221633A (ja) 測距装置
US10104301B2 (en) Image pickup apparatus that performs process of detecting change in brightness, control method therefor, and storage medium
JP2016143035A (ja) 焦点調節装置および焦点調節方法
JP2018137613A (ja) 画像処理装置、撮像装置および画像処理装置の制御方法
US10212344B2 (en) Image capturing device and control method capable of adjusting exposure timing based on detected light quantity change characteristic
JP6391319B2 (ja) 撮像装置、その制御方法、および制御プログラム
JP2016039596A (ja) 撮像装置及びその制御方法
JP6501512B2 (ja) フォーカス制御装置、フォーカス制御方法およびフォーカス制御プログラム
JP6505295B2 (ja) 撮像装置、その制御方法、および制御プログラム
JP6456038B2 (ja) 電子機器、光量変化特性の算出方法、プログラム及び記憶媒体
WO2020066187A1 (ja) 撮像素子、撮像装置、画像データ処理方法、及びプログラム
JP2019220921A (ja) 撮像装置、その制御方法およびプログラム
JP7158880B2 (ja) 撮像装置、その制御方法、および制御プログラム
JP2017103589A (ja) 撮像装置、その制御方法、および制御プログラム
JP2017098777A (ja) 撮像装置及びその制御方法、プログラム
JP2017097288A (ja) 撮像装置、その制御方法、および制御プログラム
JP6478493B2 (ja) 撮像装置、制御方法、プログラム及び記憶媒体
JP2021015200A (ja) 撮像装置
JP2012169920A (ja) 撮像装置及び制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190507

R151 Written notification of patent or utility model registration

Ref document number: 6525757

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151