WO2021084695A1 - 患者状態予測装置、患者状態予測方法、及びコンピュータプログラム - Google Patents

患者状態予測装置、患者状態予測方法、及びコンピュータプログラム Download PDF

Info

Publication number
WO2021084695A1
WO2021084695A1 PCT/JP2019/042830 JP2019042830W WO2021084695A1 WO 2021084695 A1 WO2021084695 A1 WO 2021084695A1 JP 2019042830 W JP2019042830 W JP 2019042830W WO 2021084695 A1 WO2021084695 A1 WO 2021084695A1
Authority
WO
WIPO (PCT)
Prior art keywords
patient
prediction
condition
model
patient condition
Prior art date
Application number
PCT/JP2019/042830
Other languages
English (en)
French (fr)
Inventor
昌洋 林谷
英二 湯本
利憲 細井
久保 雅洋
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US17/768,970 priority Critical patent/US20230197285A1/en
Priority to JP2021553994A priority patent/JP7400828B2/ja
Priority to PCT/JP2019/042830 priority patent/WO2021084695A1/ja
Publication of WO2021084695A1 publication Critical patent/WO2021084695A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/50ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H10/00ICT specially adapted for the handling or processing of patient-related medical or healthcare data
    • G16H10/60ICT specially adapted for the handling or processing of patient-related medical or healthcare data for patient-specific data, e.g. for electronic patient records
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/30ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to physical therapies or activities, e.g. physiotherapy, acupressure or exercising
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment

