JP2016221980A - Method of manufacturing optical element and method of manufacturing shaping die for optical element - Google Patents

Method of manufacturing optical element and method of manufacturing shaping die for optical element Download PDF

Info

Publication number
JP2016221980A
JP2016221980A JP2016185660A JP2016185660A JP2016221980A JP 2016221980 A JP2016221980 A JP 2016221980A JP 2016185660 A JP2016185660 A JP 2016185660A JP 2016185660 A JP2016185660 A JP 2016185660A JP 2016221980 A JP2016221980 A JP 2016221980A
Authority
JP
Japan
Prior art keywords
pitch
optical element
manufacturing
substrate
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016185660A
Other languages
Japanese (ja)
Other versions
JP6539813B2 (en
Inventor
山本 和也
Kazuya Yamamoto
和也 山本
山本 剛司
Tsuyoshi Yamamoto
剛司 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nalux Co Ltd
Original Assignee
Nalux Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nalux Co Ltd filed Critical Nalux Co Ltd
Publication of JP2016221980A publication Critical patent/JP2016221980A/en
Application granted granted Critical
Publication of JP6539813B2 publication Critical patent/JP6539813B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0294Diffusing elements; Afocal elements characterized by the use adapted to provide an additional optical effect, e.g. anti-reflection or filter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/42Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves
    • B29C33/424Moulding surfaces provided with means for marking or patterning
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F4/00Processes for removing metallic material from surfaces, not provided for in group C23F1/00 or C23F3/00
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0221Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having an irregular structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/12Optical coatings produced by application to, or surface treatment of, optical elements by surface treatment, e.g. by irradiation

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacturing a shaping die that can form a fine uneven structure, having a wide range of pitch including an infrared region, on a surface including a large area surface and a curved surface.SOLUTION: In a method of manufacturing a shaping die for an optical element, a substrate made of a semiconductor or metal material reactive with sulfur hexafluoride is placed in a reactive ion etching apparatus, a mixed gas of sulfur hexafluoride and oxygen is introduced, and in a plasma dry etching process, oxides are scattered on a surface of the substrate and etching is made to progress on the surface of the substrate by the sulfur hexafluoride using the oxides as an etching prevention mask to form on the surface of the substrate a fine uneven structure having a pitch larger than 0.35 μm and having an upper limit of the pitch in an infrared region.SELECTED DRAWING: Figure 2

Description

本発明は、表面に微細凹凸構造を備えた光学素子の製造方法及び光学素子用金型の製造方法に関する。   The present invention relates to a method for manufacturing an optical element having a fine concavo-convex structure on the surface and a method for manufacturing a mold for an optical element.

光の波長よりも小さなピッチ(周期)で配列された微細凹凸構造からなる反射防止構造が光学素子に使用されている。このような微細凹凸構造用の成形型の製造方法として、干渉露光や電子ビーム描画装置を使用してレジストをパターニングし、エッチングまたは電鋳を行う方法が知られている(たとえば、特許文献1)。しかし、これらの方法によって、大きな面積の面や曲面に微細凹凸構造を形成するのは困難である。   An antireflection structure composed of fine concavo-convex structures arranged at a pitch (period) smaller than the wavelength of light is used for an optical element. As a method of manufacturing a mold for such a fine concavo-convex structure, a method is known in which resist is patterned using interference exposure or an electron beam drawing apparatus, and etching or electroforming is performed (for example, Patent Document 1). . However, it is difficult to form a fine concavo-convex structure on a large area surface or curved surface by these methods.

最近、レジストのパターニング工程なしで反射防止構造を作製する方法が開発されている。主として、ナノ粒子を基板表面に塗布することで、微細凹凸構造体を形成する方法(たとえば、特許文献2)、または、陽極酸化ポーラスアルミナを鋳型として微細凹凸構造体を形成する方法(たとえば、特許文献3)がある。これらの方法は、大きな面積の面や曲面への適用が期待されるが、プロセスの特性から微細凹凸構造体のピッチの大きさは、1マイクロメータ以下に制限される。したがって、たとえば、赤外線用の光学素子などに応用するのは困難である。   Recently, a method for producing an antireflection structure without a resist patterning step has been developed. Mainly, a method of forming a fine concavo-convex structure by applying nanoparticles to the substrate surface (for example, Patent Document 2) or a method of forming a fine concavo-convex structure using anodized porous alumina as a mold (for example, Patent There is literature 3). Although these methods are expected to be applied to large-area surfaces and curved surfaces, the pitch size of the fine concavo-convex structure is limited to 1 micrometer or less because of process characteristics. Therefore, it is difficult to apply to, for example, an infrared optical element.

