JP2016224235A - 変倍光学系、光学装置、変倍光学系の製造方法 - Google Patents

変倍光学系、光学装置、変倍光学系の製造方法 Download PDF

Info

Publication number
JP2016224235A
JP2016224235A JP2015110081A JP2015110081A JP2016224235A JP 2016224235 A JP2016224235 A JP 2016224235A JP 2015110081 A JP2015110081 A JP 2015110081A JP 2015110081 A JP2015110081 A JP 2015110081A JP 2016224235 A JP2016224235 A JP 2016224235A
Authority
JP
Japan
Prior art keywords
lens
lens group
optical system
variable magnification
magnification optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015110081A
Other languages
English (en)
Other versions
JP6623559B2 (ja
Inventor
鈴木 剛司
Takeshi Suzuki
剛司 鈴木
健 上原
Takeshi Uehara
健 上原
幸介 町田
Kosuke Machida
幸介 町田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2015110081A priority Critical patent/JP6623559B2/ja
Publication of JP2016224235A publication Critical patent/JP2016224235A/ja
Application granted granted Critical
Publication of JP6623559B2 publication Critical patent/JP6623559B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lenses (AREA)
  • Adjustment Of Camera Lenses (AREA)

Abstract

【課題】良好な光学性能を備えた変倍光学系、光学装置、変倍光学系の製造方法を提供する。
【解決手段】物体側から順に、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とを有し、第2レンズ群G2が負レンズを含み、広角端状態と望遠端状態との間での変倍時に、レンズ群G1〜G4同士の間隔が変化し、合焦時に、第2レンズ群G2中の前記負レンズが合焦レンズ群として移動する。
【選択図】図1