Definitions

  • the present invention relates to a technical field of a patient condition predictor for predicting a patient's condition, a patient condition prediction method, and a computer program.
  • Patent Document 1 discloses a technique for generating a prediction model for predicting the occurrence of a predetermined event from the states of patients classified into a plurality of clusters.
  • Patent Document 2 discloses a technique for preferentially selecting a prediction model having a higher evaluation from a plurality of prediction models.
  • Patent Document 3 discloses a technique for predicting and notifying that a patient's disease will develop within a reference period.
  • Patent Document 4 discloses a technique for deriving information on a disease from a selected model.
  • a predictive model suitable for the patient it is preferable to use a predictive model suitable for the patient. In other words, using a predictive model that is not suitable for the patient may not accurately predict the patient's condition.
  • the present invention has been made in view of the above problems, and provides a patient condition prediction device, a patient condition prediction method, and a computer program capable of predicting changes in a patient's condition using an appropriate prediction model. That is the issue.
  • One aspect of the patient state prediction device of the present invention is the patient from an acquisition means for acquiring patient data which is information about the patient and a plurality of prediction models for predicting changes in the patient state which is the state of the patient. It includes a selection means for selecting one prediction model based on data, and a prediction means for predicting future changes in the patient's condition using the one prediction model.
  • One aspect of the patient condition prediction method of the present invention is based on the patient data from a plurality of prediction models that acquire patient data that is information about the patient and predict changes in the patient condition that is the patient's condition.
  • One predictive model is selected and the one predictive model is used to predict future changes in the patient's condition.
  • One aspect of the computer program of the present invention is based on the patient data from a plurality of prediction models that acquire patient data which is information about the patient and predict changes in the patient state which is the state of the patient.
  • a prediction model is selected, and the computer is operated to predict future changes in the patient's condition using the one prediction model.
  • each one of the above-mentioned patient condition prediction device, patient condition prediction method, and computer program it is possible to accurately predict changes in the patient's condition by using an appropriate prediction model.
  • FIG. 1 is a block diagram showing an overall configuration of the patient condition prediction device according to the first embodiment.
  • FIG. 2 is a block diagram showing a hardware configuration of the patient condition prediction device according to the first embodiment.
  • the patient state prediction device 1 is a device that predicts changes in the patient state (that is, "patient state”).
  • the "patient state” here is a wording indicating a state regarding the quality of the patient's symptom, for example, the postoperative recovery state of the inpatient (more specifically, whether the symptom is alleviated or not. Alternatively, it is a quantitative indication of whether or not activities of daily living can be performed).
  • the patient condition prediction device 1 includes a patient data acquisition unit 110, a prediction model selection unit 120, and a patient condition prediction unit 130 as main components.
  • the patient data acquisition unit 110 is configured to be able to acquire patient data, which is information about the patient.
  • Patient data is data that can affect future changes in patient status, such as patient attributes, various data related to patients measured in hospitals, and indexes calculated from patient status.
  • Specific examples of patient data include general vital signs (blood pressure, pulse, body temperature, etc.), FIM (Functional Independent Measure: functional independence measure), BI (Barthel Index), NIHSS.
  • the patient data acquired by the patient data acquisition unit 110 is output to the prediction model selection unit 120.
  • the prediction model selection unit 120 is configured to be able to select a prediction model for predicting the patient state based on the patient data acquired by the patient data acquisition unit 110. More specifically, the prediction model selection unit 120 stores a plurality of types of prediction models in advance, and among them, one prediction model suitable for patient data (in other words, the patient state of the patient is more accurate). Select a predictive model) that can be predicted. The specific selection method of the prediction model will be described in detail later.
  • the "prediction model” is an arithmetic model used for predicting the future patient condition, and is generated by, for example, machine learning. The machine learning method is not particularly limited, and a method suitable for the patient data to be used may be used. Also. Each of the plurality of prediction models may be generated by the same method or may be generated by different methods.
  • the selection result by the prediction model selection unit 120 is output to the patient condition prediction unit 130.
  • the patient condition prediction unit 130 is configured to be able to predict the future patient condition using the prediction model selected by the prediction model selection unit 120. Specifically, the patient condition prediction unit 130 inputs patient data (which may include past or present patient conditions) into the prediction model, and acquires future patient conditions as its output. More specific methods of predicting patient status will be described in detail later.
  • patient state predicted by the patient state prediction unit 130 is output to an external device (for example, a display or the like).
  • the patient state prediction device 1 includes a CPU (Central Processing Unit) 11, a RAM (Random Access Memory) 12, a ROM (Read Only Memory) 13, and a storage device 14. It has.
  • the patient condition prediction device 1 may further include an input device 15 and an output device 16.
  • the CPU 11, the RAM 12, the ROM 13, the storage device 14, the input device 15, and the output device 16 are connected via the data bus 17.
  • the CPU 11 reads a computer program.
  • the CPU 11 may read a computer program stored in at least one of the RAM 12, the ROM 13, and the storage device 14.
  • the CPU 11 may read a computer program stored in a computer-readable recording medium using a recording medium reading device (not shown).
  • the CPU 11 may acquire (that is, may read) a computer program from a device (not shown) arranged outside the patient state prediction device 1 via a network interface.
  • the CPU 11 controls the RAM 12, the storage device 14, the input device 15, and the output device 16 by executing the read computer program.
  • a functional block for predicting the patient state is realized in the CPU 11.
  • the patient data acquisition unit 110, the prediction model selection unit 120, and the patient state prediction unit 130 described above are realized by, for example, the CPU 11.
  • the RAM 12 temporarily stores the computer program executed by the CPU 11.
  • the RAM 12 temporarily stores data temporarily used by the CPU 11 when the CPU 11 is executing a computer program.
  • the RAM 12 may be, for example, a D-RAM (Dynamic RAM).
  • the ROM 13 stores a computer program executed by the CPU 11.
  • the ROM 13 may also store fixed data.
  • the ROM 13 may be, for example, a P-ROM (Programmable ROM).
  • the storage device 14 stores data stored in the patient state prediction device 1 for a long period of time.
  • the storage device 14 may operate as a temporary storage device of the CPU 11.
  • the storage device 14 may include, for example, at least one of a hard disk device, a magneto-optical disk device, an SSD (Solid State Drive), and a disk array device.
  • the input device 15 is a device that receives an input instruction from the user of the patient state prediction device 1.
  • the input device 15 may include, for example, at least one of a keyboard, a mouse, a touch panel, a smartphone, and a tablet.
  • the output device 16 is a device that outputs information about the patient state prediction device 1 to the outside.
  • the output device 16 may be a display device capable of displaying information regarding the patient state prediction device 1.
  • FIG. 3 is a flowchart showing an operation flow of the patient condition prediction device according to the first embodiment.
  • the patient data acquisition unit 110 first acquires patient data (step S101).
  • the patient data acquired here may be not only the current data but also the past acquired data (in other words, the accumulated past patient data).
  • the prediction model selection unit 120 selects a prediction model based on the patient data acquired by the patient data acquisition unit 110 (step S102).
  • the prediction model selection unit 120 may acquire a prediction model using one of the types, or may use (combine) a plurality of types to obtain a prediction model. You may get it.
  • the patient condition prediction unit 130 predicts the patient condition using the prediction model selected by the prediction model selection unit 120 (step S103).
  • the patient condition predicted indicates the condition of the patient in the future, and may be capable of determining, for example, the quality of the patient's symptoms or the risk of complications after several days.
  • FIG. 4 is a diagram showing an example of a method of selecting a prediction model based on patient data.
  • the prediction model selection unit 120 may select a prediction model based on the “(past or present) patient condition” and “hospitalization period” acquired as patient data. For example, the predictive model selection unit 120 selects a predictive model based on both the degree of patient condition and the period of hospitalization (that is, how long the period has passed when viewed as a whole hospitalization period). You may. Here, models 1-9 depend on whether the patient's condition is "good,” “normal,” or “bad,” and whether the length of hospital stay is "early,” “middle,” or “late.” One is selected. For example, if the patient's length of stay is "early" and the patient's condition is "poor," model 1 is selected as a predictive model suitable for that patient.
  • model 5 is selected as a predictive model suitable for that patient. If the patient's length of stay is "late” and the patient's condition is "good,” model 9 is selected as a predictive model suitable for that patient.
  • the prediction model is selected based on the patient data acquired by the patient data acquisition unit 110.
  • the selection method shown in FIG. 4 is only an example, and the prediction model may be selected by using another method.
  • the predictive model may be selected based on either the patient status or length of stay, or the predictive model may be selected based on one or more other factors in addition to the patient status and length of stay. Good.
