JP2016225306A - Charge/discharge system of electric storage device - Google Patents

Charge/discharge system of electric storage device Download PDF

Info

Publication number
JP2016225306A
JP2016225306A JP2016142167A JP2016142167A JP2016225306A JP 2016225306 A JP2016225306 A JP 2016225306A JP 2016142167 A JP2016142167 A JP 2016142167A JP 2016142167 A JP2016142167 A JP 2016142167A JP 2016225306 A JP2016225306 A JP 2016225306A
Authority
JP
Japan
Prior art keywords
storage element
time
voltage
power storage
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016142167A
Other languages
Japanese (ja)
Other versions
JP6217996B2 (en
Inventor
剛之 白石
Takayuki Shiraishi
剛之 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Publication of JP2016225306A publication Critical patent/JP2016225306A/en
Application granted granted Critical
Publication of JP6217996B2 publication Critical patent/JP6217996B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0024Parallel/serial switching of connection of batteries to charge or load circuit
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/005Detection of state of health [SOH]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a technique for managing a plurality of secondary batteries connected in series.SOLUTION: A BMS 20 includes a voltmeter 24 for individually measuring voltage values V of a plurality of secondary batteries 50 connected in series, and a time keeping unit 42 measures time difference between from when a time rate of change of the voltage value V of any one of the secondary batteries 50 reaches a reference value K to when a time rate of change of the voltage value V of the other secondary battery 50 reaches the reference value K. The BMS 20 detects deterioration of the secondary battery 50 on the basis of a comparison between a time point when the time rate of change of the voltage of any one of storage elements reaches the reference value and a time point when the voltage of the secondary battery 50 reaches a voltage at which charge/discharge is terminated.SELECTED DRAWING: Figure 1

Description

本明細書に開示される発明は、直列接続された複数の蓄電素子を充放電する技術に関する。   The invention disclosed in this specification relates to a technique for charging and discharging a plurality of power storage elements connected in series.

従来から、繰り返し使用可能な蓄電素子が用いられている。蓄電素子は、充電と放電を繰り返すことで何度も使用することができ、充放電不能な電池に比べて環境に優しく、電気自動車など現在その使用分野を広げている。   Conventionally, power storage elements that can be used repeatedly have been used. The power storage element can be used many times by repeating charging and discharging, is more environmentally friendly than a battery that cannot be charged and discharged, and is currently expanding its field of use such as electric vehicles.

複数の蓄電素子が使用される装置では、各蓄電素子の初期容量や劣化速度のバラツキ等により、蓄電素子の容量が不均等となることがある。蓄電素子の容量が不均等となると、充電時において、1個や数個の蓄電素子の電圧が他の蓄電素子に先だって又は遅れて満充電電圧に到達して充電が終了してしまい、全ての蓄電素子を十分に充電することができないことがある。また、放電時において、1個や数個の蓄電素子の電圧が他の蓄電素子に先だって又は遅れて放電終了電圧に到達して放電が終了してしまい、全ての蓄電素子に充電された電力を使いきることができないことがある。このように、蓄電素子の容量が不均等となると、蓄電素子の容量を最大限に引き出すことができない。従来から、容量が不均等となった2次電池を抵抗等の放電回路を用いて放電し、2次電池の容量を均等化させる技術が知られている(例えば、引用文献1)。この技術では、無電流状態にて得られた2次電池の電圧情報から2次電池の残エネルギー容量を求め、その容量差に基づいて各2次電池を放電することで、2次電池の容量を均等化するという。   In an apparatus in which a plurality of power storage elements are used, the capacity of the power storage elements may become uneven due to variations in initial capacity and deterioration rate of each power storage element. If the capacities of the storage elements become uneven, the voltage of one or several storage elements reaches the fully charged voltage before or after other storage elements at the time of charging, and charging ends, The power storage element may not be fully charged. Further, at the time of discharging, the voltage of one or several power storage elements reaches the discharge end voltage before or after the other power storage elements and the discharge ends, and the power charged in all the power storage elements is reduced. You may not be able to use up. As described above, when the capacities of the power storage elements are uneven, it is not possible to maximize the capacity of the power storage elements. 2. Description of the Related Art Conventionally, a technique is known in which a secondary battery with an uneven capacity is discharged using a discharge circuit such as a resistor to equalize the capacity of the secondary battery (for example, cited reference 1). In this technique, the remaining battery capacity of the secondary battery is obtained from the voltage information of the secondary battery obtained in a no-current state, and each secondary battery is discharged based on the difference in capacity, whereby the capacity of the secondary battery is obtained. Is said to equalize.

特開2011−19329号公報JP 2011-19329 A

近年、電気自動車等の2次電池として、オリビン鉄系リチウムイオン二次電池(以下、オリビン鉄系電池)が注目を集めている。オリビン鉄系電池は、リチウムイオン電池の一種であり、正極にオリビン型リン酸鉄が用いられ、負極には、例えばグラファイト系材料などが用いられる。そのため、オリビン鉄系電池では、電極としてコバルト系の電極材料を用いる必要がなく、コバルト系の電極材料を用いる2次電池と比べてコストが安く安全性が高い長所を有している。   In recent years, olivine iron-based lithium ion secondary batteries (hereinafter referred to as olivine iron-based batteries) have attracted attention as secondary batteries for electric vehicles and the like. The olivine iron-based battery is a kind of lithium ion battery, and olivine-type iron phosphate is used for the positive electrode and, for example, a graphite-based material is used for the negative electrode. For this reason, the olivine iron-based battery does not need to use a cobalt-based electrode material as an electrode, and has an advantage that the cost is low and the safety is high compared to a secondary battery using a cobalt-based electrode material.

オリビン鉄系電池は、残存容量の増加に対して電圧が急激に増加する領域(以下、変化領域という)を持ち、例えば負極としてグラファイト系材料を用いた場合、2次電池の残存容量を示すSOCが10%未満の領域、及び90%以上の領域において変化領域となることが知られている。変化領域がSOCの比較的高い、あるいはSOCの比較的低い領域に存在すると、変化領域における蓄電素子の電圧情報から蓄電素子の容量を均等化しようとしても、蓄電素子の容量を均等化する前に蓄電素子のSOCが略100%、あるいは略0%に到達してしまい、蓄電素子の充放電が終了してしまう。蓄電素子の充放電が終了してしまうと、蓄電素子の容量の均等化も終了してしまうことから、蓄電素子の容量を十分に均等化することが難しい。そのため、変化領域以外の領域を用いて、蓄電素子の容量を均等化する技術が望まれる。   The olivine iron-based battery has a region in which the voltage rapidly increases with respect to the increase in the remaining capacity (hereinafter referred to as a change region). For example, when a graphite-based material is used as the negative electrode, the SOC indicating the remaining capacity of the secondary battery Is known to be a change region in a region of less than 10% and a region of 90% or more. If the change region exists in a relatively high SOC region or a relatively low SOC region, even if an attempt is made to equalize the storage element capacity from the voltage information of the storage element in the change region, The SOC of the power storage element reaches approximately 100% or approximately 0%, and charging / discharging of the power storage element ends. When the charging / discharging of the power storage element is finished, the equalization of the capacity of the power storage element is also finished, so that it is difficult to sufficiently equalize the capacity of the power storage element. Therefore, a technique for equalizing the capacities of the power storage elements using an area other than the change area is desired.

その一方、オリビン鉄系電池は、負極との組合せでプラトー領域を持ち、例えば負極としてグラファイト系材料を用いた場合、2次電池の残存容量を示すSOCが10%から90%に亘って広がるプラトー領域を持つことが知られている。ここで、プラトー領域とは、2次電池のSOCが変化しても2次電池の電圧が略一定である領域を意味する。そのため、プラトー領域を有する2次電池などの蓄電素子では、充電中において、このプラトー領域において取得された蓄電素子の電圧情報から蓄電素子の容量を推定することが難しく、蓄電素子の容量を均等化することが難しい。   On the other hand, the olivine iron-based battery has a plateau region in combination with the negative electrode. For example, when a graphite-based material is used as the negative electrode, the plateau in which the SOC indicating the remaining capacity of the secondary battery extends from 10% to 90%. Known to have territory. Here, the plateau region means a region where the voltage of the secondary battery is substantially constant even when the SOC of the secondary battery changes. Therefore, in a power storage element such as a secondary battery having a plateau area, it is difficult to estimate the capacity of the power storage element from the voltage information of the power storage element acquired in the plateau area during charging, and the capacity of the power storage element is equalized. Difficult to do.

本明細書では、複数の蓄電素子を充放電する技術を開示する。   In this specification, the technique of charging / discharging a some electrical storage element is disclosed.

本明細書で開示する充放電システムは、直列に接続された複数の蓄電素子の状態を管理するもので、前記蓄電素子の充電時又は放電時において、いずれか一つの蓄電素子の電圧の時間変化率が基準値に到達した時点と、前記蓄電素子の総電圧又はいずれかの蓄電素子の電圧が充放電を終止させる電圧に到達した時点との比較に基づいて前記蓄電素子の劣化を検出する。   The charge / discharge system disclosed in the present specification manages the state of a plurality of power storage elements connected in series, and the time change of the voltage of any one power storage element during charging or discharging of the power storage element The deterioration of the power storage element is detected based on a comparison between the time when the rate reaches a reference value and the time when the total voltage of the power storage element or the voltage of any one of the power storage elements reaches a voltage at which charging / discharging is terminated.

この充放電システムでは、充電時又は放電時に各蓄電素子の電圧の時間変化率が基準値に到達した時点と、前記蓄電素子の総電圧又はいずれかの蓄電素子の電圧が充放電を終始させる電圧に到達した時点と比較する。劣化が進むほど、後者の時点が前者の時点との比較で早くなるから、劣化程度を判断でき、それに基づき蓄電素子の劣化を警告したり、その交換を促したりできる。   In this charging / discharging system, when the time change rate of the voltage of each storage element reaches a reference value at the time of charging or discharging, and the voltage at which the total voltage of the storage element or the voltage of any one of the storage elements ends charging / discharging. Compare with the point in time. As the deterioration progresses, the latter time becomes faster compared to the former time, so that the degree of deterioration can be determined, and based on this, it is possible to warn of the deterioration of the power storage element or to promote the replacement.

また、蓄電素子の充電時又は放電時において、いずれか一つの蓄電素子の電圧の時間変化率が基準値に到達した時点と、他の蓄電素子の電圧の時間変化率が基準値に到達した時点との時間差に基づいて前記一つの蓄電素子と前記他の蓄電素子との容量差を算出する充放電システムとすることもできる。上記時間差は2つの蓄電素子のSOCの差を反映しているからである。また、その時間差の期間において充放電電流を測定している場合には、その時間差に充放電電流を乗ずることで容量差を算出することもできる。   In addition, at the time of charging or discharging the storage element, when the time change rate of the voltage of any one storage element reaches the reference value and when the change rate of the voltage of the other storage element reaches the reference value It is also possible to provide a charge / discharge system that calculates a capacity difference between the one power storage element and the other power storage element based on the time difference between the first power storage element and the other power storage element. This is because the time difference reflects the difference in SOC between the two power storage elements. In addition, when the charge / discharge current is measured during the time difference, the capacity difference can be calculated by multiplying the time difference by the charge / discharge current.

直列に接続された複数の蓄電素子の電圧を測定し、その蓄電素子を個別に放電させる放電部を備える場合、前記蓄電素子の電圧の時間変化率が基準値に到達したことを条件に当該蓄電素子を放電させることで、蓄電素子間の充電状態を均等化させることができる。   When the voltage of a plurality of power storage elements connected in series is measured and provided with a discharge unit that individually discharges the power storage elements, the power storage is performed on the condition that the time change rate of the voltage of the power storage elements has reached a reference value. By discharging the elements, the state of charge between the power storage elements can be equalized.

上記の状態管理装置では、前記複数の蓄電素子は、第1の蓄電素子と第2の蓄電素子を含み、前記放電制御部は、前記第1の蓄電素子の時間変化率が基準値に到達してから、前記第2の蓄電素子の時間変化率が基準値に到達するまでの第1時間差を取得するとともに基準時間を有する構成としても良い。そして、前記複数の蓄電素子が充電中であって、前記第1時間差が前記基準時間以上である場合、前記第1時間差を用いて前記第1の蓄電素子を放電させ、前記第1時間差が前記基準時間未満である場合、前記第1の蓄電素子及び前記第2の蓄電素子を放電させない構成としても良ければ、前記複数の蓄電素子が放電中であって、前記第1時間差が前記基準時間以上である場合、前記第1時間差を用いて前記第2の蓄電素子を放電させ、前記第1時間差が前記基準時間未満である場合、前記第1の蓄電素子及び前記第2の蓄電素子を放電させない構成としても良い。   In the state management device, the plurality of power storage elements include a first power storage element and a second power storage element, and the discharge control unit is configured so that a time change rate of the first power storage element reaches a reference value. In addition, the first time difference until the time change rate of the second power storage element reaches the reference value may be acquired and the reference time may be included. When the plurality of power storage elements are being charged and the first time difference is greater than or equal to the reference time, the first power storage element is discharged using the first time difference, and the first time difference is If it is acceptable that the first power storage element and the second power storage element are not discharged when the time is less than the reference time, the plurality of power storage elements are being discharged, and the first time difference is equal to or greater than the reference time. The second power storage element is discharged using the first time difference, and the first power storage element and the second power storage element are not discharged when the first time difference is less than the reference time. It is good also as a structure.

