JP2016538838A - バイオ水素製造方法および反応器 - Google Patents
バイオ水素製造方法および反応器 Download PDFInfo
- Publication number
- JP2016538838A JP2016538838A JP2016524095A JP2016524095A JP2016538838A JP 2016538838 A JP2016538838 A JP 2016538838A JP 2016524095 A JP2016524095 A JP 2016524095A JP 2016524095 A JP2016524095 A JP 2016524095A JP 2016538838 A JP2016538838 A JP 2016538838A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- reactor
- headspace
- bioreactor
- fully mixed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 74
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 50
- 238000000034 method Methods 0.000 claims abstract description 48
- 244000005700 microbiome Species 0.000 claims abstract description 37
- 239000005416 organic matter Substances 0.000 claims abstract description 24
- 238000000855 fermentation Methods 0.000 claims abstract description 20
- 230000004151 fermentation Effects 0.000 claims abstract description 20
- 230000014759 maintenance of location Effects 0.000 claims abstract description 14
- 239000007787 solid Substances 0.000 claims abstract description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims abstract description 5
- 239000007789 gas Substances 0.000 claims description 87
- 229910052739 hydrogen Inorganic materials 0.000 claims description 49
- 239000002028 Biomass Substances 0.000 claims description 46
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 46
- 239000001257 hydrogen Substances 0.000 claims description 44
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 39
- 238000000926 separation method Methods 0.000 claims description 29
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 27
- 229930195729 fatty acid Natural products 0.000 claims description 27
- 239000000194 fatty acid Substances 0.000 claims description 27
- 150000004665 fatty acids Chemical class 0.000 claims description 27
- 230000005484 gravity Effects 0.000 claims description 25
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 22
- 230000008569 process Effects 0.000 claims description 19
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 claims description 16
- 239000010802 sludge Substances 0.000 claims description 13
- 229910000000 metal hydroxide Inorganic materials 0.000 claims description 12
- 150000004692 metal hydroxides Chemical class 0.000 claims description 12
- 150000001298 alcohols Chemical class 0.000 claims description 11
- 239000012530 fluid Substances 0.000 claims description 11
- 238000004891 communication Methods 0.000 claims description 10
- 239000007788 liquid Substances 0.000 claims description 7
- 239000008188 pellet Substances 0.000 claims description 7
- 239000000126 substance Substances 0.000 claims description 7
- 150000008044 alkali metal hydroxides Chemical class 0.000 claims description 6
- 150000002431 hydrogen Chemical class 0.000 claims description 4
- 238000012546 transfer Methods 0.000 claims description 4
- 239000008187 granular material Substances 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical class OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 claims 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 84
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 43
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 38
- 238000006243 chemical reaction Methods 0.000 description 25
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 21
- 230000009919 sequestration Effects 0.000 description 21
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 20
- 235000019260 propionic acid Nutrition 0.000 description 19
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 19
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 16
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 16
- 239000008103 glucose Substances 0.000 description 16
- 239000000047 product Substances 0.000 description 11
- 239000000872 buffer Substances 0.000 description 10
- 239000001569 carbon dioxide Substances 0.000 description 10
- 229910002092 carbon dioxide Inorganic materials 0.000 description 10
- 230000037361 pathway Effects 0.000 description 10
- 239000000758 substrate Substances 0.000 description 10
- 235000011121 sodium hydroxide Nutrition 0.000 description 9
- 230000007423 decrease Effects 0.000 description 8
- 238000002474 experimental method Methods 0.000 description 8
- 238000011084 recovery Methods 0.000 description 8
- 239000002253 acid Substances 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 241000193401 Clostridium acetobutylicum Species 0.000 description 6
- 238000010923 batch production Methods 0.000 description 6
- 230000002829 reductive effect Effects 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 241000894006 Bacteria Species 0.000 description 5
- 229930006000 Sucrose Natural products 0.000 description 5
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 5
- 239000006227 byproduct Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000000446 fuel Substances 0.000 description 5
- 239000007791 liquid phase Substances 0.000 description 5
- 239000012528 membrane Substances 0.000 description 5
- 125000000896 monocarboxylic acid group Chemical group 0.000 description 5
- 239000005720 sucrose Substances 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 241000588915 Klebsiella aerogenes Species 0.000 description 4
- 241000191043 Rhodobacter sphaeroides Species 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 229940092559 enterobacter aerogenes Drugs 0.000 description 4
- 238000002955 isolation Methods 0.000 description 4
- 239000002609 medium Substances 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 230000001629 suppression Effects 0.000 description 4
- 241000193830 Bacillus <bacterium> Species 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 241000193403 Clostridium Species 0.000 description 3
- 241000193454 Clostridium beijerinckii Species 0.000 description 3
- 241000588914 Enterobacter Species 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- 239000003513 alkali Substances 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- -1 etc.) Chemical compound 0.000 description 3
- 230000002349 favourable effect Effects 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 239000002440 industrial waste Substances 0.000 description 3
- 238000011068 loading method Methods 0.000 description 3
- 235000015097 nutrients Nutrition 0.000 description 3
- 150000007524 organic acids Chemical class 0.000 description 3
- 235000005985 organic acids Nutrition 0.000 description 3
- 238000004062 sedimentation Methods 0.000 description 3
- 241000194107 Bacillus megaterium Species 0.000 description 2
- 241000193388 Bacillus thuringiensis Species 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 241000191025 Rhodobacter Species 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000012159 carrier gas Substances 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- 150000002402 hexoses Chemical class 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 239000010808 liquid waste Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000004060 metabolic process Effects 0.000 description 2
- 230000000813 microbial effect Effects 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 description 2
- BOPGDPNILDQYTO-NNYOXOHSSA-N nicotinamide-adenine dinucleotide Chemical compound C1=CCC(C(=O)N)=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]2[C@H]([C@@H](O)[C@@H](O2)N2C3=NC=NC(N)=C3N=C2)O)O1 BOPGDPNILDQYTO-NNYOXOHSSA-N 0.000 description 2