  • FIG. 5 is a chart showing an example of a method for predicting a patient condition using a prediction model.
  • the prediction model may predict the patient condition up to N days later using the patient condition of the past M days (note that "M" and "N" are natural numbers). ..
  • the patient condition prediction unit 130 inputs data indicating the patient condition for the past M days into the prediction model selected by the prediction model selection unit 120, and the data indicating the patient condition from today to N days later is obtained. , Is output from the prediction model as a prediction result. By such an operation, the patient state prediction unit 130 predicts the future patient state.
  • a plurality of prediction models in which the above-mentioned values of "M” and "N" are appropriately determined are prepared in advance, and the prediction model selection unit 120 uses one of them based on the patient data. You may choose the prediction model of.
  • the predictive model selection unit 120 may be such as to determine appropriate "M” and "N” based on patient data. In this way, future patient conditions can be predicted more accurately by selecting a predictive model. For example, when the patient's condition tends to stabilize when the hospitalization period is relatively long, accurate prediction can be made by increasing M (that is, selecting a prediction model having a large M) as the hospitalization period becomes longer.
  • the patient state prediction device 1 As described with reference to FIGS. 1 to 5, according to the patient state prediction device 1 according to the first embodiment, the patient state is predicted using a prediction model selected based on the patient data. Therefore, it is possible to predict a more accurate patient condition as compared with the case where only one prediction model is used each time to predict the patient condition. That is, since the patient condition can be predicted using a prediction model suitable for each patient, the prediction result becomes more accurate.
  • the patient condition prediction device according to the second embodiment will be described with reference to FIGS. 6 and 7.
  • the second embodiment is different from the first embodiment described above only in a part of the configuration and operation, and the other parts are substantially the same. Therefore, in the following, the parts different from the first embodiment already described will be described, and the description of other overlapping parts will be omitted as appropriate.
  • FIG. 6 is a flowchart showing the operation flow of the patient condition prediction device according to the second embodiment.
  • the same reference numerals are given to the same processes as those shown in FIG.
  • the patient data acquisition unit 110 acquires the patient data (step S101) and selects the prediction model, as in the first embodiment.
  • the unit 120 selects a prediction model based on the acquired patient data (step S102), and the patient condition prediction unit 130 predicts the patient condition using the selected prediction model (step S103).
  • the patient condition prediction unit 130 determines whether or not there is a risk of complications occurring in the patient (hereinafter, appropriately referred to as “complication risk”) based on the predicted patient condition. (Step S201). The specific method for determining the risk of complications will be described in detail later.
  • the patient condition prediction unit 130 When it is determined that there is a risk of complications (step S201: YES), the patient condition prediction unit 130 provides information on coping (care) for the patient (typically, information on coping to reduce the risk of complications). Is output (step S202). More specifically, the patient condition prediction unit 130 predicts complications that may occur in the patient, identifies effective measures to suppress the occurrence of the complications, and provides the contents of the identified measures to the medical staff. Etc. will be notified.
  • the information to be output may be changed according to the high risk of complications. For example, when the risk of complications is relatively low, the types of measures to be output are reduced, and only measures that are easy to practice (for example, oral care, bed angle increase, etc.) are output, while the risk of complications is high. If it is relatively high, the types of measures to be output may be increased so that even measures that are difficult to practice (for example, respiratory distress, abdominal pressure training, etc.) are output.
  • step S201 If it is determined that there is no risk of complications (step S201: NO), the process of step S202 described above is omitted. That is, no information is output regarding measures to reduce the risk of complications.
  • FIG. 7 is a chart showing an example of a method for determining the risk of complications from the predicted patient condition.
  • the risk of complications may be determined based on the quality of the patient condition predicted by the patient condition prediction unit 130. Specifically, when the patient condition exceeds the risk determination threshold value and swings to the worse side, the patient condition prediction unit 130 may determine that there is a risk of complications (see the broken line in the figure). On the contrary, when the patient condition does not exceed the risk determination threshold value, the patient condition prediction unit 130 may determine that there is no risk of complications (see the alternate long and short dash line in the figure).
  • the "risk determination threshold” here is a threshold set in advance for determining the presence or absence of complication risk, and is a value calculated based on, for example, data on past complications.
  • the risk of complications can be predicted step by step (that is, the high risk of complications can be predicted).
  • the method using the risk determination threshold is only an example, and the presence or absence of complication risk may be determined by a determination method other than the threshold.
  • the risk of complications is predicted based on the predicted patient information. Therefore, it is possible to predict the occurrence of complications (in other words, deterioration of the patient's condition) in advance. In addition, when the occurrence of complications is predicted, information on measures to reduce the risk of complications is output. Therefore, it is possible to efficiently prevent the occurrence of complications.
  • Measures to reduce the risk of complications may be output to all patients, but in that case, medical staff are required to deal with all patients, and the workload increases significantly. There is a risk that it will end up.
  • the medical staff since the information on the coping is output according to the presence or absence of the risk of complications, the medical staff can efficiently deal with the patient who should be coping. Therefore, the work load of the medical staff can be reduced.
  • the patient condition prediction device uses an acquisition means for acquiring patient data, which is information about a patient, and a plurality of prediction models for predicting changes in the patient condition, which is the patient's condition, to obtain the patient data.
  • the patient condition prediction device is characterized by comprising a selection means for selecting one prediction model based on the prediction means and a prediction means for predicting future changes in the patient condition using the one prediction model.
  • the patient condition predictor according to Appendix 2 is characterized in that the predicting means predicts the risk of complications indicating that the patient is likely to develop complications based on the predicted future changes in the patient condition.
  • the patient condition prediction device predicts future changes in the patient condition by using the patient condition in the past first period determined for each of the plurality of prediction models.
  • the patient condition prediction device according to any one of Supplementary note 1 to 3, which is characterized in that it is a model to be used.
  • the patient condition prediction device according to Appendix 5 is the patient condition prediction device according to Appendix 4, wherein the selection means selects a model having a longer first period as the hospitalization period of the patient becomes longer. is there.
  • Appendix 6 The patient condition prediction device according to Appendix 6, wherein the selection means selects a model having a longer first period as the age of the patient becomes younger. Is.
  • the patient condition prediction device is characterized in that each of the plurality of prediction models is a model that predicts a change in the patient condition in a future second period determined for each prediction model.
  • the patient condition prediction device according to any one of Supplementary note 1 to 6.
  • Appendix 8 The patient condition predictor according to Appendix 8, wherein the selection means selects a model having a longer second period as the period for grasping the patient's condition is longer. It is a state prediction device.
  • Appendix 9 The patient condition prediction device according to Appendix 9, wherein the patient data includes an index determined by the degree of movement that the patient can perform. is there.
  • Appendix 10 The patient condition prediction device according to Appendix 10, wherein the patient data includes information on the length of hospital stay of the patient, according to any one of Supplements 1 to 9.
  • the patient condition prediction method according to Appendix 12 acquires patient data which is information about a patient, and is based on the patient data from a plurality of prediction models for predicting changes in the patient condition which is the patient's condition.
  • This is a patient condition prediction method, which comprises selecting a prediction model of the above and predicting future changes in the patient condition using the one prediction model.
  • Appendix 13 The computer program described in Appendix 13 acquires patient data, which is information about the patient, and makes one prediction based on the patient data from a plurality of prediction models that predict changes in the patient state, which is the state of the patient. It is a computer program characterized in that a model is selected and a computer is operated so as to predict future changes in the patient's condition using the one prediction model.
  • Appendix 14 The recording medium described in Appendix 14 is a recording medium on which the computer program described in Appendix 13 is recorded.
  • the present invention can be appropriately modified within the scope of the claims and within a range not contrary to the gist or idea of the invention that can be read from the entire specification, and the patient condition predicting device, the patient condition predicting method, and the computer accompanied by such changes.
  • the program is also included in the technical idea of the present invention.
  • Patient condition prediction device 11 CPU 12 RAM 13 ROM 14 Storage device 15 Input device 16 Output device 17 Data bus 110
  • Patient data acquisition unit 120 Prediction model selection unit 130 Patient condition prediction unit