この状態管理装置では、第1時間差が基準時間以上である場合に第1の蓄電素子又は第2の蓄電素子を放電させる。一般に、蓄電素子が電又は放電を開始してから一定状態に到達するまでの時間を示す到達時間の差は、劣化による蓄電素子の容量の差を示している。この状態管理装置によれば、到達時間の差である第1時間差が基準時間以上である場合に第1の蓄電素子又は第2の蓄電素子を放電させることで、第1の蓄電素子と第2の蓄電素子とに充放電される容量の差を基準時間に対応する一定の容量差以内に保つことができる。   In this state management device, the first power storage element or the second power storage element is discharged when the first time difference is greater than or equal to the reference time. In general, the difference in arrival time indicating the time from when the storage element starts to charge or discharge until it reaches a certain state indicates the difference in capacity of the storage element due to deterioration. According to this state management device, the first power storage element and the second power storage element are discharged by discharging the first power storage element or the second power storage element when the first time difference that is the difference in arrival time is equal to or greater than the reference time. The difference between the capacities charged to and discharged from the storage element can be kept within a certain capacity difference corresponding to the reference time.

上記の状態管理装置では、前記蓄電素子の劣化を判断する劣化判断部をさらに備え、前記劣化判断部は、前記複数の蓄電素子が充電中であって、前記第2の蓄電素子の電圧の時間変化率が前記基準値に到達する前に前記複数の蓄電素子の充電が完了して前記第2の蓄電素子の充電が終了した場合、前記第2の蓄電素子が劣化していると判断する構成としても良ければ、前記複数の蓄電素子が放電中であって、前記第2の蓄電素子の電圧の時間変化率が前記基準値に到達する前に前記複数の蓄電素子の放電が完了して前記第2の蓄電素子の放電が終了した場合、前記第1の蓄電素子が劣化していると判断する構成としても良い。   The state management device further includes a deterioration determination unit that determines deterioration of the power storage element, wherein the deterioration determination unit is charging the plurality of power storage elements and is a time of the voltage of the second power storage element. A configuration in which when the charging of the plurality of power storage elements is completed and the charging of the second power storage element is completed before the rate of change reaches the reference value, it is determined that the second power storage element has deteriorated If so, the plurality of power storage elements are being discharged, and the discharge of the plurality of power storage elements is completed before the time change rate of the voltage of the second power storage element reaches the reference value. When the discharge of the second power storage element is completed, the first power storage element may be determined to be deteriorated.

蓄電素子の充電時において、第2の蓄電素子の電圧の時間変化率が基準値を超えて変化する前に第1の蓄電素子の充電が終了した場合、劣化によって第1の蓄電素子と第2の蓄電素子との容量差が基準時間に対応する一定の容量差以上に異なっていることが解かる。また、蓄電素子の放電時において、第2の蓄電素子の電圧の時間変化率が基準値を超えて変化する前に第1の蓄電素子の放電が終了した場合、劣化によって第1の蓄電素子と第2の蓄電素子との容量差が基準時間に対応する一定の容量差以上に異なっていることが解かる。この状態管理装置によれば、上記の場合に第1の蓄電素子又は第2の蓄電素子が劣化していると判断することで、蓄電素子の容量の均等化や当該複数の蓄電素子の使用禁止など、これら複数の蓄電素子に対して必要な措置を取ることができる。   When charging the power storage element, if charging of the first power storage element is completed before the time rate of change of the voltage of the second power storage element exceeds the reference value, the first power storage element and the second power storage element It can be seen that the difference in capacity from the storage element differs by more than a certain capacity difference corresponding to the reference time. In addition, when the discharge of the first power storage element is completed before the time change rate of the voltage of the second power storage element changes beyond the reference value at the time of discharging the power storage element, the first power storage element It can be seen that the capacity difference from the second power storage element is different by more than a certain capacity difference corresponding to the reference time. According to this state management device, by determining that the first power storage element or the second power storage element has deteriorated in the above case, the capacity of the power storage elements is equalized and the use of the plurality of power storage elements is prohibited. Thus, necessary measures can be taken for the plurality of power storage elements.

上記の状態管理装置では、前記蓄電素子の劣化を判断する劣化判断部をさらに備え、前記劣化判断部は、前記複数の蓄電素子が充電中であって、前記第2の蓄電素子の電圧の時間変化率が前記基準値に到達する前に前記第1の蓄電素子の電圧の時間変化率が前記基準値に到達してからの経過時間が規定時間に到達した場合、前記第2の蓄電素子が劣化していると判断する構成としても良ければ、前記複数の蓄電素子が放電中であって、前記第2の蓄電素子の電圧の時間変化率が前記基準値に到達する前に前記第1の蓄電素子の電圧の時間変化率が前記基準値に到達してからの経過時間が規定時間に到達した場合、前記第1の蓄電素子が劣化していると判断する構成としても良い。   The state management device further includes a deterioration determination unit that determines deterioration of the power storage element, wherein the deterioration determination unit is charging the plurality of power storage elements and is a time of the voltage of the second power storage element. If the elapsed time after the time change rate of the voltage of the first power storage element reaches the reference value before the change rate reaches the reference value reaches a specified time, the second power storage element If it is acceptable to determine that the battery has deteriorated, the plurality of power storage elements are being discharged, and the time change rate of the voltage of the second power storage element reaches the reference value before the first storage element. A configuration may be adopted in which it is determined that the first power storage element has deteriorated when an elapsed time after the time change rate of the voltage of the power storage element reaches the reference value reaches a specified time.

第2の蓄電素子の電圧の時間変化率が基準値を超えて変化する前に第1の蓄電素子の電圧の時間変化率が基準値に到達してからの経過時間が規定時間に到達した場合、劣化によって第2の蓄電素子の充電時間が長期化し、又は第1の蓄電素子の放電時間が短期化し、規定時間内に第2の蓄電素子の電圧の時間変化率が基準値に到達しなかったことが解かる。この状態管理装置によれば、上記の場合に第1の蓄電素子又は第2の蓄電素子が劣化していると判断することで、蓄電素子の容量の均等化や当該複数の蓄電素子の使用禁止など、これら複数の蓄電素子に対して必要な措置を取ることができる。   When the elapsed time after the time change rate of the voltage of the first power storage element reaches the reference value before the time change rate of the voltage of the second power storage element exceeds the reference value has reached the specified time The charging time of the second power storage element is prolonged due to deterioration, or the discharge time of the first power storage element is shortened, and the time change rate of the voltage of the second power storage element does not reach the reference value within the specified time. I understand that. According to this state management device, by determining that the first power storage element or the second power storage element has deteriorated in the above case, the capacity of the power storage elements is equalized and the use of the plurality of power storage elements is prohibited. Thus, necessary measures can be taken for the plurality of power storage elements.

上記の状態管理装置では、前記放電制御部は、前記第1時間差を用いて前記第1の蓄電素子又は第2の蓄電素子を放電させる放電時間を設定する構成としても良い。この状態管理装置によれば、第1時間差に対応する第1の2次電池に充放電された容量と第2の2次電池に充放電された容量の容量差を用いて第1の蓄電素子又は第2の蓄電素子を放電させる放電時間を設定するので、第1の蓄電素子と第2の蓄電素子に充放電される容量を均等化することができる。   In the state management device, the discharge control unit may set a discharge time for discharging the first power storage element or the second power storage element using the first time difference. According to this state management device, the first power storage element is obtained using the capacity difference between the capacity charged / discharged in the first secondary battery corresponding to the first time difference and the capacity charged / discharged in the second secondary battery. Alternatively, since the discharge time for discharging the second power storage element is set, the capacities charged and discharged to the first power storage element and the second power storage element can be equalized.

上記の状態管理装置では、前記計時部は、前記蓄電素子の電圧が基準電圧に到達しており、かつ前記蓄電素子の電圧の時間変化率が基準値に到達した場合に、前記蓄電素子の電圧の時間変化率が基準値に到達したと判断する構成としても良い。この状態管理装置によれば、蓄電素子の電圧の時間変化率に加えて、蓄電素子の電圧に基づいて放電を制御するので、例えば時間変化率が基準値に到達することが複数回存在する場合には、その複数回の中から特定の1つを選出することができ、複数の蓄電素子に充放電される容量を精度良く均等化することができる。   In the state management device, the timing unit may be configured such that when the voltage of the power storage element reaches a reference voltage and the time change rate of the voltage of the power storage element reaches a reference value, the voltage of the power storage element It is good also as a structure which judges that the time change rate of this reached | attained the reference value. According to this state management device, since discharge is controlled based on the voltage of the storage element in addition to the time change rate of the voltage of the storage element, for example, when the time change rate reaches a reference value multiple times Therefore, a specific one can be selected from the plurality of times, and the capacities charged and discharged by the plurality of power storage elements can be equalized with high accuracy.

上記の状態管理装置では、前記蓄電素子は、定電流充電又は定電流放電される構成としても良い。この状態管理装置によれば、蓄電素子が定電流で充放電されるので、時間差と蓄電素子の容量差を対応させやすく、蓄電素子に充放電される容量を均等化させやすい。   In the above state management device, the power storage element may be configured to be subjected to constant current charging or constant current discharging. According to this state management device, the power storage element is charged / discharged with a constant current, so that the time difference and the capacity difference between the power storage elements can be easily matched, and the capacity charged / discharged to the power storage elements can be easily equalized.

上記の状態管理装置では、前記蓄電素子の充放電レートは、1C以下に設定されている構成としても良く、更に好ましくは、0.9C未満に設定されている構成としても良い。蓄電素子が定電流で充放電される場合、充放電レートが低いほど、充放電中の蓄電素子の電圧に大きな時間変化率が生じる。この状態管理装置によれば、充放電レートが比較的低く設定されていることから、蓄電素子の時間変化率を検出しやすく、時間差を取得しやすい。   In the above-described state management device, the charge / discharge rate of the power storage element may be set to 1C or less, and more preferably set to less than 0.9C. When the storage element is charged / discharged at a constant current, the lower the charge / discharge rate, the greater the rate of time change in the voltage of the storage element during charging / discharging. According to this state management device, since the charge / discharge rate is set to be relatively low, it is easy to detect the time change rate of the power storage element and to easily obtain the time difference.

上記の状態管理装置では、前記蓄電素子の負極は、グラファイト系材料で形成される構成としても良い。負極がグラファイト系材料で形成される蓄電素子は、蓄電素子の時間変化率が他の領域に比べて大きくなる変化点が含まれる。この状態管理装置によれば、当該変曲点を用いて、蓄電素子の時間変化率を検出しやすく、時間差を取得しやすい。   In the state management device, the negative electrode of the power storage element may be formed of a graphite material. A power storage element in which the negative electrode is formed of a graphite-based material includes a change point where the time change rate of the power storage element is larger than that in other regions. According to this state management device, it is easy to detect the time change rate of the power storage element by using the inflection point, and to easily obtain the time difference.

上記の状態管理装置では、前記各蓄電素子は、オリビン鉄系リチウムイオン二次電池としても良い。オリビン鉄系リチウムイオン二次電池では、SOCが10%から90%に亘って広がるプラトー領域を有しており、当該プラトー領域では蓄電素子の電圧値に基づいて蓄電素子のSOCの値を推定することが難しい。この状態管理装置では、蓄電素子の電圧の時間変化率に基づいて蓄電素子のSOCの値を推定するので、当該プラトー領域においても蓄電素子に充放電される容量を均等化することができる。   In said state management apparatus, each said electrical storage element is good also as an olivine iron-type lithium ion secondary battery. The olivine iron-based lithium ion secondary battery has a plateau region in which the SOC extends from 10% to 90%, and the SOC value of the power storage device is estimated based on the voltage value of the power storage device in the plateau region. It is difficult. In this state management device, since the SOC value of the power storage element is estimated based on the rate of change of the voltage of the power storage element with time, the capacity charged and discharged to the power storage element can be equalized even in the plateau region.

本明細書で開示する状態管理装置は、また、直列に接続された複数の蓄電素子の状態を管理する状態管理装置であって、各蓄電素子の電圧を個別に測定する電圧測定部と、前記各蓄電素子を個別に放電する放電部と、前記各蓄電素子の電圧の時間変化率が基準値に到達する順位に対応付けて放電時間が記憶された記憶部と、前記放電部を制御する放電制御部と、を備え、前記放電制御部は、前記各蓄電素子の電圧の時間変化率が前記基準値に到達する順位に対応付けて記憶された前記放電時間に亘って当該蓄電素子を放電させる構成としても良い。   The state management device disclosed in the present specification is also a state management device that manages the states of a plurality of power storage elements connected in series, and a voltage measurement unit that individually measures the voltage of each power storage element; A discharge unit that discharges each storage element individually, a storage unit that stores discharge times in association with the order in which the time change rate of the voltage of each storage element reaches a reference value, and a discharge that controls the discharge unit A control unit, wherein the discharge control unit discharges the power storage element over the discharge time stored in association with the order in which the time change rate of the voltage of each power storage element reaches the reference value. It is good also as a structure.

この状態管理装置では、各蓄電素子の電圧を測定し、当該電圧の時間変化率が基準値に到達する順位を用いて各蓄電素子の放電を制御する。この状態管理装置によれば、蓄電素子がプラトー領域を有しており、電圧に基づいて均等化を制御することが難しい場合でも、蓄電素子の電圧の時間変化率に基づいて放電を制御することができ、蓄電素子に充放電される容量を均等化することができる。また、放電時間を設定する際に、予め記憶部に記憶された放電時間を用いて放電時間を設定することができ、放電時間を早期に設定することができる。   In this state management device, the voltage of each power storage element is measured, and the discharge of each power storage element is controlled using the order in which the time change rate of the voltage reaches the reference value. According to this state management device, even when the power storage element has a plateau region and it is difficult to control the equalization based on the voltage, the discharge is controlled based on the time change rate of the voltage of the power storage element. And the capacity charged and discharged by the power storage elements can be equalized. Moreover, when setting discharge time, discharge time can be set using the discharge time previously memorize | stored in the memory | storage part, and discharge time can be set early.

