JP2017004786A - 電子顕微鏡観察用の試料保持チップ - Google Patents

電子顕微鏡観察用の試料保持チップ Download PDF

Info

Publication number
JP2017004786A
JP2017004786A JP2015118153A JP2015118153A JP2017004786A JP 2017004786 A JP2017004786 A JP 2017004786A JP 2015118153 A JP2015118153 A JP 2015118153A JP 2015118153 A JP2015118153 A JP 2015118153A JP 2017004786 A JP2017004786 A JP 2017004786A
Authority
JP
Japan
Prior art keywords
sample
chamber
thin film
electron microscope
observation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015118153A
Other languages
English (en)
Inventor
浅野 雅朗
Masaaki Asano
雅朗 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2015118153A priority Critical patent/JP2017004786A/ja
Publication of JP2017004786A publication Critical patent/JP2017004786A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】液体中の試料の観察を容易にする電子顕微鏡観察用のチップを提供する。【解決手段】電子顕微鏡観察用のチップ38は、試料ステージの中央付近の開口部に置かれ、貫通孔52を有する基板48と、貫通孔52を塞ぎ、電子線に対して透過性を有する薄膜50とを備える。試料43及び液体46は薄膜50の上に保持する。薄膜50は、表面の一部に複数の凸部を有する。また、薄膜50は、表面の一部に撥水性領域を有し、表面の一部の周囲の領域は、親水性を有する。【選択図】図2

