JP2009159768A - Voltage equalizer - Google Patents

Voltage equalizer Download PDF

Info

Publication number
JP2009159768A
JP2009159768A JP2007337003A JP2007337003A JP2009159768A JP 2009159768 A JP2009159768 A JP 2009159768A JP 2007337003 A JP2007337003 A JP 2007337003A JP 2007337003 A JP2007337003 A JP 2007337003A JP 2009159768 A JP2009159768 A JP 2009159768A
Authority
JP
Japan
Prior art keywords
voltage
current
battery
secondary battery
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007337003A
Other languages
Japanese (ja)
Inventor
Masashi Nakamura
将司 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2007337003A priority Critical patent/JP2009159768A/en
Publication of JP2009159768A publication Critical patent/JP2009159768A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a voltage equalizer of a battery pack that equalizes the voltage of each unit secondary battery. <P>SOLUTION: The voltage equalizer that equalizes each voltage of the battery pack includes: individual discharge resistors having the same resistance values, which are provided separately corresponding to each unit secondary battery and are wired so that one end each may connect with the positive electrode of a corresponding unit secondary battery and the other end each may connect with the negative electrodes of the corresponding unit secondary battery; each discharge switch, which is inserted between the positive electrode of each unit secondary battery and each discharge resister; a current sensor, which is provided in a current supply path L that supplies the battery pack with a charge current so as to detect the magnitude of the charge current; and a control circuit, which perform an operation of equalizing the voltages of individual unit secondary batteries constituting the above battery pack all at once by switching on the individual discharge units all at once. The control circuit concerned performs the above equalizing operation by switching on the above individual discharge switches all at once while the value of the above charge current I is between two thresholds that are set in a constant voltage region in which charge is performed with the constant voltage. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、電圧均等化装置に関する。   The present invention relates to a voltage equalizing apparatus.

従来より、複数の単位二次電池を直列的に接続して、所定の高電圧を得るようにした組電池が広く知られている。この種の組電池は、例えば下記特許文献1にもあるように、各単位二次電池に対応して放電抵抗よりなる放電回路をそれぞれ設け、電圧の高い単位二次電池を、電圧の低い単位二次電池に合わせて放電させ、各単位二次電池の電池電圧を均等化している。
特開平08−19188号公報
Conventionally, an assembled battery in which a plurality of unit secondary batteries are connected in series to obtain a predetermined high voltage is widely known. For example, as disclosed in Patent Document 1 below, this type of assembled battery is provided with a discharge circuit composed of a discharge resistor corresponding to each unit secondary battery, and a unit secondary battery with a high voltage is replaced with a unit with a low voltage. It discharges according to the secondary battery, and the battery voltage of each unit secondary battery is equalized.
Japanese Patent Laid-Open No. 08-19188

上記のものは、電池電圧を均等化させる前提として、まず、組電池を構成する各単位二次電池の電池電圧を個別に測定し、各単位二次電池の電池電圧に差があるか否かを計測する必要がある。このような計測は一般にCPU等が必要(言い換えれば、ディジタル的な処理が必要)となり、装置の構成が大掛かりとなる。
本発明は上記のような事情に基づいて完成されたものであって、比較的簡単な構成で、各単位二次電池の電池電圧を均等化することが可能な組電池の電圧均等化装置を提供することを目的とする。
As for the above, as a premise to equalize the battery voltage, first, the battery voltage of each unit secondary battery constituting the assembled battery is individually measured, and whether or not there is a difference in the battery voltage of each unit secondary battery It is necessary to measure. Such measurement generally requires a CPU or the like (in other words, requires digital processing), and the configuration of the apparatus becomes large.
The present invention has been completed based on the above circumstances, and provides a battery pack voltage equalization apparatus capable of equalizing the battery voltage of each unit secondary battery with a relatively simple configuration. The purpose is to provide.

本発明は、複数の単位二次電池を直列的に接続してなる組電池の各電池電圧を均等化する電圧均等化装置であって、前記組電池に対し充電初期には定電流で充電を行い、当該組電池の総電圧が設定電圧を上回るか、或いは単位二次電池のいずれかが設定電圧を上回った以降、充電完了までの間は定電圧にて充電を行う定電流−定電圧充電形式のものにおいて、各単位二次電池に対応してそれぞれ個別に設けられ、対応する単位二次電池の正極に一端が連なり、対応する単位二次電池の負極に他端が連なるように結線された同じ抵抗値をもつ各放電抵抗と、各単位二次電池の正極と前記各放電抵抗との間、或いは各単位二次電池の負極と各放電抵抗との間に介挿された各放電スイッチと、前記組電池に充電電流を供給する電流供給路に設けられ、前記充電電流の大きさを検出する電流センサと、前記各放電スイッチを一斉にオンさせて前記組電池を構成する各単位二次電池の電池電圧を一斉に均等化させる均等化動作を実行する制御回路と、を備え、当該制御回路は前記電流センサから出力される検出信号に基づいて、前記電流供給路を通じて前記組電池に供給される充電電流の電流値が前記定電圧にて充電を行う定電圧領域において設定された二つの電流閾値間にあるかを検出し、当該充電電流の電流値が前記電流閾値間にある区間、前記各放電スイッチを一斉にオンさせて前記均等化動作を実行するところに特徴を有する。   The present invention provides a voltage equalizing device for equalizing each battery voltage of an assembled battery formed by connecting a plurality of unit secondary batteries in series, and charging the assembled battery with a constant current at the initial stage of charging. The constant current-constant voltage charging is performed until the charging is completed after the total voltage of the assembled battery exceeds the set voltage or any of the unit secondary batteries exceeds the set voltage. In the type, each unit secondary battery is provided individually and connected so that one end is connected to the positive electrode of the corresponding unit secondary battery and the other end is connected to the negative electrode of the corresponding unit secondary battery. Each discharge switch having the same resistance value and each discharge switch interposed between the positive electrode of each unit secondary battery and each discharge resistance, or between the negative electrode of each unit secondary battery and each discharge resistance And provided in a current supply path for supplying a charging current to the assembled battery. A current sensor that detects the magnitude of the charging current, and a control that executes an equalizing operation for simultaneously equalizing the battery voltages of the unit secondary batteries constituting the assembled battery by simultaneously turning on the discharge switches. And a control circuit configured to charge the current value of the charging current supplied to the assembled battery through the current supply path at the constant voltage based on a detection signal output from the current sensor. Detecting whether the current is between two current threshold values set in the voltage region, and performing the equalization operation by simultaneously turning on the discharge switches in a section where the current value of the charging current is between the current threshold values However, it has characteristics.

・この発明の実施態様として、以下の構成とすることが好ましい。
前記制御回路は、前記二つの電流閾値に対応する二つの基準電圧が一方の入力端子にそれぞれ与えられ、前記電流センサの検出信号が他方の入力端子に共通入力される二つの比較器を備え、これら両比較器の出力が不一致となるときに、前記各放電スイッチを一斉にオンさせて前記均等化を実行し、それ以外のときには前記各放電スイッチをオフさせる。このようにしておけば、制御回路を比較器などのアナログ電子部品だけで構成することが可能となり、電圧均等化装置全体を簡素化出来る。
-As an embodiment of this invention, it is preferable to set it as the following structures.
The control circuit includes two comparators to which two reference voltages corresponding to the two current thresholds are respectively applied to one input terminal, and a detection signal of the current sensor is commonly input to the other input terminal, When the outputs of these comparators do not match, the discharge switches are turned on all at once, and the equalization is executed. Otherwise, the discharge switches are turned off. In this way, the control circuit can be configured with only analog electronic components such as a comparator, and the entire voltage equalization apparatus can be simplified.