本明細書で開示する状態管理装置は、また、直列に接続された複数の蓄電素子の状態を管理する状態管理装置であって、各蓄電素子の電圧を個別に測定する電圧測定部と、前記各蓄電素子を個別に放電する放電部と、前記放電部を制御する放電制御部と、を備え、前記放電制御部は、前記各蓄電素子の電圧の時間変化率が基準値に到達すると、当該蓄電素子の放電を開始させる構成としても良い。   The state management device disclosed in the present specification is also a state management device that manages the states of a plurality of power storage elements connected in series, and a voltage measurement unit that individually measures the voltage of each power storage element; A discharge unit that individually discharges each storage element; and a discharge control unit that controls the discharge unit, the discharge control unit, when the rate of time change of the voltage of each storage element reaches a reference value, It may be configured to start discharging the power storage element.

この状態管理装置では、各蓄電素子の電圧を測定し、当該電圧の時間変化率が基準値に到達すると当該蓄電素子を放電する。この状態管理装置によれば、蓄電素子がプラトー領域を有しており、電圧に基づいて均等化を制御することが難しい場合でも、蓄電素子の電圧の時間変化率に基づいて放電を制御することができ、蓄電素子に充放電される容量を均等化することができる。また、蓄電素子の電圧の時間変化率が基準値に到達すると当該蓄電素子の放電を開始させるので、当該蓄電素子の放電開始時期を早めることができる。   In this state management device, the voltage of each power storage element is measured, and when the time change rate of the voltage reaches a reference value, the power storage element is discharged. According to this state management device, even when the power storage element has a plateau region and it is difficult to control the equalization based on the voltage, the discharge is controlled based on the time change rate of the voltage of the power storage element. And the capacity charged and discharged by the power storage elements can be equalized. In addition, since the discharge of the power storage element is started when the time change rate of the voltage of the power storage element reaches the reference value, the discharge start timing of the power storage element can be advanced.

本発明は、上記の状態管理装置を用いて実現される蓄電素子の均等化方法にも具現化される。本明細書で開示する蓄電素子の均等化方法は、直列に接続された複数の蓄電素子の状態を均等化する蓄電素子の均等化方法であって、充放電中の各蓄電素子の電圧を個別に測定する電圧測定工程と、いずれか一つの蓄電素子の電圧の時間変化率が基準値に到達してから、他の蓄電素子の電圧の時間変化率が基準値に到達するまでの時間差を計時する計時工程と、前記時間差を用いて前記各蓄電素子を個別に放電する放電工程と、を備える。   The present invention is also embodied in a storage element equalization method realized by using the state management device. The method for equalizing power storage elements disclosed in this specification is a method for equalizing power storage elements that equalizes the states of a plurality of power storage elements connected in series. And the time difference from when the time change rate of the voltage of any one storage element reaches the reference value until the time change rate of the voltage of the other storage element reaches the reference value is measured. And a discharging step of individually discharging each power storage device using the time difference.

また、本明細書で開示する蓄電素子の均等化方法は、直列に接続された複数の蓄電素子の状態を均等化する蓄電素子の均等化方法であって、充放電中の各蓄電素子の電圧を個別に測定する電圧測定工程と、前記各蓄電素子を個別に放電する放電工程と、を備え、前記放電工程では、前記各蓄電素子の電圧の時間変化率が前記基準値に到達する順位に対応付けて予め設定された放電時間に亘って当該蓄電素子を放電させる構成としても良い。   Further, the storage element equalization method disclosed in this specification is a storage element equalization method for equalizing the states of a plurality of storage elements connected in series, and the voltage of each storage element during charge / discharge Voltage measurement step for individually measuring each of the storage elements, and a discharge step for discharging each of the storage elements individually. In the discharge process, the time change rate of the voltage of each of the storage elements reaches the reference value. It is good also as a structure which discharges the said electrical storage element over the discharge time preset in association.

また、本明細書で開示する蓄電素子の均等化方法は、直列に接続された複数の蓄電素子の状態を均等化する蓄電素子の均等化方法であって、充放電中の各蓄電素子の電圧を個別に測定する電圧測定工程と、前記各蓄電素子を個別に放電する放電工程と、を備え、前記放電工程では、前記各蓄電素子の電圧の時間変化率が前記基準値に到達すると、当該蓄電素子の放電を開始させる構成としても良い。   Further, the storage element equalization method disclosed in this specification is a storage element equalization method for equalizing the states of a plurality of storage elements connected in series, and the voltage of each storage element during charge / discharge A voltage measuring step for individually measuring each of the storage elements, and a discharging step for discharging each of the storage elements individually. In the discharging step, when the time change rate of the voltage of each of the storage elements reaches the reference value, It may be configured to start discharging the power storage element.

本発明によれば、複数の蓄電素子の状態を適切に管理することができる。   According to the present invention, it is possible to appropriately manage the states of a plurality of power storage elements.

充電システム(放電システム)のブロック図Charge system (discharge system) block diagram 放電回路の概略図Schematic diagram of discharge circuit 第1実施形態の均等化処理を示すフローチャートThe flowchart which shows the equalization process of 1st Embodiment. 2次電池の充放電特性を示す図The figure which shows the charging / discharging characteristic of a secondary battery 2次電池の充放電特性を示す図The figure which shows the charging / discharging characteristic of a secondary battery 2次電池の充放電特性を示す図The figure which shows the charging / discharging characteristic of a secondary battery 第2実施形態の均等化処理を示すフローチャートThe flowchart which shows the equalization process of 2nd Embodiment. 第3実施形態の均等化処理を示すフローチャートThe flowchart which shows the equalization process of 3rd Embodiment. 第4実施形態の均等化処理を示すフローチャートThe flowchart which shows the equalization process of 4th Embodiment その他の実施形態の均等化処理を示すフローチャートThe flowchart which shows the equalization process of other embodiment

<実施形態1>
以下、本発明の実施形態1について、図1ないし図6を用いて説明する。
<Embodiment 1>
Hereinafter, Embodiment 1 of the present invention will be described with reference to FIGS. 1 to 6.

1.状態判定装置の構成
図1は、本実施形態の充電システム(放電システム)10の構成を示す図である。充電システム(放電システム)10は、電池群12と状態管理装置(以下、BMS)20と充電器(負荷)18とによって構成される。電池群12は、電気自動車に搭載されており、
内部に直列に接続された複数の2次電池50(蓄電素子の一例)を含む。電池群12は、電気自動車等の内部または外部に設けられた充電器18に接続されることで定電流充電され、電気自動車等の内部に設けられた動力源等の負荷18に接続されることで定電流放電される。BMS20は、充電中の電池群12の各2次電池50の電圧値Vや電流値I等を監視して2次電池50の充放電状態を示す残存容量(SOC)を管理し、SOCを均等化する。
1. Configuration of State Determination Device FIG. 1 is a diagram illustrating a configuration of a charging system (discharge system) 10 according to the present embodiment. The charging system (discharge system) 10 includes a battery group 12, a state management device (hereinafter referred to as BMS) 20, and a charger (load) 18. The battery group 12 is mounted on an electric vehicle,
It includes a plurality of secondary batteries 50 (an example of a power storage element) connected in series inside. The battery group 12 is charged with a constant current by being connected to a charger 18 provided inside or outside the electric vehicle or the like, and connected to a load 18 such as a power source provided inside the electric vehicle or the like. Is discharged at a constant current. The BMS 20 monitors the voltage value V and current value I of each secondary battery 50 of the battery group 12 being charged, manages the remaining capacity (SOC) indicating the charge / discharge state of the secondary battery 50, and equalizes the SOC. Turn into.

本実施形態では、2次電池50として、オリビン鉄系リチウムイオン二次電池(以下、オリビン鉄系電池)を用いた例を示す。この2次電池50は、リチウムイオン電池の一種であり、正極にオリビン型リン酸鉄が用いられ、負極にグラファイト系材料が用いられている。この2次電池50は、図4に示すように、SOCが10%未満である充電初期(放電末期)、及びSOCが90%以上である充電末期(放電初期)においてSOCの増加に対して電池電圧が急激に上昇する領域を有する。また、SOCが10%以上90%未満である充電中期(放電中期)においてSOCの増加に対して電池電圧が略一定である領域(以後、プラトー領域)を有する。   In the present embodiment, an example in which an olivine iron-based lithium ion secondary battery (hereinafter referred to as an olivine iron-based battery) is used as the secondary battery 50 will be described. The secondary battery 50 is a kind of lithium ion battery, in which olivine-type iron phosphate is used for the positive electrode and graphite-based material is used for the negative electrode. As shown in FIG. 4, the secondary battery 50 is a battery with respect to an increase in SOC in an initial charge stage (an end stage of discharge) in which the SOC is less than 10% and an end stage of charge (an initial stage of discharge) in which the SOC is 90% or more. It has a region where the voltage rises rapidly. In addition, there is a region where the battery voltage is substantially constant (hereinafter referred to as a plateau region) with respect to an increase in the SOC in the middle of charging (the middle discharging) where the SOC is 10% or more and less than 90%.

BMS20は、中央処理装置(以下、CPU)30とアナログ−デジタル変換機(以下、ADC)34と電流計22と電圧計(電圧測定部の一例)24と放電回路(放電部の一例)26と温度計28を含む。   The BMS 20 includes a central processing unit (hereinafter referred to as CPU) 30, an analog-digital converter (hereinafter referred to as ADC) 34, an ammeter 22, a voltmeter (an example of a voltage measuring unit) 24, a discharge circuit (an example of a discharge unit) 26, A thermometer 28 is included.

CPU30は、ROMやRAMなどのメモリ(記憶部の一例)32を内在しており、メモリ32には、BMS20の各構成の動作を制御するための各種のプログラムが記憶されている。CPU30は、メモリ32から読み出したプログラムに従って、計時部42、均等化制御部44、劣化判断部46等として機能し、放電回路26を含むBMS20内の各部の制御を行う。   The CPU 30 includes a memory (an example of a storage unit) 32 such as a ROM or a RAM, and the memory 32 stores various programs for controlling the operation of each component of the BMS 20. The CPU 30 functions as a timer unit 42, an equalization control unit 44, a deterioration determination unit 46, and the like according to the program read from the memory 32, and controls each unit in the BMS 20 including the discharge circuit 26.

温度計28は、接触式あるいは非接触式で電池群12の温度を測定し、測定した温度をメモリ32に記憶する。電圧計24は、図2に示すように、配線54を介して各2次電池50の両端に直接的に接続され、充放電中の2次電池50の電圧値Vを所定期間毎に個別に測定する。電池群12にはN個(N:2以上)の2次電池50A、50B、・・・50Nが含まれており、電圧計24は、各2次電池50の電圧VA、VB、・・・VNの電圧値を各々測定する。電圧計24は、測定したこれらの電圧値VをADC34に送信する。   The thermometer 28 measures the temperature of the battery group 12 by a contact method or a non-contact method, and stores the measured temperature in the memory 32. As shown in FIG. 2, the voltmeter 24 is directly connected to both ends of each secondary battery 50 via a wiring 54, and the voltage value V of the secondary battery 50 being charged / discharged is individually set for each predetermined period. taking measurement. The battery group 12 includes N (N: 2 or more) secondary batteries 50A, 50B,... 50N, and the voltmeter 24 includes voltages VA, VB,. Each voltage value of VN is measured. The voltmeter 24 transmits these measured voltage values V to the ADC 34.

2次電池50と電圧計24を接続する配線54には、2次電池50を個別に放電する放電回路26が設けられている。図2に示すように、放電回路26には、各2次電池50の両端に接続される配線54の間に、各2次電池50を放電するための放電回路26A、26B、・・・26Nが設けられている。各放電回路26は、抵抗RとスイッチQによって構成されている。放電回路26のスイッチQは、2次電池50の放電を制御する放電制御部である均等化制御部44として機能するCPU30によって開閉が制御されており、CPU30によってスイッチQが閉状態とされると、配線54及び抵抗Rを介して2次電池50から電流が流れ、対応する2次電池50が放電する。また、CPU30によってスイッチQが開状態とされると、対応する2次電池50からの放電が停止する。   The wiring 54 that connects the secondary battery 50 and the voltmeter 24 is provided with a discharge circuit 26 that discharges the secondary battery 50 individually. As shown in FIG. 2, the discharge circuit 26 includes discharge circuits 26A, 26B,... 26N for discharging each secondary battery 50 between wirings 54 connected to both ends of each secondary battery 50. Is provided. Each discharge circuit 26 includes a resistor R and a switch Q. The switch Q of the discharge circuit 26 is controlled to open and close by the CPU 30 functioning as an equalization control unit 44 that is a discharge control unit that controls the discharge of the secondary battery 50, and when the switch Q is closed by the CPU 30. Then, current flows from the secondary battery 50 through the wiring 54 and the resistor R, and the corresponding secondary battery 50 is discharged. Further, when the switch Q is opened by the CPU 30, the discharge from the corresponding secondary battery 50 is stopped.