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000003002 pH adjusting agent Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 230000029553 photosynthesis Effects 0.000 description 2
- 238000010672 photosynthesis Methods 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 241001550224 Apha Species 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 241000219310 Beta vulgaris subsp. vulgaris Species 0.000 description 1
- FERIUCNNQQJTOY-UHFFFAOYSA-M Butyrate Chemical compound CCCC([O-])=O FERIUCNNQQJTOY-UHFFFAOYSA-M 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910021591 Copper(I) chloride Inorganic materials 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 241000588697 Enterobacter cloacae Species 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 1
- 235000021536 Sugar beet Nutrition 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000003542 behavioural effect Effects 0.000 description 1
- 230000031018 biological processes and functions Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- UVMPXOYNLLXNTR-UHFFFAOYSA-N butan-1-ol;ethanol;propan-2-one Chemical compound CCO.CC(C)=O.CCCCO UVMPXOYNLLXNTR-UHFFFAOYSA-N 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 235000011116 calcium hydroxide Nutrition 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 230000004087 circulation Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- OXBLHERUFWYNTN-UHFFFAOYSA-M copper(I) chloride Chemical compound [Cu]Cl OXBLHERUFWYNTN-UHFFFAOYSA-M 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000013213 extrapolation Methods 0.000 description 1
- 238000012262 fermentative production Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 229910021485 fumed silica Inorganic materials 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 235000012254 magnesium hydroxide Nutrition 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000010907 mechanical stirring Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000002906 microbiologic effect Effects 0.000 description 1
- 235000010755 mineral Nutrition 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 235000013379 molasses Nutrition 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 150000002772 monosaccharides Chemical class 0.000 description 1
- 229950006238 nadide Drugs 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 238000010979 pH adjustment Methods 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000002957 persistent organic pollutant Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 230000009291 secondary effect Effects 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 239000004945 silicone rubber Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 235000017550 sodium carbonate Nutrition 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000002910 solid waste Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- 241001148471 unidentified anaerobic bacterium Species 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P3/00—Preparation of elements or inorganic compounds except carbon dioxide
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M21/00—Bioreactors or fermenters specially adapted for specific uses
- C12M21/04—Bioreactors or fermenters specially adapted for specific uses for producing gas, e.g. biogas
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M27/00—Means for mixing, agitating or circulating fluids in the vessel
- C12M27/02—Stirrer or mobile mixing elements
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M47/00—Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
- C12M47/18—Gas cleaning, e.g. scrubbers; Separation of different gases
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
- Y02P20/129—Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Genetics & Genomics (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Biomedical Technology (AREA)
- Sustainable Development (AREA)
- General Chemical & Material Sciences (AREA)
- Molecular Biology (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Clinical Laboratory Science (AREA)
Abstract
有機物からH2、VFAおよびアルコールを製造する方法であって、H2、CO2、VFA、およびアルコールを製造するために有機物と微生物とを完全混合型バイオリアクターに導入するステップと;反応器のヘッドスペース内でCO2を隔離するステップと;ヘッドスペースからH2を回収するステップと;微生物、VFAおよびアルコールを含む第1の流出液を回収するステップと;を含む方法を開示する。また、有機物からH2、VFA、およびアルコールを製造するためのシステムであって、暗発酵のための完全混合型バイオリアクターと;微生物と、分解される有機物とを供給するための流入口と;ヘッドスペース内にあり、ヘッドスペースからCO2ガスを隔離するための固体水酸化物を含むCO2トラップと;ヘッドスペースからH2ガスを含む流出ガスを取り出すためのガス流出口と;を備えるシステムも開示する。システムおよび方法により比較的高いH2生成速度が得られ、H2流はCO2を実質的に含まない。【選択図】図2
Description
本願は、2013年10月21日に出願された「バイオ水素製造方法および反応器」と題された米国仮特許出願第61/893,447号明細書の優先権の利益を主張し、その内容全体が参照により本明細書に援用される。
本開示は、水素の製造、より詳細には、暗発酵により水素を生成する微生物を用いた有機物の処理に関する。
エネルギー需要の急上昇や環境汚染の問題は、産業廃棄物を処理する様々な生物学的プロセスによって対処される。暗発酵によるバイオ水素製造は産業廃棄物の処理と水素の製造を行う既知のプロセスの1つである。
微生物は、光合成または好ましくは発酵により水素を生成することができる[Matsunaga,T.,Hatano,T.,Yamada,A.,Matsumoto,M.,(2000)Microaerobic hydrogen production by photosynthetic bacteria in a double phase photobioreactor.Biotechnol.Bioeng.68(6),647−651]。有機汚染物質は、2つの別個の段階、即ち、酸生成およびメタン生成でメタンに嫌気的に変換される。酸生成により副生成物として水素が生成し、それはこのプロセスの第2段階で多くのメタン菌により電子供与体として使用される[Fang,H.H.P.and Liu,H.(2002)Effect of pH on hydrogen production from glucose by a mixed culture.Bioresource Technology 82,87−93]。2つの段階を分離することは、第1段階から水素を回収するのに適している。第2段階は、主に揮発性脂肪酸(VFA)を含む、酸生成の残りの生成物の処理にさらに使用される。
連続槽型反応器(continuously stirred tank reactor)(CSTR)は、連続的な水素製造に最も広く使用されているシステムであった[Li,C.,Fang,H.H.P.,(2007)Fermentative hydrogen production from wastewater and solid wastes by mixed cultures.Critical reviews in Env.Sci.andTech.,37,1−39]。CSTRではバイオマス固形物滞留時間(SRT)は水理学的滞留時間(HRT)と同じになるため、混合液中のその濃度は、高い水素生成速度に最適な1〜12時間の推奨HRTの影響を非常に受ける[Li and Fang,2007]。混合培養系の最大比増殖速度(μmax)0.333h−1は、SRTmin3.0hに相当する[Horiuchi J.I.,Shimizu T.,Tada K.,Kanno T.,Kobayashi M.,(2002)Selective production of organic acids in anaerobic acid reactor by pH control.Bioresource Technol 82,209−13]。
暗発酵による水素(H2)製造は、H2エネルギーの将来に関するその有望な利点について現在広く研究されている。それは、種々の供給原料を利用し、副生成物として酢酸や酪酸などの有用な代謝産物を生成することができる光に依存しない嫌気性プロセスである[Nuri Azbar,David Levin(2012),State of the art and Progress in Production of Biohydrogen.Bentham Science Publishers]。しかし、熱力学的に有利な経路による暗発酵H2製造は収量が比較的低いことを特徴とし、比較的高い収量は熱力学的に有利でない経路でしか可能ではなく、従ってエネルギーを必要とする。さらに、生成混合ガスは二酸化炭素(CO2)を含有するが、プロトン交換膜燃料電池(PEMFC)は高純度のH2(99%超)を必要とする[Larminie J,Dicks A(2000),Fuel cell systems explained.New York:Wiley]ため、CO2は特にH2ガスから発電する燃料電池技術において主汚染物質となる[D.C.Dayton(2001),Fuel Cell Integration−A Study of the Impacts of Gas Quality and Impurities.National Renewable Energy Laboratory]ことから、二酸化炭素を分離しなければならない[Azbar and Levin,2012]。
グルコースから暗発酵でH2を製造する最も一般的な2つの経路は酢酸経路と酪酸経路(式1および式2)であり、理論H2収量はグルコース1モル当たりH22〜4モルに制限される。これらの反応は両方とも熱力学的に有利であり(即ち、負のΔG値)、酢酸と酪酸の比が高いほど、H2収量が高くなる。従って、培養系の代謝を酢酸生成の方に制御することが高いH2収量を達成する重要な要因となる[Sompong O−Thong,Poonsuk Prasertsan,Nils−Kare Birkeland(2009),Evaluation of methods for preparing hydrogen−producing seed inocula under thermophilic condition by process performance and microbial community analysis.Bioresource Technology 2009;100:909−918]。また、H2収量を最大限にするために、代謝を、アルコール(エタノール、ブタノール)および還元された酸(乳酸)から揮発性脂肪酸(VFA)生成の方に向かわせなければならない[David B.Levin,Lawrence Pitt,Murray Love(2004),Biohydrogen production:prospects and limitations to practical application.International Journal of Hydrogen Energy 2004;29:173−185]。しかし、プロピオン酸生成はH2消費経路である(式3)ため、プロピオン酸生成によりH2収量が減少する。
C6H12O6+2H2O→2CH3COOH+2CO2+4H2 ΔGR°=−196.4KJ (1)
C6H12O6→CH3(CH2)2COOH+2CO2+2H2 ΔGR°=−224.2KJ (2)
C6H12O6+2H2→2CH3CH2COOH+2H2O ΔGR°=−279.3KJ (3)
C6H12O6+2H2O→2CH3COOH+2CO2+4H2 ΔGR°=−196.4KJ (1)
C6H12O6→CH3(CH2)2COOH+2CO2+2H2 ΔGR°=−224.2KJ (2)
C6H12O6+2H2→2CH3CH2COOH+2H2O ΔGR°=−279.3KJ (3)