Abstract

患者状態予測装置(1)は、患者に関する情報である患者データを取得する取得手段(110)と、患者の状態である患者状態の変化を予測する複数の予測モデルの中から、患者データに基づいて一の予測モデルを選択する選択手段(120)と、一の予測モデルを用いて、将来の前記患者状態の変化を予測する予測手段(130)とを備える。これにより、適切な予測モデルを用いて患者の状態の変化を予測することが可能となる。

Description

患者状態予測装置、患者状態予測方法、及びコンピュータプログラム
 本発明は、患者の状態を予測する患者状態予測装置、患者状態予測方法、及びコンピュータプログラムの技術分野に関する。
 この種の装置として、患者(例えば、病院に入院している患者等)の状態に関する予測を行うものが知られている。例えば特許文献1では、複数のクラスタに分類された患者の状態から、所定の事象の発生を予測する予測モデルを生成する技術が開示されている。
 また、予測モデルを利用する技術として、複数の予測モデルを利用するものが知られている。例えば特許文献2では、複数の予測モデルのうち、評価がより高い予測モデルを優先して選択する技術が開示されている。
 その他の関連する技術として、特許文献3では、患者の疾病が基準期間以内に発症することを予測して通知する技術が開示されている。特許文献4では、選択されたモデルから病に関する情報を導出する技術が開示されている。
特開2018-180993号公報 国際公開2016/148107号パンフレット 特開2019-016235号公報 特開2018-200567号公報
 患者の状態を予測モデルで予測する場合、その患者に適した予測モデルを使用することが好ましい。言い換えれば、患者に適さない予測モデルを使用してしまうと、患者の状態を正確に予測できないおそれがある。
 しかしながら、患者の特性は一人ひとり異なるため、すべての患者に適した予測モデルを予め用意することは難しい。また、複数種類の予測モデルを用意したとしても、その中から患者に適した予測モデルを選択することも決して容易ではない。即ち、上述した各特許文献には、患者の状態を正確に予測するという点において改善の余地がある。
 本発明は、上記問題点に鑑みてなされたものであり、適切な予測モデルを用いて患者の状態の変化を予測することが可能な患者状態予測装置、患者状態予測方法及びコンピュータプログラムを提供することを課題とする。
 本発明の患者状態予測装置の一の態様は、患者に関する情報である患者データを取得する取得手段と、前記患者の状態である患者状態の変化を予測する複数の予測モデルの中から、前記患者データに基づいて一の予測モデルを選択する選択手段と、前記一の予測モデルを用いて、将来の前記患者状態の変化を予測する予測手段とを備える。
 本発明の患者状態予測方法の一の態様は、患者に関する情報である患者データを取得し、前記患者の状態である患者状態の変化を予測する複数の予測モデルの中から、前記患者データに基づいて一の予測モデルを選択し、前記一の予測モデルを用いて、将来の前記患者状態の変化を予測する。
 本発明のコンピュータプログラムの一の態様は、患者に関する情報である患者データを取得し、前記患者の状態である患者状態の変化を予測する複数の予測モデルの中から、前記患者データに基づいて一の予測モデルを選択し、前記一の予測モデルを用いて、将来の前記患者状態の変化を予測するようにコンピュータを動作させる。
 上述した患者状態予測装置、患者状態予測方法、及びコンピュータプログラムのそれぞれの一の態様によれば、適切な予測モデルを用いて、患者の状態の変化を正確に予測することが可能である。
第1実施形態に係る患者状態予測装置の全体構成を示すブロック図である。 第1実施形態に係る患者状態予測装置のハードウェア構成を示すブロック図である。 第1実施形態に係る患者状態予測装置の動作の流れを示すフローチャートである。 患者データに基づく予測モデルの選択方法の一例を示す図である。 予測モデルを用いた患者状態の予測方法の一例を示すチャートである。 第2実施形態に係る患者状態予測装置の動作の流れを示すフローチャートである。 予測された患者状態から合併症リスクを判定する方法の一例を示すチャートである。
 以下、図面を参照しながら、患者状態予測装置、患者状態予測方法、及びコンピュータプログラムの実施形態について説明する。
 <第1実施形態>
 第1実施形態に係る患者状態予測装置について、図1から図5を参照して説明する。
 (装置構成)
 まず、図1及び図2を参照しながら、第1実施形態に係る患者状態予測装置の構成について説明する。図1は、第1実施形態に係る患者状態予測装置の全体構成を示すブロック図である。図2は、第1実施形態に係る患者状態予測装置のハードウェア構成を示すブロック図である。
 図1において、第1実施形態に係る患者状態予測装置1は、患者の状態(即ち、「患者状態」)の変化を予測する装置である。なお、ここでの「患者状態」とは、患者の症状の良し悪しに関する様子を表す文言であり、例えば、入院患者の術後の回復状態(より具体的には、症状が軽くなっているか、或いは、日常生活動作が行えるようになっているか)等を定量的に示したものである。患者状態予測装置1は、主な構成要素として、患者データ取得部110と、予測モデル選択部120と、患者状態予測部130とを備えて構成されている。
 患者データ取得部110は、患者に関する情報である患者データを取得することが可能に構成されている。「患者データ」とは、患者の属性や、病院で計測された患者に関する各種データ、患者状態から算出される指標等、今後の患者状態の変化に影響し得るデータである。患者データの具体的な例としては、一般的なバイタルサイン(血圧、脈拍、体温等)の他、FIM(Functional Independence Measure:機能的自立度評価表)、BI(Barthel Index:バーセルインデックス)、NIHSS(National Institute of Health Stroke Scale:脳卒中重症度の評価スケール)、MMT(Manual Muscle Test:徒手筋力テスト)、JCS(Japan Coma Scale:意識レベル)、及びSpO2(経皮的動脈血酸素飽和度)等の患者の状態から算出された各種指標、並びに患者の入院期間に関する情報が挙げられる。なお、患者データの具体的な取得方法(或いは、算出方法)については、既存の技術を適宜採用することができるため、ここでの詳細な説明は省略する。患者データ取得部110で取得された患者データは、予測モデル選択部120に出力される構成となっている。
 予測モデル選択部120は、患者データ取得部110で取得された患者データに基づいて、患者状態を予測するための予測モデルを選択可能に構成されている。より具体的には、予測モデル選択部120は、予め複数種類の予測モデルを記憶しており、その中から、患者データに適した一の予測モデル(言い換えれば、その患者の患者状態をより正確に予測できる予測モデル)を選択する。予測モデルの具体的な選択方法については、後に詳述する。なお、「予測モデル」とは、将来の患者状態を予測するために用いられる演算モデルであり、例えば機械学習等によって生成される。なお、機械学習の手法は特に限定されず、使用される患者データ等に応じて適した手法を用いればよい。また。複数の予測モデルの各々は、同じ手法で生成されてもよいし、異なる手法で生成されてもよい。予測モデル選択部120による選択結果は、患者状態予測部130に出力される構成となっている。
 患者状態予測部130は、予測モデル選択部120で選択された予測モデルを用いて、将来の患者状態を予測可能に構成されている。具体的には、患者状態予測部130は、患者データ(過去や現時点での患者状態を含んでいてもよい)を予測モデルに入力し、その出力として、将来の患者状態を取得する。患者状態のより具体的な予測方法については、後に詳述する。患者状態予測部130で予測された患者状態は、外部装置(例えば、ディスプレイ等)に出力される構成となっている。
 図2に示すように、本実施形態に係る患者状態予測装置1は、CPU(Central Processing Unit)11と、RAM(Random Access Memory)12と、ROM(Read Only Memory)13と、記憶装置14とを備えている。患者状態予測装置1は更に、入力装置15と、出力装置16とを備えていてもよい。CPU11と、RAM12と、ROM13と、記憶装置14と、入力装置15と、出力装置16とは、データバス17を介して接続されている。