Description

本発明は、変倍光学系、光学装置、変倍光学系の製造方法に関する。
従来、写真用カメラ、電子スチルカメラ、ビデオカメラ等に適した変倍光学系が提案されている(例えば、特許文献1を参照。)。しかしながら、特許文献1のような変倍光学系は、光学性能が不十分であるという問題があった。
特開2014−32358号公報
本発明は、
物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有し、
前記第2レンズ群が負レンズを含み、
広角端状態と望遠端状態との間での変倍時に、前記レンズ群同士の間隔が変化し、
合焦時に、前記第2レンズ群中の前記負レンズが合焦レンズ群として移動する変倍光学系を提供する。
また本発明は、
物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有する変倍光学系の製造方法であって、
前記第2レンズ群が負レンズを含むようにし、
広角端状態と望遠端状態との間での変倍時に、前記レンズ群同士の間隔が変化するようにし、
合焦時に、前記第2レンズ群中の前記負レンズが合焦レンズ群として移動するようにする変倍光学系の製造方法を提供する。
第1実施例に係る変倍光学系の広角端状態の断面図である。 (a)、(b)及び(c)はそれぞれ、第1実施例に係る変倍光学系の広角端状態、中間焦点距離状態及び望遠端状態における無限遠物体合焦時の諸収差図である。 第2実施例に係る変倍光学系の広角端状態の断面図である。 (a)、(b)及び(c)はそれぞれ、第2実施例に係る変倍光学系の広角端状態、中間焦点距離状態及び望遠端状態における無限遠物体合焦時の諸収差図である。 第3実施例に係る変倍光学系の広角端状態の断面図である。 (a)、(b)及び(c)はそれぞれ、第3実施例に係る変倍光学系の広角端状態、中間焦点距離状態及び望遠端状態における無限遠物体合焦時の諸収差図である。 第4実施例に係る変倍光学系の広角端状態の断面図である。 (a)、(b)及び(c)はそれぞれ、第4実施例に係る変倍光学系の広角端状態、中間焦点距離状態及び望遠端状態における無限遠物体合焦時の諸収差図である。 第5実施例に係る変倍光学系の広角端状態の断面図である。 (a)、(b)及び(c)はそれぞれ、第5実施例に係る変倍光学系の広角端状態、中間焦点距離状態及び望遠端状態における無限遠物体合焦時の諸収差図である。 第6実施例に係る変倍光学系の広角端状態の断面図である。 (a)、(b)及び(c)はそれぞれ、第6実施例に係る変倍光学系の広角端状態、中間焦点距離状態及び望遠端状態における無限遠物体合焦時の諸収差図である。 第7実施例に係る変倍光学系の広角端状態の断面図である。 (a)、(b)及び(c)はそれぞれ、第7実施例に係る変倍光学系の広角端状態、中間焦点距離状態及び望遠端状態における無限遠物体合焦時の諸収差図である。 変倍光学系を備えたカメラの構成を示す図である。 変倍光学系の製造方法の概略を示す図である。
以下、本願の変倍光学系、光学装置及び変倍光学系の製造方法について説明する。
本願の変倍光学系は、物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有し、前記第2レンズ群が負レンズを含み、広角端状態と望遠端状態との間での変倍時に、前記レンズ群同士の間隔が変化し、合焦時に、前記第2レンズ群中の前記負レンズが合焦レンズ群として移動する。
上記のように本願の変倍光学系は、合焦時に、前記第2レンズ群中の前記負レンズが合焦レンズ群として移動する。この構成により、合焦レンズ群の径を比較的小さくでき、かつレンズ枚数を少なくできる。したがって、本願の変倍光学系の小型軽量化と合焦動作の静音化を達成することができる。また、負の屈折力を有する合焦レンズ群で合焦を行うことにより、合焦時の球面収差や像面湾曲等の諸収差の変動を良好に補正することができる。
以上の構成により、良好な光学性能を備えた変倍光学系を実現することができる。
また本願の変倍光学系は、以下の条件式(1)を満足することが望ましい。
(1) 0.60<(−f1)/f2<1.10
ただし、
f1:前記第1レンズ群の焦点距離
f2:前記第2レンズ群の焦点距離
条件式(1)は第1レンズ群の焦点距離に対する第2レンズ群の焦点距離を規定するものである。本願の変倍光学系は、条件式(1)を満足することにより、小型化を図りながら、望遠端状態における球面収差や像面湾曲、広角端状態における像面湾曲を良好に補正することができる。本願の変倍光学系の条件式(1)の対応値が下限値を下回ると、第1レンズ群の焦点距離が小さくなるとともに第2レンズ群の焦点距離が大きくなる。これにより、望遠端状態において球面収差や像面湾曲を補正することが困難になってしまう。なお、本願の効果を確実にするために、条件式(1)の下限値を0.70とすることが好ましい。一方、本願の変倍光学系の条件式(1)の対応値が上限値を上回ると、第1レンズ群の焦点距離が大きくなるとともに第2レンズ群の焦点距離が小さくなる。これにより、本願の変倍光学系の全長が大きくなり、広角端状態において像面湾曲を補正することが困難になってしまう。なお、本願の効果を確実にするために、条件式(1)の上限値を1.00とすることが好ましい。
また本願の変倍光学系は、以下の条件式(2)を満足することが望ましい。
(2) 1.50<(−fF)/f2<3.00
ただし、
f2:前記第2レンズ群の焦点距離
fF:前記合焦レンズ群の焦点距離
条件式(2)は合焦レンズ群の焦点距離に対する第2レンズ群の焦点距離を規定するものである。本願の変倍光学系は、条件式(2)を満足することにより、小型化を図りながら望遠端状態における球面収差や広角端状態における像面湾曲を良好に補正することができる。本願の変倍光学系の条件式(2)の対応値が下限値を下回ると、合焦レンズ群の焦点距離が小さくなるとともに第2レンズ群の焦点距離が大きくなる。これにより、望遠端状態において球面収差を補正することが困難になってしまう。なお、本願の効果を確実にするために、条件式(2)の下限値を1.70とすることが好ましい。一方、本願の変倍光学系の条件式(2)の対応値が上限値を上回ると、合焦レンズ群の焦点距離が大きくなるとともに第2レンズ群の焦点距離が小さくなる。これにより、第1〜第3レンズ群の径が大きくなり、広角端状態において像面湾曲を補正することが困難になってしまう。なお、本願の効果を確実にするために、条件式(2)の上限値を2.80とすることが好ましい。
また本願の変倍光学系は、以下の条件式(3)を満足することが望ましい。
(3) 0.33<(−f1)/f4<0.70
ただし、
f1:前記第1レンズ群の焦点距離
f4:前記第4レンズ群の焦点距離
条件式(3)は第1レンズ群の焦点距離に対する第4レンズ群の焦点距離を規定するものである。本願の変倍光学系は、条件式(3)を満足することにより、小型化を図りながら、望遠端状態における球面収差や像面湾曲、広角端状態における像面湾曲を良好に補正することができる。本願の変倍光学系の条件式(3)の対応値が下限値を下回ると、第1レンズ群の焦点距離が小さくなるとともに第4レンズ群の焦点距離が大きくなる。これにより、望遠端状態において球面収差や像面湾曲を補正することが困難になってしまう。なお、本願の効果を確実にするために、条件式(3)の下限値を0.40とすることが好ましい。一方、本願の変倍光学系の条件式(3)の対応値が上限値を上回ると、第1レンズ群の焦点距離が大きくなるとともに第4レンズ群の焦点距離が小さくなる。これにより、本願の変倍光学系の全長が大きくなり、広角端状態において像面湾曲を補正することが困難になってしまう。なお、本願の効果を確実にするために、条件式(3)の上限値を0.60とすることが好ましい。
また本願の変倍光学系は、前記第2レンズ群中の最も物体側のレンズ成分が光軸に対して垂直な方向の成分を含むように移動することが望ましい。この構成により、手ぶれや振動等に起因する像ぶれの補正即ち防振を行うことができる。また、変倍時に像面湾曲の変動を効果的かつ効率的に補正することができる。なお、本明細書においてレンズ成分とは単レンズ又は接合レンズをいう。
また本願の変倍光学系は、前記第1レンズ群が2つから4つのレンズ成分からなることが望ましい。この構成により、諸収差、特に球面収差、像面湾曲及び歪曲収差の補正と、本願の変倍光学系の小型化とを両立することができる。
また本願の変倍光学系は、前記第1レンズ群が少なくとも1枚の正レンズを有することが好ましい。この構成により、諸収差、特に球面収差、像面湾曲及び歪曲収差を良好に補正することができる。
また本願の変倍光学系は、前記第1レンズ群と最も像側のレンズ群の少なくとも一方が非球面を備えることが望ましい。この構成により、コマ収差を補正することができる。
また本願の変倍光学系は、前記第1レンズ群中のレンズ成分が非球面を備えることが望ましい。この構成により、広角端状態における像面湾曲や望遠端状態における球面収差をより効率的に補正することができる。特に、本願の変倍光学系は、第1レンズ群中の最も物体側のレンズの像側のレンズ面を非球面とすることが望ましい。この構成により、歪曲収差を補正し、低コストや小型化を図ることができる。第1レンズ群中の最も物体側のレンズは、負メニスカスレンズであることが望ましい。この構成により、前玉径(最も物体側のレンズ面の径)を小さくすることができる。
また本願の変倍光学系は、第1レンズ群が接合レンズを有することが望ましい。この構成により、広角端状態において各波長のコマ収差を効果的に補正することができる。また、当該接合レンズは全体として物体側に凸面を向けたメニスカス形状又は両凹形状であることが望ましい。当該接合レンズは物体側から順に負レンズと正レンズとからなることが望ましい。当該接合レンズ中の負レンズはメニスカス形状であることが望ましい。当該接合レンズ中の正レンズはメニスカス形状であることが望ましい。これらの条件を当該接合レンズがより多く満足するほど、当該接合レンズでの収差の発生が少なくなり、また高い取り付け精度が必要ないため製造上の無駄がない。
また本願の変倍光学系は、最も像側のレンズ群中にプラスチックレンズを備えることが好ましい。これにより、低コスト化を図ることができる。また、プラスチックレンズには非球面をコストアップすることなく設けることができ、これによってコマ収差を良好に補正することができる。なお、本願の変倍光学系を交換レンズとした場合、最も像側のレンズは使用者が簡単に触れることができるため、プラスチックレンズに比して耐久性の高いガラスレンズにすることが望ましい。
また本願の変倍光学系は、第2レンズ群が、物体側から順に、前群、中群及び後群からなり、合焦時に中群が合焦レンズ群として光軸に沿って移動することが望ましい。特に、前群が正の屈折力を有し、中群が負の屈折力を有し、後群が正の屈折力を有することが望ましい。
本願の光学装置は、上述した構成の変倍光学系を有する。これにより、良好な光学性能を備えた光学装置を実現することができる。
本願の変倍光学系の製造方法は、物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有する変倍光学系の製造方法であって、前記第2レンズ群が負レンズを含むようにし、広角端状態と望遠端状態との間での変倍時に、前記レンズ群同士の間隔が変化するようにし、合焦時に、前記第2レンズ群中の前記負レンズが合焦レンズ群として移動するようにする。これにより、良好な光学性能を備えた変倍光学系を製造することができる。
以下、本願の数値実施例に係る変倍光学系を添付図面に基づいて説明する。
(第1実施例)