Description

本発明は、電顕微鏡観察用の試料保持チップに関する。本発明は、特に、表面の一部に複数の凸部を有する薄膜を含む電子顕微鏡観察用の試料保持チップに関する。
電子顕微鏡を用いた試料の観察は、一般的には、観察対象の試料が真空等の特殊な空間に曝される。一方、近年では、液体の中の試料をそのまま観察したいという要求がある。しかしながら、電子顕微鏡での観察の際に試料を真空中に曝すと、試料は、液体成分が揮発していくことで変質し、また測定環境の汚染につながってしまうという問題がある。
上記問題を防ぐために、例えば、試料を保持する薄膜の試料を保持する面は大気圧雰囲気で、反対側の面が真空雰囲気とし、この反対側の面から薄膜を介して、試料観察のために電子線を照射することにより、試料を真空に曝すことなく、試料を観察する技術が、特許文献1に開示されている。
特開2012−227170号公報
ところで、試料は、液体とともに、試料を保持する薄膜上に配置される。特許文献1に開示されている電子顕微鏡観察用のチップは、図10(b)に示すように、薄膜90の表面が平坦になっている。このように表面が平坦な薄膜90上に試料93と液体96とを配置すると、試料93が液体中に分散し、試料93が薄膜90の表面に定着しにくく、試料を観察するのが容易ではないといった問題がある。
本発明は、上記のような従来技術に伴う課題を解決しようとするものであって、その目的とするところは、試料の観察を容易にするところにある。
本実施形態によれば、貫通孔を有する基板と、貫通孔を塞ぎ、電子線に対して透過性を有する薄膜と、を備え、前記薄膜は、表面の一部に複数の凸部を有することを特徴とする電子顕微鏡観察用のチップが提供される。
本実施形態によれば、試料の観察を容易にすることができる。
前記複数の凸部が、周期的に配置されていてもよい。
本実施形態によれば、試料の観察をより容易にすることができる。
本実施形態によれば、貫通孔を有する基板と、貫通孔を塞ぎ、電子線に対して透過性を有する薄膜と、を備え、前記薄膜は、表面の一部に撥水性領域を有し、前記一部の周囲の領域は、親水性を有することを特徴とする電子顕微鏡観察用のチップが提供される。
本実施形態によれば、試料の観察を容易にすることができる。
本実施形態によれば、電子顕微鏡観察用の試料保持チップを、第1チャンバーと第2チャンバーとの間を仕切るように配置し、前記第2チャンバーよりも前記第1チャンバーを減圧し、前記試料保持チップの薄膜上で、前記薄膜の第2チャンバー側に配置された試料に、前記第1チャンバー側から電子線を照射し、前記電子線の照射により前記試料から発生する二次電子を検出すること、を含む試料検査方法が提供される。
本実施形態によれば、試料の観察を容易にすることができる。
本実施形態によれば、第1チャンバーと、第2チャンバーと、前記第1チャンバーを減圧するための真空ポンプと、電子顕微鏡観察用の試料保持チップと、前記試料保持チップの薄膜上で前記薄膜の第2チャンバー側に配置された試料に、前記第1チャンバー側から電子線を照射する電子源を含む電子銃と、前記電子線の照射により試料から発生する二次電子を検出する信号検出器と、を備え、前記試料保持チップが、第1チャンバーと第2チャンバーとの間を仕切るように着脱可能に設置されることを特徴とする試料検査装置が提供される。
本実施形態によれば、試料の観察を容易にすることができる。
本発明に係る電子顕微鏡観察用のチップによれば、試料の観察を容易にすることができる。
第1実施形態に係る試料検査装置の模式図である。 図1において電子顕微鏡観察用の試料保持チップ38が設置された付近を拡大した図である。 図2における電子顕微鏡観察用の試料保持チップ38及び凸部の領域59を拡大した図(上面図)ある。 図3の試料保持チップのA−A断面図及びその拡大図等である。 図3の試料保持チップの製造工程を示す断面図である。 他の実施形態に係る電子顕微鏡観察用の試料保持チップの複数の凸部53Bを拡大した図ある。 他の実施形態に係る電子顕微鏡観察用の試料保持チップ38C及び複数の凸部53Cを拡大した図(上面図)等ある。 図7の試料保持チップのC−C断面図及びその拡大図である。 親水性、撥水性を示す図である。 従来の電子顕微鏡観察用の試料保持チップ95の断面図である。
以下、本発明の一実施形態について、図面を参照しながら詳細に説明する。以下に示す実施形態は本発明の実施形態の一例であって、本発明はこれらの実施形態に限定されるものではない。なお、本実施形態で参照する図面において、同一部分または同様な機能を有する部分には同一の符号または類似の符号(数字の後にA、Bなどを付しただけの符号)を付し、その繰り返しの説明は省略する場合がある。また、図面の寸法比率は説明の都合上実際の比率とは異なったり、構成の一部が図面から省略されたりする場合がある。
<第1実施形態>
[走査電子顕微鏡の構造]