ル・シャトリエの原理では、可逆反応はその生成物の1つ以上を取り除くと右に移動すると述べられている[Claire N.Sawyer,Perry L.McCarty,Gene F.Parkin(2003),Chemistry for Environmental Engineering and Science(5th edition).McGraw−Hill Companies,Inc.2003]。従って、培養培地からCO2を効率的に取り除くと、H2生成経路が正反応の方に移動し、H2の生成が増加し、H2発生の基材であるニコチンアミドアデニンジヌクレオチド(NADH)の消費が防止されると予想される[Kaushik Nath,Debabrata Das(2004),Improvement of fermentative hydrogen production:various approaches.Appl Microbiol Biotechnol 2004;65:520−529]。KraemerおよびBagleyは、H2収量を向上させる幾つかの方法を検討したが、その1つは発酵プロセスの液相から溶解したH2およびCO2を除去する方法であった[Jeremy T.Kraemer,David M.Bagley(2007),Improving the yield from fermentative hydrogen production.Biotechnol Lett 2007;29:685−695]。
溶解ガスの除去に使用される一般的な方法の1つにはガススパージがある。スパージは、一般的には化学的に不活性なガスを液体にバブリングして、溶解ガスを除去することを含む方法である。Hussyらは、HRT15時間で運転されるCSTRでショ糖を基質として使用した場合、1.0から1.9mol/mol(変換された六炭糖)のH2収量増加と95%のショ糖変換の達成を、反応器内に連続的に窒素(N2)ガスをスパージした後に観測した[I.Hussy,F.R.Hawkes,R.Dinsdale,D.L.Hawkes(2005),Continuous fermentative hydrogen production from sucrose and sugarbeet.International Journal of Hydrogen Energy 2005;30:471−483]。Kimらは、HRT12時間および負荷量40gCOD/L.dで運転されるCSTRでショ糖からH2を製造する際のスパージガスとしてのN2の利用について試験し、H2収量の24%増加を観測した[Dong−Hoon Kim,Sun−Kee Han,Sang−Hyoun Kim,Hang−Sik Shin(2006),Effect of gas sparging on continuous fermentative hydrogen production.International Journal of Hydrogen Energy 2006;31:2158−2169]。Tanishoらは、炭素源として糖蜜を使用したエンテロバクター・アエロゲネス(Enterobacter aerogenes)によるH2製造の回分実験でアルゴンガスを連続パージすることによりH2収量が110%増加することを観測した。しかし、スパージプロセスは、資本コストの高い処理設備やメンテナンスを必要とする。
スパージ以外の溶解ガス濃度低下方法は、撹拌速度の上昇、ヘッドスペースを真空にすること(即ち、反応器ヘッドスペース圧力の低下)、および溶解ガスを除去するための浸漬膜の使用[上記、KraemerおよびBagley]であってもよい。Mandalら[上記]は、ヘッドスペース全圧を低下させることにより、エンテロバクター・クロアカ(Enterobacter cloacae)によるグルコースからの回分式H2製造実験のH2収量が105%増加することを観測した。H2収量の増加は、エタノールや有機酸などの還元された副生成物の生成に繋がるH2消費の、全圧の低下による抑制によるものと考えられた[上記、Mandalら]。H2およびCO2含有量の低下により、ホモ酢酸生成(homoacetogenesis)の抑制が起こり、H2とCO2を消費して酢酸を生成することが防止されると仮定された。
JacksonおよびMcInerneyは、基質の分解は最終生成物を取り除くことにより熱力学的に可能となると述べた[Bradley E.Jackson,Michael J.McInerney(2002),Anaerobic microbial metabolism can proceed close to thermodynamic limits.Nature 2002;415:454−456]。従って、CO2をヘッドスペースから除去すると、熱力学的に有利でない2つの経路でグルコース分解を正反応の方に移動させることができた。式4および式5は、酪酸とプロピオン酸を消費して酢酸とH2を製造する2つの経路を示す。
CH3(CH2)2COOH+2H2O→2CH3COOH+2H2 ΔGR°=+27.8KJ (4)
CH3CH2COOH+2H2O→CH3COOH+CO2+3H2 ΔGR°=+41.5KJ (5)
CH3(CH2)2COOH+2H2O→2CH3COOH+2H2 ΔGR°=+27.8KJ (4)
CH3CH2COOH+2H2O→CH3COOH+CO2+3H2 ΔGR°=+41.5KJ (5)
Parkらは、嫌気性条件を確保するための反応器の初期スパージを、30wt%KOH溶液を用いたヘッドスペースからのCO2の隔離と組み合わせて行う、グルコースからH2を製造するための回分プロセスを教示している[Wooshin Park,Seung H.Hyun,Sang−Eun Oh,Bruce E.Logan,In S.Kim(2005),Removal of headspace biological hydrogen production.Environ Sci Technol 2005;39:4416−4420]。しかし、流出ガス中のH2含有率は87.4%にしか達することができなかった。不完全なCO2除去は、液相中に残存するCO2濃度と、初期スパージから残存する幾らかのN2ガスによるものであった。Parkらは、CO2の除去は他の揮発性酸および溶媒の濃度に実質的に影響を及ぼさなかったと述べている。より重要なことには、Parkらは、回分プロセスと、回分プロセス結果を連続プロセスに転用できないという知見とを教示している。連続流システムは回分システムと根本的に異なり、同じ目的に、または同じ結果を達成するために、回分プロセス条件を連続システムに決して使用することができないことが当業者には分かるであろう。連続的な水素製造は、多くの重要なパラメータ、即ち、水理学的滞留時間(連続流システムでは8時間であるのに対し、回分システムでは2〜5日)、有機負荷速度(連続供給システムのみ)、pH(連続流では一定に維持することができるが、回分式では時間と共に変化する)、バイオマスの濃度、および連続供給システムでは一定であるが、回分式では基質の消費により時間と共に減少する基質とバイオマスとの比(餌対微生物比、F/M)に関して回分式製造と異なる。Parkらは、回分システムではヘッドスペースからCO2を隔離するとH2収量が向上することを明確に示した。しかし、彼らは、同じ方法が連続システムでうまくいくかどうかは不明確であり、それがそもそもうまくいくかどうかを見い出すにはさらに研究が必要であることも述べた。特に、Parkらは、開示した回分試験の条件を連続システムに、特に、異なる有機負荷量および反応器滞留時間などの水素生成速度に影響を及ぼす条件下で、必ずしも同様に適用できるわけではないことを明確に述べた。
Liangら[Teh−Ming Liang,Sheng−Shung Cheng,Kung−Long Wu(2002),Behavioural study on hydrogen fermentation reactor installed with silicone rubber membrane.International Journal of Hydrogen Energy 2002;27:1157−1165]はシリコーンゴム膜を使用して、グルコースを基質として使用するH2発酵回分式反応器内の液相からバイオガスを分離した。著者らは、H2収量の15%増加とH2生成速度の10%増加をそれぞれ観測したが;彼らはVFA濃度を測定しなかった。
Mandalら[2006]は、ヘッドスペースから真空によりH2とCO2の両方を取り除き、酢酸の生成を減少させることを示唆している。Mandalらは、CO2だけを選択的に除去することも、CO2を除去するための隔離の使用も示唆していない。Mandalらの研究は、反応器のヘッドスペースに接続しているガス捕集装置を負圧にすることによる水素製造のバッチの水素分圧の低下に重点を置いた。この試験では二酸化炭素の除去は主として真空(負)圧にすることにより行う。ガス捕集装置内にKOHを使用しても反応器の反応速度論に影響を及ぼさなかった。彼らの実験は全圧を低下させることにより両方の気体生成物を取り除くと反応が正反応の方に移動するというル・シャトリエの原理に基づいて行った。
液相から溶解ガスを除去する前述の方法に関する問題は、流出ガスがガスの混合物となっており、それぞれから別々に利益を得るためにそれを分離しなければならないことである。さらに、燃料電池におけるH2利用に関する主な問題はCO2による汚染であるため、バイオ水素からCO2を確実に除去するプロセス、好ましくはCO2の除去とH2収量の向上とを組み合わせたプロセスが望ましい。
本開示の目的は、有機物から水素を製造する従来の方法およびシステムの少なくとも1つの欠点をなくすまたは軽減することである。
本願の発明者は、実質的にCO2を含まないH2流を製造するために反応器ヘッドスペース内でCO2を連続的に隔離することを含む、暗発酵によりH2を製造するプロセスを見い出した。本発明者は、驚くべきことに、連続反応器のヘッドスペース内で直接CO2の捕捉を行うことにより、隔離されるCO2の量を反応器内で生成するCO2の量の100%に増加させることができることを見い出した。ヘッドスペース内でCO2ガスを捕捉し、ヘッドスペース内でCO2ガスを気体ではない固体の形態に、即ち、炭酸水素塩に変換することを意味するCO2ガスの隔離を用いることにより、反応器自体からCO2ガスを物理的に除去することなく反応器の反応速度論に影響を及ぼすことが可能である。さらに、CO2ガスを捕捉し、反応器のヘッドスペース内でそれを炭酸水素塩に変換することにより、処理しなければならないCO2をベースにする反応生成物の体積が著しく低減する。より重要なことには、ヘッドスペース内でCO2ガスを隔離することにより、CO2ガスは反応器の反応速度論から完全に除去され、H2生成速度が増加するという副次的効果が加わる。CO2ガスはまた反応器ヘッドスペースから実質的に完全に除去され、ヘッドスペース内のH2ガスがCO2を実質的に含まないという別の副次的効果がある。従って、本発明のプロセスにより、以前は達成できなかった著しく向上したH2収量が得られるだけでなく、同時に、事実上CO2を含まないH2流が反応器から直接が得られ、反応器内で生成したCO2ガスとH2ガスをさらに分離するステップまたは反応器の下流でH2ガスを清浄にするステップの必要がなくなる。これにより資本コストが著しく低減し、H2ガスの製造がより経済的になる。これにより、それ以上分離ステップを用いることなく反応器から直接H2とCO2を別々に取り出すことがさらに可能となる。
1つの好ましい実施形態では、暗発酵により有機物から水素を製造する本方法は、
暗発酵により有機物を、H2ガスと、CO2ガスと、揮発性脂肪酸と、アルコールとを含む生成物に分解するために、完全混合型バイオリアクターに有機物と微生物とを導入するステップと;
バイオリアクターのヘッドスペース内でCO2ガスを連続的に隔離し、ヘッドスペース内でCO2を炭酸水素塩として捕捉するステップと;
ヘッドスペースから真空下でH2ガスの少なくとも一部を連続的にまたは非連続的に回収し、それにより、回収されたH2ガスがCO2を実質的に含まないようにするステップと;
を含む。
暗発酵により有機物を、H2ガスと、CO2ガスと、揮発性脂肪酸と、アルコールとを含む生成物に分解するために、完全混合型バイオリアクターに有機物と微生物とを導入するステップと;
バイオリアクターのヘッドスペース内でCO2ガスを連続的に隔離し、ヘッドスペース内でCO2を炭酸水素塩として捕捉するステップと;
ヘッドスペースから真空下でH2ガスの少なくとも一部を連続的にまたは非連続的に回収し、それにより、回収されたH2ガスがCO2を実質的に含まないようにするステップと;
を含む。
別の実施形態では、ヘッドスペース内でCO2を隔離するステップは、ヘッドスペースから炭酸水素塩の少なくとも一部を非連続的に除去する別のステップを含む。
さらに別の実施形態では、CO2を隔離するステップは、ヘッドスペース内で気体のCO2を金属炭酸水素塩として連続的に捕捉するために、ヘッドスペース内に金属水酸化物を連続的に維持し、それによりCO2ガスをヘッドスペースから除去するステップを含む。金属水酸化物は、好ましくは固体の形態で使用される。
好ましくは、金属水酸化物は、アルカリ金属水酸化物、より好ましくはKOHまたはNaOH、最も好ましくは100%純粋なKOHまたはNaOHペレットである。
別の実施形態では、本方法は、完全混合型バイオリアクター内の微生物の濃度を予め選択された値に維持する別のステップを含む。
さらに別の実施形態では、本方法は、完全混合型バイオリアクターのpHを制御する別のステップを含む。好ましくは、完全混合型バイオリアクターのpHは3〜6.8の範囲内に、最も好ましくは約5.2に維持される。
本発明に有用な微生物としては、クロストリジウム(Clostridium)種、例えば、C.ブチリカム(C.butyricum)、C.ベイジェリンキ(C.beijerinckii)、C.アセトブチリカム(C.acetobutyricum)およびC.バイファーメンタンツ(C.bifermentants)、エンテロバクター(Enterobacter)種、例えば、エンテロバクター・アエロゲネス(Enterobacter aerogenes)、バシラス(Bacillus)種、例えば、B.メガテリウム(B.megaterium)、B.チューリンゲンシス(B.thuringiensis)、ならびに、ロドバクター(Rhodobacter)種、例えば、R.スフェロイデス(R.sphaeroides)からなる群から選択される種の1つ以上が挙げられる。
好ましくは、完全混合型バイオリアクターは、単一連続槽型反応器、多段連続槽型反応器、上向流嫌気性汚泥床反応器(up−flow anaerobic sludge blanket reactor)、膨張グラニュール汚泥床反応器(expanded bed granular sludge blanket reactor)、下向流嫌気性粒状媒体反応器(down−flow anaerobic granular media reactor)、上向流嫌気性粒状媒体反応器(up−flow anaerobic granular media reactor)、嫌気性バッフル付槽型反応器(anaerobic baffled tank reactor)、嫌気性移動ブランケット反応器(anaerobic migrating blanket reactor)、および嫌気性流動床バイオリアクターからなる群から選択される反応器である。
本明細書に開示する方法は、CSTRと、それに続く、有機物をアセトン−ブタノール−エタノール(ABE)発酵するための重力沈降槽とを含む一体化されたバイオ水素反応器クラリファイヤーシステム(IBRCS)により実施することができる。ABE発酵により、例えば、アセトン、ブタノール、エタノール、酢酸、酪酸、水素ガス、および/または二酸化炭素を含む生成物が得られる。水素ガスと二酸化炭素はCSTRから別々に回収される。CSTR反応器内のバイオマス濃度は、重力沈降槽の底部からのバイオマス再循環および/または重力沈降槽の底流からのバイオマス引抜により所望の範囲に保たれる。回収されるアセトン、ブタノール、エタノール、酢酸、酪酸等からバイオマスをさらに分離するために、分離プロセスを使用する。バイオマスは、メタンガスを製造するためのバイオメタン化装置とも称されるバイオメタン生成装置に供される。
さらに別の実施形態では、本明細書は、有機物から水素、メタン、揮発性脂肪酸、およびアルコールを製造するシステムを提供し、
暗発酵のための完全混合型バイオリアクターと;
微生物と、微生物によりH2ガス、CO2ガス、揮発性脂肪酸(VFA)およびアルコールを含む生成物に分解される有機物とをバイオリアクターに供給するための流入口;
反応器のヘッドスペース内のCO2トラップであって、ヘッドスペースからCO2ガスを連続的にまたは非連続的に隔離し、ヘッドスペース内でCO2を炭酸水素塩として捕捉するための固体水酸化物を含むCO2トラップと;
H2ガスを含む流出ガスをヘッドスペースから取り出すためのガス流出口と;
微生物、揮発性脂肪酸およびアルコールの少なくとも一部を含む第1の流出液をバイオリアクターから取り出すための液体流出口と;