図1は本願の第1実施例に係る変倍光学系の広角端状態における断面図である。なお、図1及び後述する図3、図5、図7、図9、図11及び図13中の矢印は、広角端状態(W)から望遠端状態(T)への変倍時の各レンズ群の移動軌跡を示している。
本実施例に係る変倍光学系は、物体側から順に、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とから構成されている。なお、第2レンズ群G2と第3レンズ群G3の間には、開口絞りSが配置されている。
第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と、両凹形状の負レンズL12と物体側に凸面を向けた正メニスカスレンズL13との接合レンズとからなる。なお、負メニスカスレンズL11の像側のレンズ面は非球面である。
第2レンズ群G2は、物体側から順に、両凸形状の正レンズL21と、物体側に凹面を向けた負メニスカスレンズL22と、両凸形状の正レンズL23と、両凸形状の正レンズL24と物体側に凹面を向けた負メニスカスレンズL25との接合レンズとからなる。
第3レンズ群G3は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL31と両凹形状の負レンズL32との接合レンズからなる。
第4レンズ群G4は、物体側から順に、物体側に凸面を向けた正メニスカスレンズL41と、物体側に凹面を向けた正メニスカスレンズL42とからなる。なお、正メニスカスレンズL41はプラスチックレンズであり、正メニスカスレンズL42の像側のレンズ面は非球面である。
本実施例に係る変倍光学系では、広角端状態から望遠端状態への変倍時に、第1レンズ群G1と第2レンズ群G2との空気間隔、第2レンズ群G2と第3レンズ群G3との空気間隔、及び第3レンズ群G3と第4レンズ群G4との空気間隔が変化するように、第1〜第4レンズ群G1〜G4が光軸に沿って移動する。詳しくは、変倍時に第2、第4レンズ群G2、G4は一体的に移動する。なお、変倍時に開口絞りSは第2レンズ群G2と一体的に移動する。
本実施例に係る変倍光学系では、第2レンズ群G2中の負メニスカスレンズL22を光軸に沿って物体側へ移動させることにより無限遠物体から近距離物体への合焦を行う。
本実施例に係る変倍光学系では、第2レンズ群G2中の正レンズL21を光軸に対して垂直な方向の成分を含むように移動させることにより防振を行う。
以下の表1に、本実施例に係る変倍光学系の諸元の値を掲げる。
表1において、fは焦点距離、Bfはバックフォーカス即ち最も像側のレンズ面と像面との光軸上の距離を示す。
[面データ]において、面番号は物体側から数えた光学面の順番、rは曲率半径、dは面間隔(第n面(nは整数)と第n+1面との間隔)、ndはd線(波長587.6nm)に対する屈折率、νdはd線(波長587.6nm)に対するアッベ数をそれぞれ示している。物面は物体面、可変は可変の面間隔、絞りSは開口絞りSをそれぞれ示している。なお、曲率半径r=∞は平面を示している。非球面は面番号に「*」を付して曲率半径rの欄に近軸曲率半径の値を示している。
[非球面データ]には、[面データ]に示した非球面について、その形状を次式で表した場合の非球面係数及び円錐定数を示す。
x=(h/r)/[1+{1−κ(h/r)1/2]+A4h+A6h+A8h
ここで、hを光軸に垂直な方向の高さ、xを高さhにおける非球面の頂点の接平面から当該非球面までの光軸方向に沿った距離(サグ量)、κを円錐定数、A4,A6,A8を非球面係数、rを基準球面の曲率半径(近軸曲率半径)とする。なお、「E−n」(nは整数)は「×10−n」を示し、例えば「1.23456E-07」は「1.23456×10−7」を示す。2次の非球面係数A2は0であり、記載を省略している。
[各種データ]において、FNOはFナンバー、2ωは画角(単位は「°」)、Yは像高、TLは本実施例に係る変倍光学系の全長即ち第1面から像面までの光軸上の距離、dnは第n面と第n+1面との可変の間隔をそれぞれ示す。なお、Wは広角端状態、Mは中間焦点距離状態、Tは望遠端状態をそれぞれ示す。
[レンズ群データ]には、各レンズ群の始面と焦点距離を示す。
[条件式対応値]には、本実施例に係る変倍光学系の各条件式の対応値を示す。
ここで、表1に掲載されている焦点距離f、曲率半径r及びその他の長さの単位は一般に「mm」が使われる。しかしながら光学系は、比例拡大又は比例縮小しても同等の光学性能が得られるため、これに限られるものではない。
なお、以上に述べた表1の符号は、後述する各実施例の表においても同様に用いるものとする。
(表1)第1実施例
[面データ]
面番号 r d nd νd
物面 ∞
1 70.11 2.00 1.58913 61.22
2 18.88 0.17 1.56093 36.64
*3 17.05 9.35 1.00000
4 -2481.05 1.40 1.62299 58.12
5 18.03 5.00 1.84666 23.80
6 32.74 可変 1.00000
7 90.12 1.65 1.48749 70.31
8 -48.23 6.23 1.00000
9 -30.43 0.80 1.77250 49.62
10 -87.64 2.96 1.00000
11 43.72 3.05 1.48749 70.31
12 -32.08 0.10 1.00000
13 25.50 4.20 1.48749 70.31
14 -25.50 0.80 1.84666 23.80
15 -60.79 0.75 1.00000
16(絞りS) ∞ 可変 1.00000
17 -44.35 2.27 1.75520 27.57
18 -13.14 0.80 1.70154 41.02
19 38.98 可変 1.00000
20 81.93 1.30 1.52444 56.21
21 91.62 1.60 1.00000
22 -93.48 2.30 1.51680 63.88
*23 -21.95 Bf 1.00000
像面 ∞
[非球面データ]
面番号 κ A4 A6 A8 A10
3 0.0000 1.67499E-05 2.00068E-08 -5.26097E-12 2.70529E-13
23 0.0000 2.72442E-05 8.63364E-08 -1.90704E-09 1.39737E-11
[各種データ]
変倍比 2.89
W M T
f 18.50 35.00 53.40
FNO 3.65 4.65 5.96
2ω 80.64 45.85 30.71
TL 132.42 126.38 134.26
Y 14.25 14.25 14.25
d6 33.51 11.32 3.41
d16 1.70 5.67 9.57
d19 9.07 5.10 1.20
Bf 41.41 57.56 73.36
[レンズ群データ]
群 始面 f
1 1 -23.01
2 7 24.76
3 17 -31.50
4 20 53.25
[条件式対応値]
(1) (−f1)/f2 = 0.9293
(2) (−fF)/f2 = 2.5
(3) (−f1)/f4 = 0.4321
図2(a)、図2(b)及び図2(c)はそれぞれ、本願の第1実施例に係る変倍光学系の広角端状態、中間焦点距離状態及び望遠端状態における無限遠物体合焦時の諸収差図である。
各収差図において、FNOはFナンバー、Yは像高をそれぞれ示す。詳しくは、球面収差図では最大口径に対応するFナンバーFNOの値を示し、非点収差図及び歪曲収差図では像高Yの最大値をそれぞれ示し、コマ収差図では各像高の値を示す。また、各収差図において、dはd線(波長587.6nm)、gはg線(波長435.8nm)における収差をそれぞれ示す。非点収差図において、実線はサジタル像面、破線はメリディオナル像面をそれぞれ示す。コマ収差図は、各像高Yにおけるコマ収差を示す。なお、後述する各実施例の収差図においても、本実施例と同様の符号を用いる。
各収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第2実施例)
図3は本願の第2実施例に係る変倍光学系の広角端状態における断面図である。
本実施例に係る変倍光学系は、物体側から順に、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とから構成されている。なお、第2レンズ群G2と第3レンズ群G3の間には、開口絞りSが配置されている。
第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と、物体側に凸面を向けた負メニスカスレンズL12と物体側に凸面を向けた正メニスカスレンズL13との接合レンズとからなる。なお、負メニスカスレンズL11の像側のレンズ面は非球面である。
第2レンズ群G2は、物体側から順に、両凸形状の正レンズL21と、物体側に凹面を向けた負メニスカスレンズL22と、両凸形状の正レンズL23と、両凸形状の正レンズL24と、物体側に凹面を向けた負メニスカスレンズL25とからなる。
第3レンズ群G3は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL31と両凹形状の負レンズL32との接合レンズからなる。
第4レンズ群G4は、物体側から順に、物体側に凸面を向けた正メニスカスレンズL41と、物体側に凹面を向けた正メニスカスレンズL42とからなる。なお、正メニスカスレンズL41はプラスチックレンズであり、正メニスカスレンズL42の像側のレンズ面は非球面である。
本実施例に係る変倍光学系では、広角端状態から望遠端状態への変倍時に、第1レンズ群G1と第2レンズ群G2との空気間隔、第2レンズ群G2と第3レンズ群G3との空気間隔、及び第3レンズ群G3と第4レンズ群G4との空気間隔が変化するように、第1〜第4レンズ群G1〜G4が光軸に沿って移動する。詳しくは、変倍時に第2、第4レンズ群G2、G4は一体的に移動する。なお、変倍時に開口絞りSは第2レンズ群G2と一体的に移動する。
本実施例に係る変倍光学系では、第2レンズ群G2中の負メニスカスレンズL22を光軸に沿って物体側へ移動させることにより無限遠物体から近距離物体への合焦を行う。
本実施例に係る変倍光学系では、第2レンズ群G2中の正レンズL21を光軸に対して垂直な方向の成分を含むように移動させることにより防振を行う。
以下の表2に、本実施例に係る変倍光学系の諸元の値を掲げる。
(表2)第2実施例
[面データ]
面番号 r d nd νd
物面 ∞
1 77.10 2.00 1.58913 61.22
2 18.88 0.17 1.56093 36.64
3 17.05 9.35 1.00000
4 534.62 1.40 1.62299 58.12
5 18.71 5.00 1.84666 23.80
6 32.74 可変 1.00000
7 88.62 1.65 1.48749 70.31
8 -48.23 0.00 1.00000
9 -28.98 0.80 1.77250 49.62
10 -87.64 2.96 1.00000
11 44.36 3.05 1.48749 70.31
12 -33.31 0.10 1.00000
13 24.99 4.20 1.49782 82.57
14 -25.35 0.50 1.00000
15 -24.49 0.80 1.85026 32.35
16 -60.43 0.75 1.00000
17(絞りS) ∞ 可変 1.00000
18 -55.04 2.27 1.75520 27.57
19 -20.28 0.80 1.70154 41.02
