JP2016519807A - 自己進化型予測モデル - Google Patents

自己進化型予測モデル Download PDF

Info

Publication number
JP2016519807A
JP2016519807A JP2016502399A JP2016502399A JP2016519807A JP 2016519807 A JP2016519807 A JP 2016519807A JP 2016502399 A JP2016502399 A JP 2016502399A JP 2016502399 A JP2016502399 A JP 2016502399A JP 2016519807 A JP2016519807 A JP 2016519807A
Authority
JP
Japan
Prior art keywords
model
predictors
patient
models
predictor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016502399A
Other languages
English (en)
Inventor
ケイ. バルサム,ワエル
ケイ. バルサム,ワエル
ケイ. カッタン,マイケル
ケイ. カッタン,マイケル
アール. ジョンストン,ダグラス
アール. ジョンストン,ダグラス
エイチ. モリス,ウィリアム
エイチ. モリス,ウィリアム
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cleveland Clinic Foundation
Original Assignee
Cleveland Clinic Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cleveland Clinic Foundation filed Critical Cleveland Clinic Foundation
Publication of JP2016519807A publication Critical patent/JP2016519807A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N7/00Computing arrangements based on specific mathematical models
    • G06N7/01Probabilistic graphical models, e.g. probabilistic networks
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/50ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Software Systems (AREA)
  • Public Health (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Health & Medical Sciences (AREA)
  • Databases & Information Systems (AREA)
  • Biomedical Technology (AREA)
  • Algebra (AREA)
  • Mathematical Optimization (AREA)
  • Probability & Statistics with Applications (AREA)
  • Mathematical Analysis (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computational Mathematics (AREA)
  • Medical Treatment And Welfare Office Work (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

臨床パラメーターを予測するためのシステムおよび方法が提供される。受信された予測子の組がある場合、十分な精度を有する複数のモデルのうちのモデルを選択する。選択されたモデルと予測子の組から臨床パラメーターの値を予測して、予測値を提供する。臨床パラメーターの値を測定し、予測子の組と測定された値に従って、モデルを更新する。