・前記単位二次電池がリチウムイオン二次電池であるものにおいて、充電率の増加に対し電池電圧が急な勾配をもって上昇する傾向を示す充電終期の変化域を含むそれ以降の領域に対応して前記2つの電流閾値をそれぞれ設定し、当該変化域を含むそれ以降の領域において前記均等化が実行される設定とする。このようにしておけば、特に変化域で生じ得る電池電圧のアンバランスを均等化できる。 -In the case where the unit secondary battery is a lithium ion secondary battery, corresponding to the subsequent areas including the change area at the end of charging in which the battery voltage tends to rise with a steep slope with respect to the increase in the charging rate. The two current threshold values are set, and the equalization is performed in the subsequent areas including the change area. In this way, battery voltage imbalance that can occur particularly in the change region can be equalized.

本発明によれば、各単位二次電池に対応する各放電スイッチを一斉にオンさせて、各単位二次電池の電池電圧を一斉に均等化させている。このような均等化であれば、各単位電池の電池電圧を個別に計測する必要がなく、従前の電圧均等化装置において、必須であった各単位二次電池の各電池電圧を個別に検出する機能を廃止できる。また、本発明によれば、充電電流の電流値(レベル)を電流センサにより監視しており、充電終期に近い定電圧領域において各単位二次電池の電池電圧を均等化させている。従って、均等化動作の動作タイミングとして最適であり、電池電圧を効率よく均等化できる。   According to the present invention, the discharge switches corresponding to the unit secondary batteries are turned on all at once to equalize the battery voltages of the unit secondary batteries at the same time. With such equalization, it is not necessary to individually measure the battery voltage of each unit battery, and each battery voltage of each unit secondary battery, which has been essential in the previous voltage equalization apparatus, is detected individually. A function can be abolished. Further, according to the present invention, the current value (level) of the charging current is monitored by the current sensor, and the battery voltage of each unit secondary battery is equalized in a constant voltage region near the end of charging. Therefore, it is optimal as the operation timing of the equalization operation, and the battery voltage can be equalized efficiently.

本発明の一実施形態を図1ないし図5によって説明する。
本実施形態は、三つの単位二次電池(リチウムイオン二次電池)E1〜E3を直列的に接続してなる組電池Bを充電器20によって充電するものであり、組電池Bの負極をグラウンドGNDに接続する一方、正極を電流供給路Lを通じて充電器20に接続している。
An embodiment of the present invention will be described with reference to FIGS.
In this embodiment, the battery pack B formed by connecting three unit secondary batteries (lithium ion secondary batteries) E1 to E3 in series is charged by the charger 20, and the negative electrode of the battery pack B is grounded. While being connected to GND, the positive electrode is connected to the charger 20 through the current supply path L.

そして、本発明の電圧均等化装置Uを用いて、各リチウムイオン二次電池E1〜E3の電池電圧を均等化することで、各リチウムイオン二次電池E1〜E3を、電圧差なく同じ電池電圧で充電出来るようにしたものである。   And using the voltage equalization apparatus U of this invention, the battery voltage of each lithium ion secondary battery E1-E3 is equalized, and each lithium ion secondary battery E1-E3 is the same battery voltage without a voltage difference. It can be charged with.

本電圧均等化装置Uは以下詳しく説明するように、放電抵抗R1〜R3、放電スイッチSW1〜SW3、電流センサ30、スイッチ制御回路40を主体に構成されている。   As will be described in detail below, the voltage equalizing apparatus U is mainly composed of discharge resistors R1 to R3, discharge switches SW1 to SW3, a current sensor 30, and a switch control circuit 40.

図1に示すように、リチウムイオン二次電池E1〜E3には、それぞれ放電抵抗R1〜R3が設けられている。各放電抵抗R1〜R3は対応する各リチウムイオン二次電池E1〜E3の正極に一端が連なり、対応するリチウムイオン二次電池E1〜E3の負極に他端が連なるように結線されている。   As shown in FIG. 1, the lithium ion secondary batteries E1 to E3 are provided with discharge resistors R1 to R3, respectively. Each discharge resistance R1-R3 is connected so that one end is connected to the positive electrode of each corresponding lithium ion secondary battery E1-E3 and the other end is connected to the negative electrode of corresponding lithium ion secondary battery E1-E3.

より詳しく言えば、放電抵抗R1はリチウムイオン二次電池E1の正極に一端が連なり、リチウムイオン二次電池E1の負極に他端が連なるように結線され、放電抵抗R2はリチウムイオン二次電池E2の正極に一端が連なり、リチウムイオン二次電池E2の負極に他端が連なるように結線されている。また、放電抵抗R3はリチウムイオン二次電池E3の正極に一端が連なり、リチウムイオン二次電池E3の負極に他端が連なるように結線されている。これら各放電抵抗R1〜R3は、いずれも抵抗値の大きさが同じ値に設定されている。   More specifically, the discharge resistor R1 is connected so that one end is connected to the positive electrode of the lithium ion secondary battery E1 and the other end is connected to the negative electrode of the lithium ion secondary battery E1, and the discharge resistor R2 is connected to the lithium ion secondary battery E2. One end is connected to the positive electrode and the other end is connected to the negative electrode of the lithium ion secondary battery E2. The discharge resistor R3 is connected so that one end is connected to the positive electrode of the lithium ion secondary battery E3 and the other end is connected to the negative electrode of the lithium ion secondary battery E3. The discharge resistances R1 to R3 are all set to the same resistance value.

また、各放電抵抗R1〜R3と対応する各リチウムイオン二次電池E1〜E3の正極との間に、放電スイッチSW1〜SW3が挿入されている。   Further, discharge switches SW1 to SW3 are inserted between the discharge resistors R1 to R3 and the positive electrodes of the corresponding lithium ion secondary batteries E1 to E3.

これら3つの放電スイッチSW1〜SW3は、いずれもPチャンネル型の電界効果トランジスタより構成されている。これら各放電スイッチSW1〜SW3の各ゲートは、不図示のプルアップ抵抗を介して電源側に連なっており、各放電スイッチSW1〜SW3が、常にはオフ状態に制御されるようになっている。   All of these three discharge switches SW1 to SW3 are configured by P-channel field effect transistors. The gates of the discharge switches SW1 to SW3 are connected to the power supply side via a pull-up resistor (not shown), and the discharge switches SW1 to SW3 are always controlled to be in an off state.

また、各放電スイッチSW1〜SW3のゲートには、共通の信号線L1が電気的に連なっている。この信号線L1には、ソースSをグラウンドGNDに接続し、ドレインDをスイッチ側に接続させつつNチャンネル型電界効果トランジスタ(以下、単にFET)41が設けられている。   A common signal line L1 is electrically connected to the gates of the discharge switches SW1 to SW3. The signal line L1 is provided with an N-channel field effect transistor (hereinafter simply referred to as an FET) 41 with the source S connected to the ground GND and the drain D connected to the switch side.

このFET41は、次に説明するスイッチ制御回路40の出力段を構成するものであり、同FET41のゲートGをHレベルにすると、FET41がオンして信号線L1のライン電圧がLレベルになる結果、上述した各放電スイッチSW1〜SW3を一斉にオフできる構成となっている。   The FET 41 constitutes an output stage of the switch control circuit 40 described below. When the gate G of the FET 41 is set to H level, the FET 41 is turned on and the line voltage of the signal line L1 becomes L level. The discharge switches SW1 to SW3 described above can be turned off all at once.