20 38.98 可変 1.00000
21 81.93 1.30 1.52444 56.21
22 91.62 1.60 1.00000
23 -84.15 2.30 1.51680 63.88
24 -21.95 Bf 1.00000
像面 ∞
[非球面データ]
面番号 κ A4 A6 A8 A10
3 0.0000 1.55471E-05 2.80770E-08 -3.49740E-11 2.62530E-13
24 0.0000 2.36026E-05 2.68745E-07 -5.43216E-09 3.82798E-11
[各種データ]
変倍比 2.89
W M T
f 18.50 35.00 53.40
FNO 3.65 4.60 6.01
2ω 80.77 45.80 30.69
TL 131.27 125.73 134.21
Y 14.25 14.25 14.25
d6 33.51 11.32 3.41
d17 1.70 5.67 9.57
d20 9.07 5.10 1.20
Bf 39.77 56.41 72.81
[レンズ群データ]
群 始面 f
1 1 -23.18
2 7 25.27
3 18 -33.97
4 21 54.97
[条件式対応値]
(1) (−f1)/f2 = 0.9171
(2) (−fF)/f2 = 2.2
(3) (−f1)/f4 = 0.4216
図4(a)、図4(b)及び図4(c)はそれぞれ、本願の第2実施例に係る変倍光学系の広角端状態、中間焦点距離状態及び望遠端状態における無限遠物体合焦時の諸収差図である。
各収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第3実施例)
図5は本願の第3実施例に係る変倍光学系の広角端状態における断面図である。
本実施例に係る変倍光学系は、物体側から順に、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とから構成されている。なお、第2レンズ群G2と第3レンズ群G3の間には、開口絞りSが配置されている。
第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と、物体側に凸面を向けた負メニスカスレンズL12と物体側に凸面を向けた正メニスカスレンズL13との接合レンズとからなる。なお、負メニスカスレンズL11の像側のレンズ面は非球面である。
第2レンズ群G2は、物体側から順に、両凸形状の正レンズL21と、物体側に凹面を向けた負メニスカスレンズL22と、両凸形状の正レンズL23と、両凸形状の正レンズL24と、物体側に凹面を向けた負メニスカスレンズL25とからなる。
第3レンズ群G3は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL31と両凹形状の負レンズL32との接合レンズからなる。
第4レンズ群G4は、物体側から順に、両凸形状の正レンズL41と、物体側に凹面を向けた正メニスカスレンズL42とからなる。なお、正レンズL41はプラスチックレンズであり、正メニスカスレンズL42の像側のレンズ面は非球面である。
本実施例に係る変倍光学系では、広角端状態から望遠端状態への変倍時に、第1レンズ群G1と第2レンズ群G2との空気間隔、第2レンズ群G2と第3レンズ群G3との空気間隔、及び第3レンズ群G3と第4レンズ群G4との空気間隔が変化するように、第1〜第4レンズ群G1〜G4が光軸に沿って移動する。詳しくは、変倍時に第2、第4レンズ群G2、G4は一体的に移動する。なお、変倍時に開口絞りSは第2レンズ群G2と一体的に移動する。
本実施例に係る変倍光学系では、第2レンズ群G2中の負メニスカスレンズL22を光軸に沿って物体側へ移動させることにより無限遠物体から近距離物体への合焦を行う。
本実施例に係る変倍光学系では、第2レンズ群G2中の正レンズL21を光軸に対して垂直な方向の成分を含むように移動させることにより防振を行う。
以下の表3に、本実施例に係る変倍光学系の諸元の値を掲げる。
(表3)第3実施例
[面データ]
面番号 r d nd νd
物面 ∞
1 71.53 2.00 1.58913 61.22
2 18.88 0.17 1.56093 36.64
*3 17.05 9.35 1.00000
4 442.27 1.40 1.62299 58.12
5 18.94 5.00 1.84666 23.80
6 32.74 可変 1.00000
7 58.18 1.65 1.48749 70.31
8 -48.23 0.00 1.00000
9 -27.12 0.80 1.77250 49.62
10 -87.64 2.96 1.00000
11 44.86 3.05 1.48749 70.31
12 -35.37 0.10 1.00000
13 26.42 4.20 1.49782 82.57
14 -24.88 0.50 1.00000
15 -24.79 0.80 1.85026 32.35
16 -60.43 0.75 1.00000
17(絞りS) ∞ 可変 1.00000
18 -66.48 2.27 1.75520 27.57
19 -23.38 0.80 1.70154 41.02
20 38.98 可変 1.00000
21 135.53 1.30 1.52444 56.21
22 -100.00 1.60 1.00000
23 -34.76 2.30 1.51680 63.88
*24 -21.95 Bf 1.00000
像面 ∞
[非球面データ]
面番号 κ A4 A6 A8 A10
3 0.0000 1.58111E-05 3.32055E-08 -6.52732E-11 3.07200E-13
24 0.0000 2.92777E-05 -5.70229E-08 5.23833E-09 -5.90093E-11
[各種データ]
変倍比 2.89
W M T
f 18.50 35.00 53.40
FNO 3.61 4.46 5.83
2ω 80.59 45.84 30.70
TL 128.48 123.03 131.75
Y 14.25 14.25 14.25
d6 33.51 11.32 3.41
d17 1.70 5.67 9.57
d20 9.07 5.10 1.20
Bf 36.97 53.72 70.34
[レンズ群データ]
群 始面 f
1 1 -23.66
2 7 25.83
3 18 -36.53
4 21 56.12
[条件式対応値]
(1) (−f1)/f2 = 0.9161
(2) (−fF)/f2 = 2.0
(3) (−f1)/f4 = 0.4216
図6(a)、図6(b)及び図6(c)はそれぞれ、本願の第3実施例に係る変倍光学系の広角端状態、中間焦点距離状態及び望遠端状態における無限遠物体合焦時の諸収差図である。
各収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第4実施例)
図7は本願の第4実施例に係る変倍光学系の広角端状態における断面図である。
本実施例に係る変倍光学系は、物体側から順に、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とから構成されている。なお、第2レンズ群G2と第3レンズ群G3の間には、開口絞りSが配置されている。
第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と、物体側に凸面を向けた負メニスカスレンズL12と物体側に凸面を向けた正メニスカスレンズL13との接合レンズとからなる。なお、負メニスカスレンズL11の像側のレンズ面は非球面である。
第2レンズ群G2は、物体側から順に、両凸形状の正レンズL21と、物体側に凹面を向けた負メニスカスレンズL22と、両凸形状の正レンズL23と、両凸形状の正レンズL24と物体側に凹面を向けた負メニスカスレンズL25との接合レンズとからなる。
第3レンズ群G3は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL31と両凹形状の負レンズL32との接合レンズからなる。
第4レンズ群G4は、物体側から順に、物体側に凸面を向けた正メニスカスレンズL41と、物体側に凹面を向けた正メニスカスレンズL42とからなる。なお、正メニスカスレンズL41はプラスチックレンズであり、像側のレンズ面が非球面である。
本実施例に係る変倍光学系では、広角端状態から望遠端状態への変倍時に、第1レンズ群G1と第2レンズ群G2との空気間隔、第2レンズ群G2と第3レンズ群G3との空気間隔、及び第3レンズ群G3と第4レンズ群G4との空気間隔が変化するように、第1〜第4レンズ群G1〜G4が光軸に沿って移動する。詳しくは、変倍時に第2、第4レンズ群G2、G4は一体的に移動する。なお、変倍時に開口絞りSは第2レンズ群G2と一体的に移動する。
本実施例に係る変倍光学系では、第2レンズ群G2中の負メニスカスレンズL22を光軸に沿って物体側へ移動させることにより無限遠物体から近距離物体への合焦を行う。
本実施例に係る変倍光学系では、第2レンズ群G2中の正レンズL21を光軸に対して垂直な方向の成分を含むように移動させることにより防振を行う。
以下の表4に、本実施例に係る変倍光学系の諸元の値を掲げる。
(表4)第4実施例
[面データ]
面番号 r d nd νd
物面 ∞
1 56.54 2.00 1.58913 61.22
2 18.89 0.17 1.56093 36.64
*3 17.07 9.80 1.00000
4 4680.27 1.40 1.62299 58.12
5 17.59 5.00 1.84666 23.80
6 32.17 可変 1.00000
7 314.41 1.65 1.48749 70.31
8 -43.40 6.28 1.00000
9 -33.68 0.80 1.77250 49.62
10 -108.08 3.13 1.00000
11 41.57 3.05 1.48749 70.31
12 -34.99 0.10 1.00000
13 25.27 4.20 1.48749 70.31
14 -26.52 0.80 1.84666 23.80
15 -67.76 0.75 1.00000
16(絞りS) ∞ 可変 1.00000
17 -45.11 2.27 1.75520 27.57
18 -14.01 0.80 1.70154 41.02
19 39.30 可変 1.00000
20 121.72 1.30 1.53110 55.91
*21 199.72 1.60 1.00000
22 -110.04 2.30 1.51680 63.88
23 -21.37 Bf 1.00000
像面 ∞
[非球面データ]
面番号 κ A4 A6 A8 A10
3 0.0000 1.62830E-05 4.23083E-08 -1.01669E-10 4.96506E-13
21 0.0000 2.44938E-05 4.06380E-08 -6.00632E-10 2.19027E-12
[各種データ]
変倍比 2.89
W M T
f 18.50 35.00 53.40
FNO 3.63 4.61 5.88
2ω 80.56 45.83 30.69
TL 136.02 128.87 136.72
Y 14.25 14.25 14.25
d6 34.08 10.90 2.85
d16 1.61 5.51 9.36
d19 9.05 5.14 1.29
Bf 43.89 59.91 75.81
[レンズ群データ]
群 始面 f
1 1 -24.60
2 7 26.10