Description

本開示は、臨床アウトカムを予測するためのシステムおよび方法に関し、特に、自己進化型予測モデルのためのシステムおよび方法を対象とする。
予測モデリングとは、モデルを作成または選択してアウトカムの確率を予測しようとするプロセスである。多くの場合にこのモデルは、設定量の入力データがある場合、アウトカムの確率を推測しようとすべく、検出理論に基づいて選択される。モデルでは、特定の組に属する一組のデータの確率を決定しようとする際に、1つ以上の分類子を用いることができる。
非一時的なコンピューター読み取り可能な媒体が、臨床パラメーターを予測するための方法を行うためにプロセッサーによって実行可能な、機械実行可能な命令を格納する。この方法は、入力された予測子の組がある場合、複数のモデルのうち十分な精度を有するモデルを選択することを含む。選択されたモデルと予測子の組から臨床パラメーターの値を予測して、予測値を提供する。臨床パラメーターの値を測定し、予測子の組と測定された値とに従って、モデルを更新する。
本発明の別の態様によれば、臨床パラメーターを予測するためのシステムが提供される。このシステムは、プロセッサーと、プロセッサーによって実行可能な、機械実行可能な命令を格納する、非一時的なコンピューター読み取り可能な媒体とを含む。機械実行可能な命令は、複数の予測モデルと、患者を表す予測子の組に従って複数の予測モデルから第1のモデルを選択し、患者を表す予測子の組の中には含まれていない予測子を各々が利用しているモデルの組を選択するモデル選択部と、を含み、第1のモデルと予測子の組から臨床パラメーターの値を予測して、予測値を提供する。感度分析コンポーネントは、患者を表す予測子の組と予測子の組の中には含まれていない予測子がある場合、選択されたモデルの組の各々について想定精度を決定し、もしもモデルの組のいずれかの想定精度が閾値よりも大きく第1のモデルの精度を超えた場合には、付随するディスプレイを介してユーザーに通知するように構成されている。
本発明のさらに別の態様によれば、非一時的なコンピューター読み取り可能な媒体は、臨床パラメーターを予測するための方法を行うためにプロセッサーによって実行可能な、機械実行可能な命令を格納する。この方法は、受信された予測子の組がある場合、複数のモデルのうち最も精度が高いモデルを選択し、患者を表す予測子の組の中には含まれていない予測子を各々が利用しているモデルの組を選択することを含む。選択されたモデルと予測子の組から臨床パラメーターの値を予測して、予測値を提供する。患者を表す予測子の組と予測子の組の中には含まれていない予測子がある場合、モデルの組の各々について想定精度を決定する。もしも想定精度の増加が閾値を超えた場合には、ユーザーは通知される。臨床パラメーターの値を測定し、予測子の組と測定された値に従って、モデルを更新する。
図1は、本発明の一態様による臨床アウトカムを予測するためのシステム例を示す。 図2は、本発明の一態様による患者アウトカムを予測するための自己進化型システムの一例を示す。 図3は、本発明の一態様による患者アウトカムを予測するための方法を示す。 図4は、本明細書に記載するシステムおよび方法を実装するのに用いることが可能なコンピューターシステムを示す。
本開示は、臨床アウトカムを予測するためのシステムおよび方法に関し、特に、自己進化型予測モデルのためのシステムおよび方法を対象とする。
医療モデリングは、予測である有用なアウトカムを与えることができるが、その予測結果はモデルに与えられるデータによって制限される。たとえば、十分に設計され、かつ十分に訓練されたモデルであっても、医療分野では時間が経過するとパフォーマンスが衰える可能性があることが確認されている。これは、新たな発見によって、モデルの作成時になされた仮定の価値が失われ、既存の訓練データが使い物にならなくなるからである。さらに、臨床アウトカムを予測するのにモデルを使用すること自体が、そのモデルの使用に基づいた結果に影響をおよぼす可能性があるから、その独自の予測を説明するためには、モデルを保持しておく必要がある。たとえば、4日間のモデル滞在を伴う処理に対し、患者の滞在期間が3日になるだろうとモデルが予測したら、3日目に患者を退院させるための準備は、その予想自体を少なくとも一部使うために滞在期間を短くする(たとえば、アウトカムが改善される)ように、最初の2日より前か、最初の2日の間に行うことができる。その最初の2日間というのは、その予想がなかったら、異なって予定されているかもしれない。最後に、このモデルは、当該モデルに与えられるデータ以上にはならず、モデリングに対する「ファイア・アンド・フォーゲット」アプローチが最適な状態より劣ってしまう。そこで、本開示は、新たな医療進歩のみならずその独自の予測を前にしても、新たなデータを利用できるようになったときはモデルを再訓練し、このモデルが妥当なまま保たれるようにする、自己進化型モデルを提供する。さらに、このモデルを電子カルテシステムに統合して、提供される予測が常に最新のデータに基づくものとなるようにすることも可能である。
図1は、本発明の一態様による、臨床アウトカムを予測するためのシステム10の一例を示す。図示の例では、システム10は、非一時的なコンピューター読み取り可能な媒体12に格納され、かつ付属のプロセッサー14によって実行される、機械実行可能な命令として実装される。しかしながら、このような形ではなく、システム10が専用のハードウェアまたはプログラム可能なロジックとして実装されてもよいし、非一時的なコンピューター読み取り可能な媒体12が、作動的に接続された複数の非一時的なコンピューター読み取り可能な媒体を含んでもよいことは、理解できよう。
システム10は、患者レコードのデータベース16にアクセスできる。各患者レコードは、たとえば、基本属性データ、病歴、薬剤およびアレルギー、免疫の状態、臨床検査結果、X線画像、バイタルサインなどを含み得る。データベース16は、システム10の他の構成要素と媒体を共有するものとして図示されているが、データバスまたはネットワーク接続を介してプロセッサー14と作動的に接続された1つ以上の他の非一時的なコンピューター読み取り可能な媒体にデータベースが格納されてもよいことは、理解できよう。特定の臨床予測モデルについて、データベース16は、まだ臨床アウトカムがわかっていない患者を表す患者レコードと、臨床アウトカムが特定されている患者を表す患者レコードの両方を格納してもよい。それぞれの患者に関連した予測子を変更可能なように、さまざまな患者レコードの内容が変わることになるのは、理解できよう。たとえば、特定の臨床シナリオで一人の患者に特定の検査または処置が実施されていてもよいが、別の患者に関しては実施されなくてもよい。したがって、検査または処置の結果を表すデータが、特定の臨床シナリオに関連する患者レコード全体で選択的に利用可能であってもよい。
特定の組の予測子に従って臨床アウトカムを予測するために、患者レコードのデータベース16からのデータを使用して、複数の予測モデル20〜22を訓練することができる。本出願の目的で、「モデル」とは、付随する予測子の組と、付随する分類アルゴリズムまたは回帰アルゴリズムと、分類アルゴリズムまたは回帰アルゴリズムと矛盾しないパラメーターの組と、予測対象となるパラメーターと、を有するような分類モデルまたは回帰モデルのことを指すものであってもよい。たとえば、ニューラルネットワークモデルでは、パラメーターは、多数の隠れ層と、各層における多数のノードと、各層の重み行列と、を含み得る。回帰モデルでは、パラメーターは、各予測子に対する係数と、切片値と、を含み得る。予測モデル20〜22も、サポートベクターマシーンを利用するモデル、統計的分類子を利用するモデル、ロジスティック回帰を利用するモデル、アンサンブル法を利用するモデル、決定木を利用するモデル、他の教師あり学習アルゴリズム(それぞれのアルゴリズムが、あらゆるモデルで変化し得る、自己に付随するパラメーターを有する)を利用するモデルを含んでもよいことは、理解できよう。
モデル選択部24は、入力ソース28からの一組の予測子26と、予測対象となる臨床アウトカムパラメーターとを受信可能である。入力ソース28は、一組の予測子26を、直接にあるいはデータベース16から既存の患者レコードを選択することなどによって提供できることは、理解できよう。複数の予測モデル20〜22を各々、訓練の時点で、利用可能な患者レコードのサブセットを用いて検証し、予測子の値の1つ以上の付随する組に対してそのモデルによって予測される一組の臨床アウトカムパラメーター各々について、そのモデルに関する精度を決定する。本発明の態様によれば、モデル選択部24は、一組の予測子26に含まれる利用可能な予測子がある場合、複数のモデルから、所望の臨床アウトカムパラメーターについて十分な(たとえば、最高の)精度を有するモデルを選択する。すなわち、モデル選択部は、どのモデルの精度が最も高そうであるかを確かめるために、一組の予測子26に対して複数のモデル20〜22の各々を評価するようにプログラム可能である。
選択されたモデルは、臨床アウトカムパラメーターを予測するのに利用され、このパラメーターは、付属のディスプレイ30においてユーザーに提示される。また、予測されたパラメーターは、後にモデルの評価および更新の際に使えるようデータベース16に格納することも可能である。たとえば、臨床アウトカムが一度分かれば、臨床アウトカムパラメーターの実際の値を決定し、予測された臨床アウトカムパラメーターと比較して、予測用に選択して利用されたモデルの精度を評価することができる。予測された臨床アウトカムパラメーターと実際の臨床アウトカムパラメーターを複数蓄積することで、モデルの精度を定期的に更新することが可能である。精度とは、本明細書で使用する場合には、正しい予測のパーセンテージ、Fスコア、予測子によって説明される変動のパーセンテージ、あるいは、モデルの精度および/または正確さを示す他の任意の適当な尺度を指し得ることは、理解できよう。
別の例として、予測されたアウトカムパラメーターと実際のアウトカムパラメーターを利用して、異なるタイプのモデルの各々を更新することが可能である。たとえば、予測アウトカムと実アウトカムとの蓄積されたペアを利用して、複数のモデル20〜22の各々を更新することが可能である。具体的には、蓄積されたデータを、訓練データ、検証データ、テストデータのいずれかまたはすべてとして利用して、複数の予測モデル20〜22の各々をより良いものとすることができる。従って、モデルの予測が臨床ケアに対しておよぼす影響を更新プロセスでとらえ、それぞれのモデルの精度をさらに高めることが可能である。この更新は、定期的になされてもよいし、モデルの精度として(たとえば予測アウトカムと実測アウトカムとの間のコンコーダンス指標によって測定されるものとして)なされてもよいことは、理解できよう。モデルの精度が閾値未満まで低下した場合には、当該主題の専門家が更新のプロセスを指導して、そのモデルの予測子を追加、変更または削除することができる。
図2は、本発明の一態様による患者アウトカムまたは他のヘルスケア関連を予測するのに用いることが可能な自己進化型システム50の一例を示す。患者の予測アウトカムは、たとえば、患者の滞在期間、合併症のリスク、罹病率、患者の満足度、患者の診断、患者の予後、ヘルスケアコスト、再入院率、患者のリソース利用、あるいは、医療提供者、患者、または医療機関と関連し得るような他の任意の患者アウトカム情報を含み得る。システム50は、予測子変数のそれぞれの組に基づいて患者アウトカムを予測するための複数のモデル51〜62を含む。システム50は、特定の患者についての利用可能な予測子に従ってモデルを選択し、その患者についての1つ以上の予測アウトカムを与えることが可能である。