スイッチ制御回路40は、入力段に一対のコンパレータ51、55を備えてなる。コンパレータ51、55は入力信号のレベルと、基準電圧のレベルとを大小比較して比較結果に応じた二値信号(Hレベル/Lレベルの信号)を出力するものであり、両コンパレータ51、55のプラス側の端子(本発明の「一方の入力端子」に相当)に、基準電圧Va、Vb(基準電圧の具体的な設定方法については、後に説明する)が与えられている。   The switch control circuit 40 includes a pair of comparators 51 and 55 at the input stage. The comparators 51 and 55 compare the level of the input signal with the level of the reference voltage and output a binary signal (H level / L level signal) according to the comparison result. Reference voltages Va and Vb (a specific setting method of the reference voltage will be described later) are given to the positive terminal (corresponding to “one input terminal” of the present invention).

一方、コンパレータ51、55の各マイナス側の端子(本発明の「他方の入力端子」に相当)に入力信号として、電流センサ30の検出信号Srが印加される構成となっている。電流センサ30は電流供給路Lに挿入されたシャント抵抗(不図示)と、シャント抵抗の両端電圧を増幅して出力するアンプ(不図示)などから構成され、電流供給路Lを通じて組電池Bに供給される充電電流Iの電流値に比例した電圧信号(検出信号Sr)を出力するものである。   On the other hand, the detection signal Sr of the current sensor 30 is applied as an input signal to each minus side terminal (corresponding to “the other input terminal” of the present invention) of the comparators 51 and 55. The current sensor 30 includes a shunt resistor (not shown) inserted into the current supply path L, an amplifier (not shown) that amplifies and outputs the voltage across the shunt resistance, and the like, and is connected to the assembled battery B through the current supply path L. A voltage signal (detection signal Sr) proportional to the current value of the supplied charging current I is output.

そして、上記両コンパレータ51、55の出力端子はいずれもプルアップ抵抗Rpを介して電源側に接続され、更にコンパレータ51の出力端子はPチャンネル型電界効果トランジスタ61のソースSに接続され、またコンパレータ55の出力端子はPチャンネル型電界効果トランジスタ61のソースGに接続されている。以下、このPチャンネル型電界効果トランジスタ61を単に、FET61と呼ぶ。   The output terminals of both the comparators 51 and 55 are connected to the power supply side via the pull-up resistor Rp, and the output terminal of the comparator 51 is connected to the source S of the P-channel field effect transistor 61. The output terminal 55 is connected to the source G of the P-channel field effect transistor 61. Hereinafter, the P-channel field effect transistor 61 is simply referred to as FET 61.

そして、FET61のドレインDが上記したFET41のゲートGに接続されている。また、FET41のゲート−ソース間にはゲートバイアス抵抗R4が設けられ、FET61のゲート−ソース間にはゲートバイアス抵抗R6が設けられている。   The drain D of the FET 61 is connected to the gate G of the FET 41 described above. Further, a gate bias resistor R4 is provided between the gate and the source of the FET 41, and a gate bias resistor R6 is provided between the gate and the source of the FET 61.

次に、充電器20により行われる充電動作について説明する。本充電器20は定電流−定電圧(CCCV; Constant Current Constant Voltage)充電制御を行って、組電池Bを充電するものである。 定電流−定電圧充電制御というのは、充電の初期は定電流Ioにて充電動作を進め、その後、いずれかのリチウムイオン二次電池E1〜E3が所定の設定電圧に至るか、或いはリチウムイオン二次電池E1〜E3の総電圧が所定の設定電圧に至ると、その後は、定電圧Voにて充電動作を進めて各リチウムイオン二次電池E1〜E3を満充電(例えば、充電終了電圧4.2V)に至らしめるものである。   Next, the charging operation performed by the charger 20 will be described. The charger 20 performs constant current-constant voltage (CCCV) charge control and charges the assembled battery B. The constant current-constant voltage charging control means that the charging operation proceeds at a constant current Io in the initial stage of charging, and then any one of the lithium ion secondary batteries E1 to E3 reaches a predetermined set voltage, or lithium ion When the total voltage of the secondary batteries E1 to E3 reaches a predetermined set voltage, after that, the charging operation is advanced at the constant voltage Vo to fully charge each of the lithium ion secondary batteries E1 to E3 (for example, the charging end voltage 4 .2V).

尚、上記のような定電流−定電圧制御方式の充電器20は、電源回路、各単位二次電池の電池電圧をモニタする電圧検出回路、電圧検出回路の検出結果に基づいて電源回路の出力を制御する制御回路などから構成出来、例えば、以下の特許文献にも開示されている。
・特開2003−23736
The constant current-constant voltage control type charger 20 described above includes a power supply circuit, a voltage detection circuit that monitors the battery voltage of each unit secondary battery, and an output of the power supply circuit based on the detection result of the voltage detection circuit. For example, the following patent document discloses.
-JP2003-23736

また、電池の特性を説明するために、図2には、縦軸に電池の電池電圧をとり、横軸に充電率(SOC;State of Charge)をとって、リチウムイオン二次電池Eの充電特性図を示してある。同図に示すように、リチウムイオン二次電池Eは充電率が十数%〜80%の領域は、充電率の増加に対する電池電圧の変化の割り合いが小さく同部分は、傾きが平坦な特性を示す(以下、平坦域)。   In order to explain the characteristics of the battery, in FIG. 2, the battery voltage of the battery is plotted on the vertical axis, and the charging rate (SOC; State of Charge) is plotted on the horizontal axis. A characteristic diagram is shown. As shown in the figure, the lithium ion secondary battery E has a characteristic in which the rate of change in the battery voltage with respect to the increase in the charging rate is small and the slope is flat in the region where the charging rate is more than 10% to 80%. (Hereinafter, flat region).

その一方、80%超の領域は、充電率の増加に対し電池電圧が急な勾配をもって上昇する変化を示す(以下、変化域)。本実施形態のものは、平坦域から変化域に切り替わる境界の電圧が約4V強であり、この電圧を超える電圧値(例えば、約4.2V)を上記充電制御の切り替えを行う設定電圧に設定してある。そのため、平坦域から変化域に移行した後、約4.2Vに達したタイミングで充電制御が切り替って、定電流領域から定電圧領域に移行する。   On the other hand, the region exceeding 80% shows a change in which the battery voltage rises with a steep slope with respect to the increase in the charging rate (hereinafter referred to as a change region). In this embodiment, the voltage at the boundary where the flat region changes to the change region is about 4V, and a voltage value exceeding this voltage (for example, about 4.2V) is set as the set voltage for switching the charge control. It is. Therefore, after the transition from the flat region to the change region, the charging control is switched at a timing when the voltage reaches about 4.2 V, and the constant current region is shifted to the constant voltage region.

また、図3には、本充電器20を用いて本実施形態に適用の単位二次電池、すなわちリチウムイオン二次電池を充電させたときの、充電電流Iの電流値の推移を、横軸に時間をとって示してある。同図に示すように、定電圧領域では時間の推移と共に、充電電流Iが垂下する特性を示す。これは、充電の進行に伴ってリチウムイオン二次電池の電池電圧が次第に上昇し、定電圧Voに対する電位差が次第に小さくなるためである。   Also, in FIG. 3, the transition of the current value of the charging current I when the unit secondary battery applied to the present embodiment, that is, the lithium ion secondary battery, is charged using the charger 20 is shown on the horizontal axis. It takes time to show. As shown in the figure, in the constant voltage region, the charging current I droops with time. This is because the battery voltage of the lithium ion secondary battery gradually increases with the progress of charging, and the potential difference with respect to the constant voltage Vo gradually decreases.