図1は、本発明の第1実施形態に係る走査電子顕微鏡10の概略の構造を示す図である。本実施形態における大気圧電子顕微鏡10は、主要な構成として、電子銃12、真空室14、ロードロック室16、試料観察室18、除振台20を備える。電子銃12、真空室14、ロードロック室16、試料観察室18には、それぞれ真空ポンプ22a〜22cが接続され、各室内の真空保持が可能となっている。なお、真空ポンプ22a〜22cは、各室にそれぞれ割り当てても良いし、複数室で真空ポンプを共用しても良い。
図1において、電子銃12には、電磁弁28aを介して真空ポンプ22aが接続される。したがって、電磁弁28aを開いて減圧することにより、電子銃12の筐体(鏡筒)内を真空状態にすることが可能である。真空に保持された電子銃12の内部においては、電子源24から出力された一次電子線(荷電粒子線)26が、収束レンズ28により収束され、上方(試料の設置された方向)に向かって出射される。電子銃12の筐体の出力端には、試料からの二次電子(反射電子)を受ける電子線検出器30が配置される。ただし、電子線検出器30を配置する位置は、図1に示す位置に限定されるものではなく、二次電子を受けることが可能な位置であればどこであっても良い。
真空室14には、電磁弁28bを介して真空ポンプ22bが接続される。したがって、電磁弁28bを開いて減圧することにより、真空室14の内部を真空状態とすることが可能である。なお、図1では、真空ポンプ22a及び真空ポンプ22bを別々の真空ポンプとして記載しているが、両者を共通の1台の真空ポンプで代用することも可能である。また、真空室14は、除振台20に支持されることにより外部からの振動が装置全体に伝達されないような構造となっている。
真空室14の上方には、ロードロック室16が配置される。ロードロック室16には、電磁弁28cを介して真空ポンプ22cが接続される。したがって、電磁弁28cを開いて減圧することにより、ロードロック室16を真空状態にすることが可能である。
真空室14とロードロック室16との間には、開閉バルブ32が配置される。開閉バルブ32は、手動又は自動で開閉可能なバルブであり、真空室14とロードロック室16とを仕切る部材として機能する。すなわち、開閉バルブ32が開くと真空室14とロードロック室16とが連通し、開閉バルブ32が閉じると真空室14とロードロック室16とは個別のチャンバーとして機能することになる。
このように構成されたロードロック室16は、試料交換の際に、後述する試料ステージ34と電子銃12との間に、真空状態又は大気圧状態のいずれかの空間を形成するためのチャンバーである。つまり、試料観察時は、ロードロック室16を真空状態に保持して開閉バルブ32を開けることにより、ロードロック室16と真空室14とを同一の真空状態とする。他方、試料交換時は、開閉バルブ32を閉めてロードロック室16を大気圧状態に保持することにより、ロードロック室16と後述する試料観察室18とを同一の大気圧状態とする。
ロードロック室16の上方には、試料ステージ34を介して試料観察室18が設けられている。試料観察室18には、電磁弁28dを介して真空ポンプ22cが接続される。したがって、電磁弁28dを開いて減圧することにより、試料観察室18を真空状態にすることが可能である。なお、図1では真空ポンプ22cをロードロック室16と試料観察室18とで共用しているが、それぞれについて個別に真空ポンプを設ける構成としても構わない。
試料ステージ34の中央付近には、一次電子線26を通過させるための開口部36が設けられ、その開口部36に観察対象となる試料を保持した電子顕微鏡観察用の試料保持チップ38が設置される。つまり、電子銃12から出力された一次電子線26は、試料ステージ34の開口部36を通過して電子顕微鏡観察用の試料保持チップ38に保持された試料に当たり、二次電子を発生させる。なお、開口部36に電子顕微鏡観察用の試料保持チップ38を配置する方法は様々な方法を取り得るが、その点については後述する。
本実施形態の走査電子顕微鏡10において、観察対象となる試料は、通常は大気圧下で観察される。ただし、本実施形態では試料観察室18に対して真空ポンプ22cが接続されているため、必要に応じて真空状態で観察することも可能である。
試料観察室18の上部には、電子顕微鏡観察用の試料保持チップ38を設置するための扉40が設けられている。この扉40は、試料観察室18の上部に限らず、側部に設けても良い。本実施形態では、試料観察室18を密閉空間とする目的で扉40を設けているが、大気圧下での観察を前提とした場合、扉40を開けた状態で試料を観察しても良いし、扉40を設けない構造としても良い。ただし、真空状態での観察を考慮した場合、公知のOリング(オーリング)等を介して密封性の高い扉40を設けることが望ましい。
なお、試料ステージ34は、水平移動可能なXYステージとして構成することが好ましい。この場合、真空保持したロードロック室16の真空が破れないように、例えば、磁性流体シールやマグネットカップリングシール等の公知の機構を用いてXYステージを駆動すれば良い。また、例えば試料観察室18の底面を試料ステージ34として利用することにより、試料ステージ34を試料観察室18に固定されたステージとしても良い。