それぞれのモデル51〜62は、付随する予測子の組と、付随する分類アルゴリズムまたは回帰アルゴリズムと、分類アルゴリズムまたは回帰アルゴリズムと矛盾しないパラメーターの組と、予測対象となるパラメーターと、を有するような分類モデルであってもよいし回帰モデルであってもよい。図示の例では、モデルは、複数の人工ニューラルネットワークモデル(ANN)51〜53、複数の回帰モデル(REG)54〜56、複数のサポートベクターマシーン(SVM)モデル57〜59、複数のランダムフォレストモデル(RF)60〜62を含む。それぞれのモデル51〜62は、既存の患者データの訓練セットで訓練して付随するモデルパラメーターの組を導き、患者データのテストセットを用いて検証して、それぞれのモデルの付随する精度(コンコーダンス指標など)を決定することが可能である。たとえば、ニューラルネットワークモデルおよびサポートベクターマシーンモデルでは、パラメーターは、多数の隠れ層と、各層における多数のノードと、各層の重み行列と、を含み得る。回帰モデルでは、パラメーターは、各予測子に対する係数と、オフセット値と、を含み得る。ランダムフォレストモデルでは、パラメーターは、閾値、あるいは、モデルを含むさまざまな決定木の訓練の間に決定される他の識別子を含み得る。一例において、異なる組のパラメーターがある場合、モデルは各々、当該モデルの精度を表す複数の精度値を有してもよい。
図2の例において、システム50は、プロセッサー63とメモリー64とを含み、たとえばサーバーや他のコンピューターに実装可能である。メモリー64は、コンピューター読み取り可能な命令とデータとを格納できる。プロセッサー63は、本明細書に記載の機能および方法を実施するためなど、コンピューター読み取り可能な命令を実行するために、メモリー64にアクセスすることができる。図2の例では、メモリー64は、データ抽出部66を含むコンピューター読み取り可能な命令を含む。データ抽出部66は、1つ以上のデータソース68から患者データを抽出するようプログラムされる。データソース68は、たとえば、電子カルテ(EHR)データベースを含んでもよいし、患者、患者の滞在、患者の健康状態、医療機関および/またはその職員に対する患者の意見などに関連した情報を含み得る、他のどのような患者データソースを含んでもよい。1つ以上のデータソースは、メモリーに格納されてもよいし、ローカルエリアネットワーク(LAN)またはワイドエリアネットワーク(WAN)などのデータ接続を介して利用可能なものであってもよいことは、理解できよう。
データソース68の患者データは、複数の異なるカテゴリーについての情報を表すものであってもよい。たとえば、予測モデルを作成するのに利用される患者データのカテゴリーは、患者人数データ、全患者対象(APR)重篤度情報、APR診断群(DRG)情報、問題リストコード、最終請求コード、最終処置コード、処方薬、検査結果、患者の満足度を含んでもよい。また、モデルを作成するのに利用される患者データは、International Classification of Diseases(ICD)コード(たとえば、ICD−9および/またはICD−10コード)、Systematized Nomenclature of Medicine(SNOMED)コード(たとえば、SNOMED Clinical Terms(CT)コード)、Current Procedural Terminology(CPT)コード、Healthcare Common Procedure Coding System(HCPCS)コード(たとえば、HCPCS-level IおよびHCPCS-level II)、durable medical equipment(DME)コード、解剖学的相関、などを含んでもよい。これらのコードおよび他のコードは、ロケーションまたは介護者の所属に応じて変わることもあり、よって、特定の患者の体験についてのアクティブな問題リストのデータ要素を表すのに利用できる。このように、データ抽出部66は、患者データのカテゴリーのうち1つ以上のいずれかに関連するデータを、データソース68から抽出することができる。
図示のシステム50では、抽出されたデータは、カテゴリーフィルター72に供給される。カテゴリーフィルター72は、特定の処置または機能障害の分析用のみならず、予測のための所望のアウトカムの分析用に、特定の患者をひとつの患者クラスに振り分けるようにプログラムされ、よって、利用可能なモデルの組(たとえば、モデル51〜62を含む組など)のうちの1つに患者を関連付ける。カテゴリーフィルター72は、レベル数が比較的少ないバイナリーまたは多元カテゴリー変数に従って、患者を振り分けることができる。これによって、状況が変化している患者に異なる予測子を用いることができるようになり、ターゲットの予測モデルをより良くすることができる。さらに、電子カルテシステムで利用可能であろう大量のデータがある場合、1つ以上のカテゴリーフィルターを用いて特定のアウトカムを予測するモデルを分けることで、訓練データに対するモデルの過剰適合を起こすことなく、より多くのデータを利用できるようになる。このカテゴリー分けをもとに、フィルター72は、利用可能なモデルの複数の組(たとえば、モデル51〜59を含む組など)のうちの1つ以上に患者を関連付ける。たとえば、心臓病と診断された患者らは、彼らだけの特定のアウトカム(たとえば、病院にいる時間の長さなど)に対するモデルの組を持つであろうし、II型糖尿病の患者らは、アウトカムに対する別のモデルの組を持つであろう、という具合である。実際には、カテゴリーフィルタリングコンポーネント72は、患者のモデルを大ざっぱに選択し、考慮の対象となっているモデル51〜62の組が、抽出されたデータに基づいて決定されるような患者の事情に適するように保証する。
一例において、モデルの複数の組が、患者の滞在についての異なる段階を表してもよい。たとえば、患者アウトカムを処置の6時間後と予測することに付随する第1のモデルの組、患者アウトカムを処置の1日後と予測することに付随する第2のモデルの組、患者アウトカムを処置の2日後と予測することに付随する第3のモデルの組、といった具合であってもよかろう。各モデルに対する予測モデリングの影響を明らかにするために、あとに続くモデルの組(たとえば、第2のモデルの組など)で、前のモデルの組(たとえば、第1のモデルの組など)から得られた予測アウトカムを予測子として利用してもよい。
フィルター72によって患者との関連付けがなされたモデルの組に基づいて、モデル選択コンポーネント74は、モデルに関連する予測子の組と各モデルの付随する精度とに従って、モデル51〜62の組から適当なモデルを選択するよう構成されている。利用できるモデル予測子が全モデル予測子よりも少ない患者に対しては、欠落した予測子を、連鎖方程式を用いた多重代入などの適当な代入法によって与えた状態で、モデルを用いるようにすればよい。1つ以上の予測子が代入されると、モデルの付随する精度が変化し得ることは、理解できよう。一度モデルが選択されたら、選択されたモデルによって予測される1つ以上のアウトカムを計算し、メモリー64に格納することができる。また、この1つ以上の予測アウトカムも、付随するディスプレイ76によってオペレーターに向けて出力できる。予測アウトカムは、特定の患者について、新たな予測子が利用可能になったときや、1つ以上の予測子に対する新しいデータが利用可能になったときには、繰り返し作成可能であることは、理解できよう。
抽出されたデータと選択されたモデルは、以後の分析用に、感度分析コンポーネント78にも供給される。図示の実装例では、感度分析コンポーネント78は、抽出されたデータ中には含まれていない任意の予測子が予測の精度におよぼす影響を決定するよう構成される。たとえば、モデル51〜62の組からの選択されたモデルおよび他のモデルを精査することで、仮に1つ以上の追加の予測子が存在した場合に、想定される予測の精度を大幅に高められるかどうかを決定することができる。大幅な増加については、たとえば、閾値パーセンテージを超えるモデルの精度の増加として定義できる。精度に大きな影響があると判明した、欠落している予測子はいずれもディスプレイ76でオペレーターに通知可能であり、オペレーターは、(たとえば、診断プロシージャをオーダーすること、患者から追加の基本属性情報を得ることなどの方法によって)データを得て、存在する新たな予測子を用いてプロセスを再起動するという選択肢を有する。
また、感度分析コンポーネント78は、1つ以上の利用可能な予測子の値についてのアウトカムの感度を決定できる。具体的には、感度分析コンポーネント78は、特定の予測子に変化がある場合、患者アウトカムの変化の大きさを決定し、この患者アウトカムをドライブする上で特に意味のある予測子をオペレーターに警告することができる。たとえば、予測子の値におけるあらかじめ定められた変化について閾値量よりも影響の大きいすべての予測子の一覧を、ディスプレイ76でオペレーターに提示できる。このリストから、オペレーターは、患者または患者の介護者に対し、患者のポジティブなアウトカムの尤度を改善するための提案をすることが可能である。一例において、予測子がアウトカムに対しておよぼす影響をグラフィカルに表示して、この情報を患者に示すことを単純化してもよい。大きなモデルでの感度分析を容易にするには、予測子を「変更可能」と「変更不可」にカテゴリー分けして、変更可能とみなされた予測子だけを精査用にオペレーターに提示することが可能である。たとえば、仮に患者の家族歴における予測子の変更が予測されるアウトカムに大きな影響を持つとしても、そのような変更は実行不可能であるから、感度分析コンポーネント78はこれを無視することができる。
また、システム50は、データソース68からの患者アウトカムについての新たな情報を用いて複数のモデル51〜62の各々を周期的に更新するようにプログラムされた更新コンポーネント80も含む。たとえば、特定のモデルについて更新が望ましいと決定されたときは、このモデルの前回の更新後に、当該モデルによって予測可能な患者アウトカムを用いて更新された複数の患者レコードを収集して、訓練データ、検証データ、テストデータとして利用することが可能である。
一例として、モデルは、周期的に検証し、もしも予測されたアウトカムが患者の予測アウトカムから逸脱している場合には、更新することができる。たとえば、予測アウトカムからの逸脱を異常検知プロセスによって精査することができ、予測からの逸脱が想定された分布と一致しないときはいつでも更新を行うことができる。別の例では、予測臨床アウトカムと実測臨床アウトカムとの間でコンコーダンス指標を周期的に測定し、閾値と比較する。コンコーダンス指標が閾値未満まで落ちたときはいつでもモデルを更新すればよい。
特定のモデルの更新を、すべての新しいデータ、すべての古いデータ、あるいは古いデータと新しいデータの組み合わせについて再訓練してもよいことは、理解できよう。同様に、新しいデータ、すべての古いデータ、あるいは古いデータと新しいデータの組み合わせを用いて、モデルの交差検証とテストを行うことができるが、本発明の一態様によれば、通常は任意のテストデータを新しいデータから完全にまたは主として抜き取り、モデルの使用による影響を各モデルについて計算された精度で確実にとらえられるようにしていることは、理解できよう。ひとたび各モデルが更新されたら、それぞれのモデルについて決定された新たな精度を、将来のモデルの選択用にモデル選択コンポーネント74に供給することが可能である。
さらに、モデルが実測アウトカムから逸脱していると決定されたときは、このモデルアウトカムを(たとえば、自動化された方法によって、あるいは、当該主題の専門家によって)精査して、モデルの予測子に対する変更が必要であるか否かを決定できる。たとえば、実測アウトカムからのモデルの逸脱が経時的に比較的一定の値を持つと判明したときは、回帰の切片値を変更する、またはモデルの結果からのオフセットを追加するなどして当該モデルを較正し、このモデルを測定された結果に合わせるようにしてもよい。あるいは、逸脱が上記よりもランダムであるのなら、(たとえば、エキスパートシステムによって、あるいは、当該主題の専門家によって)モデルを再評価し、このモデルの予測子を追加、変更または削除してもよい。この再評価によって、現在の予測子では適切に表現できないことがある環境や医療の変化および医療の進歩を捉えることができる。しかしながら、特定のモデルの組(たとえば、51)の中でのモデルの多様性については、こうした変化に対していくらかの自動保護が可能であることは、理解できよう。