また、定電圧Voの大きさは、満充電時の電池電圧の電圧値(4.2V)に設定してあり、リチウムイオン二次電池Eが満充電に至ると、時間と共に垂下する充電電流の大きさがほぼゼロとなるように設定されている。   Moreover, the magnitude of the constant voltage Vo is set to the voltage value (4.2 V) of the battery voltage at the time of full charge, and when the lithium ion secondary battery E reaches full charge, the charging current drooping with time The size is set to be almost zero.

そして、本実施形態のものは、この定電圧領域(言い換えれば、図2に示す変化域)に対応して二つの電流閾値Ia、Ibを定めている。すなわち、電流閾値Iaは、定電流充電時の電流値Ioよりも差分値αだけ小さい値に設定され、電流閾値Ibは充電完了時の電流値(ほぼゼロ)よりも、差分値αだけ大きな値に設定されている。   In the present embodiment, two current threshold values Ia and Ib are determined corresponding to this constant voltage region (in other words, the change region shown in FIG. 2). That is, the current threshold value Ia is set to a value that is smaller than the current value Io at the time of constant current charging by a difference value α, and the current threshold value Ib is a value that is larger by a difference value α than the current value at the time of charging completion (almost zero). Is set to

そして、電流閾値Iaの大きさに等しい充電電流Iが電流供給路Lを流れたときに、電流センサ30が出力する検出信号Srの電圧レベルが、コンパレータ51の基準電圧Vaとして設定され、また電流閾値Ibの大きさに等しい充電電流Iが電流供給路Lを流れたときに、電流センサ30が出力する検出信号Srの電圧レベルが、コンパレータ55の基準電圧Vbとして設定されている。   When the charging current I equal to the current threshold value Ia flows through the current supply path L, the voltage level of the detection signal Sr output from the current sensor 30 is set as the reference voltage Va of the comparator 51, and the current The voltage level of the detection signal Sr output from the current sensor 30 when the charging current I equal to the magnitude of the threshold value Ib flows through the current supply path L is set as the reference voltage Vb of the comparator 55.

このような設定とすることで、以下説明するように、図2に示す平坦域の後の変化域以降の領域(定電圧領域)内において、各リチウムイオン二次電池E1〜E3の電池電圧をバランスさせる均等化動作が実行されることとなる。   With such a setting, as described below, the battery voltage of each of the lithium ion secondary batteries E1 to E3 is set in a region (constant voltage region) after the change region after the flat region shown in FIG. The balancing operation for balancing is executed.

次に、上記した電圧均等化装置Uの回路動作について説明を行う。
組電池Bに対する充電が開始されると、充電初期には、電流供給路Lを通じて充電器20から組電池Bに電流値Ioの定電流が供給される。このとき、電流センサ30からは電流値Ioのレベルに応じた検出信号Srが出力され、両コンパレータ51、55のマイナス端子にそれぞれ入力される。
Next, the circuit operation of the voltage equalizing apparatus U will be described.
When charging of the assembled battery B is started, a constant current having a current value Io is supplied from the charger 20 to the assembled battery B through the current supply path L at the initial stage of charging. At this time, a detection signal Sr corresponding to the level of the current value Io is output from the current sensor 30 and input to the minus terminals of both the comparators 51 and 55, respectively.

係る検出信号Srの電圧レベルは、コンパレータ51のプラス端子に与えられている基準電圧Vaの電圧レベル、コンパレータ55のプラス端子に与えられている基準電圧Vbの電圧レベルより大きい。そのため、この時点では、両コンパレータ51、55の出力はいずれもLレベルで一致した出力となる。   The voltage level of the detection signal Sr is higher than the voltage level of the reference voltage Va given to the plus terminal of the comparator 51 and the voltage level of the reference voltage Vb given to the plus terminal of the comparator 55. Therefore, at this time, the outputs of both the comparators 51 and 55 are the outputs that coincide at the L level.

すると、FET61はVgsがほぼゼロになり、オフ状態となる。その結果、FET41もVgsがほぼゼロになり、オフ状態となる。以上のことから、各放電スイッチSW1〜SW3のゲートがHレベルの状態を維持するので、各放電スイッチSW1〜SW3はいずれもオフ状態となる。   Then, the FET 61 becomes almost zero and Vgs is turned off. As a result, the FET 41 is also almost zero in Vgs and is turned off. From the above, since the gates of the discharge switches SW1 to SW3 maintain the H level state, the discharge switches SW1 to SW3 are all turned off.

そして、両コンパレータ51、55の出力に変化が起きない限り、各放電スイッチSW1〜SW3はいずれもオフ状態を維持するので、定電流による充電中は均等化動作が実施されないまま、組電池Bに対する充電が進められることとなる。そして、充電の進行に伴って組電池Bを構成する各リチウムイオン二次電池E1〜E3は図2に示す充電特性、すなわち充電初期に一旦急な勾配を持って電池電圧が上昇した後、平坦域に入り、各リチウムイオン二次電池E1〜E3の電池電圧は緩やかに上昇してゆく。   As long as there is no change in the outputs of the comparators 51 and 55, each of the discharge switches SW1 to SW3 maintains the off state. Charging will proceed. As the charging progresses, each of the lithium ion secondary batteries E1 to E3 constituting the assembled battery B is flat after the charging voltage shown in FIG. The battery voltage of each of the lithium ion secondary batteries E1 to E3 gradually increases.

その後、各リチウムイオン二次電池E1〜E3の電池電圧は、平坦域を通過するレベルにほぼ到達する。そして、いずれかのリチウムイオン二次電池E1〜E3の電池電圧が平坦域と変化域の境界電圧である4Vを超え、設定電圧である4.2Vに達すると、それが充電器20により検出される。   Thereafter, the battery voltage of each of the lithium ion secondary batteries E1 to E3 substantially reaches a level that passes through the flat region. When the battery voltage of any one of the lithium ion secondary batteries E1 to E3 exceeds 4V that is the boundary voltage between the flat region and the change region and reaches 4.2V that is the set voltage, this is detected by the charger 20. The

すると、充電器20は定電流制御から定電圧制御に制御を切り替え、それ以降、定電圧Voにて充電を行う。この切り替え直後、充電電流の電流値はIoであるから、各放電スイッチSW1〜SW3は依然としてオフに維持された状態にある。   Then, the charger 20 switches control from constant current control to constant voltage control, and thereafter performs charging at the constant voltage Vo. Immediately after this switching, since the current value of the charging current is Io, each of the discharge switches SW1 to SW3 is still kept off.

さて、充電制御が定電圧に切り替えられると、図3に示すように、充電電流Iの大きさは、充電の進行と共に次第に小さくなってゆく。これにより、電流センサ30より出力される検出信号Srも、電圧レベルが小さくなってゆく。   Now, when the charging control is switched to a constant voltage, as shown in FIG. 3, the magnitude of the charging current I gradually decreases with the progress of charging. As a result, the voltage level of the detection signal Sr output from the current sensor 30 also decreases.

そして、充電電流Iの大きさが電流閾値Iaを下回わると、検出信号Srの電圧レベルがコンパレータ51のプラス端子に与えられている基準電圧Vaの電圧レベルを下回り、コンパレータ51の出力がHレベルになる。   When the magnitude of the charging current I falls below the current threshold Ia, the voltage level of the detection signal Sr falls below the voltage level of the reference voltage Va applied to the plus terminal of the comparator 51, and the output of the comparator 51 is H Become a level.