上述した真空室14、ロードロック室16及び試料観察室18は、それぞれ電磁弁28e〜28gを介してパージガスタンク42に接続される。パージガスとしては、一般的な窒素を用いれば良いが、アルゴンガスなど他のガスを用いることも可能である。真空状態に保持された真空室14、ロードロック室16及び試料観察室18を大気圧に開放する際には、各真空ポンプとの間に存在する電磁弁28a〜28dを閉じた状態で少しずつパージガスを各室内へ導入すれば良い。
次に、開口部36に電子顕微鏡観察用の試料保持チップ38を配置する方法について具体的に説明する。図2は、図1において電子顕微鏡観察用の試料保持チップ38が設置された付近を拡大した図である。特に、図2(a)は、試料ステージ34に対して、電子顕微鏡観察用の試料保持チップ38を直接設置する構成を示し、図2(b)は、試料ステージ34に対して、電子顕微鏡観察用の試料保持チップ38を保持した試料ホルダ44を設置する構成を示す。図2(a)及び図2(b)において、符号43は、電子顕微鏡観察用の試料保持チップ38上に保持した観察対象物である試料を、符号46は、液体を、それぞれ示している。
図2(a)において、電子顕微鏡観察用の試料保持チップ38は、基本的に、基板48と薄膜50とで構成される。基板48の中央付近には、開口部52が設けられ、その開口部52を覆うように薄膜50が設けられる。試料43及び液体6は、薄膜50の上に保持する。いずれにしても、下方から照射される一次電子線26が開口部52及び薄膜50を通過して試料43に到達し、発生した二次電子が再び薄膜50及び開口部52を通過して電子線検出器30に到達するため、開口部52に接する薄膜50上に試料43が位置するように保持する。
以上のように構成された電子顕微鏡観察用の試料保持チップ38は、試料ステージ34に設けられた凹部54に嵌め込むように設置される。これによって、試料観察室18とロードロック室16は仕切られる。凹部54には、Oリング等の公知のシール部材を設けておくことが望ましい。電子顕微鏡観察用の試料保持チップ38の下方は、ロードロック室16である。このロードロック室16は、真空室14を真空状態に維持したまま、試料保持チップ38を取り出すために設けられる。
このとき、凹部54の位置を精度良く形成しておくことにより、電子顕微鏡観察用の試料保持チップ38を設置すれば常に同じ位置に試料43を保持することが可能となる。そのため、試料観察の際に一次電子線26の位置決めを容易に行うことができ、操作性の高い走査電子顕微鏡を実現することができる。また、図2(a)の構成とすることにより、作製した電子顕微鏡観察用の試料保持チップ38をそのまま試料ステージ34に載せるだけで観察可能であり、その点も操作性に大きく寄与している。
図2(b)において、電子顕微鏡観察用の試料保持チップ38は、まず試料ホルダ44に設置され、その上で試料ホルダ44ごと試料ステージ34に設置される。この場合、試料ステージ34には、試料ホルダ44に合わせたサイズの凹部56が精度良く形成されており、試料ホルダ44は、その凹部56に嵌め込むように設置される。図2(b)の場合においても、凹部56には、Oリング等の公知のシール部材を設けておくことが望ましい。
図2(b)の構成とすることにより、電子顕微鏡観察用の試料保持チップ38のサイズが非常に小さい場合においても、適度なサイズを有する試料ホルダ44に設置してから試料ステージ34に設置すれば良いため、電子顕微鏡観察用の試料保持チップ38の取扱いが容易となる。したがって、図2(a)と同様に、試料観察の際に一次電子線26の位置決めを容易に行うことができるとともに、電子顕微鏡観察用の試料保持チップ38の設置操作においても操作性を向上させることができる。
[電子顕微鏡観察用のチップの構成]
本実施形態に係る電子顕微鏡観察用の試料保持チップ38の構成を図3及び図4を用いて説明する。図3(a)は、本実施形態に係る電子顕微鏡観察用の試料保持チップ38の上面図であり、図3(b)は、試料保持チップ38の複数の凸部の領域59の拡大図である。図4(a)は、図3(a)の試料保持チップ38のA−A断面図である。ここで、基板48は、第1の面57および第2の面58を有する。第1の面57は、図4の上下左右を基準として、基板48の下の面を意味し、第2の面58は、基板48の上の面を意味する。また、基板48にある開口部を開口部52という。また、薄膜50のうち、複数ある凸部の一つ一つを凸部53といい、複数の凸部53を含む領域を「凸部の領域59」という。図4(b)は、図4(a)の凸部の領域59付近を拡大した図である。
基板48は、例えば、シリコン基板である。基板48は、可視光線に対して透過性を有する基板であってもよい。薄膜50は、例えば、窒化シリコン膜である。薄膜の膜厚は、10nm以上200nm以下、好ましくは、15nm以上50nm以下であってもよい。薄膜50は、10nmより薄くなると強度がなくなり破損するおそれがある。一方、200nmよりも厚くなると、電子線が透過しなくなる。したがって、薄膜50は、破損しない程度の膜の強度を得ながらも、できるだけ薄くすることが望ましい。開口部52は、その内壁が、第1の面57に対して、傾き(テーパ形状)をもって形成される。本実施形態では、開口部内における傾きが一定なものとして、図示しているが、開口部内において傾きの程度が一定でなく、変化してもよい。