上述した先の構造的および機能的な特徴に鑑みると、本発明のさまざまな態様による方法は、図3を参照してより一層良く理解できよう。説明を簡単にするために、図3の方法を逐次的に実行するものとして図示し説明するが、いくつかの態様は、本発明によれば、本明細書に図示して説明したものとは異なる順番で起こり得る、および/または他の態様と同時に起こり得るため、本発明は図示の順番に限定されるものではないことは、理解できるであろうし、自明であろう。さらに、図示の特徴のすべてが本発明の一態様による方法を実装するのに必要とされるわけではないこともある。図3の例示的な方法は、非一時的なコンピューター読み取り可能な媒体に格納可能な機械読み取り可能な命令として実装可能であり、たとえばコンピュータープログラム製品または他の形態の記憶装置であってもよい。また、図3の方法に対応するコンピューター読み取り可能な命令は、メモリーからもアクセス可能であり、処理リソース(たとえば、1つ以上のプロセッサーコアなど)によって実行可能である。
図3は、本発明の一態様による患者アウトカムを予測するための方法100を示す。この方法は、専用のハードウェア、非一時的なコンピューター読み取り可能な媒体に格納されて付随するプロセッサーによって実行される機械実行可能な命令、あるいは、これらの組み合わせとして実装できることは、理解できよう。102では、たとえば集中管理患者データベースから、適当なユーザーインタフェースあるいは他の適当な手段を介した入力として、患者を表す予測子の組を受信する。一例において、これらの予測子は、患者を表す医療データベースレコードから抽出され、臨床パラメーターの値の測定に先立って当該臨床パラメーターの値を予測するためにモデルが用いられている、ということを示す予測子を含む。患者の治療時にモデルの使用を表す予測子を含むことで、予測される臨床パラメーターが治療過程に対しておよぼすあらゆる影響を、モデルによって少なくとも部分的に説明することができる。
104では、利用可能な複数のモデルから、モデルを選択する。各モデルは、その精度を表す1つ以上の付随する値を持つことができる。これは、特定のモデルについての精度が、そのモデルに対して利用可能な予測子に応じて変動し得るためである。これらのモデルが、適当な教師あり学習アルゴリズムまたは半教師あり学習アルゴリズムを利用できることは、理解できよう。一実施形態では、これらのモデルは、少なくとも1つの人工ニューラルネットワークと、少なくとも1つの回帰モデルとを含む。106では、選択されたモデルと予測子の組から臨床パラメーターの値を予測して、予測値を提供する。
108では、追加の予測子を加えると精度を大幅に高めることができるか否かを決定する。たとえば、患者を表す予測子の組の中には含まれていない予測子を各々が利用している複数のモデルから、モデルの組を選択することができる。患者を表す予測子の組と、この予測子の組の中には含まれていない予測子がある場合、モデルの組の各々に対して、想定精度を決定することができる。もしも想定精度の増加が閾値を超えた場合には、この精度の増加は大きいと決定されることになる。閾値は、たとえば、困難さ、医療上のリスクおよび/または予測子の値を得るコストなどとともに予測子全体で異なっていてもよいことは、理解できよう。もしも精度を大幅に高めることができる場合は(Y)、この方法が112に進むより前に110でユーザーは通知を受け取ることができる。そうでなければ(N)、この方法は112に進むことができる。
112では、1つ以上の予測子を変更することで、予測アウトカムを大きく変更できるか否かを決定する。いくつかの例では、このさまざまな予測子としては、患者の生活スタイル、患者の生活状況、さまざまな生物測定パラメーター(たとえば、体重、血圧、ICDコード、DRGコードなど)、ならびに、少なくとも部分的に患者およびその世話人の制御下にあるような複数の他の変数、のいずれかを表す第1の群のパラメーターがあげられる。もうひとつの群の予測子、たとえば患者の病歴または遺伝子的な特質は、どのような重要な度合いにでも変更を実現できない、すなわち変更不可能である。これらの制御可能な、すなわち「変更できる」予測子それぞれに対する臨床パラメーターの予測値の感度は、(たとえば、標準的なパーセンテージ、あるいは、合理的な生活スタイルの変化を表すあらかじめ定められた量などによって)選択されたパラメーターの特定の変化についての予測アウトカムの変化の大きさとして決定できる。予測アウトカムの変化が閾値を超える予測子はいずれも、患者アウトカムを改善するのに関連があるとみなすことができる。予測臨床アウトカムに有意な変更が可能である(Y)と決定されると、変更された予測子を用いているユーザーについての臨床アウトカムが116で予測される。その後、この方法が118に進むより前に116で関連の臨床パラメーターがユーザーに警告され、変更された予測子を表す予測アウトカムが表示される。そうでなければ(N)、この方法は単に118に進む。
118では、臨床パラメーターの値を測定する。通常、患者の治療と手当が完了すると、臨床パラメーターによって表される測定基準が測定されて記録される。120では、予測子の組と測定された値とに従ってモデルを更新する。一実施形態では、この予測子の組と測定された値が、モデルの訓練に用いられるデータの訓練セットに取り込まれる。別の例では、この予測子と臨床パラメーターの予測値と測定された値を、データのテストセットの一部として利用して、モデルに付随する精度を更新してより良くすることができる。患者の新たなアウトカムに応答してモデルを一貫して更新することで、患者母集団の構成の変化、関連技術の進歩や治療や手当における他の変更内容にかかわらず、モデルを正確に保つことができる。
図4は、コンピューターシステム上で動くコンピューターで実行可能な命令に基づくなどによって、本明細書に記載のシステムおよび方法を実行するのに使用可能なコンピューターシステム200を示す。ユーザーは、必要に応じて術前に、コンピューターシステム200を使用して、予定された外科的処置をシミュレートすることが許されてもよい。コンピューターシステム200は、1つ以上のネットワーク接続された汎用コンピューターシステム、組込型のコンピューターシステム、ルーター、スイッチ、サーバー装置、クライアント装置、さまざまな中間装置/ノードおよび/またはスタンドアロンのコンピューターシステムに実装可能である。
コンピューターシステム200は、プロセッサー202と、システムメモリー204と、を含む。デュアルマイクロプロセッサーなどのマルチプロセッサーアーキテクチャを、プロセッサー202として使用してもよい。プロセッサー202およびシステムメモリー204は、多岐にわたるバスアーキテクチャーのうちのいずれかを用いる、メモリーバスまたはメモリーコントローラー、周辺機器用バス、ローカルバスをはじめとするいくつかのタイプのバス構造のうちのいずれかを用いて、連結可能である。システムメモリー204は、リードオンリーメモリー(ROM)206と、ランダムアクセスメモリー(RAM)208とを含む。リセットまたはパワーアップなど、一般にコンピューターシステム200内の要素間で情報を転送しやすくする基本ルーチンを含むROM206内に、基本入出力システム(BIOS)を常駐させることが可能である。
コンピューターシステム200は、ハードディスクドライブ、(たとえば、リムーバブルディスクとの間で読み書きするための)磁気ディスクドライブ、(たとえば、CD−ROMまたはDVDディスクを読み取る目的、あるいは、他の光学メディアとの間で読み書きするための)光学ディスクドライブをはじめとする1つ以上のタイプの長期データストレージ210を含んでもよい。長期データストレージ210は、ドライブインターフェース212を介してプロセッサー202と接続可能である。長期データストレージ210のコンポーネントは、コンピューターシステム200用のデータ、データ構造、コンピューターで実行可能な命令を格納する不揮発性のストレージとなる。多数のプログラムモジュールを、ドライブおよびRAM208の1つ以上に格納してもよい。このRAMは、オペレーティングシステム、1つ以上のアプリケーションプログラム、他のプログラムモジュール、プログラムデータを含む。
ユーザーは、キーボードまたはポインティングデバイス(たとえば、マウス)などの1つ以上の入力デバイス222を介して、コマンドおよび情報をコンピューターシステム200に入力してもよい。これらの入力デバイスおよび他の入力デバイスは、デバイスインターフェース224を介してプロセッサー202に接続されることが多い。たとえば、入力デバイスは、1つ以上のパラレルポート、シリアルポート、またはユニバーサルシリアルバス(USB)によって、システムバスに接続可能である。ビジュアルディスプレイデバイスまたはプリンターなどの1つまたは複数の出力デバイス226も、デバイスインターフェース224を介してプロセッサー202に接続可能である。
コンピューターシステム200は、リモートコンピューター230などの1台以上のリモートコンピューターとの論理接続(たとえば、ローカルエリアネットワーク(LAN)またはワイドエリアネットワーク(WAN)など)を使用して、ネットワーク環境で動作してもよい。特定のリモートコンピューター230は、ワークステーション、コンピューターシステム、ルーター、ピアデバイスまたは他の一般的なネットワークノードであってもよく、一般に、コンピューターシステム200に関して説明した多くの要素またはすべての要素を含む。コンピューターシステム200は、無線または有線のネットワークインターフェースカードまたはモデムなどのネットワークインターフェース232を介して、リモートコンピューター230と通信可能である。ネットワーク環境では、コンピューターシステム200との関連で示されるアプリケーションプログラムおよびプログラムデータ、あるいはそれらの一部を、リモートコンピューター230に付随するメモリーに格納してもよい。
以上説明してきたものは例である。もちろん、構成要素または方法の考えられるあらゆる組み合わせを説明するのは不可能であるが、さらに別の多くの組み合わせや入れ替えが可能であることは、当業者であれば認識するであろう。従って、本開示は、添付の特許請求の範囲を含めて本出願の範囲に入るそのような変更、修正、改変すべてを包含することを意図している。本明細書で使用する場合、「含む(includes)」という表現は、含むことを意味するがこれに限定されるものではなく、「含んで(including)」という表現は、含んでいることを意味するがこれに限定されるものではない。「基づいて」という表現は、少なくとも部分的に基づくことを意味する。また、開示内容または特許請求の範囲で「a」、「an」、「第1の」または「もうひとつの」要素あるいはその等価物に言及する場合、これは、2つまたは3つ以上のそのような要素を必要とすることもなければ除外することもなく、1つまたは2つ以上のそのような要素を含むものと解釈されるべきである。
==関連出願へのクロスリファレンス==
本出願は、2013年3月15日に発明の名称「SELF-EVOLVING PREDICTIVE MODEL」で代理人整理番号CCF−021257 US PROの下に出願された米国仮特許出願第61/792,427号の優先権の利益を主張する。当該出願の内容全体を、あらゆる目的で、本明細書に援用する。