電流計22は、電池群12と充電器18とを接続する配線52を流れる電流を計測し、2次電池50に共通して流れる充放電電流ZIの電流値を測定する。また、電流計22は、配線54を介して各2次電池50から個別に放電される電流(以下、均等化放電電流)HIの電流値IA、IB、・・・INを測定する。電流計22は、測定したこれらの電流値IをADC34に送信する。   The ammeter 22 measures the current flowing through the wiring 52 that connects the battery group 12 and the charger 18, and measures the current value of the charge / discharge current ZI that flows in common to the secondary battery 50. Further, the ammeter 22 measures current values IA, IB,... IN of currents (hereinafter referred to as equalized discharge currents) HI discharged individually from the respective secondary batteries 50 via the wiring 54. The ammeter 22 transmits these measured current values I to the ADC 34.

ADC34は、電流計22と電圧計24とCPU30に接続されており、電流計22及び電圧計24から送信されるアナログデータである電流値I及び電圧値Vを、デジタルデータに変換し、変換した電流値I及び電圧値Vをメモリ32に記憶する。計時部42及び劣化判断部46等として機能するCPU30は、メモリ32に記憶された当該電流値I及び電圧値Vを用いて後述する均等化処理を実行する。   The ADC 34 is connected to the ammeter 22, the voltmeter 24, and the CPU 30. The ADC 34 converts the current value I and the voltage value V, which are analog data transmitted from the ammeter 22 and the voltmeter 24, into digital data. The current value I and the voltage value V are stored in the memory 32. The CPU 30 functioning as the time measuring unit 42, the deterioration determining unit 46, and the like executes equalization processing described later using the current value I and the voltage value V stored in the memory 32.

2.均等化処理
図3または図6を用いて、電池群12を充電する際に、BMS20で行われる均等化処理を説明する。本実施形態において、電池群12は0.5C充電の低速充電で定電流充電される。そして、均等化処理は、電池群12への充電制御処理に付随して実行される。図3は、CPU30で実行される電池群12への充電制御処理のフローチャートを示す。
2. Equalization process The equalization process performed in BMS20 when charging the battery group 12 is demonstrated using FIG. 3 or FIG. In this embodiment, the battery group 12 is charged with a constant current by a low-speed charge of 0.5 C. The equalization process is executed in association with the charging control process for the battery group 12. FIG. 3 shows a flowchart of a charging control process for the battery group 12 executed by the CPU 30.

CPU30は、ユーザによって電池群12が充電器18に接続され、充電器18から電池群12への電力供給が開始されると、充電制御処理を実行するとともに均等化処理を実行する。CPU30は、均等化処理を開始すると、各2次電池50の電圧値Vを一定時間ΔX毎に繰り返し測定し、連続して測定された電圧値Vの差分値ΔVの絶対値を当該一定時間ΔXで割った電圧値Vの時間変化率DVを算出する。CPU30は、算出された時間変化率DVが基準値K(K>0)に到達するのを検出する(S2:NO)。   When the battery group 12 is connected to the charger 18 by the user and power supply from the charger 18 to the battery group 12 is started, the CPU 30 executes the charge control process and the equalization process. When the equalization process is started, the CPU 30 repeatedly measures the voltage value V of each secondary battery 50 every predetermined time ΔX, and calculates the absolute value of the difference value ΔV of the continuously measured voltage value V for the predetermined time ΔX. The time change rate DV of the voltage value V divided by is calculated. The CPU 30 detects that the calculated time change rate DV reaches the reference value K (K> 0) (S2: NO).

上述したように、プラトー領域では、SOCの増加に対して2次電池50の電圧値Vが略一定であるので、2次電池50の電圧値Vが基準電圧値に到達するのを検出したとしても、2次電池50のSOCを精度良く推定することができない。   As described above, in the plateau region, since the voltage value V of the secondary battery 50 is substantially constant with respect to the increase in SOC, it is detected that the voltage value V of the secondary battery 50 has reached the reference voltage value. However, the SOC of the secondary battery 50 cannot be estimated with high accuracy.

本実施形態では、図5に示すように、負極にグラファイト系材料を用いたオリビン鉄系電池のプラトー領域において、充電中の2次電池50の電圧値Vの時間変化率が他の領域に比べて大きくなる変化点が存在することに注目した。負極にグラファイト系材料を用いた電池では、時間変化率が他の範囲に比べて大きく変化する変化点が存在する。そして、負極にグラファイト系材料を用いたオリビン鉄系電池では、その変化点がプラトー領域に位置することに注目した。つまり、オリビン鉄系電池では、プラトー領域において時間変化率が基準値Kを超えて大きくなる変化点が2つ(KS1、KS2)存在する。以下の説明では、これらの変化点KS1、KS2のうち、変化点に対応する電圧値が大きい側の変化点KS2に到達する場合について説明する。つまり、CPU30は、電圧値Vが変化点KS2に対応する電圧値(基準電圧の一例)KV2まで上昇し、時間変化率DVが基準値Kに到達するのを検出する。なお、変化点KS1に到達する場合に同様の処理を行っても良い。   In this embodiment, as shown in FIG. 5, in the plateau region of the olivine iron-based battery using a graphite-based material for the negative electrode, the time change rate of the voltage value V of the secondary battery 50 during charging is higher than that in other regions. We noticed that there are changing points. In a battery using a graphite-based material for the negative electrode, there is a change point at which the rate of change with time changes greatly compared to other ranges. In the olivine iron-based battery using a graphite-based material for the negative electrode, attention is paid to the change point located in the plateau region. That is, in the olivine iron-based battery, there are two change points (KS1, KS2) where the rate of change with time exceeds the reference value K in the plateau region. In the following description, a case will be described in which the change point KS2 having the larger voltage value corresponding to the change point is reached among the change points KS1 and KS2. That is, the CPU 30 detects that the voltage value V rises to a voltage value (an example of a reference voltage) KV2 corresponding to the change point KS2, and the time change rate DV reaches the reference value K. A similar process may be performed when the change point KS1 is reached.

CPU30は、いずれかひとつの2次電池50の時間変化率DVが基準値Kに到達したのを検出すると(S2:YES)、当該到達してからの時間の計測を開始する(S4)。計時部42として機能するCPU30は、上記ひとつの2次電池50の時間変化率DVが基準値Kに到達してから他の2次電池50の時間変化率DVが基準値Kに到達するまでの経過時間(時間差の一例)ΔTを計時するとともに、当該経過時間ΔTをメモリ32に記憶されている基準時間KTと比較する(S6)。   When detecting that the time change rate DV of any one of the secondary batteries 50 has reached the reference value K (S2: YES), the CPU 30 starts measuring the time since the arrival (S4). The CPU 30 functioning as the time measuring unit 42 is from the time change rate DV of one secondary battery 50 reaching the reference value K to the time change rate DV of the other secondary battery 50 reaching the reference value K. The elapsed time (an example of a time difference) ΔT is counted, and the elapsed time ΔT is compared with the reference time KT stored in the memory 32 (S6).

以下の説明では、理解のため、最も早く時間変化率DVが基準値Kに到達した2次電池50を第1の2次電池50とし、他の2次電池50のひとつを第2の2次電池50とし、第1の2次電池50と第2の2次電池50における均等化処理を説明する。つまり、第1の2次電池50は、複数の2次電池50の中で最も早く変化点KS2にまで電圧値Vが上昇する(すなわち、SOCが大きい)ものとし、第2の2次電池50は、複数の2次電池50の中で最も遅く変化点KS2にまで電圧値Vが上昇する(すなわち、SOCが小さい)ものとする。   In the following description, for the sake of understanding, the secondary battery 50 whose time change rate DV has reached the reference value K earliest is the first secondary battery 50, and one of the other secondary batteries 50 is the second secondary battery. The equalization process in the first secondary battery 50 and the second secondary battery 50 will be described as the battery 50. That is, in the first secondary battery 50, the voltage value V rises to the change point KS2 earliest among the plurality of secondary batteries 50 (that is, SOC is large), and the second secondary battery 50 Is assumed that the voltage value V rises to the latest change point KS2 among the plurality of secondary batteries 50 (that is, the SOC is small).

図6に示すように、第1の2次電池50の時間変化率を時間変化率DV1とし、第2の2次電池50の時間変化率を時間変化率DV2とし、時間変化率DV1が基準値Kに到達してから時間変化率DV2が基準値Kに到達するまでの経過時間を経過時間(第1時間差の一例)ΔT1とする。なお、以下の説明において、第1の2次電池50を第2の2次電池50以外の各2次電池50に適用させることで、複数存在する全ての2次電池50に対して説明を行うことができる。   As shown in FIG. 6, the time change rate of the first secondary battery 50 is a time change rate DV1, the time change rate of the second secondary battery 50 is a time change rate DV2, and the time change rate DV1 is a reference value. The elapsed time from reaching K to the time change rate DV2 reaching the reference value K is defined as elapsed time (an example of a first time difference) ΔT1. In the following description, the first secondary battery 50 is applied to each of the secondary batteries 50 other than the second secondary battery 50, so that all the secondary batteries 50 existing in a plurality will be described. be able to.

CPU30は、基準時間KTが経過する前に時間変化率DV2が基準値Kに到達し、経過時間ΔT1が基準時間KT未満となる場合(S6:NO)、第1の2次電池50と第2の2次電池50は均等に充電されていると判断する。この場合、CPU30は、いずれの2次電池50をも放電させることなく、均等化処理を終了する。   When the time change rate DV2 reaches the reference value K before the reference time KT elapses and the elapsed time ΔT1 becomes less than the reference time KT (S6: NO), the CPU 30 determines that the first secondary battery 50 and the second The secondary battery 50 is determined to be charged evenly. In this case, the CPU 30 ends the equalization process without discharging any secondary battery 50.

その一方、CPU30は、基準時間KTが経過する前に時間変化率DV2が基準値Kに到達せず、経過時間ΔT1が基準時間KT以上となる場合(S6:YES)、時間変化率DV2が基準値Kに到達するのを監視するとともに、2次電池50の電圧値Vの総和である総電圧が増加して充電終止電圧に到達するのを監視する(S8、S10)。   On the other hand, when the time change rate DV2 does not reach the reference value K before the reference time KT elapses, and the elapsed time ΔT1 becomes equal to or greater than the reference time KT (S6: YES), the time change rate DV2 is the reference. It is monitored that the value K has been reached and the total voltage, which is the sum of the voltage values V of the secondary battery 50, has increased to reach the charge end voltage (S8, S10).

CPU30は、総電圧が充電終止電圧に到達する前に時間変化率DV2が基準値Kに到達し、経過時間ΔT1が計時された場合(S8:YES、S10:NO)、第1の2次電池50と第2の2次電池50は、不均等に充電されていると判断する。CPU30は、第1の2次電池50と第2の2次電池50のSOCを均等化するために、第1の2次電池50を放電する放電時間HTを設定する。放電時間HTは、第1の2次電池50と第2の2次電池50のSOCを均一化するための均一化制御時間ということもできる。   When the time change rate DV2 reaches the reference value K before the total voltage reaches the end-of-charge voltage and the elapsed time ΔT1 is timed (S8: YES, S10: NO), the CPU 30 determines the first secondary battery. 50 and the second secondary battery 50 are determined to be charged unevenly. The CPU 30 sets a discharge time HT for discharging the first secondary battery 50 in order to equalize the SOCs of the first secondary battery 50 and the second secondary battery 50. The discharge time HT can also be referred to as a homogenization control time for making the SOCs of the first secondary battery 50 and the second secondary battery 50 uniform.

CPU30のメモリ32には、経過時間ΔT1と放電時間HTが関連付けられた対応表が予め記憶されている。均等化制御部44として機能するCPU30は、経過時間ΔT1と当該対応表に基づいて放電時間HTを設定する(S12)。放電時間HTの設定後、CPU30は、第1の2次電池50の放電を開始する(S14)。具体的には、CPU30は、第1の2次電池50に対応する放電回路26のスイッチQを閉状態とするとともに、当該スイッチQを閉状態としてからの経過時間ΔT2を計時する(S16)。CPU30は、経過時間ΔT2が放電時間HTに到達するまで(S16:NO)、第1の2次電池50を放電し、経過時間ΔT2が放電時間HTに到達すると(S16:YES)、第1の2次電池50の放電を終了し(S18)、均等化処理を終了する。   The memory 32 of the CPU 30 stores in advance a correspondence table in which the elapsed time ΔT1 is associated with the discharge time HT. The CPU 30 functioning as the equalization control unit 44 sets the discharge time HT based on the elapsed time ΔT1 and the correspondence table (S12). After setting the discharge time HT, the CPU 30 starts discharging the first secondary battery 50 (S14). Specifically, the CPU 30 closes the switch Q of the discharge circuit 26 corresponding to the first secondary battery 50, and measures an elapsed time ΔT2 since the switch Q is closed (S16). The CPU 30 discharges the first secondary battery 50 until the elapsed time ΔT2 reaches the discharge time HT (S16: NO). When the elapsed time ΔT2 reaches the discharge time HT (S16: YES), the first time is reached. The discharge of the secondary battery 50 is finished (S18), and the equalization process is finished.

一方、劣化判断部46として機能するCPU30は、時間変化率DV2が基準値Kに到達する前に総電圧が充電終止電圧に到達した場合(S8:NO、S10:YES)、第1の2次電池50に比べて第2の2次電池50の劣化が進んでいることを検出するとともに、電池群12が寿命であると判断する(S20)。CPU30は、ディスプレイ等の表示部等を介して電池群12が劣化していること、及び電池群12の交換が必要なことをユーザに報知し、均等化処理を終了する。   On the other hand, when the total voltage reaches the end-of-charge voltage before the time change rate DV2 reaches the reference value K (S8: NO, S10: YES), the CPU 30 functioning as the deterioration determination unit 46 performs the first secondary operation. It is detected that the deterioration of the second secondary battery 50 is progressing as compared with the battery 50, and it is determined that the battery group 12 has a lifetime (S20). The CPU 30 notifies the user that the battery group 12 has deteriorated and the battery group 12 needs to be replaced via a display unit such as a display, and ends the equalization process.