 CPU11は、コンピュータプログラムを読み込む。例えば、CPU11は、RAM12、ROM13及び記憶装置14のうちの少なくとも一つが記憶しているコンピュータプログラムを読み込んでもよい。例えば、CPU11は、コンピュータで読み取り可能な記録媒体が記憶しているコンピュータプログラムを、図示しない記録媒体読み取り装置を用いて読み込んでもよい。CPU11は、ネットワークインタフェースを介して、患者状態予測装置1の外部に配置される不図示の装置からコンピュータプログラムを取得してもよい(つまり、読み込んでもよい)。CPU11は、読み込んだコンピュータプログラムを実行することで、RAM12、記憶装置14、入力装置15及び出力装置16を制御する。本実施形態では特に、CPU11が読み込んだコンピュータプログラムを実行すると、CPU11内には、患者状態を予測するための機能ブロックが実現される。上述した、患者データ取得部110、予測モデル選択部120、及び患者状態予測部130は、例えばこのCPU11において実現されるものである。
 RAM12は、CPU11が実行するコンピュータプログラムを一時的に記憶する。RAM12は、CPU11がコンピュータプログラムを実行している際にCPU11が一時的に使用するデータを一時的に記憶する。RAM12は、例えば、D-RAM(Dynamic RAM)であってもよい。
 ROM13は、CPU11が実行するコンピュータプログラムを記憶する。ROM13は、その他に固定的なデータを記憶していてもよい。ROM13は、例えば、P-ROM(Programmable ROM)であってもよい。
 記憶装置14は、患者状態予測装置1が長期的に保存するデータを記憶する。記憶装置14は、CPU11の一時記憶装置として動作してもよい。記憶装置14は、例えば、ハードディスク装置、光磁気ディスク装置、SSD(Solid State Drive)及びディスクアレイ装置のうちの少なくとも一つを含んでいてもよい。
 入力装置15は、患者状態予測装置1のユーザからの入力指示を受け取る装置である。入力装置15は、例えば、キーボード、マウス、タッチパネル、スマートフォン、及びタブレットのうちの少なくとも一つを含んでいてもよい。
 出力装置16は、患者状態予測装置1に関する情報を外部に対して出力する装置である。例えば、出力装置16は、患者状態予測装置1に関する情報を表示可能な表示装置であってもよい。
 (動作説明)
 次に、図3を参照しながら、第1実施形態に係る患者状態予測装置1の動作の流れについて説明する。図3は、第1実施形態に係る患者状態予測装置の動作の流れを示すフローチャートである。
 図3に示すように、第1実施形態に係る患者状態予測装置1の動作時には、まず患者データ取得部110が、患者データを取得する(ステップS101)。なお、ここで取得される患者データは、現時点のものだけではなく、過去に取得されたもの(言い換えれば、蓄積された過去の患者データ)であってもよい。
 続いて、予測モデル選択部120が、患者データ取得部110で取得された患者データに基づいて、予測モデルを選択する(ステップS102)。予測モデル選択部120は、患者データが複数種類取得されている場合には、その中の1種類を用いて予測モデルを取得してもよいし、複数種類を用いて(組み合わせて)予測モデルを取得してもよい。
 続いて、患者状態予測部130が、予測モデル選択部120で選択された予測モデルを用いて、患者状態を予測する(ステップS103)。ここで予測される患者状態は、将来の患者の状態を示すものであり、例えば数日後の患者の症状の良し悪しや合併症のリスクを判定可能なものであってもよい。
 (予測モデルの選択)
 次に、図4を参照しながら、予測モデルの具体的な選択方法(即ち、図3のステップS102の詳細)について説明する。図4は、患者データに基づく予測モデルの選択方法の一例を示す図である。
 図4に示すように、予測モデル選択部120は、患者データとして取得された「(過去又は現在の)患者状態」及び「入院期間」に基づいて予測モデルを選択してもよい。例えば、予測モデル選択部120は、患者状態の程度と、入院期間における時期(即ち、入院期間全体で見た場合にどれくらい期間が経過した状態なのか)との双方に基づいて、予測モデルを選択してもよい。ここでは、患者状態が「良い」、「普通」、「悪い」のいずれであるか、及び入院期間が「初期」、「中期」、「後期」のいずれであるかによって、モデル1~9のいずれかが選択される。例えば、患者の入院期間が「初期」であり、患者状態が「悪い」である場合、その患者に適した予測モデルとしてモデル1が選択される。患者の入院期間が「中期」であり、患者状態が「普通」である場合、その患者に適した予測モデルとしてモデル5が選択される。患者の入院期間が「後期」であり、患者状態が「良い」である場合、その患者に適した予測モデルとしてモデル9が選択される。
 上記のように、予測モデルは、患者データ取得部110で取得された患者データに基づいて選択される。なお、図4に示す選択方法はあくまで一例であり、その他の手法を用いて予測モデルが選択されても構わない。例えば、患者状態又は入院期間のいずれか一方のみに基づいて予測モデルを選択してもよいし、患者状態及び入院期間に加えて一又は複数の他の要因に基づいて予測モデルを選択してもよい。
 (患者状態の予測)
 次に、図5を参照しながら、予測モデルを用いた患者状態の予測方法(即ち、図3のステップS103の詳細)について説明する。図5は、予測モデルを用いた患者状態の予測方法の一例を示すチャートである。
 図7に示すように、予測モデルは、過去M日間の患者状態を用いて、N日後までの患者状態を予測するものであってもよい(なお「M」及び「N」は自然数とする)。この場合、患者状態予測部130は、予測モデル選択部120で選択された予測モデルに、過去M日間の患者状態を示すデータを入力する、すると、今日からN日後までの患者状態を示すデータが、予測結果として予測モデルから出力される。このような動作により、患者状態予測部130は、将来の患者状態を予測する。
 なお、本実施形態では、上述した「M」及び「N」の値が適宜定められた複数の予測モデルが予め用意されており、予測モデル選択部120は、その中から患者データに基づいて一の予測モデルを選択してもよい。言い換えれば、予測モデル選択部120は、患者データに基づいて、適切な「M」及び「N」を決定するようなものであってもよい。このようにすれば、予測モデルの選択によって、より正確に将来の患者状態を予測することができる。例えば、入院期間が比較的長くなると患者の容体が安定する傾向にある場合、入院期間が長くなるほどMを大きくする(即ち、Mの大きい予測モデルを選択する)ことで正確な予測が行える。また、患者の年齢が低くなると容体が安定する傾向がある場合、患者の年齢が低くなるほどMを大きくする(即ち、Mの大きい予測モデルを選択する)ことで正確な予測が行える。更に、より長期間の患者状態を把握すべき状況においては、Nを大きくする(即ち、Nの大きい予測モデルを選択する)ことで適切な予測が行える。
 (技術的効果)
 次に、第1実施形態に係る患者状態予測装置1によって得られる技術的効果について説明する。
 図1から図5で説明したように、第1実施形態に係る患者状態予測装置1によれば、患者データに基づいて選択された予測モデルを用いて患者状態が予測される。このため、毎回1つの予測モデルのみを使用して患者状態を予測する場合と比較すると、より正確な患者状態を予測することが可能である。即ち、患者一人ひとりに適した予測モデルを使用して患者状態が予測できるため、予測結果がより正確なものとなる。
 <第2実施形態>
 次に、第2実施形態に係る患者状態予測装置について、図6及び図7を参照して説明する。なお、第2実施形態は、上述した第1実施形態と比較して一部の構成及び動作が異なるのみであり、その他の部分は概ね同様である。このため、以下ではすでに説明した第1実施形態と異なる部分について説明し、他の重複する部分については適宜説明を省略するものとする。
 (動作説明)
 まず、図6を参照しながら、第2実施形態に係る患者状態予測装置1の動作の流れについて説明する。図6は、第2実施形態に係る患者状態予測装置の動作の流れを示すフローチャートである。なお、図6では、図3で示した処理と同様の処理に同一の符号を付している。