を備える。
暗発酵のための完全混合型バイオリアクターと;
微生物と、微生物によりH2ガス、CO2ガス、揮発性脂肪酸(VFA)およびアルコールを含む生成物に分解される有機物とをバイオリアクターに供給するための流入口;
反応器のヘッドスペース内のCO2トラップであって、ヘッドスペースからCO2ガスを連続的にまたは非連続的に隔離し、ヘッドスペース内でCO2を炭酸水素塩として捕捉するための固体水酸化物を含むCO2トラップと;
H2ガスを含む流出ガスをヘッドスペースから取り出すためのガス流出口と;
微生物、揮発性脂肪酸およびアルコールの少なくとも一部を含む第1の流出液をバイオリアクターから取り出すための液体流出口と;
を備える。
別の実施形態では、CO2トラップは、固体金属水酸化物、好ましくはアルカリ金属水酸化物、より好ましくはKOHまたはNaOH、最も好ましくは100%KOHまたはNaOHペレットを含む。
別の実施形態では、本システムは、反応器の連続運転中に炭酸水素塩として捕捉されるCO2を除去するための、ヘッドスペースから別々に取り出すことができる2つ以上のCO2トラップを備える。
さらに別の実施形態では、本システムは、第1の流出液を、微生物の少なくとも一部を含む沈降した第1のバイオマスと、揮発性脂肪酸、アルコール、および微生物の少なくとも一部を含む第2の流出液とに分離するための、液体流出口と流体連通する重力沈降槽と;完全混合型バイオリアクター内の微生物の濃度を予め選択された値に維持するために、第1のバイオマスを重力沈降槽から完全混合型バイオリアクターに供給する手段と;をさらに備える。
別の実施形態では、本システムは、pHを調整する化学物質を完全混合型バイオリアクターに定量供給するディスペンサーをさらに備える。
さらに、本システムは好ましくは、バイオリアクターの温度を制御する温度制御装置を備える。
完全混合型バイオリアクターは、好ましくは、単一連続槽型反応器、多段連続槽型反応器、上向流嫌気性汚泥床反応器、膨張グラニュール汚泥床反応器、下向流嫌気性粒状媒体反応器、上向流嫌気性粒状媒体反応器、嫌気性バッフル付槽型反応器、嫌気性移動ブランケット反応器、および嫌気性流動床バイオリアクターからなる群から選択される反応器である。
本開示の他の態様および特徴は、添付の図と共に以下の特定の実施形態の説明を考察すれば、当業者に明らかとなるであろう。
添付の図を参照して本開示の実施形態を説明するが、それは例として記載するに過ぎない。
一般に、本開示は、暗発酵により有機物からバイオ水素と、好ましくは炭酸水素塩、エタノール、ブタノール、酢酸、プロピオン酸、および酪酸などの他の化学物質とを、好ましくは連続撹拌反応器(CSTR)で製造するための方法および一体化されたシステムを提供する。CSTRの後、下流の重力沈降槽がシステムに一体化されていてもよい。本方法および本システムの実施形態を本明細書に開示する。しかし、開示される実施形態は例示に過ぎず、本方法および本システムは多くの様々な形態および代替の形態で具体化することができる。
本明細書で使用する場合、「約」および「おおよそ」という用語は、寸法、濃度、温度、または他の物理的もしくは化学的性質および特性の範囲に関して使用される。これらの用語の使用は、性質および特性の範囲の上限と下限に存在し得る僅かなばらつきを包含するものとする。
本明細書で使用する場合、「完全混合型バイオリアクター」という用語は、懸濁液および増殖培地、(例えば、有機炭素、窒素含有化合物、リン含有化合物、および微量ミネラル溶液等の栄養分を含む増殖培地)中の微生物に使用される、容器の内容物を撹拌する機構(例えば、水流(hydraulic)撹拌、機械的撹拌等により)を含む容器を意味する。連続撹拌反応器(CSTR)は、完全混合型バイオリアクターの一例である。
本明細書で使用する場合、「微生物」という用語は、有機物を嫌気性(微好気性ではない)条件下で発酵させて、水素またはメタン、二酸化炭素、および種々の有機酸およびアルコールを生成することができる微生物を意味する。この用語に入る微生物種としては、例えば、様々なクロストリジウム(Clostridium)種、例えば、C.ブチリカム(C.butyricum)、C.ベイジェリンキ(C.beijerinckii)、C.アセトブチリカム(C.acetobutyricum)およびC.バイファーメンタンツ(C.bifermentants)、エンテロバクター(Enterobacter)種、例えば、エンテロバクター・アエロゲネス(Enterobacter aerogenes)、バシラス(Bacillus)種、例えば、メガテリウム(megaterium)、チューリンゲンシス(thuringiensis)、ならびに他の嫌気性細菌(例えば、ロドバクター・スフェロイデス(Rhodobacter sphaeroides))の1つまたは組み合わせを挙げることができる。
本明細書で使用する場合、「有機物」という用語は、分子構造中に炭素と水素とを含む物質、例えば、アルコール、ケトン、アルデヒド、脂肪酸、エステル、カルボン酸、エーテル、炭水化物、タンパク質、脂質、多糖類、単糖類、セルロース、核酸等を指す。有機物は、例えば、廃棄物(例えば、産業廃棄物流)、有機流体流、バイオマス中等に存在し得る。
プロセス
図1は、有機バイオマスから水素ガス、二酸化炭素、揮発性脂肪酸、およびアルコールを製造するプロセス200の流れ図である。プロセス200は、バイオ水素生成(biohydrogeneration)ステップ210と、CO2隔離ステップ215と、水素ガス回収ステップ220と、第1の流出液回収ステップ230と、第1の流出液分離ステップ240とを含む。メタンとCO2が生成する本プロセスの変形形態では、本プロセスは、第2の流出液分離ステップ250と、第3の流出液回収ステップ260と、バイオメタン化ステップ270とも称されるバイオメタン生成ステップ270と、メタン回収ステップ280とをさらに含む。ステップ210、220、230、240、250、260、270、280は、ステップ210、220、230、240、250、260、270、280を同時にではなく順次行う回分法とは対照的に、ステップ210、220、230、240、250、260、270、280の一部または全部を同時に且つ連続的または非連続的に行う連続的方法で行うことができる。
図1は、有機バイオマスから水素ガス、二酸化炭素、揮発性脂肪酸、およびアルコールを製造するプロセス200の流れ図である。プロセス200は、バイオ水素生成(biohydrogeneration)ステップ210と、CO2隔離ステップ215と、水素ガス回収ステップ220と、第1の流出液回収ステップ230と、第1の流出液分離ステップ240とを含む。メタンとCO2が生成する本プロセスの変形形態では、本プロセスは、第2の流出液分離ステップ250と、第3の流出液回収ステップ260と、バイオメタン化ステップ270とも称されるバイオメタン生成ステップ270と、メタン回収ステップ280とをさらに含む。ステップ210、220、230、240、250、260、270、280は、ステップ210、220、230、240、250、260、270、280を同時にではなく順次行う回分法とは対照的に、ステップ210、220、230、240、250、260、270、280の一部または全部を同時に且つ連続的または非連続的に行う連続的方法で行うことができる。
バイオ水素生成ステップ210では、有機物を、H2、CO2、揮発性脂肪酸、およびアルコールを含む生成物に分解するために、有機物と微生物とを完全混合型バイオリアクター(例えば、図2の完全混合型バイオリアクター22)に供する。CO2隔離ステップでは、CO2ガスをバイオリアクターのヘッドスペース内で捕捉し、ヘッドスペース内でそれを炭酸水素塩に変換する。ヘッドスペース内でCO2ガスを隔離することにより、反応器からCO2を物理的に除去することなく、CO2ガスは反応器の反応速度論から効率的に除去される。水素ガス回収ステップ220では、H2ガスの少なくとも一部が真空下で完全混合型バイオリアクターから回収される。第1の流出液回収ステップ230では、第1の流出液の少なくとも一部が完全混合型バイオリアクターから回収され、第1の流出液は微生物、揮発性脂肪酸およびアルコールの少なくとも一部を含む。
CO2隔離ステップでは、炭酸水素塩はヘッドスペース内で回収され、ヘッドスペースから非連続的に除去される。CO2隔離ステップでは、CO2ガスは捕捉され、固体水酸化物、好ましくは金属水酸化物、より好ましくはアルカリ金属水酸化物、最も好ましくはKOHまたはNaOHとの反応により反応器の反応速度論から除去される。金属水酸化物は好ましくは100%KOHまたはNaOHペレットの形態である。ヘッドスペース内でCO2ガスを隔離することには複数の利点がある。反応器ヘッドスペース内でCO2を隔離すると、実質的にCO2ガスを含まないH2流が製造される。反応器ヘッドスペース内で直接、CO2ガスの捕捉を行うことにより、捕捉されるCO2ガスの量を反応器内で生成するCO2の100%に上昇させることができることは本発明者には驚くべきことであった。さらに、CO2の隔離によりCO2ガスをヘッドスペースから連続的に完全に除去すると、H2製造が増加するという別の副次的効果もある。これは、同様に驚くべきことに観測されたプロピオン酸生成の完全な抑制によりもたらされる可能性がある。従って、本発明のプロセスにより、以前は達成できなかった著しく向上したH2収量が得られるだけでなく、同時に、事実上CO2を含まないH2流が反応器から直接得られるため、反応器の下流でCO2ガスとH2ガスをさらに分離するステップの必要がなくなる。KOH溶液を使用して、反応器とは別の容器内で気体のH2/CO2と反応させる既知の方法と比較して、本システムは、送風機などの何らかの種類の機械的装置を用いてガスを反応器からKOH溶液を通して移動させる必要がないため、要するエネルギーや設備が少なくて済む。これにより、資本コストが著しく低減し、H2ガス製造がより経済的になる。それにより、反応器からH2とCO2を別々に取り出すことが可能となる。
本固体/気体隔離反応システムと関連する資本コストおよび運転コストの低減の他に、隔離されたCO2量は79%(Mandelら、元の24.5%から19.3%が隔離された)から約100%に著しく増加する。
第1の流出液分離ステップ240では、第1の流出液の少なくとも一部を、微生物の少なくとも一部を含む第1のバイオマスと、揮発性脂肪酸、アルコール、および微生物の少なくとも一部を含む第2の流出液とに分離するために、重力沈降槽(例えば、図2の重力沈降槽24)に第1の流出液の少なくとも一部を供給する。他の分離装置、例えば、膜分離装置も知られているが、それらは資本集約的であり、運転がずっと困難である。第2の流出液分離ステップ250では、第2の流出液の少なくとも一部を、微生物の少なくとも一部を含む第2のバイオマスと、揮発性脂肪酸およびアルコールの少なくとも一部を含む第3の流出液とに分離するために、分離モジュール(例えば、図2の分離モジュール30)に第2の流出液の少なくとも一部を供給する。第3の流出液の少なくとも一部は、第3の流出液回収ステップ260で回収される。
第1の流出液分離ステップ240は、第1のバイオマスの少なくとも一部を完全混合型バイオリアクターに再循環させ、完全混合型バイオリアクター内の微生物の濃度を予め選択された値に維持するステップを含んでもよい。
バイオメタン化ステップ270では、第1のバイオマス、第2のバイオマス、またはその両方の少なくとも一部を回収し、CH4とCO2を生成するためにバイオメタン化装置(例えば、図2のバイオメタン化装置40)に供する。バイオメタン生成装置およびバイオメタン化装置という用語は本明細書では互換的に使用され、共にメタンを生物学的に製造するための反応器を指す。CH4およびCO2の少なくとも一部はメタン回収ステップ280で回収される。
第2の流出液分離ステップ250は、種々の分離プロセス、例えば、膜ソルベント分離の適用を含んでもよい。
バイオ水素生成ステップ210中に、完全混合型バイオリアクター内のpH範囲を制御してもよい。例えば、所望の最終生成物に応じて、pH範囲を3〜6.8の範囲内に保ってもよい。好ましくは、H2生成速度を最大にするためにpHを約5.2に維持する。
バイオメタン化ステップ270中に、バイオメタン化装置内のpH範囲を制御してもよい。バイオ水素生成ステップ210中に、完全混合型バイオリアクター内の温度を制御してもよい。例えば、温度を約25℃〜約37℃の範囲内に保ってもよい。
バイオメタン化ステップ270中に、バイオメタン化装置内の温度を制御してもよい。例えば、温度を約25℃〜約37℃の範囲内に保ってもよい。
本願のシステムに適用するのに有用な微生物としては、クロストリジウム(Clostridium)種、例えば、C.ブチリカム(C.butyricum)、C.ベイジェリンキ(C.beijerinckii)、C.アセトブチリカム(C.acetobutyricum)およびC.バイファーメンタンツ(C.bifermentants)、エンテロバクター(Enterobacter)種、例えば、エンテロバクター・アエロゲネス(Enterobacter aerogenes)、バシラス(Bacillus)種、例えば、B.メガテリウム(B.megaterium)、B.チューリンゲンシス(B.thuringiensis)、およびロドバクター(Rhodobacter)種、例えば、R.スフェロイデス(R.sphaeroides)が挙げられる。
システム
図2は、有機物から水素ガス、二酸化炭素、メタン、揮発性脂肪酸、およびアルコールを製造するシステム10の略図である。システム10で製造される他の生成物としては、アセトン、エタノール、ブタノール、酢酸、プロピオン酸、および酪酸を挙げることができる。システム10は、バイオ水素生成装置20、分離モジュール30、およびバイオメタン生成装置またはバイオメタン化装置40を含む。
図2は、有機物から水素ガス、二酸化炭素、メタン、揮発性脂肪酸、およびアルコールを製造するシステム10の略図である。システム10で製造される他の生成物としては、アセトン、エタノール、ブタノール、酢酸、プロピオン酸、および酪酸を挙げることができる。システム10は、バイオ水素生成装置20、分離モジュール30、およびバイオメタン生成装置またはバイオメタン化装置40を含む。
バイオ水素生成装置20は有機物100を完全混合型バイオリアクター22に受け入れるための入口を有する完全混合型バイオリアクター22を含む。微生物を完全混合型バイオリアクター22に加えて有機物100を分解し、H2およびCO2を生成する。反応器22は、H2ガス102のためのガス出口101と、第1の流出液104のための液体出口103とをさらに備える。第1の流出液104は、例えば、微生物、揮発性脂肪酸(例えば、酢酸、酪酸等)、アルコール(例えば、エタノール、ブタノール等)、アセトン等を含み得る。CO2トラップ105はバイオリアクター22のヘッドスペースに含まれ、このトラップは固体の形態の水酸化物、好ましくはアルカリ金属水酸化物、例えば、KOHまたはNaOH、最も好ましくは100%KOHまたはNaOHペレットを含む。CO2トラップ105は好ましくはバイオ水素生成の運転中にバイオリアクターから取り外すことができる。最も好ましくは、バイオリアクター22はバイオリアクターから個々におよび独立して取り外し、CO2トラップの1つの取り外し中でも連続的にCO2を隔離することが可能になるように取り換えることができる2つ以上のCO2トラップを含む。
バイオ水素生成装置20は、完全混合型バイオリアクター22から第1の流出液104を受け入れるための、完全混合型バイオリアクター22の下流にあり、且つ完全混合型バイオリアクター22と流体連通する重力沈降槽24をさらに含む。重力沈降槽24では、第1の流出液104は沈降して第1のバイオマス106と第2の流出液108になる。第2の流出液108は、例えば、微生物、揮発性脂肪酸(例えば、酢酸、プロピオン酸、酪酸等)、アルコール(例えば、エタノール、ブタノール等)、アセトン等を含み得る。
再循環管26は、第1のバイオマス106を重力沈降槽24から完全混合型バイオリアクター22に再循環させるために、重力沈降槽24の底部から完全混合型バイオリアクター22への流体連通を提供する。重力沈降槽24の底部からの排出管27は、第1のバイオマス106を排出し、処分するための導管である。第1のバイオメタン化装置の導管28は、第1のバイオマス106を重力沈降槽24からバイオメタン化装置40に循環させるために、重力沈降槽の底部からバイオメタン化装置40への流体連通を提供する。弁29により、再循環管26、排出管27、および第1のバイオメタン化装置の導管28の1つ以上の流通を選択することが可能となる。
分離モジュール30は、第2の流出液108を受け入れるために、重力沈降槽24と流体連通している。分離モジュール30では、分離プロセスの適用により、第2の流出液108を第2のバイオマス110と第3の流出液112とに分離することができる。第3の流出液112は、例えば、揮発性脂肪酸(例えば、酢酸、プロピオン酸、酪酸等)、アルコール(例えば、エタノール、ブタノール等)、アセトン等を含み得る。第2のバイオメタン化装置の導管32は、第2のバイオマス110を分離モジュール30からバイオメタン化装置40に循環させるために、分離モジュール30からバイオメタン化装置40への流体連通を提供する。