一方、検出信号Srの電圧レベルはコンパレータ55のプラス端子に与えられている基準電圧Vbの電圧レベルとの比較においては依然としてこれを上回るレベルであるため、コンパレータ55の出力はLレベルのままとなる。   On the other hand, since the voltage level of the detection signal Sr is still higher than the voltage level of the reference voltage Vb given to the plus terminal of the comparator 55, the output of the comparator 55 remains at the L level. .

このように両コンパレータ51、55の出力が不一致状態になると、FET61はVgsが負の所定電圧となり、オン状態となる。その結果、FET41もVgsが正の所定電圧となり、オン状態となる。以上のことから、各放電スイッチSW1〜SW3のゲートがHレベルの状態からLレベルの状態に切り替わるので、各放電スイッチSW1〜SW3は一斉にオンし、以下に説明する均等化動作(電池電圧のバランス動作)がなされることとなる。   As described above, when the outputs of the comparators 51 and 55 are in a mismatched state, the FET 61 becomes a predetermined voltage having a negative Vgs and is turned on. As a result, the FET 41 also has a positive voltage Vgs and is turned on. From the above, since the gates of the discharge switches SW1 to SW3 are switched from the H level state to the L level state, the discharge switches SW1 to SW3 are turned on all at once, and the equalizing operation (battery voltage Balance operation) is performed.

ここでは、各放電スイッチSW1〜SW3を一斉オンする直前において、組電池Bの総電圧が11.4Vであり、また初段のリチウムイオン二次電池E1の電池電圧が3.6V、二段目のリチウムイオン二次電池E2の電池電圧が3.8V、三段目のリチウムイオン二次電池E3の電池電圧が4Vであったとする。この場合、各放電スイッチSW1〜SW3を一斉にオンすると、図5に示すように、各放電抵抗R1〜R3には、総電圧11.4Vを抵抗比に従って分担させた電圧が加わる。しかも、各放電抵抗R1〜R3の抵抗値は全て同じ値に設定されているから、結局のところ、各放電抵抗R1〜R3にはそれぞれ総電圧11.4Vを3等分した値、すなわち3.8Vの電圧が加わる。   Here, immediately before the discharge switches SW1 to SW3 are turned on all at once, the total voltage of the assembled battery B is 11.4V, the battery voltage of the first-stage lithium ion secondary battery E1 is 3.6V, and the second stage It is assumed that the battery voltage of the lithium ion secondary battery E2 is 3.8V and the battery voltage of the third stage lithium ion secondary battery E3 is 4V. In this case, when the discharge switches SW1 to SW3 are turned on all at once, as shown in FIG. 5, a voltage obtained by sharing the total voltage 11.4V according to the resistance ratio is applied to the discharge resistors R1 to R3. Moreover, since the resistance values of the discharge resistors R1 to R3 are all set to the same value, the discharge resistors R1 to R3 are eventually divided into three equal parts of the total voltage 11.4V, that is, 3. A voltage of 8V is applied.

すると、図5に示す経路で、電流Ifが流れる結果、平均電圧3.8Vに比べて電池電圧の高い三段目のリチウムイオン二次電池E3は放電し、これとは反対に、平均電圧3.8Vに比べて電池電圧の低い初段のリチウムイオン二次電池E1は充電される。また、平均電圧3.8Vに等しい二段目のリチウムイオン二次電池E2については放電、充電のいずれもおきない(言い換えれば、リチウムイオン二次電池E2をバイパスするように電流Ifが流れる)。   Then, as a result of the current If flowing through the path shown in FIG. 5, the third-stage lithium ion secondary battery E3 having a higher battery voltage than the average voltage 3.8V is discharged, and on the contrary, the average voltage 3 The first-stage lithium ion secondary battery E1 having a lower battery voltage than .8V is charged. In addition, neither discharging nor charging is performed on the second-stage lithium ion secondary battery E2 equal to the average voltage of 3.8 V (in other words, the current If flows so as to bypass the lithium ion secondary battery E2).

以上のことから、各放電スイッチSW1〜SW3を一斉にオンした後、各リチウムイオン二次電池E1〜E3はバランスされ、電池電圧の高低差が次第に小さくなる。   From the above, after the discharge switches SW1 to SW3 are turned on all at once, the lithium ion secondary batteries E1 to E3 are balanced, and the difference in battery voltage gradually decreases.

このバランス動作は、両コンパレータ51、55の出力が不一致状態を維持する図3中の(2)の区間、すなわち本発明で言うところの「前記電流センサにより検出された電流のレベルが前記定電圧にて充電を行う定電圧領域において設定された二つの電流閾値(ここではIaと、Ib)間にある区間」は継続的に行われ、またこれと同時並行的に充電器20による組電池Bに対する充電動作が進められる。   This balance operation is performed in the section (2) in FIG. 3 in which the outputs of the comparators 51 and 55 are inconsistent, that is, in the present invention, the level of the current detected by the current sensor is the constant voltage. The section between the two current threshold values (here, Ia and Ib) set in the constant voltage region where the charging is performed at is continuously performed, and at the same time, the assembled battery B by the charger 20 The charging operation is advanced.

これにより、各リチウムイオン二次電池E1〜E3は電池電圧がバランスされつつ、満充電に近づいてゆき、充電器20より供給される充電電流Iの電流値も小さくなってゆく。   Accordingly, the lithium ion secondary batteries E1 to E3 approach the full charge while the battery voltage is balanced, and the current value of the charging current I supplied from the charger 20 also decreases.

そして、充電電流Iの大きさがIbを下回る状態(すなわち、図3中の(3)の区間)になると、検出信号Srの電圧レベルが、コンパレータ55のプラス端子に与えられている基準電圧Vbの電圧レベルを下回り、コンパレータ51の出力、コンパレータ55の出力が双方ともHレベルになり、コンパレータ51、55の出力が再び一致した状態となる。   When the magnitude of the charging current I falls below Ib (ie, the section (3) in FIG. 3), the voltage level of the detection signal Sr is the reference voltage Vb applied to the plus terminal of the comparator 55. The output of the comparator 51 and the output of the comparator 55 both become H level, and the outputs of the comparators 51 and 55 again coincide with each other.

すると、FET61はVgsがほぼゼロになり、オフ状態となる。その結果、FET41もVgsがほぼゼロになり、オフ状態となる。以上のことから、各放電スイッチSW1〜SW3のゲートがLレベルからHレベルに切り替わり、オン状態にあった各放電スイッチSW1〜SW3はいずれもオフ状態となる。これにて、バランス動作が終了する。   Then, the FET 61 becomes almost zero and Vgs is turned off. As a result, the FET 41 is also almost zero in Vgs and is turned off. From the above, the gates of the discharge switches SW1 to SW3 are switched from the L level to the H level, and the discharge switches SW1 to SW3 that have been turned on are all turned off. This completes the balance operation.

この時点では、各リチウムイオン二次電池E1〜E3はほぼ満充電に達しており、しかも、それまでバランス動作が実行されていたから、各電池電圧はいずれも均等化された状態にある。それ以降、充電器20による充電が引き続き行われ、充電電流がほぼゼロとなったところで、充電動作が完了する。かくして、各リチウムイオン二次電池E1〜E3は満充電(充電終了電圧4.2V)となる。   At this time, each of the lithium ion secondary batteries E1 to E3 is almost fully charged, and since the balance operation has been executed until then, the battery voltages are all equalized. Thereafter, charging by the charger 20 is continued and the charging operation is completed when the charging current becomes almost zero. Thus, each of the lithium ion secondary batteries E1 to E3 is fully charged (charge end voltage 4.2V).