3.本実施形態の効果
(1)本実施形態のBMS20では、BMS20が充電中の2次電池50の電圧値Vを測定し、その電圧値Vから算出される時間変化率DVが基準値Kに到達した時間差である経過時間ΔT1を用いて2次電池50の均等化を制御する。このBMS20によれば、電圧値Vに基づいて2次電池50を均等化制御することが難しいプラトー領域においても、充電中の複数の2次電池50のSOCを均等化して充電することができる。
3. Effects of this embodiment (1) In the BMS 20 of this embodiment, the BMS 20 measures the voltage value V of the secondary battery 50 being charged, and the time change rate DV calculated from the voltage value V reaches the reference value K. The equalization of the secondary batteries 50 is controlled using the elapsed time ΔT1 that is the time difference. According to this BMS 20, even in a plateau region where it is difficult to perform equalization control of the secondary battery 50 based on the voltage value V, it is possible to equalize and charge the SOC of the plurality of secondary batteries 50 being charged.

特に、本実施形態では、2次電池50としてオリビン鉄系リチウムイオン二次電池を用いており、SOCが10%以上90%未満の範囲に広がるプラトー領域を有している。その一方、オリビン鉄系リチウムイオン二次電池では、SOCが90%以上である充電末期においてSOCの増加に対して電池電圧が急激に上昇する。そのため、充電末期における2次電池50の電圧値Vを用いて複数の2次電池50を均等化しようとしても、SOCの僅かな増加によりSOCが略100%にまで到達してしまい、複数の2次電池50の均等化処理を完了させることができない。従って、充電末期よりもSOCが小さい範囲に存在するプラトー領域を用いて複数の2次電池50を均等化することが望まれる。   In particular, in this embodiment, an olivine iron-based lithium ion secondary battery is used as the secondary battery 50, and has a plateau region in which the SOC extends in the range of 10% to less than 90%. On the other hand, in the olivine iron-based lithium ion secondary battery, the battery voltage rapidly rises with respect to the increase in SOC at the end of charging when the SOC is 90% or more. Therefore, even when trying to equalize the plurality of secondary batteries 50 using the voltage value V of the secondary battery 50 at the end of charging, the SOC reaches almost 100% due to a slight increase in the SOC, and the plurality of 2 The equalization process of the secondary battery 50 cannot be completed. Therefore, it is desirable to equalize the plurality of secondary batteries 50 using a plateau region that exists in a range where the SOC is lower than the end of charging.

このBMS20では、時間変化率DVを用いて2次電池50の放電を制御する。更に、本実施形態では、2次電池50として負極にグラファイト系材料を用いたオリビン鉄系リチウムイオン二次電池を用いており、プラトー領域に時間変化率が基準値Kを超えて大きくなる変化点KS1、KS2が存在する。そのため、当該変化点KS1、KS2を用いて時間変化率DVから2次電池50のSOCを推定することができ、プラトー領域を用いて複数の2次電池50のSOCの均等化を1回の均等化処理において完了させて、2次電池50を充電することができる。
(2)本実施形態のBMS20では、第1の2次電池50と第2の2次電池50の間の時間差である経過時間ΔT1が基準時間KT以上である場合に、BMS20が第1の2次電池50を放電させる。一般に、経過時間ΔT1はこれらの2次電池50のSOCの差を示している。このBMS20によれば、経過時間ΔT1が基準時間KT以上である場合に第1の2次電池50を放電させることで、電池群12を充電する際の第1の2次電池50と第2の2次電池50とのSOCの差を基準時間KTに対応する一定の容量差以内に保つことができる。
(3)本実施形態のBMS20では、経過時間ΔT1、つまり第1の2次電池50のSOCと第2の2次電池50のSOCの差に対応する時間差を用いて第1の2次電池50を均等化させる放電時間HTを設定するので、放電時間HTを精度よく設定することができ、第1の2次電池50と第2の2次電池50に充電されるSOCを均等化することができる。
(4)本実施形態のBMS20では、経過時間ΔT1、つまり第1の2次電池50の時間変化率DV1が基準値Kに到達してから第2の2次電池50の時間変化率DV2が基準値Kに到達するまでの時間が基準時間KT以上である場合、これらの2次電池50は不均等に充電されていると判断する。このBMS20では、上記の場合に第1の2次電池50を放電することで、電池群12を充電する際に、電池群12に含まれるこれらの2次電池50を均等化して充電することができる。
(5)本実施形態のBMS20では、第2の2次電池50の時間変化率DV2が基準値Kに到達する前に、複数の2次電池50の総電圧が充電終止電圧に到達して充電が終了した場合、第2の2次電池50が劣化しており、第1の2次電池50と第2の2次電池50とのSOCを均等化することができないと判断する。このBMS20では、上記の場合に第2の2次電池50が劣化していると判断することで、劣化により均等化することができない2次電池50を含む電池群12が使用され続けることを抑制することができる。
(6)本実施形態のBMS20では、充放電中の2次電池50が変化点に到達したか否かを検出する際に、時間変化率DVが基準値Kに到達したことを検出するとともに、電圧値Vが電圧値KV2にまで上昇したかを確認する。そのため、例えば、第1の2次電池50が変化点KS2に到達した後に第2の2次電池50が変化点KS1に到達した場合に、その間の時間差が計測されるなど、異なる変化点に到達した時間差が測定され、2次電池50が不正確に均等化されることを防止することができる。
(7)本実施形態のBMS20では、電池群12は0.5C充電で定電流充電されるので、1C充電より大きく、更には0.9C充電以上の比較的高速で充電される場合に比べて、大きな時間変化率を生じさせることができる。2次電池50では、劣化により発生する時間変化率DVが減少し、時間変化率DVが基準値Kに到達したか否かを検出することが難しくなる。このBMS20では、2次電池50を比較的低速で充電するので、2次電池50が劣化した場合でも、時間変化率DVが基準値Kに到達したか否かを検出しやすい。
<実施形態2>
本発明の実施形態2を、図7を用いて説明する。本実施形態では、実施形態1において充電システム10を用いて説明した内容について、放電システム10を用いて説明を行う。つまり、放電システム10を用いた放電制御処理に付随して実行される均等化処理について説明する。
In this BMS 20, the discharge of the secondary battery 50 is controlled using the time change rate DV. Furthermore, in the present embodiment, an olivine iron-based lithium ion secondary battery using a graphite-based material for the negative electrode is used as the secondary battery 50, and the change point at which the rate of time change exceeds the reference value K in the plateau region. KS1 and KS2 exist. Therefore, the SOC of the secondary battery 50 can be estimated from the time change rate DV using the change points KS1 and KS2, and the SOC of the plurality of secondary batteries 50 is equalized once using the plateau region. The secondary battery 50 can be charged by completing the conversion process.
(2) In the BMS 20 of this embodiment, when the elapsed time ΔT1 that is the time difference between the first secondary battery 50 and the second secondary battery 50 is equal to or greater than the reference time KT, the BMS 20 The secondary battery 50 is discharged. In general, the elapsed time ΔT <b> 1 indicates the difference in SOC of these secondary batteries 50. According to this BMS 20, the first secondary battery 50 and the second secondary battery 50 when charging the battery group 12 are discharged by discharging the first secondary battery 50 when the elapsed time ΔT1 is equal to or longer than the reference time KT. The difference in SOC with the secondary battery 50 can be kept within a certain capacity difference corresponding to the reference time KT.
(3) In the BMS 20 of the present embodiment, the first secondary battery 50 using the elapsed time ΔT1, that is, the time difference corresponding to the difference between the SOC of the first secondary battery 50 and the SOC of the second secondary battery 50. Since the discharge time HT for equalizing is set, the discharge time HT can be set with high accuracy, and the SOC charged in the first secondary battery 50 and the second secondary battery 50 can be equalized. it can.
(4) In the BMS 20 of the present embodiment, the elapsed time ΔT1, that is, the time change rate DV2 of the second secondary battery 50 after the time change rate DV1 of the first secondary battery 50 reaches the reference value K is the reference. When the time until the value K is reached is equal to or longer than the reference time KT, it is determined that these secondary batteries 50 are charged unevenly. In the BMS 20, by discharging the first secondary battery 50 in the above case, when charging the battery group 12, the secondary batteries 50 included in the battery group 12 can be equalized and charged. it can.
(5) In the BMS 20 of this embodiment, before the time change rate DV2 of the second secondary battery 50 reaches the reference value K, the total voltage of the plurality of secondary batteries 50 reaches the charge end voltage and is charged. When is completed, it is determined that the second secondary battery 50 has deteriorated and the SOCs of the first secondary battery 50 and the second secondary battery 50 cannot be equalized. In this BMS 20, it is determined that the second secondary battery 50 has deteriorated in the above-described case, thereby suppressing the use of the battery group 12 including the secondary batteries 50 that cannot be equalized due to deterioration. can do.
(6) In the BMS 20 of the present embodiment, when detecting whether or not the secondary battery 50 being charged / discharged has reached the change point, it is detected that the time change rate DV has reached the reference value K, It is confirmed whether the voltage value V has increased to the voltage value KV2. Therefore, for example, when the second secondary battery 50 reaches the change point KS1 after the first secondary battery 50 reaches the change point KS2, the time difference between them is measured, so that the different change point is reached. The measured time difference is measured, and the secondary battery 50 can be prevented from being equalized inaccurately.
(7) In the BMS 20 of the present embodiment, the battery group 12 is charged at a constant current by 0.5C charge, so it is larger than 1C charge, and further compared to a case where it is charged at a relatively high speed of 0.9C charge or more. A large time change rate can be generated. In the secondary battery 50, the time change rate DV generated due to deterioration decreases, and it becomes difficult to detect whether the time change rate DV has reached the reference value K or not. In this BMS 20, since the secondary battery 50 is charged at a relatively low speed, it is easy to detect whether or not the time change rate DV has reached the reference value K even when the secondary battery 50 is deteriorated.
<Embodiment 2>
A second embodiment of the present invention will be described with reference to FIG. In the present embodiment, the contents described using the charging system 10 in the first embodiment will be described using the discharging system 10. That is, the equalization process performed accompanying the discharge control process using the discharge system 10 is demonstrated.

本実施形態において、電池群12は定電流放電される。また、本実施形態では、プラトー領域に存在する変化点KS1、KS2のうち、変化点に対応する電圧値が小さい側の変化点KS1に到達する場合について説明する。つまり、CPU30は、電圧値Vが変化点KS1に対応する電圧値KV1まで下降し、時間変化率DVが基準値Kに到達するのを検出する。また、本実施形態でも、最も早く時間変化率DVが基準値Kに到達した2次電池50を第1の2次電池50とし、最も遅く時間変化率DVが基準値Kに到達した2次電池50を第2の2次電池50とする。つまり、第1の2次電池50は、複数の2次電池50の中で最も早く電圧値Vが下降する(すなわち、SOCが小さい)ものとし、第2の2次電池50は、複数の2次電池50の中で最も遅く電圧値Vが下降する(すなわち、SOCが大きい)ものとする。以下の説明では、実施形態1と同一の内容については重複した記載を省略する。   In the present embodiment, the battery group 12 is discharged at a constant current. Further, in the present embodiment, a case will be described in which the voltage value corresponding to the change point among the change points KS1 and KS2 existing in the plateau region reaches the change point KS1 on the smaller side. That is, the CPU 30 detects that the voltage value V drops to the voltage value KV1 corresponding to the change point KS1 and the time change rate DV reaches the reference value K. Also in this embodiment, the secondary battery 50 whose time change rate DV has reached the reference value K earliest is the first secondary battery 50, and the secondary battery 50 whose time change rate DV has reached the reference value K is the latest. 50 is a second secondary battery 50. In other words, the first secondary battery 50 is assumed to have the voltage value V that drops the earliest among the plurality of secondary batteries 50 (that is, the SOC is small), and the second secondary battery 50 includes the plurality of 2 It is assumed that the voltage value V decreases most slowly in the secondary battery 50 (that is, SOC is large). In the following description, the same description as that of the first embodiment will not be repeated.

1.均等化処理
図7は、CPU30で実行される本実施形態の均等化処理のフローチャートを示す。
1. Equalization Process FIG. 7 shows a flowchart of the equalization process of the present embodiment executed by the CPU 30.

計時部42として機能するCPU30は、第2の2次電池50の時間変化率DV2が基準値Kに到達するのを監視するとともに、2次電池50の電圧値Vの総和である総電圧が減少して放電終止電圧に到達するのを監視する(S8、S22)。均等化制御部44として機能するCPU30は、総電圧が放電終止電圧に到達する前に時間変化率DV2が基準値Kに到達し、経過時間ΔT1が計時された場合(S8:YES、S22:NO)、第1の2次電池50と第2の2次電池50は、不均等に放電されていると判断する。CPU30は、第1の2次電池50と第2の2次電池50のSOCを均等化するために、第2の2次電池50を放電する放電時間HTを設定し(S12)、当該放電時間HTに亘って第2の2次電池50を放電する(S24、S16、S26)。   The CPU 30 functioning as the time measuring unit 42 monitors the time rate of change DV2 of the second secondary battery 50 reaching the reference value K and decreases the total voltage that is the sum of the voltage values V of the secondary battery 50. Then, it is monitored that the discharge end voltage is reached (S8, S22). When the time change rate DV2 reaches the reference value K and the elapsed time ΔT1 is measured before the total voltage reaches the discharge end voltage, the CPU 30 functioning as the equalization control unit 44 (S8: YES, S22: NO). ), It is determined that the first secondary battery 50 and the second secondary battery 50 are discharged unevenly. The CPU 30 sets a discharge time HT for discharging the second secondary battery 50 in order to equalize the SOC of the first secondary battery 50 and the second secondary battery 50 (S12), and the discharge time The second secondary battery 50 is discharged over HT (S24, S16, S26).