バイオメタン化装置40は、重力沈降槽24、分離モジュール30、またはその両方の下流にあり、且つそれと流体連通する。バイオメタン化装置40は、バイオ水素生成装置20、分離モジュール30、またはその両方からバイオマスを受け入れて分解し、CH4およびCO2114と、残部の有機物および微生物を含有する液体廃棄物116とにすることができる。
バイオメタン化装置40は、第1のバイオメタン化装置容器42、第2のバイオメタン化装置容器44、またはその両方を含んでもよい。第1のバイオメタン化装置容器42は、重力沈降槽24から第1のバイオマス106を受け入れるために、第1のバイオメタン化装置の導管28と流体連通している。第2のバイオメタン化装置容器44は、分離モジュール30から第2のバイオマス110を受け入れるために、第2のバイオメタン化装置の導管32と流体連通している。
システム10は、完全混合型バイオリアクター22内、バイオメタン化装置40内、またはその両方の温度を制御する温度制御装置(図示せず)を含んでもよい。完全混合型バイオリアクター22とバイオメタン化装置40の両方の内容物の温度が維持される典型的な温度範囲は、約25℃〜約37℃である。
システム10は、栄養分とpH調整化合物を完全混合型バイオリアクターに定量供給するディスペンサー(図示せず)を含んでもよい。栄養分としては、例えば、窒素含有化合物、リン含有化合物、鉄、マンガン、マグネシウム、カルシウム、コバルト、亜鉛、ニッケル、銅等を含む微量金属を挙げることができる。pH調整化合物としては、例えば、ソーダ灰、炭酸水素ナトリウム、水酸化ナトリウム、水酸化カルシウム、水酸化マグネシウム、硝酸、塩酸等を挙げることができる。
運転
システム10を使用して、プロセス200の一実施形態を実施することができる。有機物100は完全混合型バイオリアクター22に入り、水素生成微生物により微生物学的に分解され、H2ガスおよびCO2ガスを含む生成物と、第1の流出液104とが得られる。CO2ガスはCO2トラップ内の水酸化物により隔離され、トラップ内で炭酸水素塩として捕捉される。CO2を実質的に含まないH2流102が、完全混合型バイオリアクター22から連続的に取り出される。第1の流出液104は重力沈降槽24に流動する。CO2トラップ内に捕捉された炭酸水素塩はCO2トラップ内に残存し、バイオリアクター22から非連続的に除去される。
システム10を使用して、プロセス200の一実施形態を実施することができる。有機物100は完全混合型バイオリアクター22に入り、水素生成微生物により微生物学的に分解され、H2ガスおよびCO2ガスを含む生成物と、第1の流出液104とが得られる。CO2ガスはCO2トラップ内の水酸化物により隔離され、トラップ内で炭酸水素塩として捕捉される。CO2を実質的に含まないH2流102が、完全混合型バイオリアクター22から連続的に取り出される。第1の流出液104は重力沈降槽24に流動する。CO2トラップ内に捕捉された炭酸水素塩はCO2トラップ内に残存し、バイオリアクター22から非連続的に除去される。
重力沈降槽24では、微生物の少なくとも一部が重力沈降槽24の底部に沈降し、第1のバイオマス106と第2の流出液108とが得られる。第1のバイオマス106を全部または一部、完全混合型バイオリアクター22に再循環させても、バイオメタン化装置40に供しても、処分しても、またはこれらの組み合わせを行ってもよい。第2の流出液108は分離モジュール30に流入する。
分離モジュール30では、第2の流出液108の少なくとも一部は沈降して、第2のバイオマス110と第3の流出液112とになる。第3の流出液112は、分離モジュール30から放出され、回収される。第2のバイオマス110をバイオメタン化装置40に供することができる。第2のバイオマス110を完全混合型バイオリアクターに供することも可能であるが、重力沈降槽24からのリサイクル流の存在下で行う必要はない。
第1のバイオマス106は、第1のバイオメタン化装置の導管28を通して第1のバイオメタン化装置容器42に供される。第2のバイオマス110は、第2のバイオメタン化装置の導管34を通して第2のバイオメタン化装置容器44に供される。バイオメタン化装置40では、第1のバイオマス106、第2のバイオマス110、またはその両方を微生物学的に分解すると、CH4およびCO2114が生成する。CH4およびCO2114はバイオメタン化装置40から放出され、回収される。液体廃棄物116は、バイオメタン化装置40から排出されるか、バイオメタン化装置40に再循環されるか、またはその両方が行われる。
以下で例示的な運転条件およびシステム構成について検討するが、それらは例示の目的で記載するに過ぎず、本発明の範囲を特許請求の範囲に記載の対象より狭い範囲に限定するものではない。
IBRCS構成
システム10の試験中、CO2を隔離すると、酢酸濃度が平均45%上昇し、酪酸濃度がその元の濃度の平均51%に低下し、プロピオン酸の生成が完全になくなるという流出液揮発性脂肪酸(VFA)濃度の3つの主要な変化が認められた。さらに、試験中、2つの異なる有機負荷速度での水素生成速度は、63L H2/d(グルコースが9g/Lの時)および132L H2/d(グルコースが17g/Lの時)であり、ほぼ100%純粋な水素が達成された。
システム10の試験中、CO2を隔離すると、酢酸濃度が平均45%上昇し、酪酸濃度がその元の濃度の平均51%に低下し、プロピオン酸の生成が完全になくなるという流出液揮発性脂肪酸(VFA)濃度の3つの主要な変化が認められた。さらに、試験中、2つの異なる有機負荷速度での水素生成速度は、63L H2/d(グルコースが9g/Lの時)および132L H2/d(グルコースが17g/Lの時)であり、ほぼ100%純粋な水素が達成された。
CSTR(有効容積7L)と、その後の重力沈降槽(容積8L)とからなる2つの一体化されたバイオ水素反応器クラリファイヤーシステム(IBRCS)を、2つの異なるOLRで並行して運転した。システム設計の更なる詳細については、Hafezら[2009]を参照されたい。OLR−1およびOLR−2は、それぞれ25.7gCOD/L−dおよび51.4gCOD/L−dであった。底部が多孔質の円筒状CO2トラップ(体積0.25L)をシステム内に導入し、反応器の蓋体内に固定した。各OLRは、2つの条件で連続して、即ち、CO2隔離を行わずに18日、続いて、ヘッドスペース内に固定されたCO2トラップにKOHペレット(60g)を添加することによりCO2隔離を行って17日運転した。
種汚泥および基質
嫌気性消化汚泥(ADS)はSt.Mary’s下水処理場(St.Mary’s,Ontario、カナダ)から回収し、70℃で30分間予熱し、種汚泥として使用した。基質としてグルコースを8g/L(OLR−1)および16g/L(OLR−2)の2つの異なる濃度で使用した。供給原料は次の濃度(mg/L):CaCl2、140;MgCl2.6H2O、160;MgSO4.7H2O、160;Na2CO3、200;KHCO3、200;K2HPO4、15;尿素、1500;H3PO4、845;の十分な無機物と;次の組成(mg/L):FeCl2.4H2O、2000;H3BO3、50;ZnCl2、50;CuCl2、30;MnCl2.4H2O、500;(NH4)6Mo7O24、50;CoCl2.6H2O、50;NiCl2、50;エチレンジアミン四酢酸、0.5;および濃HCl、1170;を有する微量ミネラル溶液とを含有した。OLR−1およびOLR−2で稼動するシステムではそれぞれ、供給原料中に使用した緩衝剤は3g/Lおよび5g/Lの濃度のNaHCO3であった。実験中、168g/Lの濃度のNaHCO3溶液を用いてpH5.2を維持した。
嫌気性消化汚泥(ADS)はSt.Mary’s下水処理場(St.Mary’s,Ontario、カナダ)から回収し、70℃で30分間予熱し、種汚泥として使用した。基質としてグルコースを8g/L(OLR−1)および16g/L(OLR−2)の2つの異なる濃度で使用した。供給原料は次の濃度(mg/L):CaCl2、140;MgCl2.6H2O、160;MgSO4.7H2O、160;Na2CO3、200;KHCO3、200;K2HPO4、15;尿素、1500;H3PO4、845;の十分な無機物と;次の組成(mg/L):FeCl2.4H2O、2000;H3BO3、50;ZnCl2、50;CuCl2、30;MnCl2.4H2O、500;(NH4)6Mo7O24、50;CoCl2.6H2O、50;NiCl2、50;エチレンジアミン四酢酸、0.5;および濃HCl、1170;を有する微量ミネラル溶液とを含有した。OLR−1およびOLR−2で稼動するシステムではそれぞれ、供給原料中に使用した緩衝剤は3g/Lおよび5g/Lの濃度のNaHCO3であった。実験中、168g/Lの濃度のNaHCO3溶液を用いてpH5.2を維持した。
分析方法
生成したバイオガスの容積はウェットチップ(wet−tip)ガスメータ(Rebel wet−tip gas meter company,Nashville,TN、米国)を用いて測定し、バイオガス組成は、温度90℃の熱伝導率検出器(TCD)および温度105℃のモレキュラーシーブカラム(Molesieve 5A、メッシュ80/100、6ft(1.83m)*1/8in(3.175mm))を有するガスクロマトグラフ(Model 310、SRI instruments,Torrance,CA)を用いて求めた。アルゴンをキャリアガスとして流量30mL/分で使用した。揮発性脂肪酸(VFA)濃度は、温度110℃のヒュームドシリカカラム(30m*0.32mm)を備える温度250℃の水素炎イオン化検出器(FID)を有するガスクロマトグラフ(Varian 8500,Varian Inc.,Toronto、カナダ)を用いて分析した。ヘリウムをキャリアガスとして流量5mL/分で使用した。全浮遊物質および揮発性浮遊物質(TSS、VSS)は、標準的方法[APHA、1995年]に準拠して測定した。グルコースは、Genzyme Diagnostics P.E.I.Inc.PE Canadaグルコースキットで分析した。HACH法および試験キット(HACH Odyssey DR/2500)を使用して、全化学的酸素要求量および溶解性化学的酸素要求量(TCOD、SCOD)を測定した。
生成したバイオガスの容積はウェットチップ(wet−tip)ガスメータ(Rebel wet−tip gas meter company,Nashville,TN、米国)を用いて測定し、バイオガス組成は、温度90℃の熱伝導率検出器(TCD)および温度105℃のモレキュラーシーブカラム(Molesieve 5A、メッシュ80/100、6ft(1.83m)*1/8in(3.175mm))を有するガスクロマトグラフ(Model 310、SRI instruments,Torrance,CA)を用いて求めた。アルゴンをキャリアガスとして流量30mL/分で使用した。揮発性脂肪酸(VFA)濃度は、温度110℃のヒュームドシリカカラム(30m*0.32mm)を備える温度250℃の水素炎イオン化検出器(FID)を有するガスクロマトグラフ(Varian 8500,Varian Inc.,Toronto、カナダ)を用いて分析した。ヘリウムをキャリアガスとして流量5mL/分で使用した。全浮遊物質および揮発性浮遊物質(TSS、VSS)は、標準的方法[APHA、1995年]に準拠して測定した。グルコースは、Genzyme Diagnostics P.E.I.Inc.PE Canadaグルコースキットで分析した。HACH法および試験キット(HACH Odyssey DR/2500)を使用して、全化学的酸素要求量および溶解性化学的酸素要求量(TCOD、SCOD)を測定した。
水素製造
図3は、ヘッドスペースにKOHを添加することによるH2含有率の変化を示す。H2含有率は、KOHなしのとき、OLR−1およびOLR−2でそれぞれ57.3±4%および64.9±3%に達し、ヘッドスペースにKOHを添加した後、どちらの場合も100%に迅速に増加した。Parkら[2005]は、H2製造回分実験のヘッドスペースにKOHを添加した後、ヘッドスペースCO2の不完全な隔離のため87.4%H2しか達成しなかった。ヘッドスペースのバイオガス組成は液相CO2およびH2生成速度だけでなく、液体から気体への物質移動によっても規定されると主張しなければならない。回分式では、最大生成速度に達した後、速度は通常、基質利用速度の低下により時間と共に低下するため、連続流システムへの回分バイオガス組成データの外挿は、運転条件、即ち、OLR、HRT、バイオマス濃度等に関連する多くの要因に依存する。
図3は、ヘッドスペースにKOHを添加することによるH2含有率の変化を示す。H2含有率は、KOHなしのとき、OLR−1およびOLR−2でそれぞれ57.3±4%および64.9±3%に達し、ヘッドスペースにKOHを添加した後、どちらの場合も100%に迅速に増加した。Parkら[2005]は、H2製造回分実験のヘッドスペースにKOHを添加した後、ヘッドスペースCO2の不完全な隔離のため87.4%H2しか達成しなかった。ヘッドスペースのバイオガス組成は液相CO2およびH2生成速度だけでなく、液体から気体への物質移動によっても規定されると主張しなければならない。回分式では、最大生成速度に達した後、速度は通常、基質利用速度の低下により時間と共に低下するため、連続流システムへの回分バイオガス組成データの外挿は、運転条件、即ち、OLR、HRT、バイオマス濃度等に関連する多くの要因に依存する。
H2生成速度は、OLR−1とOLR−2の両方でそれぞれ57L H2/dから70L H2/dに、および118L H2/dから146L H2/dに増加した。図2はH2生成速度の平均増加23.5%を示し、12日後に定常性能に達し、OLR−1とOLR−2の両方でそれぞれ生成速度の平均変動は3.4%と8.7%であった。KOH適用前の反応器容積のリットルに基づいたH2生成速度は8.2±0.5L/L−dおよび16.9±1.0L/L−dであったが、それらは、9.6L/L−dおよび19.6L/L−dを達成したHafezら[2010]と一致している。KOHの適用後、OLR−1とOLR−2の両方についてそれぞれ、速度が10±0.4L/L−dおよび20.9±1.1L/L−dに増加した。ヘッドスペースからCO2を除去すると反応1、2、および3が正反応の方に進み、それにより、CO2濃度の低下を補償するためにH2生成速度が増加すると仮定される。図3はCO2の隔離を行った場合と行わなかった場合の水素含有率を示し、図4はCO2の隔離を行った場合と行わなかった場合の水素生成速度を示す。
水素収量
CO2を隔離する前にOLR−1およびOLR−2で達成されたH2収量は、それぞれ2.42±0.15mol/molおよび2.50±0.18mol/molであったが、これはIBRCSにおいて同じOLRおよびHRTで2.8mol/molおよび2.9mol/molのH2収量を達成したHafezら[2010]と一致している。これらの結果は、Zhangら[2006]によりグルコースおよび混合嫌気性培養系を用いて連続槽型反応器でOLR32.1gCOD/L−dおよびHRT8時間で達成された最大H2収量1.93mol/molより27%高い。
CO2を隔離する前にOLR−1およびOLR−2で達成されたH2収量は、それぞれ2.42±0.15mol/molおよび2.50±0.18mol/molであったが、これはIBRCSにおいて同じOLRおよびHRTで2.8mol/molおよび2.9mol/molのH2収量を達成したHafezら[2010]と一致している。これらの結果は、Zhangら[2006]によりグルコースおよび混合嫌気性培養系を用いて連続槽型反応器でOLR32.1gCOD/L−dおよびHRT8時間で達成された最大H2収量1.93mol/molより27%高い。
図5は、ヘッドスペースでのCO2の隔離によるH2収量の増加を示す。両方のOLRで平均増加23%が達成され、CO2の隔離を行ってOLR−1およびOLR−2で達成される平均収量は2.96±0.14mol/molおよび3.10±0.19mol/molであった。H2収量の増加は、ル・シャトリエの原理に従い、CO2の隔離により反応1および2が正反応の方に移動することによるものと考えられる[Sawyerら、2003]。しかし、CO2隔離の適用前にIBRCSを使用したH2収量は既に高い(2.42±0.15mol/molおよび2.50±0.18mol/mol)ため、23%の増加しか観測されなかった。最大理論H2収量が4mol/mol、バイオマス収量を考慮に入れた実際の最大収量が3.4mol/mol、および達成された最大収量が3mol/mol[Hafezら、2010]の場合、CO2の隔離により収率が23%増加し、実際の収率91.2%が達成された。H2収量に対するCO2の隔離の影響は、CSTRでの1.8mol/mol[Zhangら、2007;Showら、2007]、撹拌グラニュール汚泥床反応器(agitated bed granular sludge reactor)での1.57mol/mol[Wuら、2008]、およびAFBRでの1.83mol/mol[Zhangら、2008;Showら、2010]などの、グルコースを基質としておよび嫌気性消化汚泥を種汚泥として使用する他のシステムで達成される低H2収量では劇的になるであろう。図5は、CO2の隔離を行った場合と行わなかった場合の水素生成収量を示す。