このように、本実施形態によれば、充電器20による充電動作中に、電圧均等化装置Uが作動して、リチウムイオン二次電池E1〜E3の電池電圧をバランスさせるから、電池電圧のばらつきなく充電を行うことが可能となる。   As described above, according to the present embodiment, the voltage equalization device U operates during the charging operation by the charger 20 to balance the battery voltages of the lithium ion secondary batteries E1 to E3. It is possible to perform charging without any problems.

しかも、本実施形態では、各リチウムイオン二次電池E1〜E3に対応する各放電スイッチSW1〜SW3を一斉にオンさせて、各リチウムイオン二次電池E1〜E3の電池電圧を一斉に均等化させている。このような方法で電池電圧を均等化してやれば、各リチウムイオン二次電池E1〜E3の電池電圧を個別に計測する必要がなく、従前の電圧均等化装置において、必須であった各単位二次電池の各電池電圧を個別に検出する機能を廃止できる。   In addition, in this embodiment, the discharge switches SW1 to SW3 corresponding to the lithium ion secondary batteries E1 to E3 are turned on all at once, so that the battery voltages of the lithium ion secondary batteries E1 to E3 are equalized all at once. ing. If the battery voltage is equalized by such a method, it is not necessary to individually measure the battery voltage of each of the lithium ion secondary batteries E1 to E3, and each unit secondary that has been indispensable in the conventional voltage equalization apparatus. The function to detect each battery voltage of a battery individually can be abolished.

また、本発明によれば、充電電流Iの電流値(レベル)を電流センサ30により監視しており、均等化動作の動作タイミングを充電電流Iの電流値に基づいて決定している。しかも、動作タイミングを制御するスイッチ制御回路40については二つのコンパレータ51、55を含むアナログ的な電子部品(言い換えれば、ディスクリート部品)のみで構成してあり、電圧均等化装置Uを極めてシンプルな回路構成にでき、電池電圧を均等化するという必要な性能を確保しつつも低コスト化を実現できる。   In addition, according to the present invention, the current value (level) of the charging current I is monitored by the current sensor 30, and the operation timing of the equalization operation is determined based on the current value of the charging current I. In addition, the switch control circuit 40 for controlling the operation timing is composed of only analog electronic components (in other words, discrete components) including the two comparators 51 and 55, and the voltage equalizing apparatus U is an extremely simple circuit. The cost can be reduced while ensuring the necessary performance of equalizing the battery voltage.

また、本実施形態のものは、充電器20が定電流−定電圧制御を行って各リチウムイオン二次電池E1〜E3を充電するが、リチウムイオン二次電池Eの変化域(充電終期のプラトー領域でない領域)以降に定電圧域が対応する関係となっている。そして、コンパレータ51、55に与える各基準電圧Va、Vbの値が、定電圧域の充電電流Iの電流値に対応させて設定してあり、均等化動作が、リチウムイオン二次電池Eの変化域以降(より詳しく言えば、変化域を含むそれ以降の領域/図3参照)の定電圧領域で行われる設定となっている。ここで仮に、図2に示す平坦域にて均等化動作を実行させてしまうと、平坦域は電池特性上各電池の電池電圧がある程度揃っているので、例えばR1〜R3の抵抗値のばらつきが大きい場合には、このばらつき、などに起因して、各リチウムイオン二次電池E1〜E3の電池電圧がアンバランスになり、無駄に充電/放電をしてしまう恐れがある。この点、本実施形態では、電池電圧のばらつきが現れ易く、しかも平坦域に比べ充電終期にほど近い変化域以降の領域において、均等化動作を行わせるようにしているので、各リチウムイオン二次電池E1〜E3を効率よくバランス出来る。特に、変化域で生じ得る電池電圧のアンバランスを均等化できる。   In the present embodiment, the charger 20 performs constant current-constant voltage control to charge each of the lithium ion secondary batteries E1 to E3, but the change range of the lithium ion secondary battery E (the plateau at the end of charging) The constant voltage region corresponds to the region after (non-region) region. The values of the reference voltages Va and Vb applied to the comparators 51 and 55 are set in correspondence with the current value of the charging current I in the constant voltage range, and the equalization operation is performed by changing the lithium ion secondary battery E. The setting is performed in the constant voltage region after the region (more specifically, the region after the change region, see FIG. 3). Here, if the equalization operation is executed in the flat region shown in FIG. 2, the battery voltage of each battery is uniform to some extent in the flat region, and therefore, for example, the resistance values of R1 to R3 vary. If it is large, the battery voltage of each of the lithium ion secondary batteries E1 to E3 becomes unbalanced due to this variation or the like, and there is a possibility that charging / discharging is uselessly performed. In this respect, in this embodiment, the battery voltage is likely to vary, and the equalization operation is performed in the region after the change region that is closer to the end of charging than the flat region. E1 to E3 can be balanced efficiently. In particular, battery voltage imbalance that can occur in the change region can be equalized.

また、均等化動作を実行させる動作域も、コンパレータ51、55に与える基準電圧Va、Vbの大きさを変更するだけで、簡単に設定変更できるので、この点も効果的である。   In addition, the operating range in which the equalizing operation is executed can be easily changed by simply changing the magnitudes of the reference voltages Va and Vb applied to the comparators 51 and 55. This is also effective.

尚、本実施形態のものは、図3中の(2)の区間にて、均等化動作が実行させる設定としてあるが、(2)の区間は出来るだけ長く設定することが好ましい。というのも、バランス動作を実行させる区間を短く設定してしまうと、電池容量、電池電圧のばらつきの大きさによっては、バランスさせる時間が足りず、電池電圧を均等化出来ない事が想定されるためである。   In the present embodiment, the equalization operation is set to be executed in the section (2) in FIG. 3, but the section (2) is preferably set as long as possible. This is because if the interval for executing the balance operation is set to be short, depending on the size of the battery capacity and the variation in battery voltage, there is not enough time for balancing and it is assumed that the battery voltage cannot be equalized. Because.

他方、(2)の区間を長く設定すると、必然的に差分値αを小さく設定することとなるが、これを小さくし過ぎると、電流センサ30の計測誤差によっては、定電流領域であるにも拘わらず、検出信号Srの電圧レベルがコンパレータ51の基準電圧Vaを下回って、意図せず均等化動作が開始される誤作動を起こす恐れがある。従って、差分値αを電流センサ30の計測誤差βよりも大きく設定して均等化動作を定電圧領域内において確実に行わせる設定とした上で、均等化動作の時間を極力長くとるように設定することが最善である。   On the other hand, if the section (2) is set to be long, the difference value α is inevitably set to be small, but if this is made too small, depending on the measurement error of the current sensor 30, it may be a constant current region. Regardless, the voltage level of the detection signal Sr may be lower than the reference voltage Va of the comparator 51, and there is a possibility of causing a malfunction that unintentionally starts the equalization operation. Accordingly, the difference value α is set to be larger than the measurement error β of the current sensor 30 so that the equalization operation is reliably performed in the constant voltage region, and the equalization operation time is set to be as long as possible. It is best to do.

<他の実施形態>
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
<Other embodiments>
The present invention is not limited to the embodiments described with reference to the above description and drawings. For example, the following embodiments are also included in the technical scope of the present invention.

(1)上記実施形態では、組電池として三つの単位二次電池E1〜E3を直列接続してなる構成のものを例示したが、単位二次電池の接続段数は三段に限定されるものでなく四段、五段あるいはそれ以上であってもよい。また電池の種別も、リチウムイオン二次電池に限定されるものではなく、例えば、鉛蓄電池、ニッケル水素二次電池、ニッケル・カドミウム二次電池、二酸化マンガン・リチウム二次電池など、他の二次電池であってもよい。   (1) In the above embodiment, the assembled battery is configured by connecting three unit secondary batteries E1 to E3 in series. However, the number of connection stages of the unit secondary batteries is limited to three. There may be four steps, five steps or more. Also, the type of battery is not limited to lithium ion secondary batteries. For example, other secondary batteries such as lead storage batteries, nickel metal hydride secondary batteries, nickel / cadmium secondary batteries, manganese dioxide / lithium secondary batteries, etc. It may be a battery.