ところで、撥水性とは、水をはじく性質をいい、いわゆる「濡れ」と呼ばれる固体表面への液体の付着しやすさを示す。撥水性の反対の概念である親水性とは、水との間に水素結合を作ることで、水に溶解しやすいかあるいは水に混ざりやすい性質をいい、物の表面に水が薄く広がるなどの性質を持つ。撥水性を、客観的かつ定量的に表すには、接触角が用いられることが多い。接触角とは、固体が液面と接している点において、図9に示すように液体表面の接線と固体表面とが成す角のうち液体を含む側の角度θである。そして、角度θの範囲に応じて、以下のような性質を有するとされることが多い。図9(a)は、液滴70を垂らしたときにθ=0°となり、親水性を示す。また、図9(b)は、液滴70Aを垂らしたときに、接触角θ<90°で、親水性を示す。図9(c)は、液滴70Bを垂らしたときに、接触角の範囲が、90°<θ<150°で、撥水性を示す。
また、凹凸が多く粗い面において、液体が入り込めない多数の空隙によって点接触をしている場合には、接触角は、以下のCassie−Baxterの式で表わされる。
Figure 2017004786
ここで、A1は、図9(d)において、物質71が表面を占める割合で、A2は、物質72が表面を占める割合である。θ1は、A1の真の接触角をいい、θ2は、A2の接触角をいい、θは、見かけの接触角をいう。そして、例えば、物質72が空気の場合は、θ2は、180°となる。すなわち、
Figure 2017004786
となり、接触角θ1がある程度大きければ、見かけの接触角θは、撥水性を有する角の範囲内に入ることになる。
図3及び図4に示すように、凸部53は、x方向に5個の四角柱、y方向に5個の四角柱、合計25個の四角柱で形成される。この例では、凸部53は、薄膜50の中心部に形成されている。また、凸部53を形成する四角柱は、横方向に等間隔で配置され、縦方向にも等間隔で配置されている。四角柱の一辺の加工限界は、10nm程度である。他方、四角柱の一辺が長くなると、撥水性が弱くなり、試料の流動性が大きくなる。また、観察対象となる試料の大きさによっても、四角柱の一辺の長さは変わるところ、電子顕微鏡を用いた観察対象となる試料の大きさは、一般的に、数10nmから数10μmである。そこで、四角柱の一辺は、好ましくは10nm以上100μm以下であってもよい。さらに、好ましくは0.1μm以下であってもよい。
また、図3(b)のように、凸部の領域59の上面図をみると、25個の正方形が並んでいる。そして、この例では、横方向の間隔d1と縦方向の間隔d2は同じ値である。他方、斜め方向の間隔d3は、d1よりも長くなっている。加工限界から、d1及びd2の下限は、10nm程度である。d3の下限は、d1及びd2の値に応じて決まる。また、d1及びd2の上限は、観察対象物の大きさに準じる。観察対象物の大きさについては、上記のとおりである。そこで、d1及びd2は、好ましくは、10nm以上100μm以下である。さらに、好ましくは、0.1μm以下であってもよい。他方、凸部の高さについては、d1の長さよりも短くなりすぎると、撥水性が弱くなる。そこで、凸部の高さは、好ましくは、5nm以上50μm以下である。しかし、凸部の領域を上面からみたときに、図3(c)のように、正方形ではなく円であって、しかも、互いに隣接する3つ円の中心を結ぶと正三角形となるように凸部の領域59Aを形成した場合には、d4、d5、d6の値が等しくなる。このように隣り合う凸部53Aとの距離が等しい方が、そうでない場合と比べて、凸部の領域59Aの撥水性が高くなる。図3(c)の例のように、隣り合う凸部53Aとの距離が等しくてもよいし、そうでなくても凸部の領域に撥水性があればよい。
また、本実施形態では、凸部53を形成する立体を、四角柱としたが、三角柱などの多角柱であっても、三角錐、四角錐などの多角錐であっても、図6のように円錐であっても、凸部の領域に撥水性があれば、どのような立体でもよい。また、凸部の領域59を薄膜50の中心部としたが、これに限定されるものではなく、薄膜50の中心部でなくとも、端部であってもよい。
本実施形態では、図4(c)に示すように、凸部の領域59が、撥水性となり、凸部の領域59の周りの領域が、親水性となる。そのため、凸部の領域59が液体46をはじく結果、試料43が凸部53の領域の表面付近に定着しやすくなる。その結果、試料の観察を容易にすることができる。
<比較例>
図10(a)は、従来の電子顕微鏡観察用の試料保持チップ95を示すもので、図10(b)は、図10(a)の電子顕微鏡観察用の試料保持チップ95に、試料93及び液体96を配置した図である。電子顕微鏡観察用のチップ95は、本実施形態とは異なり、図に示すように、薄膜90の表面が平坦になっている。このように表面が平坦な薄膜上に試料93と液体96とを配置すると、試料93が液体中に分散し、試料93が薄膜90の表面に定着しにくく、試料93を観察するのが容易ではない。