Claims (17)

  1. 臨床パラメーターを予測するための方法を行うためにプロセッサーによって実行可能な、機械実行可能な命令を格納する、非一時的なコンピューター読み取り可能な媒体であって、前記方法は、
    受信された予測子の組がある場合、複数のモデルのうち最も精度が高いモデルを選択し、
    前記選択されたモデルと前記予測子の組から臨床パラメーターの値を予測して予測値を提供し、
    前記臨床パラメーターの値を測定し、
    前記予測子の組と測定された値とに従って、前記モデルを更新すること
    を含む、媒体。
  2. 前記方法は、前記選択されたモデルについての前記予測子の組のサブセット各々に対する前記臨床パラメーターの予測値の感度を、選択されたパラメーターにおける特定の変化についての前記予測されるアウトカムの変化の大きさとして決定し、
    前記予測値の変化の大きさが閾値を超える各予測子を表示すること
    をさらに含む、請求項1に記載の非一時的なコンピューター読み取り可能な媒体。
  3. 前記選択されたモデルについての前記予測子の組は、前記患者によって変更できないものとして示された少なくとも第1の群の予測子と、前記患者によって変更できるものとして示された第2の群の予測子と、を含み、前記予測子の組の前記サブセットは、前記第2の群の予測子から選択される、請求項2に記載の非一時的なコンピューター読み取り可能な媒体。
  4. 前記方法は、
    前記複数のモデルから、前記患者を表す前記予測子の組の中には含まれていない予測子を各々が利用しているモデルの組を選択し、
    前記患者を表す前記予測子の組と前記予測子の組の中には含まれてない前記予測子がある場合、前記モデルの組の各々について想定精度を決定し、
    もしも前記想定精度の増加が閾値を超えた場合には、ユーザーに通知する
    ことをさらに含む、請求項1に記載の非一時的なコンピューター読み取り可能な媒体。
  5. 前記閾値は、前記予測子の組の中には含まれていない前記予測子に従って選択される、請求項4に記載の非一時的なコンピューター読み取り可能な媒体。
  6. 前記予測子の組と前記測定された値に従って、前記モデルを更新することは、前記予測子の組の各々と、前記臨床パラメーターの前記予測値と、前記測定された値とをテストセットのデータの一部として利用して、前記モデルに付随する前記精度を更新することを含む、請求項1に記載の非一時的なコンピューター読み取り可能な媒体。
  7. 前記予測子の組と前記測定された値に従って、前記モデルを更新することは、前記予測子の組と前記測定された値とを含む訓練セットのデータを用いて、前記モデルを再訓練することを含む、請求項1に記載の非一時的なコンピューター読み取り可能な媒体。
  8. 前記患者を表す前記予測子の組は、前記臨床パラメーターの前記値の測定に先立って前記モデルが前記臨床パラメーターの値の予測に使用されているということを示す予測子を含む、請求項1に記載の非一時的なコンピューター読み取り可能な媒体。
  9. 前記複数のモデルは、人工ニューラルネットワークを利用した少なくとも1つのモデルと少なくとも1つのランダムフォレストモデルとを含む、請求項1に記載の非一時的なコンピューター読み取り可能な媒体。
  10. プロセッサーと、
    前記プロセッサーによって実行可能な、機械実行可能な命令を格納する、非一時的なコンピューター読み取り可能な媒体と、
    を含む、臨床パラメーターを予測するためのシステムであって、
    前記機械実行可能な命令は、
    複数の予測モデルと、
    患者を表す予測子の組に従って複数の予測モデルから第1のモデルを選択し、前記患者を表す予測子の組の中には含まれていない予測子を各々が利用しているモデルの組を選択するように構成されたモデル選択部と、
    前記患者を表す前記予測子の組と前記予測子の組の中には含まれていない前記予測子がある場合、前記選択されたモデルの組の各々について想定精度を決定し、もしも前記モデルの組のいずれかの前記想定精度が閾値よりも大きく前記第1のモデルの精度を超えた場合には、付随するディスプレイを介してユーザーに通知するように構成された感度分析コンポーネントと、
    を含む、システム。
  11. 前記予測子の組と前記臨床パラメーターの測定された値に従って、前記第1のモデルを更新するように構成された更新コンポーネントをさらに含む、請求項10に記載のシステム。
  12. 前記更新コンポーネントは、前記予測子の組と前記測定された値を含む訓練セットのデータを用いて、前記第1のモデルを再訓練するように構成される、請求項11に記載のシステム。
  13. 前記更新コンポーネントは、前記予測子の組の各々と、前記第1のモデルから決定される前記臨床パラメーターの予測値と、前記測定された値とをテストセットのデータとして利用して、前記モデルに付随する前記精度を更新するように構成される、請求項11に記載のシステム。
  14. 前記予測子の組は、前記患者によって変更できないものとして示された少なくとも第1の群の予測子と、前記患者によって変更できるものとして示された第2の群の予測子と、を含み、前記感度分析コンポーネントはさらに、前記第2の群の予測子のサブセット各々に対する前記臨床パラメーターの予測値の感度を、選択されたパラメーターにおける特定の変化についての前記予測値の変化の大きさとして決定するように構成される、請求項10に記載のシステム。
  15. 前記モデル選択部は、適切な代入アルゴリズムを用いて前記予測子の組の中には含まれていない前記予測子の値を代入し、前記モデルの組の精度が最も高いモデルからの臨床パラメーターの予測値、前記予測子の組、および前記代入された値を計算するように構成される、請求項10に記載のシステム。
  16. 前記複数のモデルは、人工ニューラルネットワークを利用した少なくとも1つのモデルと少なくとも1つのサポートベクターマシーンとを含む、請求項10に記載のシステム。
  17. 前記予測子の組は、医療検査と臨床処置のうちの1つの結果を表す少なくとも1つの予測子を含む、請求項10に記載のシステム。
JP2016502399A 2013-03-15 2014-03-14 自己進化型予測モデル Pending JP2016519807A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361792427P 2013-03-15 2013-03-15
US61/792,427 2013-03-15
PCT/US2014/027295 WO2014152395A1 (en) 2013-03-15 2014-03-14 Self-evolving predictive model