本発明の一実施形態に係る電圧均等化装置の電気的構成を示す回路図The circuit diagram which shows the electrical constitution of the voltage equalization apparatus which concerns on one Embodiment of this invention. リチウムイオン二次電池の充電特性を示す図The figure which shows the charge characteristic of the lithium ion secondary battery リチウムイオン二次電池の充電特性を示す図The figure which shows the charge characteristic of the lithium ion secondary battery 各電子部品の出力パターンをまとめた図表Chart summarizing output patterns of each electronic component バランス動作を説明する説明図Explanatory drawing explaining balance operation

符号の説明Explanation of symbols

20…充電器
30…電流センサ
40…スイッチ制御回路(本発明の「制御回路」に相当)
41…Nチャンネル型電界効果トランジスタ
51…コンパレータ(本発明の「比較器」に相当)
55…コンパレータ(本発明の「比較器」に相当)
61…Pチャンネル型電界効果トランジスタ
Ia…電流閾値
Ib…電流閾値
SW1〜SW3…放電スイッチ
R1〜R3…放電抵抗
Va…基準電圧
Vb…基準電圧
U…電圧均等化装置
DESCRIPTION OF SYMBOLS 20 ... Charger 30 ... Current sensor 40 ... Switch control circuit (equivalent to "control circuit" of this invention)
41... N-channel field effect transistor 51... Comparator (corresponding to “comparator” of the present invention)
55. Comparator (corresponding to "comparator" of the present invention)
61 ... P channel type field effect transistor Ia ... Current threshold Ib ... Current threshold SW1-SW3 ... Discharge switch R1-R3 ... Discharge resistor Va ... Reference voltage Vb ... Reference voltage U ... Voltage equalization device

Claims (3)

複数の単位二次電池を直列的に接続してなる組電池の各電池電圧を均等化する電圧均等化装置であって、
前記組電池に対し充電初期には定電流で充電を行い、当該組電池の総電圧が設定電圧を上回るか、或いは単位二次電池のいずれかが設定電圧を上回った以降、充電完了までの間は定電圧にて充電を行う定電流−定電圧充電形式のものにおいて、
各単位二次電池に対応してそれぞれ個別に設けられ、対応する単位二次電池の正極に一端が連なり、対応する単位二次電池の負極に他端が連なるように結線された同じ抵抗値をもつ各放電抵抗と、
各単位二次電池の正極と前記各放電抵抗との間、或いは各単位二次電池の負極と各放電抵抗との間に介挿された各放電スイッチと、
前記組電池に充電電流を供給する電流供給路に設けられ、前記充電電流の大きさを検出する電流センサと、
前記各放電スイッチを一斉にオンさせて前記組電池を構成する各単位二次電池の電池電圧を一斉に均等化させる均等化動作を実行する制御回路と、を備え、
当該制御回路は前記電流センサから出力される検出信号に基づいて、前記電流供給路を通じて前記組電池に供給される充電電流の電流値が前記定電圧にて充電を行う定電圧領域において設定された二つの電流閾値間にあるかを検出し、当該充電電流の電流値が前記電流閾値間にある区間、前記各放電スイッチを一斉にオンさせて前記均等化動作を実行することを特徴とする電圧均等化装置。
A voltage equalizing device for equalizing each battery voltage of an assembled battery formed by connecting a plurality of unit secondary batteries in series,
The assembled battery is charged at a constant current at the beginning of charging, and after the total voltage of the assembled battery exceeds the set voltage or one of the unit secondary batteries exceeds the set voltage, the charging is completed. Is a constant current-constant voltage charge type that charges at a constant voltage,
The same resistance value is provided for each unit secondary battery, and is connected so that one end is connected to the positive electrode of the corresponding unit secondary battery and the other end is connected to the negative electrode of the corresponding unit secondary battery. Each discharge resistance,
Each discharge switch interposed between the positive electrode of each unit secondary battery and each of the discharge resistors, or between the negative electrode of each unit secondary battery and each of the discharge resistors,
A current sensor that is provided in a current supply path for supplying a charging current to the assembled battery and detects the magnitude of the charging current;
A control circuit that performs an equalization operation for simultaneously equalizing battery voltages of the unit secondary batteries constituting the assembled battery by simultaneously turning on the discharge switches,
Based on the detection signal output from the current sensor, the control circuit sets the current value of the charging current supplied to the assembled battery through the current supply path in a constant voltage region where charging is performed at the constant voltage. A voltage characterized by detecting whether the current is between two current thresholds, and performing the equalization operation by simultaneously turning on the discharge switches in a section where the current value of the charging current is between the current thresholds. Equalizing device.
前記制御回路は、前記二つの電流閾値に対応する二つの基準電圧が一方の入力端子にそれぞれ与えられ、前記電流センサの検出信号が他方の入力端子に共通入力される二つの比較器を備え、
これら両比較器の出力が不一致となるときに、前記各放電スイッチを一斉にオンさせて前記均等化を実行し、それ以外のときには前記各放電スイッチをオフさせることを特徴とする請求項1に記載の電圧均等化装置。
The control circuit includes two comparators to which two reference voltages corresponding to the two current thresholds are respectively applied to one input terminal, and a detection signal of the current sensor is commonly input to the other input terminal,
2. The apparatus according to claim 1, wherein when the outputs of the two comparators do not coincide with each other, the discharge switches are simultaneously turned on to execute the equalization, and otherwise, the discharge switches are turned off. The voltage equalization apparatus as described.
前記単位二次電池がリチウムイオン二次電池であるものにおいて、
充電率の増加に対し電池電圧が急な勾配をもって上昇する傾向を示す充電終期の変化域を含むそれ以降の領域に対応して前記2つの電流閾値をそれぞれ設定し、当該変化域を含むそれ以降の領域において前記均等化が実行される設定としてあることを特徴とする請求項1又は請求項2に記載の電圧均等化装置。
In the unit secondary battery is a lithium ion secondary battery,
Each of the two current thresholds is set corresponding to a subsequent region including a change region at the end of charge, which indicates a tendency that the battery voltage increases with a steep slope with respect to an increase in the charge rate, and thereafter includes the change region. The voltage equalization apparatus according to claim 1, wherein the equalization is set to be executed in the area of the voltage.
JP2007337003A 2007-12-27 2007-12-27 Voltage equalizer Pending JP2009159768A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007337003A JP2009159768A (en) 2007-12-27 2007-12-27 Voltage equalizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007337003A JP2009159768A (en) 2007-12-27 2007-12-27 Voltage equalizer

Publications (1)

Publication Number Publication Date
JP2009159768A true JP2009159768A (en) 2009-07-16

Family

ID=40963157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007337003A Pending JP2009159768A (en) 2007-12-27 2007-12-27 Voltage equalizer

Country Status (1)