[電子顕微鏡観察用のチップの製造工程]
本実施形態に係る電子顕微鏡観察用の試料保持チップの製造工程について、図5を用いて説明する。
まず、図5(a)に示す基板45を準備する。基板45は、シリコン基板である。基板45の厚さを100μm以下にすると製造の取り扱いや完成後の取り扱いが難しくなり、破損のおそれがある。他方、基板45の厚さを900μm以上にすると、上下からエッチングする加工時間が長くなり、加工費が高くなる。そこで、基板45の厚さは、好ましくは、100μm以上900μm以下であるとよい。この例では、基板45の厚さは、300μmである。
次に、基板45に熱酸化膜を形成する。その後、フォトリソグラフィ技術を用いて、凸部の領域59に対応する領域以外の熱酸化膜を除去する。なお、膜の除去のためにはドライエッチングおよびウェットエッチングのいずれも適用可能であり、特に明示しない限り以下の説明においても同様である。このエッチングにより、凸部55を有する基板を作成することができる(図5(b))。この凸部55を有する基板を基板47と呼ぶ。なお、図5(c)は、凸部55付近を拡大した図である。
続いて、基板47の凸部55がある面に対して、薄膜50を形成する(図5(d))。なお、図5(e)は、凸部の領域59の拡大図である。この例では、薄膜50は、窒化シリコンである。また、この例では、薄膜50は、CVD(Chemical Vapor Deposition)法によって成膜しているが、この方法に限定されず、反応性スパッタ法であってもよい。
最後に、基板47の第1の面(図5の下側の面)をエッチングして、開口部52を形成し、電子顕微鏡観察用の試料保持チップ38が完成する(図5(f))。ここで、基板47の第1の面をエッチングした後の基板を基板48と呼ぶことにする。この例では、開口部52を形成するために、結晶異方性エッチングを行っている。
上記のとおり、薄膜の膜厚は、10nm以上200nm以下、好ましくは15nm以上50nm以下と非常に薄い。そのため、薄膜を平坦に作成した後に、表面の一部に凸部を形成するように表面加工することは難しい。本実施形態では、基板47に凸部55があることから、薄膜50を基板47の上面に沿って形成すると、凸部53が形成される。その結果、膜厚の薄い膜を形成することができる。
<第2実施形態>
本実施形態に係る電子顕微鏡観察用の試料保持チップ38Cの構成を図7及び図8を用いて説明する。図7(a)は、本実施形態に係る電子顕微鏡観察用の試料保持チップ38Cの上面図であり、図7(b)は、試料保持チップ38Cの凸部の領域59Cの拡大図である。図8(a)は、図7(a)の試料保持チップ38CのC−C断面図である。図8(b)は、図8(a)の凸部の領域59C付近を拡大した図である。
本実施形態でも、基板48Cの部材、薄膜50Cの膜厚、開口部52Cの形状は、第1実施形態と同様である。本実施形態では、凸部53Cは、y方向に長く、5つの凸部53Cを形成しており、隣り合う5つの凸部53Cの間には、等間隔の溝が合計4つ形成されている。凸部53Cと凸部53Cの間隔は、好ましくは10nm以上100μm以下であってもよい。さらに、好ましくは0.1μm以下であってもよい。本実施形態では、凸部53Cが等間隔であるため、溝も等間隔で形成されているが、これに限定されず、隣り合う溝同士の間隔が同じでなくても、凸部の領域59Cに撥水性があればよい。
また、本実施形態では、凸部の領域59Cは、薄膜50Cの中心部に形成されている。しかし、これに限定されるものではなく、薄膜50の中心部でなくとも、端部であってもよい。
本実施形態では、凸部の領域59Cを形成する凸部53Cは、側面視において矩形となっている。しかし、これに限定されず、凸部が、図7(d)のように、側面視においてV字形状であっても、その他の形状であっても、撥水性があればよい。
本実施形態では、凸部の領域59Cが、撥水性となり、凸部の領域59Cの周りの領域が、親水性となる。そのため、凸部の領域59Cが液体46Cをはじく結果、試料43Cが凸部の領域59Cの表面付近に定着しやすくなる。その結果、試料の観察を容易にすることができる。
10:走査電子顕微鏡 12:電子銃 14:真空室 16:ロードロック室
18:試料観察室 20:除振台 22:真空ポンプ 24:電子源
26:一次電子線 28:収束レンズ 30:電子線検出器 32:開閉バルブ
34:試料ステージ 36:開口部 40:扉 42:パージガスタンク
43、43A、43C、93:液体 44:試料ホルダ
46、46A、46C、96:試料
45、47、48、48A、48C、98:基板
50、50A、50C、90:薄膜
52、52A、52C、93:開口部 54、56:凹部
53、53A、53B、53C、53D:凸部 55:凸部
59、59A、59B、59C、59D:凸部の領域
57、57A、57C、:第1の面
58、58A、58C:第2の面
70、70A、70C:液滴 71、72:物質