Publications (1)

Publication Number Publication Date
JP2016519807A true JP2016519807A (ja) 2016-07-07

Family

ID=50771574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016502399A Pending JP2016519807A (ja) 2013-03-15 2014-03-14 自己進化型予測モデル

Country Status (6)

Country Link
US (1) US20140279754A1 (ja)
EP (1) EP2973106A1 (ja)
JP (1) JP2016519807A (ja)
AU (1) AU2014239852A1 (ja)
CA (1) CA2905072A1 (ja)
WO (1) WO2014152395A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018108366A (ja) * 2016-12-28 2018-07-12 キヤノンメディカルシステムズ株式会社 治療計画装置及び臨床モデル比較方法
KR20190022431A (ko) * 2017-03-13 2019-03-06 핑안 테크놀로지 (션젼) 컴퍼니 리미티드 랜덤 포레스트 모델의 훈련 방법, 전자장치 및 저장매체
WO2019182297A1 (ko) * 2018-03-20 2019-09-26 딜로이트컨설팅유한회사 임상실험 결과 예측 장치 및 방법
JP2020030145A (ja) * 2018-08-23 2020-02-27 東京エレクトロンデバイス株式会社 検査装置及び検査システム
JP2020042761A (ja) * 2018-09-11 2020-03-19 株式会社日立製作所 治療経路分析および管理プラットフォーム
JP2020071562A (ja) * 2018-10-30 2020-05-07 株式会社キャンサースキャン 健康診断受診確率計算方法及び健診勧奨通知支援システム
JPWO2020225923A1 (ja) * 2019-05-09 2020-11-12
JP2021022276A (ja) * 2019-07-30 2021-02-18 横浜ゴム株式会社 データ処理方法、データ処理装置、及びプログラム
US11056241B2 (en) 2016-12-28 2021-07-06 Canon Medical Systems Corporation Radiotherapy planning apparatus and clinical model comparison method
JP2021524097A (ja) * 2018-05-18 2021-09-09 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 異種医用データの優先順位付け及び提示のためのシステム及び方法
WO2022024985A1 (ja) * 2020-07-27 2022-02-03 ファナック株式会社 検査装置
JP2022160570A (ja) * 2021-08-25 2022-10-19 ベイジン バイドゥ ネットコム サイエンス テクノロジー カンパニー リミテッド マルチタスクのデプロイ方法、装置、電子機器及び記憶媒体
WO2024024200A1 (ja) * 2022-07-28 2024-02-01 株式会社日立製作所 情報処理装置