一方、劣化判断部46として機能するCPU30は、時間変化率DV2が基準値Kに到達する前に総電圧が放電終止電圧に到達した場合(S8:NO、S22:YES)、第2の2次電池50に比べて第1の2次電池50の劣化が進んでいることを検出するとともに、電池群12が寿命であると判断する(S28)。CPU30は、ディスプレイ等の表示部等を介して電池群12が劣化していること、及び電池群12の交換が必要なことをユーザに報知し、均等化処理を終了する。   On the other hand, when the total voltage reaches the discharge end voltage before the time change rate DV2 reaches the reference value K (S8: NO, S22: YES), the CPU 30 functioning as the deterioration determination unit 46 performs the second secondary operation. It is detected that the deterioration of the first secondary battery 50 is progressing compared to the battery 50, and it is determined that the battery group 12 has a lifetime (S28). The CPU 30 notifies the user that the battery group 12 has deteriorated and the battery group 12 needs to be replaced via a display unit such as a display, and ends the equalization process.

2.本実施形態の効果
(1)本実施形態のBMS20では、BMS20が放電中の2次電池50の時間変化率DVを検出し、その時間変化率DVから算出される経過時間ΔT1を用いて2次電池50の均等化を制御する。このBMS20によれば、プラトー領域においても、放電中の複数の2次電池50のSOCを均等化して放電することができる。
(2)本実施形態では、2次電池50としてオリビン鉄系リチウムイオン二次電池を用いており、SOCが10%以上90%未満の範囲に広がるプラトー領域を有している。その一方、オリビン鉄系リチウムイオン二次電池では、SOCが10%未満である放電末期においてSOCの減少に対して電池電圧が急激に下降する。そのため、放電末期における2次電池50の電圧値Vを用いて複数の2次電池50を均等化しようとしても、SOCの僅かな減少によりSOCが略0%にまで到達してしまい、複数の2次電池50の均等化処理を完了させることができない。従って、放電末期よりもSOCが大きい範囲に存在するプラトー領域を用いて複数の2次電池50を均等化することが望まれる。
2. Advantages of the present embodiment (1) In the BMS 20 of the present embodiment, the BMS 20 detects the time change rate DV of the secondary battery 50 being discharged, and uses the elapsed time ΔT1 calculated from the time change rate DV to perform the secondary operation. The equalization of the batteries 50 is controlled. According to the BMS 20, even in the plateau region, the SOC of the plurality of secondary batteries 50 being discharged can be equalized and discharged.
(2) In the present embodiment, an olivine iron-based lithium ion secondary battery is used as the secondary battery 50, and has a plateau region in which the SOC extends in the range of 10% to less than 90%. On the other hand, in the olivine iron-based lithium ion secondary battery, the battery voltage rapidly decreases with respect to the decrease in SOC at the end of discharge when the SOC is less than 10%. Therefore, even when trying to equalize the plurality of secondary batteries 50 using the voltage value V of the secondary battery 50 at the end of discharge, the SOC reaches almost 0% due to a slight decrease in the SOC, and the plurality of 2 The equalization process of the secondary battery 50 cannot be completed. Therefore, it is desirable to equalize the plurality of secondary batteries 50 using a plateau region that exists in a range where the SOC is greater than the end of discharge.

このBMS20では、2次電池50の電圧値Vではなく時間変化率DVを用いて2次電池50の放電を制御する。そのため、プラトー領域を用いて複数の2次電池50のSOCの均等化を1回の均等化処理において完了させて、2次電池50を放電することができる。
(3)本実施形態のBMS20では、経過時間ΔT1が基準時間KT以上である場合に第2の2次電池50を放電させることで、電池群12を放電する際の第1の2次電池50と第2の2次電池50とのSOCの差を基準時間KTに対応する一定の容量差以内に保つことができる。
(4)本実施形態のBMS20では、経過時間ΔT1が基準時間KT以上である場合に、第1の2次電池50と第2の2次電池50とが不均等に放電されていると判断し、第2の2次電池50を放電することで、電池群12を放電する際に、電池群12に含まれるこれらの2次電池50を均等化して放電することができる。
(5)本実施形態のBMS20では、第2の2次電池50の時間変化率DV2が基準値Kに到達する前に、複数の2次電池50の総電圧が放電終止電圧に到達して放電が終了した場合に、第1の2次電池50が劣化していると判断することで、劣化により均等化することができない2次電池50を含む電池群12が使用され続けることを抑制することができる。
<実施形態3>
本発明の実施形態3を、図8を用いて説明する。本実施形態の充電システム10では、メモリ32に予め記憶された放電時間HTに基づいて放電時間HTを設定する点で、均等化処理中に放電時間HTを設定する実施形態1の充電システム10と異なる。以下の説明では、実施形態1と同一の内容については重複した記載を省略する。
In this BMS 20, the discharge of the secondary battery 50 is controlled using not the voltage value V of the secondary battery 50 but the time change rate DV. Therefore, using the plateau region, the SOC equalization of the plurality of secondary batteries 50 can be completed in one equalization process, and the secondary battery 50 can be discharged.
(3) In the BMS 20 of the present embodiment, the first secondary battery 50 when discharging the battery group 12 by discharging the second secondary battery 50 when the elapsed time ΔT1 is equal to or longer than the reference time KT. And the second secondary battery 50 can be kept within a certain capacity difference corresponding to the reference time KT.
(4) In the BMS 20 of this embodiment, when the elapsed time ΔT1 is equal to or longer than the reference time KT, it is determined that the first secondary battery 50 and the second secondary battery 50 are discharged unevenly. By discharging the second secondary battery 50, when the battery group 12 is discharged, the secondary batteries 50 included in the battery group 12 can be equalized and discharged.
(5) In the BMS 20 of this embodiment, before the time change rate DV2 of the second secondary battery 50 reaches the reference value K, the total voltage of the plurality of secondary batteries 50 reaches the discharge end voltage and discharges. If the first secondary battery 50 is judged to have deteriorated when the battery is terminated, the battery group 12 including the secondary batteries 50 that cannot be equalized due to deterioration is prevented from being used. Can do.
<Embodiment 3>
A third embodiment of the present invention will be described with reference to FIG. The charging system 10 of the present embodiment is different from the charging system 10 of the first embodiment in that the discharge time HT is set during the equalization process in that the discharge time HT is set based on the discharge time HT stored in the memory 32 in advance. Different. In the following description, the same description as that of the first embodiment will not be repeated.

1.均等化処理
図8は、CPU30で実行される本実施形態の均等化処理のフローチャートを示す。
1. Equalization Processing FIG. 8 shows a flowchart of the equalization processing of this embodiment executed by the CPU 30.

計時部42として機能するCPU30は、第1の2次電池50の時間変化率DV1が基準値Kに到達したのを検出すると(S2:YES)、当該到達してからの時間の計測を開始する(S4)とともに、第1の2次電池50の放電を開始する(S14)。また、CPU30は、第1、第2の2次電池50を含めた全ての2次電池50に対して、時間変化率DVが基準値Kに到達した2次電池50の順位を検出し、メモリ32に一時的に記憶する。   When the CPU 30 functioning as the time measuring unit 42 detects that the time change rate DV1 of the first secondary battery 50 has reached the reference value K (S2: YES), the CPU 30 starts measuring the time since the arrival. Together with (S4), discharging of the first secondary battery 50 is started (S14). Further, the CPU 30 detects the order of the secondary batteries 50 at which the time change rate DV has reached the reference value K for all the secondary batteries 50 including the first and second secondary batteries 50, and stores the memory. 32 is temporarily stored.

次に、均等化制御部44として機能するCPU30は、各2次電池50の放電時間HTを設定する(S32)。図1に点線で示すように、CPU30のメモリ32には、時間変化率DVが基準値Kに到達した2次電池50の順位に対応付けられて放電時間HTが記憶されており、2次電池50の順位が高くなるに従って、放電時間HTが長くなるように設定されている。CPU30は、メモリ32において各2次電池50の順位に対応して記憶された放電時間HTを、各2次電池50の放電時間HTとして設定し、設定された放電時間HTに亘って第1の2次電池50を放電して(S34、S18)、均等化処理を終了する。   Next, the CPU 30 functioning as the equalization control unit 44 sets the discharge time HT of each secondary battery 50 (S32). As shown by a dotted line in FIG. 1, the memory 32 of the CPU 30 stores the discharge time HT in association with the rank of the secondary battery 50 at which the time change rate DV has reached the reference value K, and the secondary battery. The discharge time HT is set to increase as the rank of 50 increases. The CPU 30 sets the discharge time HT stored in the memory 32 corresponding to the rank of each secondary battery 50 as the discharge time HT of each secondary battery 50, and the first discharge time HT is set over the set discharge time HT. The secondary battery 50 is discharged (S34, S18), and the equalization process ends.

充電システム10では、電池群12に対して充電を複数回に亘って繰り返しており、CPU30は、電池群12の充電の度に充電制御処理を繰り返し、均等化処理を繰り返す。CPU30は、均等化処理を繰り返す場合に、メモリ32に記憶された放電時間HTを用いて均等化処理を繰り返す。   In the charging system 10, the battery group 12 is repeatedly charged a plurality of times, and the CPU 30 repeats the charge control process and the equalization process each time the battery group 12 is charged. When repeating the equalization process, the CPU 30 repeats the equalization process using the discharge time HT stored in the memory 32.

2.本実施形態の効果
(1)本実施形態のBMS20では、充電中に第1の2次電池50の時間変化率DVが基準値Kに到達すると、第1の2次電池50の放電を開始する。そのため、他の2次電池50の時間変化率DVが基準値Kに到達する前から第1の2次電池50の放電を開始させることができ、電池群12を充電する際の均等化処理において、第1の2次電池50の放電開始時期を早めることができる。
(2)本実施形態のBMS20では、充電中において時間変化率DVが基準値Kに到達する順位と、予めメモリ32に記憶されている放電時間HTから各2次電池50の放電時間HTを設定するので、各2次電池50の放電時間HTを容易かつ早期に設定することができる。
<実施形態4>
本発明の実施形態4を、図9を用いて説明する。本実施形態では、実施形態3において充電システム10を用いて説明した内容について、放電システム10を用いて説明を行う。つまり、放電システム10を用いた放電制御処理に付随して実行される均等化処理について説明する。
2. Effects of the present embodiment (1) In the BMS 20 of the present embodiment, when the time change rate DV of the first secondary battery 50 reaches the reference value K during charging, the discharge of the first secondary battery 50 is started. . Therefore, the discharge of the first secondary battery 50 can be started before the time rate of change DV of the other secondary battery 50 reaches the reference value K, and in the equalization process when charging the battery group 12 The discharge start time of the first secondary battery 50 can be advanced.
(2) In the BMS 20 of the present embodiment, the discharge time HT of each secondary battery 50 is set from the order in which the time change rate DV reaches the reference value K during charging and the discharge time HT stored in the memory 32 in advance. Therefore, the discharge time HT of each secondary battery 50 can be set easily and early.
<Embodiment 4>
Embodiment 4 of the present invention will be described with reference to FIG. In the present embodiment, the contents described using the charging system 10 in the third embodiment will be described using the discharging system 10. That is, the equalization process performed accompanying the discharge control process using the discharge system 10 is demonstrated.

本実施形態では、変化点KS1に到達する場合について説明する。また、本実施形態でも、最も早く電圧変化率DVが基準値Kに到達した2次電池50を第1の2次電池50とし、最も遅く電圧変化率DVが基準値Kに到達した2次電池50を第2の2次電池50とする。以下の説明では、実施形態1及び実施形態3と同一の内容については重複した記載を省略する。   In the present embodiment, a case where the change point KS1 is reached will be described. Also in this embodiment, the secondary battery 50 whose voltage change rate DV has reached the reference value K earliest is the first secondary battery 50, and the secondary battery 50 whose voltage change rate DV has reached the reference value K is the latest. 50 is a second secondary battery 50. In the following description, duplicate descriptions are omitted for the same contents as in the first and third embodiments.

1.均等化処理
図9は、CPU30で実行される本実施形態の均等化処理のフローチャートを示す。
1. Equalization Processing FIG. 9 shows a flowchart of the equalization processing of the present embodiment executed by the CPU 30.

計時部42として機能するCPU30は、第2の2次電池50の時間変化率DV1が基準値Kに到達したのを検出すると(S42:YES)、当該到達してからの時間の計測を開始する(S4)とともに、第2の2次電池50の放電を開始する(S24)。次に、均等化制御部44として機能するCPU30は、メモリ32において各2次電池50の順位に対応して記憶された放電時間HTを、各2次電池50の放電時間HTとして設定し(S32)、設定された放電時間HTに亘って第2の2次電池50を放電し(S34、S26)、均等化処理を終了する。放電時間HTは、CPU30のメモリ32に時間変化率DVが基準値Kに到達した2次電池50の順位に対応付けられて記憶されており、2次電池50の順位が低くなるに従って、放電時間HTが長くなるように設定されている。   When detecting that the time change rate DV1 of the second secondary battery 50 has reached the reference value K (S42: YES), the CPU 30 functioning as the time measuring unit 42 starts measuring the time since the arrival. Together with (S4), discharging of the second secondary battery 50 is started (S24). Next, the CPU 30 functioning as the equalization control unit 44 sets the discharge time HT stored in the memory 32 corresponding to the rank of each secondary battery 50 as the discharge time HT of each secondary battery 50 (S32). ), The second secondary battery 50 is discharged over the set discharge time HT (S34, S26), and the equalization process is terminated. The discharge time HT is stored in the memory 32 of the CPU 30 in association with the rank of the secondary battery 50 at which the time change rate DV has reached the reference value K. As the rank of the secondary battery 50 decreases, the discharge time HT The HT is set to be long.