3 17 -32.08
4 20 47.21
[条件式対応値]
(1) (−f1)/f2 = 0.9427
(2) (−fF)/f2 = 0.8136
(3) (−f1)/f4 = 0.5212
図8(a)、図8(b)及び図8(c)はそれぞれ、本願の第4実施例に係る変倍光学系の広角端状態、中間焦点距離状態及び望遠端状態における無限遠物体合焦時の諸収差図である。
各収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第5実施例)
図9は本願の第5実施例に係る変倍光学系の広角端状態における断面図である。
本実施例に係る変倍光学系は、物体側から順に、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とから構成されている。なお、第2レンズ群G2と第3レンズ群G3の間には、開口絞りSが配置されている。
第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と、物体側に凸面を向けた負メニスカスレンズL12と物体側に凸面を向けた正メニスカスレンズL13との接合レンズとからなる。なお、負メニスカスレンズL11の像側のレンズ面は非球面である。
第2レンズ群G2は、物体側から順に、両凸形状の正レンズL21と、物体側に凹面を向けた負メニスカスレンズL22と、両凸形状の正レンズL23と、両凸形状の正レンズL24と物体側に凹面を向けた負メニスカスレンズL25との接合レンズとからなる。
第3レンズ群G3は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL31と両凹形状の負レンズL32との接合レンズからなる。
第4レンズ群G4は、物体側から順に、物体側に凸面を向けた正メニスカスレンズL41と、物体側に凹面を向けた正メニスカスレンズL42とからなる。なお、正メニスカスレンズL41はプラスチックレンズであり、正メニスカスレンズL42の像側のレンズ面は非球面である。
本実施例に係る変倍光学系では、広角端状態から望遠端状態への変倍時に、第1レンズ群G1と第2レンズ群G2との空気間隔、第2レンズ群G2と第3レンズ群G3との空気間隔、及び第3レンズ群G3と第4レンズ群G4との空気間隔が変化するように、第1〜第4レンズ群G1〜G4が光軸に沿って移動する。詳しくは、変倍時に第2、第4レンズ群G2、G4は一体的に移動する。なお、変倍時に開口絞りSは第2レンズ群G2と一体的に移動する。
本実施例に係る変倍光学系では、第2レンズ群G2中の負メニスカスレンズL22を光軸に沿って物体側へ移動させることにより無限遠物体から近距離物体への合焦を行う。
本実施例に係る変倍光学系では、第2レンズ群G2中の正レンズL21を光軸に対して垂直な方向の成分を含むように移動させることにより防振を行う。
以下の表5に、本実施例に係る変倍光学系の諸元の値を掲げる。
(表5)第5実施例
[面データ]
面番号 r d nd νd
物面 ∞
1 76.10 1.30 1.51680 63.88
2 19.00 0.15 1.56093 36.64
*3 17.00 10.80 1.00000
4 352.67 1.20 1.63854 55.34
5 18.36 5.00 1.84666 23.80
6 33.84 可変 1.00000
7 120.63 1.70 1.48749 70.31
8 -59.23 0.00 1.00000
9 -35.23 0.79 1.77250 49.62
10 -98.25 1.50 1.00000
11 136.12 2.80 1.48749 70.31
12 -27.24 0.10 1.00000
13 19.98 4.00 1.48749 70.31
14 -36.18 0.80 1.84666 23.80
15 -160.37 0.75 1.00000
16(絞りS) ∞ 可変 1.00000
17 -46.91 2.10 1.75520 27.57
18 -15.49 0.75 1.70154 41.02
19 40.10 可変 1.00000
20 85.01 1.37 1.52444 56.21
21 100.01 1.71 1.00000
22 -176.72 2.30 1.51680 63.88
*23 -21.86 Bf 1.00000
像面 ∞
[非球面データ]
面番号 κ A4 A6 A8 A10
3 0.0000 1.50225E-05 4.72449E-08 -1.16195E-10 4.13814E-13
23 0.0000 2.50198E-05 -1.55055E-08 3.95374E-10 -4.11533E-12
[各種データ]
変倍比 2.89
W M T
f 18.50 35.00 53.40
FNO 3.52 4.55 5.88
2ω 80.58 45.86 30.70
TL 136.43 128.85 136.58
Y 14.25 14.25 14.25
d6 35.48 11.33 2.99
d16 1.70 5.32 9.14
d19 8.68 5.06 1.24
Bf 43.45 60.02 76.10
[レンズ群データ]
群 始面 f
1 1 -25.51
2 7 27.03
3 17 -32.79
4 20 46.32
[条件式対応値]
(1) (−f1)/f2 = 0.9437
(2) (−fF)/f2 = 2.6
(3) (−f1)/f4 = 0.5508
図10(a)、図10(b)及び図10(c)はそれぞれ、本願の第5実施例に係る変倍光学系の広角端状態、中間焦点距離状態及び望遠端状態における無限遠物体合焦時の諸収差図である。
各収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第6実施例)
図11は本願の第6実施例に係る変倍光学系の広角端状態における断面図である。
本実施例に係る変倍光学系は、物体側から順に、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とから構成されている。なお、第2レンズ群G2と第3レンズ群G3の間には、開口絞りSが配置されている。
第1レンズ群G1は、物体側から順に、両凸形状の正レンズL11と、物体側に凸面を向けた負メニスカスレンズL12と、両凹形状の負レンズL13と、物体側に凸面を向けた正メニスカスレンズL14とからなる。
第2レンズ群G2は、物体側から順に、両凸形状の正レンズL21と、物体側に凹面を向けた負メニスカスレンズL22と、両凸形状の正レンズL23と、両凸形状の正レンズL24と物体側に凹面を向けた負メニスカスレンズL25との接合レンズとからなる。
第3レンズ群G3は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL31と両凹形状の負レンズL32との接合レンズからなる。
第4レンズ群G4は、物体側から順に、物体側に凸面を向けた正メニスカスレンズL41と、物体側に凹面を向けた正メニスカスレンズL42とからなる。なお、正メニスカスレンズL41はプラスチックレンズであり、像側のレンズ面が非球面である。
本実施例に係る変倍光学系では、広角端状態から望遠端状態への変倍時に、第1レンズ群G1と第2レンズ群G2との空気間隔、第2レンズ群G2と第3レンズ群G3との空気間隔、及び第3レンズ群G3と第4レンズ群G4との空気間隔が変化するように、第1〜第4レンズ群G1〜G4が光軸に沿って移動する。詳しくは、変倍時に第2、第4レンズ群G2、G4は一体的に移動する。なお、変倍時に開口絞りSは第2レンズ群G2と一体的に移動する。
本実施例に係る変倍光学系では、第2レンズ群G2中の負メニスカスレンズL22を光軸に沿って物体側へ移動させることにより無限遠物体から近距離物体への合焦を行う。
本実施例に係る変倍光学系では、第2レンズ群G2中の正レンズL21を光軸に対して垂直な方向の成分を含むように移動させることにより防振を行う。
以下の表6に、本実施例に係る変倍光学系の諸元の値を掲げる。
(表6)第6実施例
[面データ]
面番号 r d nd νd
物面 ∞
1 145.24 3.75 1.51680 63.88
2 -257.54 0.10 1.00000
3 94.00 1.20 1.63854 55.34
4 17.49 7.20 1.00000
5 -148.30 1.20 1.58913 61.22
6 16.47 0.80 1.00000
7 17.72 4.50 1.84666 23.80
8 33.04 可変 1.00000
9 572.06 1.50 1.51680 63.88
10 -36.19 5.82 1.00000
11 -22.03 0.75 1.58913 61.22
12 -92.04 1.43 1.00000
13 32.40 3.80 1.48749 70.31
14 -23.26 0.10 1.00000
15 31.12 4.35 1.48749 70.31
16 -16.81 0.80 1.75520 27.57
17 -50.80 0.30 1.00000
18(絞りS) ∞ 可変 1.00000
19 -36.94 2.65 1.72825 28.38
20 -11.37 0.90 1.70154 41.02
21 44.81 可変 1.00000
22 97.77 1.37 1.52444 56.21
*23 114.48 1.86 1.00000
24 -177.48 2.30 1.51680 63.88
25 -21.96 Bf 1.00000
像面 ∞
[非球面データ]
面番号 κ A4 A6 A8 A10
25 0.0000 2.37099E-05 5.62451E-08 -1.22140E-09 9.62678E-12
[各種データ]
変倍比 2.89
W M T
f 18.50 35.00 53.40
FNO 3.57 4.57 5.87
2ω 80.82 46.26 30.83
TL 127.78 123.20 131.83
Y 14.25 14.25 14.25
d8 30.62 10.02 2.82
d20 1.68 5.34 8.89
d23 8.37 4.71 1.16
Bf 40.42 56.44 72.28
[レンズ群データ]
群 始面 f
1 1 -22.94
2 9 23.72
3 21 -29.79
4 24 46.80
[条件式対応値]
(1) (−f1)/f2 = 0.9672
(2) (−fF)/f2 = 2.1
(3) (−f1)/f4 = 0.4903
図12(a)、図12(b)及び図12(c)はそれぞれ、本願の第6実施例に係る変倍光学系の広角端状態、中間焦点距離状態及び望遠端状態における無限遠物体合焦時の諸収差図である。
各収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差が良好に補正され、優れた結像性能を有していることがわかる。
(第7実施例)
図13は本願の第7実施例に係る変倍光学系の広角端状態における断面図である。
本実施例に係る変倍光学系は、物体側から順に、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とから構成されている。なお、第2レンズ群G2と第3レンズ群G3の間には、開口絞りSが配置されている。
第1レンズ群G1は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL11と、物体側に凸面を向けた負メニスカスレンズL12と物体側に凸面を向けた正メニスカスレンズL13との接合レンズとからなる。なお、負メニスカスレンズL11の像側のレンズ面は非球面である。