Claims (5)

  1. 貫通孔を有する基板と、
    貫通孔を塞ぎ、電子線に対して透過性を有する薄膜と、を備え、
    前記薄膜は、表面の一部に複数の凸部を有することを特徴とする電子顕微鏡観察用のチップ。
  2. 前記複数の凸部が、周期的に配置されていることを特徴とする請求項1に記載の電子顕微鏡観察用のチップ。
  3. 貫通孔を有する基板と、
    貫通孔を塞ぎ、電子線に対して透過性を有する薄膜と、を備え、
    前記薄膜は、表面の一部に撥水性領域を有し、前記一部の周囲の領域は、親水性を有することを特徴とする電子顕微鏡観察用のチップ。
  4. 請求項1乃至3の何れか一つに記載の電子顕微鏡観察用の試料保持チップを、第1チャンバーと第2チャンバーとの間を仕切るように配置し、
    前記第2チャンバーよりも前記第1チャンバーを減圧し、
    前記試料保持チップの薄膜上で、前記薄膜の第2チャンバー側に配置された試料に、前記第1チャンバー側から電子線を照射し、
    前記電子線の照射により前記試料から発生する二次電子を検出すること、を含む試料検査方法。
  5. 第1チャンバーと、
    第2チャンバーと、
    前記第1チャンバーを減圧するための真空ポンプと、
    請求項1乃至3の何れか一つに記載の電子顕微鏡観察用の試料保持チップと、
    前記試料保持チップの薄膜上で前記薄膜の第2チャンバー側に配置された試料に、前記第1チャンバー側から電子線を照射する電子源を含む電子銃と、
    前記電子線の照射により試料から発生する二次電子を検出する信号検出器と、を備え、
    前記試料保持チップが、第1チャンバーと第2チャンバーとの間を仕切るように着脱可能に設置されることを特徴とする試料検査装置。