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014155690A1 (ja) * 2013-03-29 2014-10-02 富士通株式会社 モデル更新方法、装置、およびプログラム
US9449344B2 (en) * 2013-12-23 2016-09-20 Sap Se Dynamically retraining a prediction model based on real time transaction data
US20160055412A1 (en) * 2014-08-20 2016-02-25 Accenture Global Services Limited Predictive Model Generator
US11250081B1 (en) * 2014-09-24 2022-02-15 Amazon Technologies, Inc. Predictive search
CA2974199A1 (en) 2015-01-20 2016-07-28 Nantomics, Llc Systems and methods for response prediction to chemotherapy in high grade bladder cancer
WO2016141214A1 (en) * 2015-03-03 2016-09-09 Nantomics, Llc Ensemble-based research recommendation systems and methods
US20180082185A1 (en) * 2015-03-23 2018-03-22 Nec Corporation Predictive model updating system, predictive model updating method, and predictive model updating program
MY189500A (en) * 2015-04-27 2022-02-16 Full Essence Sdn Bhd Tele-health and tele-medical facilitation system and method thereof
US10881455B2 (en) 2015-05-12 2021-01-05 Navix International Limited Lesion assessment by dielectric property analysis
CN113421652B (zh) 2015-06-02 2024-06-28 推想医疗科技股份有限公司 对医疗数据进行分析的方法、训练模型的方法及分析仪
WO2016198685A1 (en) * 2015-06-12 2016-12-15 Koninklijke Philips N.V. Apparatus, system, method, and computer program for distinguishing between active and inactive time periods of a subject
CA2988179A1 (en) * 2015-06-16 2016-12-22 Quantum Dental Technologies Inc. System and method of monitoring consumable use based on correlations with diagnostic testing
CN105138963A (zh) * 2015-07-31 2015-12-09 小米科技有限责任公司 图片场景判定方法、装置以及服务器
CN105095911B (zh) * 2015-07-31 2019-02-12 小米科技有限责任公司 敏感图片识别方法、装置以及服务器
WO2017129268A1 (en) 2016-01-29 2017-08-03 Longsand Limited Providing a recommendation to change an outcome predicted by a regression model
US10936966B2 (en) * 2016-02-23 2021-03-02 At&T Intellectual Property I, L.P. Agent for learning and optimization execution
DE102017103588A1 (de) * 2016-02-24 2017-08-24 Jtekt Corporation Analysevorrichtung und analysesystem
US9691026B1 (en) * 2016-03-21 2017-06-27 Grand Rounds, Inc. Data driven dynamic modeling for associative data sets including mapping services to service providers
US11626207B2 (en) 2016-05-24 2023-04-11 Koninklijke Philips N.V. Methods and systems for providing customized settings for patient monitors
JP6701979B2 (ja) * 2016-06-01 2020-05-27 富士通株式会社 学習モデル差分提供プログラム、学習モデル差分提供方法、および学習モデル差分提供システム
TW201805887A (zh) * 2016-08-11 2018-02-16 宏達國際電子股份有限公司 醫學系統、醫學方法及非暫態電腦可讀取媒體
US11693002B2 (en) 2016-10-17 2023-07-04 Reliant Immune Diagnostics, Inc. System and method for variable function mobile application for providing medical test results using visual indicia to determine medical test function type
US11802868B2 (en) 2016-10-17 2023-10-31 Reliant Immune Diagnostics, Inc. System and method for variable function mobile application for providing medical test results
CN110198680B (zh) * 2016-11-16 2022-09-13 纳维斯国际有限公司 消融有效性估计器
US11915810B2 (en) 2016-12-14 2024-02-27 Reliant Immune Diagnostics, Inc. System and method for transmitting prescription to pharmacy using self-diagnostic test and telemedicine
US11295859B2 (en) * 2016-12-14 2022-04-05 Reliant Immune Diagnostics, Inc. System and method for handing diagnostic test results to telemedicine provider
US11164680B2 (en) 2016-12-14 2021-11-02 Reliant Immune Diagnostics, Inc. System and method for initiating telemedicine conference using self-diagnostic test
JP6926472B2 (ja) * 2016-12-27 2021-08-25 株式会社ジェイテクト 解析装置および解析システム
CN110914917A (zh) * 2017-04-27 2020-03-24 皇家飞利浦有限公司 实时抗生素治疗建议
US11195601B2 (en) * 2017-05-31 2021-12-07 International Business Machines Corporation Constructing prediction targets from a clinically-defined hierarchy
US11983623B1 (en) 2018-02-27 2024-05-14 Workday, Inc. Data validation for automatic model building and release
CN112055878B (zh) * 2018-04-30 2024-04-02 皇家飞利浦有限公司 基于第二组训练数据调整机器学习模型
WO2020056372A1 (en) 2018-09-14 2020-03-19 Krishnan Ramanathan Multimodal learning framework for analysis of clinical trials
WO2020068684A2 (en) * 2018-09-24 2020-04-02 Krishnan Ramanathan Hybrid analysis framework for prediction of outcomes in clinical trials
US11556746B1 (en) * 2018-10-26 2023-01-17 Amazon Technologies, Inc. Fast annotation of samples for machine learning model development
US10354205B1 (en) * 2018-11-29 2019-07-16 Capital One Services, Llc Machine learning system and apparatus for sampling labelled data
US20200203020A1 (en) * 2018-12-19 2020-06-25 Koninklijke Philips N.V. Digital twin of a person
US11795495B1 (en) * 2019-10-02 2023-10-24 FOXO Labs Inc. Machine learned epigenetic status estimator
EP3809416A1 (en) * 2019-10-14 2021-04-21 Koninklijke Philips N.V. A computer-implemented method, an apparatus and a computer program product for processing a data set
JP7400828B2 (ja) * 2019-10-31 2023-12-19 日本電気株式会社 患者状態予測装置、患者状態予測方法、及びコンピュータプログラム
WO2021211804A1 (en) * 2020-04-15 2021-10-21 Healthpointe Solutions, Inc. Tracking infectious disease using a comprehensive clinical risk profile and performing actions in real-time via a clinic portal
US11742081B2 (en) * 2020-04-30 2023-08-29 International Business Machines Corporation Data model processing in machine learning employing feature selection using sub-population analysis
US11928857B2 (en) * 2020-07-08 2024-03-12 VMware LLC Unsupervised anomaly detection by self-prediction
US20220180244A1 (en) * 2020-12-08 2022-06-09 Vmware, Inc. Inter-Feature Influence in Unlabeled Datasets
US11664100B2 (en) * 2021-08-17 2023-05-30 Birth Model, Inc. Predicting time to vaginal delivery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007052774A (ja) * 1995-07-25 2007-03-01 Ortho-Clinical Diagnostics Inc コンピュータ援用疾病診断方法
JP2008532104A (ja) * 2004-12-30 2008-08-14 プロベンティス インコーポレーテッド 複数の医療関連アウトカムの予測を行い、インターベンション計画の評価を行い、更に同時にバイオマーカー因果性検証を行うことのできる、予測モデルを生成して適用する方法、そのシステム、及びそのコンピュータ・プログラム製品
US20120271612A1 (en) * 2011-04-20 2012-10-25 Barsoum Wael K Predictive modeling