 図6に示すように、第2実施形態に係る患者状態予測装置1の動作時には、第1実施形態と同様に、患者データ取得部110が、患者データを取得し(ステップS101)、予測モデル選択部120が、取得された患者データに基づいて予測モデルを選択し(ステップS102)、患者状態予測部130が、選択された予測モデルを用いて患者状態を予測する(ステップS103)。
 その後、第2実施形態では、患者状態予測部130が、予測した患者状態に基づいて患者に合併症が発生するリスク(以下、適宜「合併症リスク」と称する)があるか否かを判定する(ステップS201)。合併症リスクの具体的な判定方法については、後に詳述する。
 合併症リスクがあると判定された場合(ステップS201:YES)、患者状態予測部130は、患者に対する対処(ケア)に関する情報(典型的には、合併症リスクを小さくするための対処に関する情報)を出力する(ステップS202)。より具体的には、患者状態予測部130は、患者に発生し得る合併症を予測すると共に、その合併症の発生を抑制するのに有効な対処を特定し、特定した対処の内容を医療スタッフ等に通知する。なお、合併症リスクの高さに応じて、出力する情報が変更されてもよい。例えば、合併症リスクが比較的低い場合には、出力する対処の種類を減らされ、実践しやすい対処(例えば、口腔ケアや、ベッド角度アップ等)のみが出力される一方で、合併症リスクが比較的高い場合には、出力する対処の種類を増やし、実践しにくい対処(例えば、呼吸苦運連や腹圧訓練等)まで出力されるようにしてもよい。
 合併症リスクがないと判定された場合(ステップS201:NO)、上述したステップS202の処理は省略される。即ち、合併症リスクを小さくするための対処に関する情報は出力されない。
 (合併症リスクの判定)
 次に、図7を参照しながら、合併症リスクの判定方法(即ち、図6のステップS201の詳細)について説明する。図7は、予測された患者状態から合併症リスクを判定する方法の一例を示すチャートである。
 図7に示すように、合併症リスクは、患者状態予測部130で予測される患者状態の良し悪しに基づいて判定してもよい。具体的には、患者状態がリスク判定閾値を超えて悪化側に振れた場合、患者状態予測部130は、合併症リスクありと判定すればよい(図中の破線参照)。逆に、患者状態がリスク判定閾値を超えない場合、患者状態予測部130は、合併症リスクなしと判定すればよい(図中の一点鎖線参照)。なお、ここでの「リスク判定閾値」は、合併症リスクの有無を判定するために予め設定される閾値であり、例えば過去の合併症に関するデータ等に基づいて算出される値である。リスク判定閾値を複数設定すれば、段階的に合併症リスクを予測することもできる(即ち、合併症リスクの高さを予測することもできる)。なお、リスク判定閾値を用いる手法はあくまで一例であり、閾値以外の判定方法で合併症リスクの有無を判定してもよい。
 (技術的効果)
 次に、第2実施形態に係る患者状態予測装置1によって得られる技術的効果について説明する。
 図6及び図7で説明したように、第2実施形態に係る患者状態予測装置1によれば、予測した患者情報に基づいて、合併症リスクが予測される。このため、合併症の発生(言い換えれば、患者の容体の悪化)を事前に予測することが可能となる。また、合併症の発生が予測された場合には、合併症リスクを小さくするための対処に関する情報が出力される。このため、合併症の発生を効率的に予防することが可能である。
 合併症の発生は、医療施設における退院遅延の大きな原因にもなっている。よって、合併症の発生を予防することで、退院遅延の発生も回避することが可能となる。この結果、病床数不足等の問題に対しても有益な効果が得られる。
 なお、合併症リスクを小さくするための対処は、すべての患者に対して出力されてもよいが、その場合、医療スタッフがすべての患者に対応することが要求され、業務負荷が著しく増大してしまうおそれがある。しかるに本実施形態では、合併症リスクの有無に応じて対処に関する情報が出力されるため、医療スタッフは、対処を行うべき患者に対して効率的に対処を行うことができる。よって、医療スタッフの業務負荷を軽減することができる。
 <付記>
 以上説明した実施形態に関して、更に以下の付記を開示する。
 (付記1)
 付記1に記載の患者状態予測装置は、患者に関する情報である患者データを取得する取得手段と、前記患者の状態である患者状態の変化を予測する複数の予測モデルの中から、前記患者データに基づいて一の予測モデルを選択する選択手段と、前記一の予測モデルを用いて、将来の前記患者状態の変化を予測する予測手段とを備えることを特徴とする患者状態予測装置である。
 (付記2)
 付記2に記載の患者状態予測装置は、前記予測手段は、予測した将来の前記患者状態の変化に基づいて、前記患者が合併症を発症する可能性を示す合併症リスクを予測することを特徴とする請求項1に記載の患者状態予測装置である。
 (付記3)
 付記3に記載の患者状態予測装置は、前記予測手段は、予測した前記合併症リスクに基づいて、前記患者に対する対処に関する情報を出力することを特徴とする請求項2に記載の患者状態予測装置である。
 (付記4)
 付記4に記載の患者状態予測装置は、前記複数の予測モデルの各々は、前記予測モデルごとに定められた過去の第1期間における前記患者状態を用いて、将来の前記患者状態の変化を予測するモデルであることを特徴とする付記1から3のいずれか一項に記載の患者状態予測装置である。
 (付記5)
 付記5に記載の患者状態予測装置は、前記選択手段は、前記患者の入院期間が長くなるほど、前記第1期間の長いモデルを選択することを特徴とする付記4に記載の患者状態予測装置である。
 (付記6)
 付記6に記載の患者状態予測装置は、前記選択手段は、前記患者の年齢が低くなるほど、前記第1期間の長いモデルを選択することを特徴とする付記4又は5に記載の患者状態予測装置である。
 (付記7)
 付記7に記載の患者状態予測装置は、前記複数の予測モデルの各々は、前記予測モデルごとに定められた将来の第2期間における前記患者状態の変化を予測するモデルであることを特徴とする付記1から6のいずれか一項に記載の患者状態予測装置である。
 (付記8)
 付記8に記載の患者状態予測装置は、前記選択手段は、前記患者の状態を把握すべき期間が長いほど、前記第2期間の長いモデルを選択することを特徴とする付記7に記載の患者状態予測装置である。
 (付記9)
 付記9に記載の患者状態予測装置は、前記患者データは、前記患者が行える動作の程度によって定まる指標を含むことを特徴とする付記1から8のいずれか一項に記載の患者状態予測装置である。
 (付記10)
 付記10に記載の患者状態予測装置は、前記患者データは、前記患者の入院期間に関する情報を含むことを特徴とする付記1から9のいずれか一項に記載の患者状態予測装置である。
 (付記11)
 付記11に記載の患者状態予測装置は、前記患者データは、前記患者のバイタルサインに関する情報を含むことを特徴とする付記1から10のいずれか一項に記載の患者状態予測装置である。
 (付記12)
 付記12に記載の患者状態予測方法は、患者に関する情報である患者データを取得し、前記患者の状態である患者状態の変化を予測する複数の予測モデルの中から、前記患者データに基づいて一の予測モデルを選択し、前記一の予測モデルを用いて、将来の前記患者状態の変化を予測することを特徴とする患者状態予測方法である。
 (付記13)
 付記13に記載のコンピュータプログラムは、患者に関する情報である患者データを取得し、前記患者の状態である患者状態の変化を予測する複数の予測モデルの中から、前記患者データに基づいて一の予測モデルを選択し、前記一の予測モデルを用いて、将来の前記患者状態の変化を予測するようにコンピュータを動作させることを特徴とするコンピュータプログラムである。
 (付記14)
 付記14に記載の記録媒体は、付記13に記載のコンピュータプログラムが記録されていることを特徴とする記録媒体である。
 本発明は、請求の範囲及び明細書全体から読み取ることのできる発明の要旨又は思想に反しない範囲で適宜変更可能であり、そのような変更を伴う患者状態予測装置、患者状態予測方法、及びコンピュータプログラムもまた本発明の技術思想に含まれる。
 1 患者状態予測装置
 11 CPU
 12 RAM
 13 ROM
 14 記憶装置
 15 入力装置
 16 出力装置
 17 データバス
 110 患者データ取得部
 120 予測モデル選択部
 130 患者状態予測部