第2レンズ群G2は、物体側から順に、両凸形状の正レンズL21と、両凹形状の負レンズL22と、両凸形状の正レンズL23と、両凸形状の正レンズL24と物体側に凹面を向けた負メニスカスレンズL25との接合レンズとからなる。
第3レンズ群G3は、物体側から順に、物体側に凹面を向けた正メニスカスレンズL31と両凹形状の負レンズL32との接合レンズからなる。
第4レンズ群G4は、物体側から順に、物体側に凸面を向けた負メニスカスレンズL41と、物体側に凹面を向けた正メニスカスレンズL42とからなる。なお、負メニスカスレンズL41はプラスチックレンズであり、像側のレンズ面が非球面である。
第5レンズ群G5は、物体側に凸面を向けた正メニスカスレンズL51からなる。
本実施例に係る変倍光学系では、広角端状態から望遠端状態への変倍時に、第1レンズ群G1と第2レンズ群G2との空気間隔、第2レンズ群G2と第3レンズ群G3との空気間隔、第3レンズ群G3と第4レンズ群G4との空気間隔、及び第4レンズ群G4と第5レンズ群G5との空気間隔が変化するように、第1〜第5レンズ群G1〜G5が光軸に沿って移動する。詳しくは、変倍時に第2、第4レンズ群G2、G4は一体的に移動する。なお、変倍時に開口絞りSは第2レンズ群G2と一体的に移動する。
本実施例に係る変倍光学系では、第2レンズ群G2中の負レンズL22を光軸に沿って物体側へ移動させることにより無限遠物体から近距離物体への合焦を行う。
本実施例に係る変倍光学系では、第2レンズ群G2中の正レンズL21を光軸に対して垂直な方向の成分を含むように移動させることにより防振を行う。
以下の表7に、本実施例に係る変倍光学系の諸元の値を掲げる。
(表7)第7実施例
[面データ]
面番号 r d nd νd
物面 ∞
1 63.24 1.30 1.51680 63.88
2 19.00 0.15 1.56093 36.64
3 17.00 10.80 1.00000
4 579.83 1.20 1.63854 55.34
5 18.23 5.00 1.84666 23.80
6 34.01 可変 1.00000
7 94.91 1.70 1.48749 70.31
8 -68.95 8.00 1.00000
9 -89.64 0.79 1.77250 49.62
10 132.19 1.50 1.00000
11 48.57 2.80 1.48749 70.31
12 -31.30 0.10 1.00000
13 19.96 4.00 1.48749 70.31
14 -45.79 0.80 1.84666 23.80
15 -779.12 0.75 1.00000
16(絞りS) ∞ 可変 1.00000
17 -36.53 2.10 1.75520 27.57
18 -14.19 0.75 1.70154 41.02
19 36.39 可変 1.00000
20 60.93 1.37 1.52444 56.21
21 54.97 1.71 1.00000
22 -256.76 2.30 1.51680 63.88
23 -21.91 可変 1.00000
24 80.00 2.00 1.51680 63.88
25 300.00 Bf 1.00000
像面 ∞
[非球面データ]
面番号 κ A4 A6 A8 A10
3 0.0000 1.58E-05 5.80E-08 -1.74E-10 5.98E-13
21 0.0000 1.87E-05 -1.09E-07 2.49E-09 -2.19E-11
[各種データ]
変倍比 2.91
W M T
f 18.49 35.13 53.83
FNO 3.61 4.55 5.81
2ω 80.65 45.71 30.47
TL 137.91 131.18 139.08
Y 14.25 14.25 14.25
d6 35.87 11.72 3.38
d16 1.86 5.49 9.30
d19 8.89 5.27 1.45
d23 2.66 8.66 11.66
Bf 39.50 50.92 64.16
[レンズ群データ]
群 始面 f
1 1 -26.21
2 7 26.18
3 17 -27.25
4 20 48.35
5 24 210.44
[条件式対応値]
(1) (−f1)/f2 = 1.00
(2) (−fF)/f2 = 2.64
(3) (−f1)/f4 = 0.54
図14(a)、図14(b)及び図14(c)はそれぞれ、本願の第7実施例に係る変倍光学系の広角端状態、中間焦点距離状態及び望遠端状態における無限遠物体合焦時の諸収差図である。
各収差図より、本実施例に係る変倍光学系は、広角端状態から望遠端状態にわたって諸収差が良好に補正され、優れた結像性能を有していることがわかる。
上記各実施例によれば、小型軽量で、変倍時の収差変動を抑え、優れた光学性能を備えた変倍光学系を実現することができる。
なお、上記各実施例は本願発明の一具体例を示しているものであり、本願発明はこれらに限定されるものではない。以下の内容は、本願の変倍光学系の光学性能を損なわない範囲で適宜採用することが可能である。
本願の変倍光学系の数値実施例として4群又は5群構成のものを示したが、本願はこれに限られず、その他の群構成(例えば、6群等)の変倍光学系を構成することもできる。具体的には、上記各実施例の変倍光学系の最も物体側や最も像側にレンズ又はレンズ群を追加した構成でも構わない。また、上記各実施例の変倍光学系の最も像側のレンズ群を2つに分割し、これらの間隔が変倍時に変化する構成としてもよい。
また、上記各実施例の変倍光学系は、いずれも広角端状態から望遠端状態への変倍時に、各レンズ群が光軸に沿って移動する構成である。しかしながら上記各実施例の変倍光学系は、少なくとも1つのレンズ群、例えば最も像側のレンズ群等の位置を固定としてもよい。また、第1レンズ群の広角端状態から望遠端状態への変倍時の移動軌跡は、一旦像側に移動した後に物体側に移動するUターン形状であるのが好ましい。また、隣り合わないレンズ群の変倍時の移動軌跡を同じにすることで、複数のレンズ群をリンクさせて一体的に移動させることができる。複数のレンズ群をリンクさせて一体的に移動させることにより、鏡筒内のレンズ群保持構造を簡略化することができ、小型化に寄与する。
また、上記各実施例の変倍光学系は、レンズ同士の間隔をさらに小さくした縮筒状態をとることとしてもよい。上記各実施例の変倍光学系は、縮筒状態をとることにより、携帯性を良くすることができる。上記各実施例の変倍光学系は、最もレンズ群同士の間隔が大きい第1レンズ群と第2レンズ群との間を小さくして縮筒状態に変化させるのが好ましい。
また、上記各実施例の変倍光学系は、無限遠物体から近距離物体への合焦を行うために、レンズ群の一部、1つのレンズ群全体、或いは複数のレンズ群を合焦レンズ群として光軸方向へ移動させる構成としてもよい。特に、上記各実施例の変倍光学系は第2レンズ群の少なくとも一部を合焦レンズ群とすることが望ましい。斯かる合焦レンズ群は、オートフォーカスに適用することも可能であり、オートフォーカス用のモータ、例えば超音波モータ等による駆動にも適している。
また、上記各実施例の変倍光学系において、いずれかのレンズ群全体又はその一部を、防振レンズ群として光軸に対して垂直な方向の成分を含むように移動させ、又は光軸を含む面内方向へ回転移動(揺動)させることにより、防振を行う構成とすることもできる。特に、上記各実施例の変倍光学系では第2レンズ群の少なくとも一部を防振レンズ群とすることが好ましい。なお、上記各実施例の変倍光学系は第3レンズ群を防振レンズ群としてもよい。
また、上記各実施例の変倍光学系を構成するレンズのレンズ面は、球面又は平面としてもよく、或いは非球面としてもよい。レンズ面が球面又は平面の場合、レンズ加工及び組立調整が容易になり、レンズ加工及び組立調整の誤差による光学性能の劣化を防ぐことができるため好ましい。また、像面がずれた場合でも描写性能の劣化が少ないため好ましい。レンズ面が非球面の場合、研削加工による非球面、ガラスを型で非球面形状に成型したガラスモールド非球面、又はガラス表面に設けた樹脂を非球面形状に形成した複合型非球面のいずれでもよい。また、レンズ面は回折面としてもよく、レンズを屈折率分布型レンズ(GRINレンズ)或いはプラスチックレンズとしてもよい。
また、上記各実施例の変倍光学系において開口絞りは第2レンズ群と第3レンズ群の間に配置されることが好ましく、開口絞りとして部材を設けずにレンズ枠でその役割を代用する構成としてもよい。
また、上記各実施例の変倍光学系を構成するレンズのレンズ面に、広い波長域で高い透過率を有する反射防止膜を施してもよい。これにより、フレアやゴーストを軽減し、高コントラストの高い光学性能を達成することができる。特に、上記各実施例の変倍光学系は最も像側のレンズ群に含まれるレンズの物体側のレンズ面に反射防止膜を施すことが好ましい。
次に、本願の変倍光学系を備えたカメラを図15に基づいて説明する。
図15は、本願の変倍光学系を備えたカメラの構成を示す図である。
本カメラ1は、撮影レンズ2として上記第1実施例に係る変倍光学系を備えたレンズ交換式のデジタル一眼レフカメラである。
本カメラ1において、被写体である不図示の物体からの光は、撮影レンズ2で集光されて、クイックリターンミラー3を介して焦点板4に結像される。そして焦点板4に結像されたこの光は、ペンタプリズム5中で複数回反射されて接眼レンズ6へ導かれる。これにより撮影者は、被写体像を接眼レンズ6を介して正立像として観察することができる。
また、撮影者によって不図示のレリーズボタンが押されると、クイックリターンミラー3が光路外へ退避し、不図示の被写体からの光は撮像素子7へ到達する。これにより被写体からの光は、当該撮像素子7によって撮像されて、被写体画像として不図示のメモリに記録される。このようにして、撮影者は本カメラ1による被写体の撮影を行うことができる。
ここで、本カメラ1に撮影レンズ2として搭載した上記第1実施例に係る変倍光学系は、上述のように小型で良好な光学性能を備えている。即ち本カメラ1は、小型化と良好な光学性能を実現することができる。なお、上記第2〜第7実施例に係る変倍光学系を撮影レンズ2として搭載したカメラを構成しても、上記カメラ1と同様の効果を奏することができる。また、クイックリターンミラー3を有しない構成のカメラに上記各実施例に係る変倍光学系を搭載した場合でも、上記カメラ1と同様の効果を奏することができる。
最後に、本願の変倍光学系の製造方法の概略を図16に基づいて説明する。
図16は、本願の変倍光学系の製造方法の概略を示す図である。
図16に示す本願の変倍光学系の製造方法は、物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有する変倍光学系の製造方法であって、以下のステップS1〜S3を含むものである。
ステップS1:第1〜第4レンズ群を準備し、第2レンズ群が負レンズを含むようにして、各レンズ群を鏡筒内に物体側から順に配置する。
ステップS2:公知の移動機構を鏡筒に設けることにより、広角端状態と望遠端状態との間での変倍時に、前記レンズ群同士の間隔が変化するようにする。
ステップS3:公知の移動機構を鏡筒に設けることにより、合焦時に、前記第2レンズ群中の前記負レンズが合焦レンズ群として移動するようにする。
斯かる本願の変倍光学系の製造方法によれば、小型で良好な光学性能を備えた変倍光学系を製造することができる。
G1:第1レンズ群、G2:第2レンズ群、G3:第3レンズ群、G4:第4レンズ群、G5:第5レンズ群、S:開口絞り、W:広角端状態、T:望遠端状態