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10076273B2 (en) * 2006-07-06 2018-09-18 Biorics Nv Real-time monitoring and control of physical and arousal status of individual organisms
AU2009217184B2 (en) * 2008-02-20 2015-03-19 Digital Medical Experts Inc. Expert system for determining patient treatment response

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007052774A (ja) * 1995-07-25 2007-03-01 Ortho-Clinical Diagnostics Inc コンピュータ援用疾病診断方法
JP2008532104A (ja) * 2004-12-30 2008-08-14 プロベンティス インコーポレーテッド 複数の医療関連アウトカムの予測を行い、インターベンション計画の評価を行い、更に同時にバイオマーカー因果性検証を行うことのできる、予測モデルを生成して適用する方法、そのシステム、及びそのコンピュータ・プログラム製品
US20120271612A1 (en) * 2011-04-20 2012-10-25 Barsoum Wael K Predictive modeling

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7330665B2 (ja) 2016-12-28 2023-08-22 キヤノンメディカルシステムズ株式会社 治療計画装置及び臨床モデル比較方法
JP2018108366A (ja) * 2016-12-28 2018-07-12 キヤノンメディカルシステムズ株式会社 治療計画装置及び臨床モデル比較方法
US11056241B2 (en) 2016-12-28 2021-07-06 Canon Medical Systems Corporation Radiotherapy planning apparatus and clinical model comparison method
KR102201919B1 (ko) 2017-03-13 2021-01-12 핑안 테크놀로지 (션젼) 컴퍼니 리미티드 랜덤 포레스트 모델의 훈련 방법, 전자장치 및 저장매체
KR20190022431A (ko) * 2017-03-13 2019-03-06 핑안 테크놀로지 (션젼) 컴퍼니 리미티드 랜덤 포레스트 모델의 훈련 방법, 전자장치 및 저장매체
WO2019182297A1 (ko) * 2018-03-20 2019-09-26 딜로이트컨설팅유한회사 임상실험 결과 예측 장치 및 방법
JP7319301B2 (ja) 2018-05-18 2023-08-01 コーニンクレッカ フィリップス エヌ ヴェ 異種医用データの優先順位付け及び提示のためのシステム及び方法
JP2021524097A (ja) * 2018-05-18 2021-09-09 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 異種医用データの優先順位付け及び提示のためのシステム及び方法
JP2020030145A (ja) * 2018-08-23 2020-02-27 東京エレクトロンデバイス株式会社 検査装置及び検査システム
US11152119B2 (en) 2018-09-11 2021-10-19 Hitachi, Ltd. Care path analysis and management platform
JP2020042761A (ja) * 2018-09-11 2020-03-19 株式会社日立製作所 治療経路分析および管理プラットフォーム
JP2020071562A (ja) * 2018-10-30 2020-05-07 株式会社キャンサースキャン 健康診断受診確率計算方法及び健診勧奨通知支援システム
JPWO2020225923A1 (ja) * 2019-05-09 2020-11-12
JP7424373B2 (ja) 2019-05-09 2024-01-30 日本電信電話株式会社 分析装置、分析方法及び分析プログラム
JP2021022276A (ja) * 2019-07-30 2021-02-18 横浜ゴム株式会社 データ処理方法、データ処理装置、及びプログラム
JP7360016B2 (ja) 2019-07-30 2023-10-12 横浜ゴム株式会社 データ処理方法、データ処理装置、及びプログラム
WO2022024985A1 (ja) * 2020-07-27 2022-02-03 ファナック株式会社 検査装置
JPWO2022024985A1 (ja) * 2020-07-27 2022-02-03
JP7502448B2 (ja) 2020-07-27 2024-06-18 ファナック株式会社 検査装置
JP2022160570A (ja) * 2021-08-25 2022-10-19 ベイジン バイドゥ ネットコム サイエンス テクノロジー カンパニー リミテッド マルチタスクのデプロイ方法、装置、電子機器及び記憶媒体
JP7408741B2 (ja) 2021-08-25 2024-01-05 ベイジン バイドゥ ネットコム サイエンス テクノロジー カンパニー リミテッド マルチタスクのデプロイ方法、装置、電子機器及び記憶媒体
WO2024024200A1 (ja) * 2022-07-28 2024-02-01 株式会社日立製作所 情報処理装置

Also Published As

Publication number Publication date
US20140279754A1 (en) 2014-09-18
AU2014239852A1 (en) 2015-11-05
CA2905072A1 (en) 2014-09-25
WO2014152395A1 (en) 2014-09-25
EP2973106A1 (en) 2016-01-20

Similar Documents

Publication Publication Date Title
JP2016519807A (ja) 自己進化型予測モデル
US11281978B2 (en) Distributed rule-based probabilistic time-series classifier
Lin et al. Exploiting missing clinical data in Bayesian network modeling for predicting medical problems
US9861308B2 (en) Method and system for monitoring stress conditions
CN107785057B (zh) 医疗数据处理方法、装置、存储介质和计算机设备
US20120271612A1 (en) Predictive modeling
US20140358570A1 (en) Healthcare support system and method
US11244764B2 (en) Monitoring predictive models
JP2012221508A (ja) 患者予後を予測するシステムおよびコンピュータ可読媒体
WO2014117149A1 (en) Managing the care of a client in a care management system
WO2013192593A2 (en) Clinical predictive analytics system
JP6148255B2 (ja) 早期再入院を低減する方法及びシステム
JP7141711B2 (ja) 予後予測システム、予後予測プログラム作成装置、予後予測装置、予後予測方法及び予後予測プログラム
JP2018533798A (ja) 患者の生理学的反応に基づいた急性呼吸器疾患症候群(ards)の予測
US20210375443A1 (en) System and Method Associated with Determining Physician Attribution Related to In-Patient Care Using Prediction-Based Analysis
JP2018518207A (ja) 集中治療室における臨床値の自動化された分析及びリスク通知のためのシステム
US20210134405A1 (en) System for infection diagnosis
CN110415779A (zh) 保温措施有效性检测方法、装置、设备及存储介质
Chauvin et al. The influence of waiting times on cost-effectiveness: a case study of colorectal cancer mass screening
KR20230068717A (ko) 입원 환자의 퇴원 예측을 위한 장치 및 방법
CN117238478A (zh) 基于睡眠监测的脑卒中风险预警模型生成方法
US20160117465A1 (en) Method and apparatus for calculating an overall health quality index and providing a health upside optimizing recommendation

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170620