Claims (13)

  1.  患者に関する情報である患者データを取得する取得手段と、
     前記患者の状態である患者状態の変化を予測する複数の予測モデルの中から、前記患者データに基づいて一の予測モデルを選択する選択手段と、
     前記一の予測モデルを用いて、将来の前記患者状態の変化を予測する予測手段と
     を備えることを特徴とする患者状態予測装置。
  2.  前記予測手段は、予測した将来の前記患者状態の変化に基づいて、前記患者が合併症を発症する可能性を示す合併症リスクを予測することを特徴とする請求項1に記載の患者状態予測装置。
  3.  前記予測手段は、予測した前記合併症リスクに基づいて、前記患者に対する対処に関する情報を出力することを特徴とする請求項2に記載の患者状態予測装置。
  4.  前記複数の予測モデルの各々は、前記予測モデルごとに定められた過去の第1期間における前記患者状態を用いて、将来の前記患者状態の変化を予測するモデルであることを特徴とする請求項1から3のいずれか一項に記載の患者状態予測装置。
  5.  前記選択手段は、前記患者の入院期間が長くなるほど、前記第1期間の長いモデルを選択することを特徴とする請求項4に記載の患者状態予測装置。
  6.  前記選択手段は、前記患者の年齢が低くなるほど、前記第1期間の長いモデルを選択することを特徴とする請求項4又は5に記載の患者状態予測装置。
  7.  前記複数の予測モデルの各々は、前記予測モデルごとに定められた将来の第2期間における前記患者状態の変化を予測するモデルであることを特徴とする請求項1から6のいずれか一項に記載の患者状態予測装置。
  8.  前記選択手段は、前記患者の状態を把握すべき期間が長いほど、前記第2期間の長いモデルを選択することを特徴とする請求項7に記載の患者状態予測装置。
  9.  前記患者データは、前記患者が行える動作の程度によって定まる指標を含むことを特徴とする請求項1から8のいずれか一項に記載の患者状態予測装置。
  10.  前記患者データは、前記患者の入院期間に関する情報を含むことを特徴とする請求項1から9のいずれか一項に記載の患者状態予測装置。
  11.  前記患者データは、前記患者のバイタルサインに関する情報を含むことを特徴とする請求項1から10のいずれか一項に記載の患者状態予測装置。
  12.  患者に関する情報である患者データを取得し、
     前記患者の状態である患者状態の変化を予測する複数の予測モデルの中から、前記患者データに基づいて一の予測モデルを選択し、
     前記一の予測モデルを用いて、将来の前記患者状態の変化を予測する
     ことを特徴とする患者状態予測方法。
  13.  患者に関する情報である患者データを取得し、
     前記患者の状態である患者状態の変化を予測する複数の予測モデルの中から、前記患者データに基づいて一の予測モデルを選択し、
     前記一の予測モデルを用いて、将来の前記患者状態の変化を予測する
     ようにコンピュータを動作させることを特徴とするコンピュータプログラム。
PCT/JP2019/042830 2019-10-31 2019-10-31 患者状態予測装置、患者状態予測方法、及びコンピュータプログラム WO2021084695A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/768,970 US20230197285A1 (en) 2019-10-31 2019-10-31 Patient condition prediction apparatus, patient condition prediction method, and computer program
JP2021553994A JP7400828B2 (ja) 2019-10-31 2019-10-31 患者状態予測装置、患者状態予測方法、及びコンピュータプログラム
PCT/JP2019/042830 WO2021084695A1 (ja) 2019-10-31 2019-10-31 患者状態予測装置、患者状態予測方法、及びコンピュータプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/042830 WO2021084695A1 (ja) 2019-10-31 2019-10-31 患者状態予測装置、患者状態予測方法、及びコンピュータプログラム