3.3 揮発性脂肪酸(VFA)
表1は、ヘッドスペースにKOHを適用する前と適用した後のOLR−1およびOLR−2での流出液VFA濃度を示す。CO2を隔離した後、流出液VFA濃度の3つの主要な変化があった;即ち、酢酸濃度が平均45%上昇し、酪酸濃度が元の濃度の平均51%に低下し、プロピオン酸が完全になくなったことは注目に値する。反対に、Parkら[2005]は、酢酸とエタノールが2つの主な副生成物として生成する回分実験のヘッドスペース内にKOHを適用した後、エタノール生成の増加の他に、ホモ酢酸生成の抑制による酢酸濃度の低下を観測した。また、Kimら[2006]の観測では、OLR40gCOD/L.dおよびHRT12時間でショ糖からH2を製造するCSTRにN2およびCO2ガスを連続的にスパージした後、酢酸濃度はその元の値の35%しか低下せず、酪酸濃度とプロピオン酸濃度は両方ともそれぞれ101%と28%増加した。しかし、前述の著者らは、それぞれガススパージを行わなかった場合、N2スパージを行った場合、およびCO2スパージを行った場合、0.75、0.93、および1.20mol/mol(添加された六炭糖)の低いH2収量を観測し、それはH2の生成が主に酪酸経路で行われたことを示す。前述のシステムは約1000mgVSS/Lの低いバイオマス濃度で運転したため、比H2生成速度は本試験より低いことに留意されたい。興味深いことにN2スパージだけを行った場合、Kimら[2006]は、本試験で観測された24%と一致するH2収量の24%増加を観測し、N2スパージ後にガススパージを継続しなかった場合、生物群集の変化がなかった、即ち、酪酸経路が支配的であった。しかし、前述の著者らはCO2スパージを行ってそれを繰り返したが、収量の向上は、H2生成菌と競合する酢酸菌および酪酸菌の抑制によるものである。
表1は、ヘッドスペースにKOHを適用する前と適用した後のOLR−1およびOLR−2での流出液VFA濃度を示す。CO2を隔離した後、流出液VFA濃度の3つの主要な変化があった;即ち、酢酸濃度が平均45%上昇し、酪酸濃度が元の濃度の平均51%に低下し、プロピオン酸が完全になくなったことは注目に値する。反対に、Parkら[2005]は、酢酸とエタノールが2つの主な副生成物として生成する回分実験のヘッドスペース内にKOHを適用した後、エタノール生成の増加の他に、ホモ酢酸生成の抑制による酢酸濃度の低下を観測した。また、Kimら[2006]の観測では、OLR40gCOD/L.dおよびHRT12時間でショ糖からH2を製造するCSTRにN2およびCO2ガスを連続的にスパージした後、酢酸濃度はその元の値の35%しか低下せず、酪酸濃度とプロピオン酸濃度は両方ともそれぞれ101%と28%増加した。しかし、前述の著者らは、それぞれガススパージを行わなかった場合、N2スパージを行った場合、およびCO2スパージを行った場合、0.75、0.93、および1.20mol/mol(添加された六炭糖)の低いH2収量を観測し、それはH2の生成が主に酪酸経路で行われたことを示す。前述のシステムは約1000mgVSS/Lの低いバイオマス濃度で運転したため、比H2生成速度は本試験より低いことに留意されたい。興味深いことにN2スパージだけを行った場合、Kimら[2006]は、本試験で観測された24%と一致するH2収量の24%増加を観測し、N2スパージ後にガススパージを継続しなかった場合、生物群集の変化がなかった、即ち、酪酸経路が支配的であった。しかし、前述の著者らはCO2スパージを行ってそれを繰り返したが、収量の向上は、H2生成菌と競合する酢酸菌および酪酸菌の抑制によるものである。
高いH2収量は、発酵生成物としての酢酸および酪酸と関連付けられた[Hawkesら、2002]。酢酸経路と酪酸経路により、H2収量はグルコース1モル当たりH22〜4モルの範囲に限定される(式1および2)。他方、低いH2収量はプロピオン酸の生成と関連付けられた[Hawkesら、2002]。プロピオン酸経路は、収量に悪影響を及ぼすH2消費反応である(式3)ため、プロピオン酸の生成は回避しなければならない[Vavilin、1995]。さらに、熱力学的観点から、式(5)は、H2を生成するプロピオン酸消費反応を示し、酢酸は熱力学的に有利でない(正のΔG)。そのため、ヘッドスペースからCO2を除去すると、反応(5)が正反応の方に移動し、反応が熱力学的に有利な状態になるように変化する。従って、H2と酢酸の生成が両方とも増加し、プロピオン酸が消費され、これにより酢酸濃度の増加とプロピオン酸濃度の低下が説明される。この経路(式5)により理論H2生成の範囲が上昇し、グルコース1モル当たりH23〜4モルに達し、酢酸が主な副生成物として生成する。
生成したVFAからの理論H2生成は、0.84L H2/gの酢酸および0.58L H2/gの酪酸に基づいて算出した(式1および式2)。表1に示す理論値は実験中に測定したH2と一致し、平均理論値と測定値との比は116%とであった。
3.4 SRTおよびバイオマス収量
表2は、流出液VSS濃度および反応器VSS濃度、ならびにSRTの値およびバイオマス収量を示す。ヘッドスペースからCO2を隔離した後、流出液VSSおよび反応器VSSの増加が観測され、それによりOLR−1の場合、SRTが2.5dから2.67dに増加し、OLR−2の場合、2.03dから2.31dに増加した。
表2は、流出液VSS濃度および反応器VSS濃度、ならびにSRTの値およびバイオマス収量を示す。ヘッドスペースからCO2を隔離した後、流出液VSSおよび反応器VSSの増加が観測され、それによりOLR−1の場合、SRTが2.5dから2.67dに増加し、OLR−2の場合、2.03dから2.31dに増加した。
ヘッドスペースからCO2を隔離した後、変換されたSCODに基づいて算出したバイオマス収量は減少した。OLR−1およびOLR−2について、バイオマス収量がそれぞれ0.27VSS/g(変換されたSCOD)から0.25gVSS/g(変換されたSCOD)に、および0.22gVSS/g(変換されたSCOD)から0.21gVSS/g(変換されたSCOD)減少した。
3.5 COD物質収支
表3は、データの信頼性を検証する94±3%のクロージャ(closure)を有する、COD物質収支データを示す。COD収支は、流入口および流出口TCODならびに生成したH2と同等のCODを考慮して算出した。CODの30%低減を観測したHafezら[2010]と一致する31±4%の平均COD低減が達成された。
表3は、データの信頼性を検証する94±3%のクロージャ(closure)を有する、COD物質収支データを示す。COD収支は、流入口および流出口TCODならびに生成したH2と同等のCODを考慮して算出した。CODの30%低減を観測したHafezら[2010]と一致する31±4%の平均COD低減が達成された。
3.5 pH、緩衝剤、およびKOH要求
反応器pHは、実験中、168g/LのNaHCO3緩衝液を用いて5.2±0.2に維持した。供給原料中の緩衝剤濃度3gNaHCO3/Lおよび5gNaHCO3/Lは、ヘッドスペースからCO2を隔離する前と隔離した後、OLR−1とOLR−2の両方ともそれぞれ一定に保たれた。CO2を隔離するためにヘッドスペース内にKOHを用いると、KOH添加前はpH調整剤によるNaHCO3緩衝剤の消費がその消費の16%にしか減少しなかったが、全NaHCO3緩衝剤消費、即ち、供給原料および反応器pH調整系が58%減少したことは注目に値する。表4は、供給原料中に使用され、pH調整剤により消費される緩衝剤濃度がH2製造中、5.2±0.2の一定のpHに維持されることを示す。
反応器pHは、実験中、168g/LのNaHCO3緩衝液を用いて5.2±0.2に維持した。供給原料中の緩衝剤濃度3gNaHCO3/Lおよび5gNaHCO3/Lは、ヘッドスペースからCO2を隔離する前と隔離した後、OLR−1とOLR−2の両方ともそれぞれ一定に保たれた。CO2を隔離するためにヘッドスペース内にKOHを用いると、KOH添加前はpH調整剤によるNaHCO3緩衝剤の消費がその消費の16%にしか減少しなかったが、全NaHCO3緩衝剤消費、即ち、供給原料および反応器pH調整系が58%減少したことは注目に値する。表4は、供給原料中に使用され、pH調整剤により消費される緩衝剤濃度がH2製造中、5.2±0.2の一定のpHに維持されることを示す。
実験CO2生成速度および理論KOH消費1.27g(KOH)/g(CO2)に基づいて、OLR−1およびOLR−2についてそれぞれ理論KOH消費117g/dおよび174g/dが算出された(式6)。しかし、OLR−1およびOLR−2についてそれぞれ、実験KOH消費速度は136g/dおよび196g/dと観測され、理論速度より14%および11%上昇した。
KOH+CO2 −−>KHCO3 (6)
KOH+CO2 −−>KHCO3 (6)
OLR−1とOLR−2の両方についてそれぞれ、NaHCO3とKOHの両方を含む全アルカリ分の消費が、KOH適用前は120mgCaCO3/dおよび195mgCaCO3/d、KOH適用後は173mgCaCO3/dおよび256CaCO3/dと算出された。OLR−1およびOLR−2でそれぞれ全アルカリ分の消費は44%および31%増加したが、これよりH2生成収量および生成速度の増加、ならびに100%H2が得られたことの方が重要であった。さらに、生成したKHCO3はリサイクルし、緩衝剤として使用することができ、それにより全緩衝剤消費が低減する。
ヘッドスペースからCO2を連続的に除去すると、H2生成経路が正反応の方に移動し、H2収量は23%増加して3.1mol/molになり、H2生成速度は23.5%増加することが、本開示のプロセスの例示的な実施形態から明らかである。CO2の隔離は、H2の生成速度、ならびにプロピオン酸を消費してH2と酢酸を生成する熱力学的に好ましくない経路のΔGに影響を及ぼす。ヘッドスペースにKOHを適用した後、流出液酢酸濃度は45%増加したが、酪酸濃度はCO2を隔離しない場合の値の51%に低下した。CO2の隔離により、プロピオン酸消費経路が熱力学的に有利な状態に変化し、酢酸およびH2の生成が増加した。CO2隔離後のpHを調整する緩衝剤の消費は、CO2除去前のその元の速度の42%に低下したが、消耗したトラップKOHを考慮した全アルカリ分の消費は36%〜44%増加した。前述の説明では、実施形態が十分理解されるように、説明の目的で多くの詳細を記載している。しかし、これらの特定の詳細は必要ではないことが当業者に明らかになるであろう。
前述の実施形態は、例として記載しているに過ぎない。当業者は、添付の特許請求の範囲によってのみ定義される範囲から逸脱することなく、特定の実施形態に変更、修正、および変形を行うことができる。
参考文献:
1.Nuri Azbar,David Levin.State of the art and Progress in Production of Biohydrogen.Bentham Science Publishers,2012
2.D.C.Dayton.Fuel Cell Integration−A Study of the Impacts of Gas Quality and Impurities.National Renewable Energy Laboratory,2001
3.Larminie J,Dicks A.Fuel cell systems explained.New York:Wiley,2000
4.Sompong O−Thong,Poonsuk Prasertsan,Nils−Kare Birkeland.Evaluation of methods for preparing hydrogen−producing seed inocula under thermophilic condition by process performance and microbial community analysis.Bioresource Technology 2009;100:909−918
5.David B.Levin,Lawrence Pitt,Murray Love.Biohydrogen production:prospects and limitations to practical application.International Journal of Hydrogen Energy 2004;29:173−185
6.Claire N.Sawyer,Perry L.McCarty,Gene F.Parkin.Chemistry for Environmental Engineering and Science(5th edition).McGraw−Hill Companies,Inc.2003
7.Kaushik Nath,Debabrata Das.Improvement of fermentative hydrogen production:various approaches.Appl Microbiol Biotechnol 2004;65:520−529
8.I.Hussy,F.R.Hawkes,R.Dinsdale,D.L.Hawkes.Continuous fermentative hydrogen production from sucrose and sugarbeet.International Journal of Hydrogen Energy 2005;30:471−483
9.Dong−Hoon Kim,Sun−Kee Han,Sang−Hyoun Kim,Hang−Sik Shin.Effect of gas sparging on continuous fermentative hydrogen production.International Journal of Hydrogen Energy 2006;31:2158−2169
10.Jeremy T.Kraemer,David M.Bagley.Improving the yield from fermentative hydrogen production.Biotechnol Lett 2007;29:685−695
11.Biswajit Mandal,Kaushik Nath.Improvement of biohydrogen production under decreased partial pressure of H2 by Enterobacter cloacae.Biotechnol Lett 2006;28:831−835
12.Teh−Ming Liang,Sheng−Shung Cheng,Kung−Long Wu.Behavioural study on hydrogen fermentation reactor installed with silicone rubber membrane.International Journal of Hydrogen Energy 2002;27:1157−1165
13.Wooshin Park,Seung H.Hyun,Sang−Eun Oh,Bruce E.Logan,In S.Kim.Removal of headspace biological hydrogen production.Environ Sci Technol 2005;39:4416−4420
14.Bradley E.Jackson,Michael J.McInerney.Anaerobic microbial metabolism can proceed close to thermodynamic limits.Nature 2002;415:454−456
15.Hisham Hafez,George Nakhla,Hesham El Naggar.Biological hydrogen production from corn−syrup waste using a novel system.Energies 2009;2:445−455
16.APHA,AWWA,WEF.Standard methods for examination of water and wastewater.19th ed;1995
17.Hisham Hafez,George Nakhla,M.Hesham El.Naggar,Elsayed Elbeshbishy,Bita Baghchehsaraee.Effect of organic loading on a novel hydrogen bioreactor.International Journal of Hydrogen Energy 2010;35:81−92