JP2015118153A 2015-06-11 2015-06-11 電子顕微鏡観察用の試料保持チップ Pending JP2017004786A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015118153A JP2017004786A (ja) 2015-06-11 2015-06-11 電子顕微鏡観察用の試料保持チップ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015118153A JP2017004786A (ja) 2015-06-11 2015-06-11 電子顕微鏡観察用の試料保持チップ

Publications (1)

Publication Number Publication Date
JP2017004786A true JP2017004786A (ja) 2017-01-05

Family

ID=57752222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015118153A Pending JP2017004786A (ja) 2015-06-11 2015-06-11 電子顕微鏡観察用の試料保持チップ

Country Status (1)

Country Link
JP (1) JP2017004786A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020020587A (ja) * 2018-07-30 2020-02-06 浜松ホトニクス株式会社 試料支持体、試料のイオン化方法、及び質量分析方法
WO2022032470A1 (zh) * 2020-08-11 2022-02-17 厦门超新芯科技有限公司 一种透射电镜高分辨原位液相变温芯片及其制备方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020020587A (ja) * 2018-07-30 2020-02-06 浜松ホトニクス株式会社 試料支持体、試料のイオン化方法、及び質量分析方法
WO2020026629A1 (ja) * 2018-07-30 2020-02-06 浜松ホトニクス株式会社 試料支持体、試料のイオン化方法、及び質量分析方法
JP7051632B2 (ja) 2018-07-30 2022-04-11 浜松ホトニクス株式会社 試料支持体、試料のイオン化方法、及び質量分析方法
US11521843B2 (en) 2018-07-30 2022-12-06 Hamamatsu Photonics K.K. Sample support, sample ionization method, and mass spectrometry method
US11935733B2 (en) 2018-07-30 2024-03-19 Hamamatsu Photonics K.K. Sample support, sample ionization method, and mass spectrometry method
WO2022032470A1 (zh) * 2020-08-11 2022-02-17 厦门超新芯科技有限公司 一种透射电镜高分辨原位液相变温芯片及其制备方法

Similar Documents

Publication Publication Date Title
US7928380B2 (en) Sample holder, method for observation and inspection, and apparatus for observation and inspection
US6803570B1 (en) Electron transmissive window usable with high pressure electron spectrometry
US8933400B2 (en) Inspection or observation apparatus and sample inspection or observation method
US20070145287A1 (en) Specimen box for electron microscope capable of observing general specimen and live cell
US20110284745A1 (en) Sample Holder, Inspection Apparatus, and Inspection Method
JP5215701B2 (ja) 試料検査装置及び試料検査方法
US8030622B2 (en) Specimen holder, specimen inspection apparatus, and specimen inspection method
JP6078637B2 (ja) 荷電粒子線装置およびフィルタ部材
US20060284108A1 (en) Apparatus for evacuating a sample
JP2014175276A (ja) 荷電粒子線装置、試料観察方法、試料台、観察システム、および発光部材
WO2018094903A1 (en) Vacuum condition controlling apparatus, system and method for specimen observation
US7906760B2 (en) Inspection method and reagent solution
JP2017004786A (ja) 電子顕微鏡観察用の試料保持チップ
US10731246B2 (en) Ion beam sample preparation and coating apparatus and methods
US7432511B2 (en) Method of operating liquid in the vacuum or low-pressure environment and observing the operation and device for the operation and observation
EP3790036A2 (en) Methods and devices for preparing sample for cryogenic electron microscopy
CN106324000A (zh) 液体封装芯片
US20070045559A1 (en) Method of operating liquid in the vacuum or low-pressure environment and observing the operation and device for the operation and observation
EP1876631A2 (en) Observational liquid/gas environment combined with specimen chamber of electron microscope
JP2017004785A (ja) 電子顕微鏡観察用の試料保持チップ
JP5698712B2 (ja) 試料保持体及び試料検査装置並びに試料検査方法
JP6500143B2 (ja) 試料観察方法
JP6272384B2 (ja) 荷電粒子線装置
JP5274952B2 (ja) 真空シール方法及び真空装置
JP5923632B2 (ja) 荷電粒子線装置