Publications (1)

Publication Number Publication Date
WO2021084695A1 true WO2021084695A1 (ja) 2021-05-06

Family

ID=75714999

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/042830 WO2021084695A1 (ja) 2019-10-31 2019-10-31 患者状態予測装置、患者状態予測方法、及びコンピュータプログラム

Country Status (3)

Country Link
US (1) US20230197285A1 (ja)
JP (1) JP7400828B2 (ja)
WO (1) WO2021084695A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7220822B1 (ja) 2022-03-23 2023-02-10 大塚製薬株式会社 プログラム、情報処理装置、及び情報処理方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006155411A (ja) * 2004-11-30 2006-06-15 Houken Corp 治療予測モデル構築システム、治療予測モデル構築方法、治療予測モデル構築用プログラム、治療内容検証・提案システム、治療内容検証・提案方法、治療内容検証・提案用プログラム、健康管理データダウンロード方法、着脱可能な記憶メディア
JP2014512624A (ja) * 2011-04-20 2014-05-22 ザ クリーブランド クリニック ファウンデーション 予測モデリング

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6901308B2 (ja) 2017-04-14 2021-07-14 株式会社日立製作所 データ分析支援システム及びデータ分析支援方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006155411A (ja) * 2004-11-30 2006-06-15 Houken Corp 治療予測モデル構築システム、治療予測モデル構築方法、治療予測モデル構築用プログラム、治療内容検証・提案システム、治療内容検証・提案方法、治療内容検証・提案用プログラム、健康管理データダウンロード方法、着脱可能な記憶メディア
JP2014512624A (ja) * 2011-04-20 2014-05-22 ザ クリーブランド クリニック ファウンデーション 予測モデリング

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7220822B1 (ja) 2022-03-23 2023-02-10 大塚製薬株式会社 プログラム、情報処理装置、及び情報処理方法
JP2023140854A (ja) * 2022-03-23 2023-10-05 大塚製薬株式会社 プログラム、情報処理装置、及び情報処理方法

Also Published As

Publication number Publication date
US20230197285A1 (en) 2023-06-22
JP7400828B2 (ja) 2023-12-19
JPWO2021084695A1 (ja) 2021-05-06

Similar Documents

Publication Publication Date Title
Fu et al. Development and validation of early warning score system: A systematic literature review
Ferraris et al. Identification of patients with postoperative complications who are at risk for failure to rescue
Collins et al. Identification of emergency department patients with acute heart failure at low risk for 30-day adverse events: the STRATIFY decision tool
Cho et al. Early gestational weight gain rate and adverse pregnancy outcomes in Korean women
US20090105550A1 (en) System and method for providing a health score for a patient
Stringer Cardiopulmonary exercise testing: current applications
EP2350902A1 (en) Methods of assessing risk based on medical data and uses thereof
Uffen et al. Interventions for rapid recognition and treatment of sepsis in the emergency department: a narrative review
JP2016197330A (ja) 分析システム、リハビリテーション支援システム、方法およびプログラム
Blitzer et al. Timing of intervention may influence outcomes in blunt injury to the carotid artery
Rosman et al. Depression and health behaviors in women with peripartum cardiomyopathy
WO2021084695A1 (ja) 患者状態予測装置、患者状態予測方法、及びコンピュータプログラム
Yaddanapudi et al. High-resolution pulse oximetry (HRPO): a cost-effective tool in screening for obstructive sleep apnea (OSA) in acute stroke and predicting outcome
Ruan et al. Real-time risk prediction of colorectal surgery-related post-surgical complications using GRU-D model
Rotar et al. Prediction of prolonged intensive care unit length of stay following cardiac surgery
Bramos et al. Predictors of bleeding from stable pelvic fractures
Martens et al. Association of newborn telomere length with blood pressure in childhood
Vassileva et al. Magnitude of negative impact of preoperative heart failure on mortality during aortic valve replacement in the medicare population
WO2021084747A1 (ja) リスク予測装置、リスク予測方法、及びコンピュータプログラム
Poyiadji et al. Diagnostic Imaging Utilization in the Emergency Department: Recent Trends in Volume and Radiology Work Relative Value Units
Freeman Hospital Readmission Following Thoracic Surgery
Talebpour et al. Comparison between Emergency Severity Index plus Capnometer and Emergency Severity Index in the dyspneic patients with Chronic Heart Failure
Burton et al. Dependent functional status is associated with unplanned postoperative intubation after elective cervical spine surgery: a national registry analysis
KR20110060142A (ko) 비만 변증 판별 장치 및 비만 변증 판별 방법
Bernstein et al. Development and validation of risk-adjustment models for elective, single-level posterior lumbar spinal fusions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19950452

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021553994

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19950452

Country of ref document: EP

Kind code of ref document: A1