Country Link
JP (1) JP2009159768A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011072169A (en) * 2009-09-28 2011-04-07 Gs Yuasa Corp Voltage equalizer for battery packs, and battery-pack system
CN102375098A (en) * 2010-08-10 2012-03-14 光宝动力储能科技股份有限公司 Detection module and detection method of battery equalizer
WO2012099820A1 (en) * 2011-01-20 2012-07-26 Valence Technology, Inc. Rechargeable battery systems and rechargeable battery system operational methods
KR101243007B1 (en) 2011-08-02 2013-03-15 넥스콘 테크놀러지 주식회사 Bms for balance control apparatus for bms
KR20130028664A (en) * 2011-09-09 2013-03-19 가부시키가이샤 지에스 유아사 State controlling apparatus, equalization of electrical storage device
KR101256079B1 (en) * 2010-12-28 2013-04-19 삼성에스디아이 주식회사 Balancing Method and Balancing System of Battery Pack
CN103094944A (en) * 2012-07-10 2013-05-08 德臻科技股份有限公司 Multi-section type battery module charging method and device
JP2014121134A (en) * 2012-12-14 2014-06-30 Mitsubishi Motors Corp Electric voltage balance controller
US8957624B2 (en) 2011-01-20 2015-02-17 Valence Technology, Inc. Rechargeable battery systems and rechargeable battery system operational methods
JP2015133816A (en) * 2013-12-11 2015-07-23 三菱重工業株式会社 Charge/discharge controller, power storage system, charge/discharge instruction device, charge/discharge control method, and program
US9912178B2 (en) 2011-01-20 2018-03-06 Valence Technology, Inc. Rechargeable battery systems and rechargeable battery system operational methods
US10110020B2 (en) 2013-08-02 2018-10-23 Denso Corporation Equalization device for assembled battery
WO2021032221A3 (en) * 2019-08-20 2021-04-15 深圳市道通智能航空技术股份有限公司 Battery balancing self-discharge circuit and unmanned aerial vehicle
WO2023281362A1 (en) 2021-07-08 2023-01-12 Ricoh Company, Ltd. Power storage system, power supply, driving device, power control device, and method for equalizing power storage statuses
CN116461387A (en) * 2023-04-04 2023-07-21 常州汉姆智能科技有限公司 Unmanned aerial vehicle battery serial connection charge balance circuit

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011072169A (en) * 2009-09-28 2011-04-07 Gs Yuasa Corp Voltage equalizer for battery packs, and battery-pack system
CN102375098A (en) * 2010-08-10 2012-03-14 光宝动力储能科技股份有限公司 Detection module and detection method of battery equalizer
KR101256079B1 (en) * 2010-12-28 2013-04-19 삼성에스디아이 주식회사 Balancing Method and Balancing System of Battery Pack
US8994337B2 (en) 2010-12-28 2015-03-31 Samsung Sdi Co., Ltd. Balancing method and balancing system of battery pack
US10903661B2 (en) 2011-01-20 2021-01-26 Lithium Werks Technology Bv Rechargeable battery systems and rechargeable battery system operational methods
KR20190104429A (en) * 2011-01-20 2019-09-09 리튬 웍스 테크놀로지 비.브이. Rechargeable battery systems and rechargeable battery system operational methods
US11616375B2 (en) 2011-01-20 2023-03-28 Lithion Battery Inc. Rechargeable battery systems and rechargeable battery system operational methods
WO2012099820A1 (en) * 2011-01-20 2012-07-26 Valence Technology, Inc. Rechargeable battery systems and rechargeable battery system operational methods
US8922167B2 (en) 2011-01-20 2014-12-30 Valence Technology, Inc. Rechargeable battery systems and rechargeable battery system operational methods
US8957624B2 (en) 2011-01-20 2015-02-17 Valence Technology, Inc. Rechargeable battery systems and rechargeable battery system operational methods
KR102197554B1 (en) * 2011-01-20 2020-12-31 리튬 웍스 테크놀로지 비.브이. Rechargeable battery systems and rechargeable battery system operational methods
US9912178B2 (en) 2011-01-20 2018-03-06 Valence Technology, Inc. Rechargeable battery systems and rechargeable battery system operational methods
US10056764B2 (en) 2011-01-20 2018-08-21 Lithium Werks B.V. Rechargeable battery systems and rechargeable battery system operational methods
KR101243007B1 (en) 2011-08-02 2013-03-15 넥스콘 테크놀러지 주식회사 Bms for balance control apparatus for bms
KR101956088B1 (en) * 2011-09-09 2019-03-08 가부시키가이샤 지에스 유아사 State controlling apparatus, equalization of electrical storage device
KR20130028664A (en) * 2011-09-09 2013-03-19 가부시키가이샤 지에스 유아사 State controlling apparatus, equalization of electrical storage device
CN103094944A (en) * 2012-07-10 2013-05-08 德臻科技股份有限公司 Multi-section type battery module charging method and device
JP2014121134A (en) * 2012-12-14 2014-06-30 Mitsubishi Motors Corp Electric voltage balance controller
US10110020B2 (en) 2013-08-02 2018-10-23 Denso Corporation Equalization device for assembled battery
JP2015133816A (en) * 2013-12-11 2015-07-23 三菱重工業株式会社 Charge/discharge controller, power storage system, charge/discharge instruction device, charge/discharge control method, and program
WO2021032221A3 (en) * 2019-08-20 2021-04-15 深圳市道通智能航空技术股份有限公司 Battery balancing self-discharge circuit and unmanned aerial vehicle
WO2023281362A1 (en) 2021-07-08 2023-01-12 Ricoh Company, Ltd. Power storage system, power supply, driving device, power control device, and method for equalizing power storage statuses
KR20240025642A (en) 2021-07-08 2024-02-27 가부시키가이샤 리코 Power storage system, power source, drive device, power control device, and power storage state equalization method
CN116461387A (en) * 2023-04-04 2023-07-21 常州汉姆智能科技有限公司 Unmanned aerial vehicle battery serial connection charge balance circuit
CN116461387B (en) * 2023-04-04 2023-10-24 常州汉姆智能科技有限公司 Unmanned aerial vehicle battery serial connection charge balance circuit

Similar Documents

Publication Publication Date Title
JP2009159768A (en) Voltage equalizer
US8288993B2 (en) Battery charging controller and battery balance charging controller
US8299755B2 (en) Battery balance charging controller for making one battery having lower voltage out of batteries connected in series to receive greater charging current and battery charging controlling apparatus using the same
US10594146B2 (en) Battery control circuit for multiple cells employing level shift circuits to avoid fault
US9048668B2 (en) Charger
JP4858378B2 (en) Cell voltage monitoring device for multi-cell series batteries
US7408325B2 (en) Battery charging method
US7863863B2 (en) Multi-cell battery pack charge balance circuit
TWI496382B (en) Circuit, controller and method for cell balancing
US20100194345A1 (en) Multi-cell battery pack protection circuit
KR101660542B1 (en) Charging and discharging control circuit and charging type power supply device
US8941360B2 (en) Battery state monitoring circuit and battery device
US20090315515A1 (en) Battery charging controller and battery module using the same
US20130057224A1 (en) Control system of battery pack and method of charging and discharging using the same
CN102751749B (en) Charging finishing time determines that method, charging finishing time determine device and battery component
CN104917223A (en) Battery monitoring device
WO2013161512A1 (en) Charge control apparatus and charge control method
JP2001186684A (en) Lithium ion battery charger
CN105098872A (en) Charge and discharge control circuit and battery device
JPWO2014192134A1 (en) Battery monitoring device
KR102349705B1 (en) Battery cell balancing circuit and apparatus and method for balancing of a battery cell for using the same
US8922218B2 (en) Detection circuits for batteries
JP2016040999A (en) Charged state equalization method of storage battery device
WO2019069971A1 (en) Assembled battery
CN105098873A (en) Charge and discharge control circuit and battery device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090925

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090925

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100608