18.Zhen−Peng Zhang,Kuan−Yeow Show,Joo−Hwa Tay,David Tee Liang,Duu−Jong Lee,Wen−Ju Jiang.Effect of hydraulic retention time on biohydrogen production and anaerobic microbial community.Process Biochemistry 2006;41:2118−2123
19.Zhen−Peng Zhang,Kuan−Yeow Show,Joo−Hwa Tay,David Tee Liang,Duu−Jong Lee,Wen−Ju Jiang.Rapid formation of hydrogen−producing granules in an anaerobic continuous stirred tank reactor induced by acid incubation.Biotechnology and Bioengineering 2007;96:1040−1050
20.Kuan−Yeow Show,Zhen−Peng Zhang,Joo−Hwa Tay,David Tee Liang,Duu−Jong Lee,Wen−Ju Jiang.Production of hydrogen in a granular sludge−based anaerobic continuous stirred tank reactor.International Journal of Hydrogen Energy 2007;32:4744−4753
21.Shu−Yii Wu,Chun−Hsiung Hung,Chiu−Yue Lin,Ping−Jei Lin,Kuo−Shing Lee,Chi−Num Lin,Fang−Yuan Chang,Jo−Shu Chang.HRT−dependent hydrogen production and bacterial community structure of mixed anaerobic microflora in suspended,granular and immobilized sludge systems using glucose as the carbon substrate.International Journal of Hydrogen Energy 2008;33:1542−1549
22.Zhen−Peng Zhang,Kuan−Yeow Show,Joo−Hwa Tay,David Tee Liang,Duu−Jong Lee,Ay Su.The role of acid incubation in rapid immobilization of hydrogen−producing culture in anaerobic upflow column reactors.International Journal of Hydrogen Energy 2008;33:5151−5160
23.Kuan−Yeow Show,Zhen−Peng Zhang,Joo−Hwa Tay,David Tee Liang,Duu−Jong Lee,Nanqi Ren,Aijie Wang.Critical assessment of anaerobic processes for continuous biohydrogen production from organic wastewater.International Journal of Hydrogen Energy 2010;35:13350−13355
24.F.R.Hawkes,R.Dinsdale,D.L.Hawkes,I.Hussy.Sustainable fermentative hydrogen production:challenges for process optimisation.International Journal of Hydrogen Energy 2002;27:1339−1347
V.A.Vavilin,S.V.Rytow,L.Ya Lokshina.Modelling hydrogen partial pressure change as a result of competition between the butyric and propionic groups of acidogenic bacteria.Bioresource Technology 1995;54:171−177
1.Nuri Azbar,David Levin.State of the art and Progress in Production of Biohydrogen.Bentham Science Publishers,2012
2.D.C.Dayton.Fuel Cell Integration−A Study of the Impacts of Gas Quality and Impurities.National Renewable Energy Laboratory,2001
3.Larminie J,Dicks A.Fuel cell systems explained.New York:Wiley,2000
4.Sompong O−Thong,Poonsuk Prasertsan,Nils−Kare Birkeland.Evaluation of methods for preparing hydrogen−producing seed inocula under thermophilic condition by process performance and microbial community analysis.Bioresource Technology 2009;100:909−918
5.David B.Levin,Lawrence Pitt,Murray Love.Biohydrogen production:prospects and limitations to practical application.International Journal of Hydrogen Energy 2004;29:173−185
6.Claire N.Sawyer,Perry L.McCarty,Gene F.Parkin.Chemistry for Environmental Engineering and Science(5th edition).McGraw−Hill Companies,Inc.2003
7.Kaushik Nath,Debabrata Das.Improvement of fermentative hydrogen production:various approaches.Appl Microbiol Biotechnol 2004;65:520−529
8.I.Hussy,F.R.Hawkes,R.Dinsdale,D.L.Hawkes.Continuous fermentative hydrogen production from sucrose and sugarbeet.International Journal of Hydrogen Energy 2005;30:471−483
9.Dong−Hoon Kim,Sun−Kee Han,Sang−Hyoun Kim,Hang−Sik Shin.Effect of gas sparging on continuous fermentative hydrogen production.International Journal of Hydrogen Energy 2006;31:2158−2169
10.Jeremy T.Kraemer,David M.Bagley.Improving the yield from fermentative hydrogen production.Biotechnol Lett 2007;29:685−695
11.Biswajit Mandal,Kaushik Nath.Improvement of biohydrogen production under decreased partial pressure of H2 by Enterobacter cloacae.Biotechnol Lett 2006;28:831−835
12.Teh−Ming Liang,Sheng−Shung Cheng,Kung−Long Wu.Behavioural study on hydrogen fermentation reactor installed with silicone rubber membrane.International Journal of Hydrogen Energy 2002;27:1157−1165
13.Wooshin Park,Seung H.Hyun,Sang−Eun Oh,Bruce E.Logan,In S.Kim.Removal of headspace biological hydrogen production.Environ Sci Technol 2005;39:4416−4420
14.Bradley E.Jackson,Michael J.McInerney.Anaerobic microbial metabolism can proceed close to thermodynamic limits.Nature 2002;415:454−456
15.Hisham Hafez,George Nakhla,Hesham El Naggar.Biological hydrogen production from corn−syrup waste using a novel system.Energies 2009;2:445−455
16.APHA,AWWA,WEF.Standard methods for examination of water and wastewater.19th ed;1995
17.Hisham Hafez,George Nakhla,M.Hesham El.Naggar,Elsayed Elbeshbishy,Bita Baghchehsaraee.Effect of organic loading on a novel hydrogen bioreactor.International Journal of Hydrogen Energy 2010;35:81−92
18.Zhen−Peng Zhang,Kuan−Yeow Show,Joo−Hwa Tay,David Tee Liang,Duu−Jong Lee,Wen−Ju Jiang.Effect of hydraulic retention time on biohydrogen production and anaerobic microbial community.Process Biochemistry 2006;41:2118−2123
19.Zhen−Peng Zhang,Kuan−Yeow Show,Joo−Hwa Tay,David Tee Liang,Duu−Jong Lee,Wen−Ju Jiang.Rapid formation of hydrogen−producing granules in an anaerobic continuous stirred tank reactor induced by acid incubation.Biotechnology and Bioengineering 2007;96:1040−1050
20.Kuan−Yeow Show,Zhen−Peng Zhang,Joo−Hwa Tay,David Tee Liang,Duu−Jong Lee,Wen−Ju Jiang.Production of hydrogen in a granular sludge−based anaerobic continuous stirred tank reactor.International Journal of Hydrogen Energy 2007;32:4744−4753
21.Shu−Yii Wu,Chun−Hsiung Hung,Chiu−Yue Lin,Ping−Jei Lin,Kuo−Shing Lee,Chi−Num Lin,Fang−Yuan Chang,Jo−Shu Chang.HRT−dependent hydrogen production and bacterial community structure of mixed anaerobic microflora in suspended,granular and immobilized sludge systems using glucose as the carbon substrate.International Journal of Hydrogen Energy 2008;33:1542−1549
22.Zhen−Peng Zhang,Kuan−Yeow Show,Joo−Hwa Tay,David Tee Liang,Duu−Jong Lee,Ay Su.The role of acid incubation in rapid immobilization of hydrogen−producing culture in anaerobic upflow column reactors.International Journal of Hydrogen Energy 2008;33:5151−5160
23.Kuan−Yeow Show,Zhen−Peng Zhang,Joo−Hwa Tay,David Tee Liang,Duu−Jong Lee,Nanqi Ren,Aijie Wang.Critical assessment of anaerobic processes for continuous biohydrogen production from organic wastewater.International Journal of Hydrogen Energy 2010;35:13350−13355
24.F.R.Hawkes,R.Dinsdale,D.L.Hawkes,I.Hussy.Sustainable fermentative hydrogen production:challenges for process optimisation.International Journal of Hydrogen Energy 2002;27:1339−1347
V.A.Vavilin,S.V.Rytow,L.Ya Lokshina.Modelling hydrogen partial pressure change as a result of competition between the butyric and propionic groups of acidogenic bacteria.Bioresource Technology 1995;54:171−177
Claims (22)
- 暗発酵により有機物から水素を製造する方法において、
暗発酵により有機物を、H2ガスと、CO2ガスと、揮発性脂肪酸と、アルコールとを含む生成物に分解するために、完全混合型バイオリアクターに有機物と微生物とを導入するステップと;
前記バイオリアクターのヘッドスペース内でCO2ガスを連続的に隔離し、前記ヘッドスペース内で前記CO2が炭酸水素塩として捕捉されるようにするステップと;
前記ヘッドスペースから真空下で前記H2ガスの少なくとも一部を回収し、それにより前記回収されたH2ガスがCO2を実質的に含まないようにするステップと;
を含むことを特徴とする方法。 - 請求項2に記載の方法において、前記ヘッドスペースから前記H2ガスを連続的に回収することを特徴とする方法。
- 請求項2に記載の方法において、前記ヘッドスペース内でCO2を連続的に隔離するステップが前記ヘッドスペースから前記炭酸水素塩の少なくとも一部を非連続的に除去する別のステップを含むことを特徴とする方法。
- 請求項1に記載の方法において、前記CO2を連続的に捕捉するステップが、前記ヘッドスペース内で前記気体のCO2を金属炭酸水素塩として結合させるために前記ヘッドスペース内に金属水酸化物を連続的に維持することを含むことを特徴とする方法。
- 請求項5に記載の方法において、前記金属水酸化物を固体の形態で使用することを特徴とする方法。
- 請求項6に記載の方法において、前記金属水酸化物がアルカリ金属水酸化物であることを特徴とする方法。
- 請求項7に記載の方法において、前記金属水酸化物がKOHまたはNaOHであることを特徴とする方法。
- 請求項8に記載の方法において、前記金属水酸化物が100%純粋なKOHまたはNaOHペレットの形態であることを特徴とする方法。
- 請求項1に記載の方法において、前記完全混合型バイオリアクター内の微生物の濃度を予め選択された値に維持する別のステップを含むことを特徴とする方法。
- 請求項10に記載の方法において、前記完全混合型バイオリアクターのpHを制御する別のステップを含むことを特徴とする方法。