Claims (7)

  1. 物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有し、
    前記第2レンズ群が負レンズを含み、
    広角端状態と望遠端状態との間での変倍時に、前記レンズ群同士の間隔が変化し、
    合焦時に、前記第2レンズ群中の前記負レンズが合焦レンズ群として移動する変倍光学系。
  2. 以下の条件式を満足する請求項1に記載の変倍光学系。
    0.60<(−f1)/f2<1.10
    ただし、
    f1:前記第1レンズ群の焦点距離
    f2:前記第2レンズ群の焦点距離
  3. 以下の条件式を満足する請求項1又は請求項2に記載の変倍光学系。
    1.50<(−fF)/f2<3.00
    ただし、
    f2:前記第2レンズ群の焦点距離
    fF:前記合焦レンズ群の焦点距離
  4. 以下の条件式を満足する請求項1から請求項3のいずれか一項に記載の変倍光学系。
    0.33<(−f1)/f4<0.70
    ただし、
    f1:前記第1レンズ群の焦点距離
    f4:前記第4レンズ群の焦点距離
  5. 前記第2レンズ群中の最も物体側のレンズ成分が光軸に対して垂直な方向の成分を含むように移動する請求項1から請求項4のいずれか一項に記載の変倍光学系。
  6. 請求項1から請求項5のいずれか一項に記載の変倍光学系を有する光学装置。
  7. 物体側から順に、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群と、負の屈折力を有する第3レンズ群と、正の屈折力を有する第4レンズ群とを有する変倍光学系の製造方法であって、
    前記第2レンズ群が負レンズを含むようにし、
    広角端状態と望遠端状態との間での変倍時に、前記レンズ群同士の間隔が変化するようにし、
    合焦時に、前記第2レンズ群中の前記負レンズが合焦レンズ群として移動するようにする変倍光学系の製造方法。
JP2015110081A 2015-05-29 2015-05-29 変倍光学系、光学装置 Active JP6623559B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015110081A JP6623559B2 (ja) 2015-05-29 2015-05-29 変倍光学系、光学装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015110081A JP6623559B2 (ja) 2015-05-29 2015-05-29 変倍光学系、光学装置