2.本実施形態の効果
本実施形態のBMS20では、放電中に各2次電池50の放電開始時期を早めることができ、電池群12を放電する際の均等化処理において、第2の2次電池50の放電開始時期を早めることができる。
2. Effects of this Embodiment In the BMS 20 of this embodiment, the discharge start timing of each secondary battery 50 can be advanced during discharge, and the second secondary battery 50 is equalized in the equalization process when the battery group 12 is discharged. The discharge start time can be advanced.

<他の実施形態>
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような種々の態様も本発明の技術的範囲に含まれる。
(1)上記実施形態では、充電システム(放電システム)10が1つのBMS20を有し、計時部42、均等化制御部44、劣化判断部46等の機能をBMS20が有する1つのCPU30によって実行する例を用いて示したが、本発明はこれに限られない。例えば、お互いに異なるCPU、BMSなどによって各部が構成されても良ければ、これら各部が独立した機器等を用いて構成されていても良い。
(2)上記実施形態では、2次電池50として負極にグラファイト系材料を用いたオリビン鉄系電池を用いた例を用いて説明を行ったが、本発明はこれに限らない。例えば、負極にグラファイト系材料を用いた他の電池においても使用が可能であり、プラトー領域を有していない電池においても使用が可能である。この場合、基準値Kは各電池の充放電特性に基づいて、適宜設定される。
(3)上記実施形態では、2次電池50は定電流充電(定電流放電)される例を用いて説明を行ったが、2次電池50の充電方式(放電方式)はこれに限られない。例えば、2次電池50は、定電圧充電(定電圧放電)されてもよければ、定電力充電(定電力放電)されても良い。
(4)上記実施形態では、充電システム(放電システム)10が電気自動車に搭載された電池群12に対して均等化処理を行う例について説明を行ったが、電池群12の使用用途は、本実施形態に限定されない。
(5)上記実施形態では、経過時間ΔTを計時する際に、いずれかひとつの2次電池50の電圧値Vの時間変化率DVが基準値Kに到達してから時間の計測を開始しているが、充電制御処理(放電制御処理)の開始から時間を測定しても良い。つまり、計時部42として機能するCPU30は、充電制御処理(放電制御処理)の開始から時間を計時し、各2次電池50の電圧値Vの時間変化率DVが基準値Kに到達するまでの到達時間を測定し、その到達時間の差として経過時間ΔTを計時しても良い。
(6)上記実施形態1では、放電時間HTを設定した後に第1の2次電池50の放電を開始する例を用いて説明を行ったが、例えば図10に示すように、放電時間HTを設定する前に放電を開始しておき、放電開始後に放電時間HTを設定しても良い。
<Other embodiments>
The present invention is not limited to the embodiments described with reference to the above description and the drawings, and for example, the following various aspects are also included in the technical scope of the present invention.
(1) In the above embodiment, the charging system (discharging system) 10 has one BMS 20, and the functions of the time measuring unit 42, the equalization control unit 44, the deterioration determining unit 46, etc. are executed by one CPU 30 having the BMS 20. Although shown using an example, the present invention is not limited to this. For example, if each unit may be configured by different CPUs, BMSs, etc., these units may be configured using independent devices.
(2) Although the above embodiment has been described using an example in which an olivine iron-based battery using a graphite-based material for the negative electrode is used as the secondary battery 50, the present invention is not limited thereto. For example, it can be used in other batteries using a graphite-based material for the negative electrode, and can also be used in batteries that do not have a plateau region. In this case, the reference value K is appropriately set based on the charge / discharge characteristics of each battery.
(3) In the above embodiment, the secondary battery 50 has been described using an example in which the secondary battery 50 is charged with constant current (constant current discharge). However, the charging method (discharge method) of the secondary battery 50 is not limited thereto. . For example, the secondary battery 50 may be charged with a constant voltage (constant voltage discharge) or may be charged with a constant power (constant power discharge).
(4) In the above embodiment, the example in which the charging system (discharge system) 10 performs the equalization process on the battery group 12 mounted on the electric vehicle has been described. It is not limited to the embodiment.
(5) In the above embodiment, when measuring the elapsed time ΔT, the time measurement starts after the time change rate DV of the voltage value V of any one secondary battery 50 reaches the reference value K. However, the time may be measured from the start of the charge control process (discharge control process). That is, the CPU 30 functioning as the time measuring unit 42 measures the time from the start of the charge control process (discharge control process) until the time change rate DV of the voltage value V of each secondary battery 50 reaches the reference value K. The arrival time may be measured, and the elapsed time ΔT may be measured as a difference between the arrival times.
(6) In the first embodiment, the description has been given by using the example of starting the discharge of the first secondary battery 50 after setting the discharge time HT. For example, as shown in FIG. Discharging may be started before setting, and discharging time HT may be set after starting discharging.

図10に、その他の実施形態の均等化処理のフローチャートを示す。   FIG. 10 shows a flowchart of equalization processing of another embodiment.

CPU30は、第1の2次電池50の時間変化率DV1が基準値Kに到達したのを検出すると(S2:YES)、当該到達してからの時間の計測を開始する(S4)とともに、第1の2次電池50の放電を開始する(S14)。   When detecting that the time change rate DV1 of the first secondary battery 50 has reached the reference value K (S2: YES), the CPU 30 starts measuring the time since the arrival (S4). The secondary battery 50 starts to be discharged (S14).

次に、CPU30は、第2の2次電池50の時間変化率DV2が基準値Kに到達するのを監視するとともに、2次電池50の電圧値Vの総和である総電圧が増加して充電終止電圧に到達するのを監視する(S8、S10)。CPU30は、総電圧が充電終止電圧に到達する前に時間変化率DV2が基準値Kに到達し、経過時間ΔT1が計時された場合(S8:YES、S10:NO)、第1の2次電池50を放電する放電時間HTを設定する(S12)。そして、設定された放電時間HTに亘って第1の2次電池50を放電し(S16、S18)、均等化処理を終了する。   Next, the CPU 30 monitors that the time change rate DV2 of the second secondary battery 50 reaches the reference value K, and the total voltage, which is the sum of the voltage values V of the secondary battery 50, is increased and charged. The arrival of the end voltage is monitored (S8, S10). When the time change rate DV2 reaches the reference value K before the total voltage reaches the end-of-charge voltage and the elapsed time ΔT1 is timed (S8: YES, S10: NO), the CPU 30 determines the first secondary battery. A discharge time HT for discharging 50 is set (S12). Then, the first secondary battery 50 is discharged over the set discharge time HT (S16, S18), and the equalization process is terminated.

一方、CPU30は、時間変化率DV2が基準値Kに到達する前に総電圧が充電終止電圧に到達した場合(S8:NO、S10:YES)、第1の2次電池50の放電を停止する(S42)とともに、第1の2次電池50に比べて第2の2次電池50の劣化が進んでいることを検出するとともに、電池群12が寿命であると判断する(S20)。CPU30は、ディスプレイ等の表示部等を介して電池群12が劣化していること、及び電池群12の交換が必要なことをユーザに報知し、均等化処理を終了する。
(7)上記実施形態1、2では、複数の2次電池50の総電圧が充電終止電圧(放電終止電圧)に到達した場合に電池群12の寿命判断を実行する例を用いて説明を行ったが、各2次電池50に終端電圧が設定されており、いずれか1つの2次電池50が終端電圧に到達した場合に、電池群12の寿命判断を実行しても良い。つまり、第1の2次電池50の時間変化率DV1が基準値Kに到達した後、第2の2次電池50の時間変化率DV2が基準値Kに到達する前に第1の2次電池50の電圧値Vが充電上限電圧(放電終止電圧)に到達した場合に、電池群12の寿命判断を実行しても良い。
(8)上記実施形態1、2では、経過時間ΔTを計時し、経過時間ΔTとメモリ32に記憶された対応表から放電時間HTを設定する例を用いて説明を行ったが、本発明はこれに限られない。例えば、電池群12への充放電電流ZIが測定されており、経過時間ΔTに当該充放電電流ZIを積して容量差ΔYを算出し、この容量差ΔYを放電回路26のスイッチQを閉状態とすることで流れる均等化制御電流HIで割って放電時間HTを求めても良い。さらには、所定の経過時間ΔTにより決まった放電時間HTのみ放電しても良い。
放電時間HT=容量差ΔY/均等化制御電流HI
On the other hand, when the total voltage reaches the charge end voltage before the time change rate DV2 reaches the reference value K (S8: NO, S10: YES), the CPU 30 stops discharging the first secondary battery 50. Along with (S42), it is detected that the deterioration of the second secondary battery 50 has progressed compared to the first secondary battery 50, and it is determined that the battery group 12 has a life (S20). The CPU 30 notifies the user that the battery group 12 has deteriorated and the battery group 12 needs to be replaced via a display unit such as a display, and ends the equalization process.
(7) In the first and second embodiments described above, an example in which the life determination of the battery group 12 is performed when the total voltage of the plurality of secondary batteries 50 reaches the charge end voltage (discharge end voltage) will be described. However, the end-of-life voltage of the battery group 12 may be determined when a termination voltage is set for each secondary battery 50 and any one of the secondary batteries 50 reaches the termination voltage. That is, after the time change rate DV1 of the first secondary battery 50 reaches the reference value K, the first secondary battery 50 before the time change rate DV2 of the second secondary battery 50 reaches the reference value K. When the voltage value V of 50 reaches the charge upper limit voltage (end-of-discharge voltage), the life of the battery group 12 may be determined.
(8) In the first and second embodiments, the elapsed time ΔT is measured and the discharge time HT is set from the correspondence table stored in the memory 32 with the elapsed time ΔT. It is not limited to this. For example, the charging / discharging current ZI to the battery group 12 is measured, the charging / discharging current ZI is multiplied by the elapsed time ΔT to calculate the capacity difference ΔY, and the capacity difference ΔY is closed with the switch Q of the discharging circuit 26 closed. The discharge time HT may be obtained by dividing by the equalization control current HI that flows in the state. Furthermore, it is possible to discharge only the discharge time HT determined by a predetermined elapsed time ΔT.
Discharge time HT = capacity difference ΔY / equalization control current HI

10:充電システム(放電システム)、12:電池群、20:BMS、22:電流計、24:電圧計、26:放電回路、30:CPU、42:計時部、44:均等化制御部、46:劣化判断部、50:2次電池、DV:時間変化率、HT:放電時間、KT:基準時間、K:基準値、ΔT:経過時間 10: Charging system (discharge system), 12: Battery group, 20: BMS, 22: Ammeter, 24: Voltmeter, 26: Discharge circuit, 30: CPU, 42: Timekeeping unit, 44: Equalization control unit, 46 : Degradation judgment unit, 50: Secondary battery, DV: Time change rate, HT: Discharge time, KT: Reference time, K: Reference value, ΔT: Elapsed time

Claims (10)