- 請求項11に記載の方法において、前記完全混合型バイオリアクターのpHを3〜6.8の範囲内に維持することを特徴とする方法。
- 請求項12に記載の方法において、前記pHを約5.2に維持することを特徴とする方法。
- 有機物から水素、メタン、揮発性脂肪酸、およびアルコールを製造するシステムにおいて、
暗発酵のための完全混合型バイオリアクターと;
微生物と、H2ガス、CO2ガス、揮発性脂肪酸(VFA)およびアルコールを含む生成物に分解される前記有機物とを前記バイオリアクターに供給するための流入口と;
前記反応器のヘッドスペース内のCO2トラップであって、前記CO2ガスを前記ヘッドスペースから隔離し、前記ヘッドスペース内で前記CO2を炭酸水素塩として捕捉するための固体水酸化物を含むCO2トラップと;
前記ヘッドスペースからH2ガスを含む流出ガスを取り出すためのガス流出口と;
前記バイオリアクターから、前記微生物、前記揮発性脂肪酸および前記アルコールの少なくとも一部を含む第1の流出液を取り出すための液体流出口と;
を備えることを特徴とするシステム。 - 請求項14に記載のシステムにおいて、前記完全混合型バイオリアクターが、単一連続槽型反応器、多段連続槽型反応器、上向流嫌気性汚泥床反応器、膨張グラニュール汚泥床反応器、下向流嫌気性粒状媒体反応器、上向流嫌気性粒状媒体反応器、嫌気性バッフル付槽型反応器、嫌気性移動ブランケット反応器、および嫌気性流動床バイオリアクターからなる群から選択される反応器であることを特徴とするシステム。
- 請求項14に記載のシステムにおいて、前記トラップが固体金属水酸化物を含むことを特徴とするシステム。
- 請求項16に記載のシステムにおいて、前記トラップが固体アルカリ金属水酸化物を含むことを特徴とするシステム。
- 請求項17に記載のシステムにおいて、前記トラップがKOHまたはNaOHを含むことを特徴とするシステム。
- 請求項18に記載のシステムにおいて、前記KOHが100%KOHまたはNaOHのペレットの形態であることを特徴とするシステム。
- 請求項14に記載のシステムにおいて、前記反応器の連続運転中に前記炭酸水素塩を除去するために、前記ヘッドスペースから別々に取り出すことができる2つ以上のCO2トラップを備えることを特徴とするシステム。
- 請求項14に記載のシステムにおいて、前記第1の流出液を、前記微生物の少なくとも一部を含む沈降した第1のバイオマスと、前記揮発性脂肪酸、前記アルコール、および前記微生物の少なくとも一部を含む第2の流出液とに分離するための、前記液体流出口と流体連通する重力沈降槽と;前記完全混合型バイオリアクター内の微生物の濃度を予め選択された値に維持するために、前記第1のバイオマスを前記重力沈降槽から前記完全混合型バイオリアクターに供給する手段と;をさらに備えることを特徴とするシステム。
- 請求項21に記載のシステムにおいて、pHを調整するための化学物質を前記完全混合型バイオリアクターに定量供給するディスペンサーをさらに備えることを特徴とするシステム。
- 請求項22に記載のシステムにおいて、前記バイオリアクターの温度を制御する温度制御装置をさらに備えることを特徴とするシステム。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361893447P | 2013-10-21 | 2013-10-21 | |
US61/893,447 | 2013-10-21 | ||
PCT/CA2014/051011 WO2015058295A1 (en) | 2013-10-21 | 2014-10-20 | Biohydrogen production method and reactor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2016538838A true JP2016538838A (ja) | 2016-12-15 |
Family
ID=52826505
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016524095A Pending JP2016538838A (ja) | 2013-10-21 | 2014-10-20 | バイオ水素製造方法および反応器 |
Country Status (14)
Country | Link |
---|---|
US (1) | US20150111273A1 (ja) |
EP (1) | EP3060672A4 (ja) |
JP (1) | JP2016538838A (ja) |
KR (1) | KR20160068965A (ja) |
CN (1) | CN105722986A (ja) |
AU (1) | AU2014339713A1 (ja) |
CA (1) | CA2926577A1 (ja) |
CL (1) | CL2016000947A1 (ja) |
CU (1) | CU20160053A7 (ja) |
IL (1) | IL245228A0 (ja) |
MX (1) | MX2016005145A (ja) |
PH (1) | PH12016500724A1 (ja) |
SG (1) | SG11201603032XA (ja) |
WO (1) | WO2015058295A1 (ja) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017212403A1 (es) * | 2016-06-07 | 2017-12-14 | Universidad Nacional De Colombia | Proceso para producir hidrógeno |
NO344851B1 (en) * | 2016-07-14 | 2020-06-02 | Zeg Power As | Method and device for upgrading of biogas and hydrogen production from anaerobic fermentation of biological material |
WO2018076014A1 (en) * | 2016-10-21 | 2018-04-26 | Aquatech International, Llc | Method of treating high strength wastewater by anaerobic bio reactor |
CN107034126A (zh) * | 2017-04-26 | 2017-08-11 | 常州益优新能源有限公司 | 用于有机物发酵的设备及其方法 |
CN107629945A (zh) * | 2017-10-31 | 2018-01-26 | 张永恒 | 利用餐厨垃圾回收生物气的装置 |
CN107981039A (zh) * | 2017-12-20 | 2018-05-04 | 吴豪 | 一种利用餐厨垃圾生产高纯度氢气和动物饲料的方法 |
US20210277430A1 (en) * | 2020-03-09 | 2021-09-09 | Lanzatech, Inc. | Fermentation process for the production of lipids |
KR102463900B1 (ko) * | 2021-07-16 | 2022-11-04 | (주)바이오엑스 | 미생물 전기 분해 전지를 포함하는 바이오수소 생산용 시스템 |
CN114408981B (zh) * | 2021-12-22 | 2023-05-16 | 齐鲁工业大学 | 一种利用四氧化三铁/还原氧化石墨烯纳米复合材料提高暗发酵产氢性能的方法 |
NL2033778B1 (en) | 2022-12-21 | 2024-06-27 | Haskoningdhv Nederland Bv | Methode voor het produceren van biogas in een anaerobe slibbehandeling |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5992094A (ja) * | 1982-11-18 | 1984-05-28 | Agency Of Ind Science & Technol | 有機廃棄物の嫌気性消化方法 |
WO2010056460A2 (en) * | 2008-11-12 | 2010-05-20 | Uni-Control, Llc | Reduction of carbon dioxide in a fermentation process |
US8900840B2 (en) * | 2009-01-30 | 2014-12-02 | The University Of Western Ontario | Integrated system for hydrogen and methane production from industrial organic wastes and biomass |
-
2014
- 2014-10-20 CA CA2926577A patent/CA2926577A1/en not_active Abandoned
- 2014-10-20 US US14/518,307 patent/US20150111273A1/en not_active Abandoned
- 2014-10-20 AU AU2014339713A patent/AU2014339713A1/en not_active Abandoned
- 2014-10-20 KR KR1020167013198A patent/KR20160068965A/ko not_active Application Discontinuation
- 2014-10-20 EP EP14855028.8A patent/EP3060672A4/en not_active Withdrawn
- 2014-10-20 JP JP2016524095A patent/JP2016538838A/ja active Pending
- 2014-10-20 SG SG11201603032XA patent/SG11201603032XA/en unknown
- 2014-10-20 MX MX2016005145A patent/MX2016005145A/es unknown
- 2014-10-20 CN CN201480061285.8A patent/CN105722986A/zh active Pending
- 2014-10-20 WO PCT/CA2014/051011 patent/WO2015058295A1/en active Application Filing
-
2016
- 2016-04-18 PH PH12016500724A patent/PH12016500724A1/en unknown
- 2016-04-20 IL IL245228A patent/IL245228A0/en unknown
- 2016-04-20 CL CL2016000947A patent/CL2016000947A1/es unknown
- 2016-04-21 CU CUP2016000053A patent/CU20160053A7/es unknown
Also Published As
Publication number | Publication date |
---|---|
EP3060672A4 (en) | 2017-05-24 |
KR20160068965A (ko) | 2016-06-15 |
IL245228A0 (en) | 2016-06-30 |
WO2015058295A1 (en) | 2015-04-30 |
AU2014339713A1 (en) | 2016-05-05 |
US20150111273A1 (en) | 2015-04-23 |
CN105722986A (zh) | 2016-06-29 |
CA2926577A1 (en) | 2015-04-30 |
MX2016005145A (es) | 2017-01-23 |
CL2016000947A1 (es) | 2017-03-10 |
SG11201603032XA (en) | 2016-05-30 |
CU20160053A7 (es) | 2016-09-30 |
PH12016500724A1 (en) | 2016-05-30 |
EP3060672A1 (en) | 2016-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2016538838A (ja) | バイオ水素製造方法および反応器 | |
EP2391706B1 (en) | Integrated system for hydrogen and methane production from industrial organic wastes and biomass | |
US20170101616A1 (en) | Sonicated biological hydrogen reactor | |
Park et al. | Biohydrogen production integrated with an external dynamic membrane: A novel approach | |
US7232669B1 (en) | Process for enhancing anaerobic biohydrogen production | |
DK2802639T3 (en) | ANAEROBIC PROCESS | |
CA2919263C (en) | Method and system for production of hydrogen, methane, volatile fatty acids, and alcohols from organic material | |
AU2013220906B2 (en) | Method and system for electro-assisted hydrogen production from organic material | |
Zhang et al. | Impacts of organic loading rate and hydraulic retention time on organics degradation, interspecies interactions and functional traits in thermophilic anaerobic co-digestion of food waste and sewage sludge | |
Liao et al. | Treatment of kraft evaporator condensate using a thermophilic submerged anaerobic membrane bioreactor | |
Elbeshbishy et al. | Hydrogen production using sono-biohydrogenator | |
CA2760882A1 (en) | Method and apparatus for anaerobically digesting organic material | |
EP2196539B1 (en) | Process for the continuous biological production of lipids, hydrocarbons or mixtures thereof | |
JP7150899B2 (ja) | 嫌気性処理装置及び嫌気性処理方法 | |
JP2005013045A (ja) | 有機性廃棄物からの連続的水素生成方法 | |
WO2008111857A1 (en) | Treatment of organic material by digestion | |
JP4440732B2 (ja) | 水素生産能を有する微生物の培養装置および生物的水素製造方法 | |
JP2012101139A (ja) | バイオガス製造システム及びバイオガス中のアンモニアを除去する方法 | |
JP2006042691A (ja) | 連続水素生産方法 | |
JP2008080336A (ja) | バイオガス発生装置及び方法 | |
JP2001149983A (ja) | バイオガス発生装置 | |
Muñoz-Páez et al. | Ex-situ biogas enrichment by hydrogenotrophic methanogens at low H2/CO2 ratios: Effect of empty bed residence time | |
JPWO2005087911A1 (ja) | 微生物の培養装置、それを用いる水素生産装置および燃料電池システム | |
CN118843694A (zh) | 用于有效发酵液再循环的方法 | |
CN112714793A (zh) | 高速率酸化和有机固体增溶方法 |