Publications (2)

Publication Number Publication Date
JP2016224235A true JP2016224235A (ja) 2016-12-28
JP6623559B2 JP6623559B2 (ja) 2019-12-25

Family

ID=57748049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015110081A Active JP6623559B2 (ja) 2015-05-29 2015-05-29 変倍光学系、光学装置

Country Status (1)

Country Link
JP (1) JP6623559B2 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1048521A (ja) * 1996-08-08 1998-02-20 Konica Corp ズームレンズ
US7167319B1 (en) * 2005-10-15 2007-01-23 Foxlink Image Technology Co., Ltd. Zoom lens system
JP2009276622A (ja) * 2008-05-15 2009-11-26 Olympus Imaging Corp ズームレンズ及びそれを備えた撮像装置
JP2011059496A (ja) * 2009-09-11 2011-03-24 Fujifilm Corp ズームレンズおよび撮像装置
JP2013015778A (ja) * 2011-07-06 2013-01-24 Konica Minolta Advanced Layers Inc ズームレンズ,撮像光学装置及びデジタル機器
JP2013171165A (ja) * 2012-02-21 2013-09-02 Konica Minolta Inc ズームレンズ,撮像光学装置及びデジタル機器
JP2014016464A (ja) * 2012-07-09 2014-01-30 Canon Inc ズームレンズ及びそれを有する撮像装置
JP2014048374A (ja) * 2012-08-30 2014-03-17 Nikon Corp 変倍光学系、この変倍光学系を有する光学装置、及び、変倍光学系の製造方法
JP2014109761A (ja) * 2012-12-04 2014-06-12 Samsung Electronics Co Ltd ズームレンズ

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1048521A (ja) * 1996-08-08 1998-02-20 Konica Corp ズームレンズ
US7167319B1 (en) * 2005-10-15 2007-01-23 Foxlink Image Technology Co., Ltd. Zoom lens system
JP2009276622A (ja) * 2008-05-15 2009-11-26 Olympus Imaging Corp ズームレンズ及びそれを備えた撮像装置
JP2011059496A (ja) * 2009-09-11 2011-03-24 Fujifilm Corp ズームレンズおよび撮像装置
JP2013015778A (ja) * 2011-07-06 2013-01-24 Konica Minolta Advanced Layers Inc ズームレンズ,撮像光学装置及びデジタル機器
JP2013171165A (ja) * 2012-02-21 2013-09-02 Konica Minolta Inc ズームレンズ,撮像光学装置及びデジタル機器
JP2014016464A (ja) * 2012-07-09 2014-01-30 Canon Inc ズームレンズ及びそれを有する撮像装置
JP2014048374A (ja) * 2012-08-30 2014-03-17 Nikon Corp 変倍光学系、この変倍光学系を有する光学装置、及び、変倍光学系の製造方法
JP2014109761A (ja) * 2012-12-04 2014-06-12 Samsung Electronics Co Ltd ズームレンズ

Also Published As

Publication number Publication date
JP6623559B2 (ja) 2019-12-25

Similar Documents

Publication Publication Date Title
JP6669169B2 (ja) 変倍光学系、光学装置
JP5273184B2 (ja) ズームレンズ、光学装置、ズームレンズの製造方法
JP5742100B2 (ja) 変倍光学系、光学装置、変倍光学系の製造方法
WO2018185867A1 (ja) 変倍光学系、光学装置、および変倍光学系の製造方法
JP5344291B2 (ja) ズームレンズ、光学機器及びズームレンズの製造方法
JP2011232516A (ja) ズームレンズ、光学機器、およびズームレンズの製造方法
JP5407363B2 (ja) 変倍光学系、撮像装置、変倍光学系の製造方法
WO2018185870A1 (ja) 変倍光学系、光学装置、および変倍光学系の製造方法
WO2018185868A1 (ja) 変倍光学系、光学装置、および変倍光学系の製造方法
JPWO2018074413A1 (ja) 変倍光学系、光学装置、変倍光学系の製造方法
JP6642572B2 (ja) 変倍光学系、光学装置
JP6583420B2 (ja) ズームレンズおよび光学機器
JP6661893B2 (ja) 変倍光学系、光学装置
JP6264924B2 (ja) 変倍光学系、及び光学装置
JP6268792B2 (ja) ズームレンズ、光学装置、ズームレンズの製造方法
JP5510114B2 (ja) ズームレンズ、撮像装置、ズームレンズの製造方法
JP5407365B2 (ja) 変倍光学系、撮像装置、変倍光学系の製造方法
JP2011145473A (ja) ズームレンズ、光学機器、およびズームレンズの製造方法
JP5407364B2 (ja) 変倍光学系、撮像装置、変倍光学系の製造方法
JP2018045261A (ja) 変倍光学系、及び光学装置
JP6623559B2 (ja) 変倍光学系、光学装置
JP6191246B2 (ja) ズームレンズ、光学装置
JP6349801B2 (ja) ズームレンズ、光学装置
JP6451074B2 (ja) 変倍光学系、光学装置、変倍光学系の製造方法
JP6601471B2 (ja) 変倍光学系及び光学装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190620

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191111

R150 Certificate of patent or registration of utility model

Ref document number: 6623559

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250