直列に接続された複数の蓄電素子の充放電を制御する充放電システムであって、
前記蓄電素子の充電時又は放電時において、いずれか一つの蓄電素子の電圧の時間変化率が基準値に到達した時点と、前記蓄電素子の総電圧又はいずれかの蓄電素子の電圧が充放電を終止させる電圧に到達した時点との比較に基づいて前記蓄電素子の劣化を検出する充放電システム。
A charge / discharge system for controlling charge / discharge of a plurality of power storage elements connected in series,
At the time of charging or discharging the storage element, when the time rate of change of the voltage of any one storage element reaches a reference value, the total voltage of the storage element or the voltage of any storage element is charged / discharged. A charge / discharge system that detects deterioration of the power storage element based on a comparison with a point in time at which a voltage to be terminated is reached.
直列に接続された複数の蓄電素子の充放電を制御する充放電システムであって、
前記蓄電素子の充電時又は放電時において、いずれか一つの蓄電素子の電圧の時間変化率が基準値に到達した時点と、他の蓄電素子の電圧の時間変化率が基準値に到達した時点との時間差に基づいて前記一つの蓄電素子と前記他の蓄電素子との容量差を算出する充放電システム。
A charge / discharge system for controlling charge / discharge of a plurality of power storage elements connected in series,
At the time of charging or discharging the storage element, when the time change rate of the voltage of any one of the storage elements reaches a reference value, and when the change rate of the voltage of the other storage element reaches a reference value The charge / discharge system which calculates the capacity | capacitance difference of said one electrical storage element and said other electrical storage element based on the time difference of.
直列に接続された複数の蓄電素子の充放電を制御する充放電システムであって、前記蓄電素子の電圧を測定する電圧測定部と、前記蓄電素子を個別に放電させる放電部と、前記放電部を制御する放電制御部とを備え、
前記放電制御部は、前記蓄電素子の電圧の時間変化率が基準値に到達したことを条件に当該蓄電素子の放電を開始させる充放電システム。
A charging / discharging system that controls charging / discharging of a plurality of power storage elements connected in series, a voltage measuring unit that measures a voltage of the power storage element, a discharge unit that individually discharges the power storage element, and the discharge unit A discharge control unit for controlling
The discharge control unit is a charge / discharge system that starts discharging of the power storage element on condition that the time change rate of the voltage of the power storage element reaches a reference value.
請求項1ないし請求項3のいずれか一項に記載の充放電システムであって、
前記蓄電素子の充放電レートは、1C以下に設定されている充放電システム。
The charge / discharge system according to any one of claims 1 to 3,
The charging / discharging rate of the said electrical storage element is a charging / discharging system set to 1 C or less.
請求項1ないし請求項3のいずれか一項に記載の充放電システムであって、
前記蓄電素子の充放電レートは、0.9C未満に設定されている充放電システム。
The charge / discharge system according to any one of claims 1 to 3,
The charge / discharge rate of the said electrical storage element is a charge / discharge system set to less than 0.9C.
請求項1ないし請求項5のいずれか一項に記載の充放電システムであって、前記蓄電素子の負極は、グラファイト系材料で形成されている充放電システム。   6. The charge / discharge system according to claim 1, wherein a negative electrode of the power storage element is formed of a graphite-based material. 請求項1ないし請求項6のいずれか一項に記載の充放電システムであって、前記蓄電素子は、オリビン鉄系リチウムイオン二次電池である充放電システム。   It is a charging / discharging system as described in any one of Claims 1 thru | or 6, Comprising: The said electrical storage element is a charging / discharging system which is an olivine iron-type lithium ion secondary battery. 直列に接続された複数の蓄電素子の劣化を診断する方法であって、
前記蓄電素子の充電時又は放電時において、いずれか一つの蓄電素子の電圧の時間変化率が基準値に到達した時点と、前記蓄電素子の総電圧又はいずれかの蓄電素子の電圧が充放電を終止させる電圧に到達した時点との比較に基づいて前記蓄電素子の劣化を診断する蓄電素子の劣化診断方法。
A method for diagnosing deterioration of a plurality of power storage elements connected in series,
At the time of charging or discharging the storage element, when the time rate of change of the voltage of any one storage element reaches a reference value, the total voltage of the storage element or the voltage of any storage element is charged / discharged. A method for diagnosing deterioration of a storage element, wherein the deterioration of the storage element is diagnosed based on a comparison with a point in time when a voltage to be terminated is reached.
直列に接続された複数の蓄電素子の容量差を算出する方法であって、
前記蓄電素子の充電時又は放電時において、いずれか一つの蓄電素子の電圧の時間変化率が基準値に到達した時点と、他の蓄電素子の電圧の時間変化率が基準値に到達した時点との時間差に基づいて前記一つの蓄電素子と前記他の蓄電素子との容量差を算出する蓄電素子の容量差算出方法。
A method for calculating a capacity difference between a plurality of power storage elements connected in series,
At the time of charging or discharging the storage element, when the time change rate of the voltage of any one of the storage elements reaches a reference value, and when the change rate of the voltage of the other storage element reaches a reference value A method for calculating a capacity difference between power storage elements, wherein a capacity difference between the one power storage element and the other power storage element is calculated on the basis of the time difference.
直列に接続された複数の蓄電素子の充放電を制御する充放電制御方法であって、前記蓄電素子の電圧を測定し、その蓄電素子の電圧の時間変化率が基準値に到達した場合に当該蓄電素子を個別に放電させる充放電制御方法。   A charge / discharge control method for controlling charging / discharging of a plurality of power storage elements connected in series, wherein the voltage of the power storage element is measured, and when the time change rate of the voltage of the power storage element reaches a reference value, A charge / discharge control method for discharging individual storage elements.
JP2016142167A 2011-09-09 2016-07-20 Charge / discharge system for storage element Active JP6217996B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011197336 2011-09-09
JP2011197336 2011-09-09

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012186523A Division JP6032473B2 (en) 2011-09-09 2012-08-27 State management device and method for equalizing storage elements

Publications (2)

Publication Number Publication Date
JP2016225306A true JP2016225306A (en) 2016-12-28
JP6217996B2 JP6217996B2 (en) 2017-10-25

Family

ID=47929543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016142167A Active JP6217996B2 (en) 2011-09-09 2016-07-20 Charge / discharge system for storage element

Country Status (3)

Country Link
JP (1) JP6217996B2 (en)
KR (1) KR101956088B1 (en)
CN (2) CN106329632B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190011955A (en) * 2017-07-26 2019-02-08 에스케이이노베이션 주식회사 Apparatus and method for balancing battery cell
JP2019092276A (en) * 2017-11-14 2019-06-13 株式会社Gsユアサ Management device, power storage system, method for equalizing residual capacity of power storage element, and method for estimating internal state of power storage element
WO2021020250A1 (en) * 2019-08-01 2021-02-04 株式会社デンソー Device for assessing degree of degradation of secondary battery, and assembled battery
JP2021027031A (en) * 2019-08-01 2021-02-22 株式会社デンソー Deterioration level determination device for rechargeable battery and assembled battery
JP2021044151A (en) * 2019-09-11 2021-03-18 三洋化成工業株式会社 Lithium ion battery module and method for charging lithium ion battery module
JP2022532544A (en) * 2019-11-26 2022-07-15 エルジー エナジー ソリューション リミテッド Battery condition diagnostic device and method

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8684956B2 (en) 2009-07-30 2014-04-01 Mcneil-Ppc, Inc. Oral care device
US9308064B2 (en) 2010-07-26 2016-04-12 Johnson & Johnson Consumer Inc. Devices and methods for collecting and analyzing fluid samples from the oral cavity
JP6260106B2 (en) * 2013-04-25 2018-01-17 株式会社Gsユアサ Power storage device
CN106385062B (en) * 2015-07-31 2019-01-11 比亚迪股份有限公司 Battery pack equilibrium method and device
JP6573120B2 (en) * 2016-01-26 2019-09-11 株式会社Gsユアサ State estimation device, power storage element module, vehicle, and state estimation method
KR102160272B1 (en) * 2017-01-02 2020-09-25 주식회사 엘지화학 Battery management apparatus and method for protecting a lithium iron phosphate cell from over-voltage using the same
KR102261481B1 (en) * 2017-10-30 2021-06-07 (주)엘지에너지솔루션 Apparatus and method for estimating state of health of battery
US11622751B2 (en) 2018-12-19 2023-04-11 Johnson & Johnson Consumer Inc. Devices and methods for collecting saliva samples from the oral cavity
JP7096193B2 (en) * 2019-04-04 2022-07-05 矢崎総業株式会社 Battery control unit and battery system
KR20210074003A (en) * 2019-12-11 2021-06-21 주식회사 엘지에너지솔루션 Apparatus and method for diagnosing degeneracy of battery
CN113777511A (en) * 2020-06-09 2021-12-10 北京京东乾石科技有限公司 Method and device for diagnosing battery of automated guided vehicle, storage medium and electronic equipment
WO2024063337A1 (en) * 2022-09-23 2024-03-28 주식회사 엘지에너지솔루션 Battery management system, battery pack, electric vehicle, and battery management method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08331769A (en) * 1995-05-31 1996-12-13 Honda Motor Co Ltd Method and apparatus for controlling charging of secondary battery
JPH1152033A (en) * 1997-08-07 1999-02-26 Mitsubishi Motors Corp Degradation judging device of battery
JP2008118777A (en) * 2006-11-02 2008-05-22 Matsushita Electric Ind Co Ltd Abnormality detecting device for storage element, abnormality detecting method for storage element, and abnormality detecting program for storage element
JP2009104983A (en) * 2007-10-25 2009-05-14 Toyota Central R&D Labs Inc Lithium-ion secondary battery and power source for electric automobile using it
JP2009129644A (en) * 2007-11-21 2009-06-11 Toyota Motor Corp Lithium ion secondary battery, battery pack, hybrid automobile, battery pack system, and charge-discharge control method
JP2010066232A (en) * 2008-09-12 2010-03-25 Toyota Motor Corp Device for determining degradation of lithium ion battery, vehicle, and method of determining degradation of lithium ion battery
JP2012173048A (en) * 2011-02-18 2012-09-10 Denso Corp Battery pack device
JP2013541309A (en) * 2010-08-23 2013-11-07 三洋電機株式会社 Power management system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5825155A (en) * 1993-08-09 1998-10-20 Kabushiki Kaisha Toshiba Battery set structure and charge/ discharge control apparatus for lithium-ion battery
US5780994A (en) * 1997-03-21 1998-07-14 Securaplane Technologies, L.L.C. Detection of inflection point in secondary-battery charging process by matching voltage response to first derivative of battery's characteristic curve
US6081097A (en) * 1998-01-19 2000-06-27 Matsushita Electric Industrial Co., Ltd. Method for charging lithium secondary battery
US20080218127A1 (en) * 2007-03-07 2008-09-11 O2Micro Inc. Battery management systems with controllable adapter output
JP2009159768A (en) * 2007-12-27 2009-07-16 Gs Yuasa Corporation Voltage equalizer
CN101604851B (en) * 2008-06-13 2012-11-21 鸿富锦精密工业(深圳)有限公司 Monitoring system and method of storage battery LVD value
JP2011019329A (en) 2009-07-08 2011-01-27 Toshiba Corp Secondary battery device and vehicle
JP2011041452A (en) * 2009-07-17 2011-02-24 Toshiba Corp Assembled battery unit and vehicle
KR101256079B1 (en) * 2010-12-28 2013-04-19 삼성에스디아이 주식회사 Balancing Method and Balancing System of Battery Pack

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08331769A (en) * 1995-05-31 1996-12-13 Honda Motor Co Ltd Method and apparatus for controlling charging of secondary battery
JPH1152033A (en) * 1997-08-07 1999-02-26 Mitsubishi Motors Corp Degradation judging device of battery
JP2008118777A (en) * 2006-11-02 2008-05-22 Matsushita Electric Ind Co Ltd Abnormality detecting device for storage element, abnormality detecting method for storage element, and abnormality detecting program for storage element
JP2009104983A (en) * 2007-10-25 2009-05-14 Toyota Central R&D Labs Inc Lithium-ion secondary battery and power source for electric automobile using it
JP2009129644A (en) * 2007-11-21 2009-06-11 Toyota Motor Corp Lithium ion secondary battery, battery pack, hybrid automobile, battery pack system, and charge-discharge control method
JP2010066232A (en) * 2008-09-12 2010-03-25 Toyota Motor Corp Device for determining degradation of lithium ion battery, vehicle, and method of determining degradation of lithium ion battery
JP2013541309A (en) * 2010-08-23 2013-11-07 三洋電機株式会社 Power management system
JP2012173048A (en) * 2011-02-18 2012-09-10 Denso Corp Battery pack device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190011955A (en) * 2017-07-26 2019-02-08 에스케이이노베이션 주식회사 Apparatus and method for balancing battery cell
KR102353747B1 (en) 2017-07-26 2022-01-20 에스케이온 주식회사 Apparatus and method for balancing battery cell
JP2019092276A (en) * 2017-11-14 2019-06-13 株式会社Gsユアサ Management device, power storage system, method for equalizing residual capacity of power storage element, and method for estimating internal state of power storage element
WO2021020250A1 (en) * 2019-08-01 2021-02-04 株式会社デンソー Device for assessing degree of degradation of secondary battery, and assembled battery
JP2021027031A (en) * 2019-08-01 2021-02-22 株式会社デンソー Deterioration level determination device for rechargeable battery and assembled battery
JP7147809B2 (en) 2019-08-01 2022-10-05 株式会社デンソー Deterioration degree determination device for secondary battery and assembled battery
JP2021044151A (en) * 2019-09-11 2021-03-18 三洋化成工業株式会社 Lithium ion battery module and method for charging lithium ion battery module
JP2022532544A (en) * 2019-11-26 2022-07-15 エルジー エナジー ソリューション リミテッド Battery condition diagnostic device and method
JP7259085B2 (en) 2019-11-26 2023-04-17 エルジー エナジー ソリューション リミテッド Battery condition diagnosis device and method

Also Published As

Publication number Publication date
CN103001277B (en) 2016-09-21
KR20130028664A (en) 2013-03-19
CN103001277A (en) 2013-03-27
CN106329632B (en) 2019-10-11
JP6217996B2 (en) 2017-10-25
CN106329632A (en) 2017-01-11
KR101956088B1 (en) 2019-03-08

Similar Documents

Publication Publication Date Title
JP6217996B2 (en) Charge / discharge system for storage element
JP6032473B2 (en) State management device and method for equalizing storage elements
JP6106991B2 (en) State management device and method for equalizing storage elements
JP5610652B2 (en) Capacitor control circuit
JP6179407B2 (en) Battery pack equalization apparatus and method
JP6324248B2 (en) Battery state detection device, secondary battery system, battery state detection program, battery state detection method
US20110077879A1 (en) Determining battery dc impedance
EP3002597A1 (en) Battery control device
JP6316690B2 (en) Battery state detection device, secondary battery system, battery state detection program, battery state detection method
JP6174963B2 (en) Battery control system
JP2012178953A (en) Method of detecting state of assembled battery and controller
JP2014167457A (en) State estimation device and state estimation method
JP6618443B2 (en) How to stop charging the power system
JPWO2019230131A1 (en) Charge control devices, transportation equipment, and programs
KR101954285B1 (en) State controlling apparatus, equalization of electrical storage device
JP5999409B2 (en) State estimation device and state estimation method
JP2023500449A (en) Fast charging method
WO2023008044A1 (en) Battery monitoring device and program
JP2019035644A (en) Device for determining deterioration of secondary battery
WO2022224682A1 (en) Battery monitoring device
JP7169917B2 (en) SECONDARY BATTERY CONTROL DEVICE AND SECONDARY BATTERY CONTROL METHOD

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170913

R150 Certificate of patent or registration of utility model

Ref document number: 6217996

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150