このように、赤外域を含む広い範囲のピッチの微細凹凸構造を、大きな面積の面や曲面を含む面に形成することのできる成形型、光学素子の製造方法は開発されていない。   Thus, a mold and an optical element manufacturing method that can form a fine concavo-convex structure with a wide range of pitches including the infrared region on a surface having a large area or a curved surface have not been developed.

WO2006/129514WO2006 / 129514 特開2012-40878JP2012-40878 特開2014-51710JP2014-51710

したがって、赤外域を含む広い範囲のピッチの微細凹凸構造を、大きな面積の面や曲面を含む面に形成することのできる成形型及び光学素子の製造方法に対するニーズがある。   Accordingly, there is a need for a mold and an optical element manufacturing method that can form a fine concavo-convex structure with a wide range of pitches including the infrared region on a surface having a large area or a curved surface.

本発明の第1の態様による成形型の製造方法は、反応性イオンエッチング装置を使用した成形型の製造方法である。該装置内に、六フッ化硫黄と酸素との混合ガスを導入し、六フッ化硫黄と反応する半導体または金属の材料からなる基材を配置し、該基材の表面に酸化物を点在させ、該酸化物をエッチング防止マスクとして、六フッ化硫黄によって該基材の表面にエッチングを進行させることにより該基材の表面に、ピッチの上限が赤外域である微細凹凸構造を形成する。   The mold manufacturing method according to the first aspect of the present invention is a mold manufacturing method using a reactive ion etching apparatus. A mixed gas of sulfur hexafluoride and oxygen is introduced into the apparatus, a base material made of a semiconductor or metal material that reacts with sulfur hexafluoride is disposed, and oxides are scattered on the surface of the base material. Then, etching is performed on the surface of the base material with sulfur hexafluoride using the oxide as an etching prevention mask, thereby forming a fine concavo-convex structure with an upper limit of the pitch in the infrared region on the surface of the base material.

本態様の製造方法は、エッチング防止マスクのためのパターニングを必要としないので手間がかからない。また、本態様の製造方法によれば、赤外域を含む広い範囲のピッチの微細凹凸構造を、大きな面積の面や曲面を含む面に形成することができる。   Since the manufacturing method of this aspect does not require patterning for the etching prevention mask, it does not take time. Moreover, according to the manufacturing method of this aspect, a fine uneven structure having a wide range of pitches including the infrared region can be formed on a surface having a large area or a curved surface.

本発明の第1の態様の第1の実施形態による成形型の製造方法においては、成形型が光学素子用のものである。   In the mold manufacturing method according to the first embodiment of the first aspect of the present invention, the mold is for an optical element.

本発明の第1の態様の第2の実施形態による成形型の製造方法においては、成形型が反射防止構造用のものである。   In the method for manufacturing a molding die according to the second embodiment of the first aspect of the present invention, the molding die is for an antireflection structure.

本発明の第1の態様の第3の実施形態による成形型の製造方法においては、成形型が赤外線反射防止構造用のものである。   In the method for manufacturing a mold according to the third embodiment of the first aspect of the present invention, the mold is for an infrared antireflection structure.

本発明の第1の態様の第4の実施形態による成形型の製造方法においては、成形型が拡散板用のものである。   In the method for manufacturing a mold according to the fourth embodiment of the first aspect of the present invention, the mold is for a diffusion plate.

本発明の第2の態様による成形型は、反応性イオンエッチング装置内に、六フッ化硫黄と酸素との混合ガスを導入し、六フッ化硫黄と反応する半導体または金属の材料からなる基材を配置し、該基材の表面に酸化物を点在させ、該酸化物をエッチング防止マスクとして、六フッ化硫黄によって該基材の表面にエッチングを進行させることにより該基材の表面に、ピッチの上限が赤外域である微細凹凸構造を形成したものである。   The mold according to the second aspect of the present invention is a substrate made of a semiconductor or metal material that reacts with sulfur hexafluoride by introducing a mixed gas of sulfur hexafluoride and oxygen into a reactive ion etching apparatus. Is disposed on the surface of the base material, and the oxide is used as an anti-etching mask, and etching is performed on the surface of the base material with sulfur hexafluoride on the surface of the base material. A fine concavo-convex structure in which the upper limit of the pitch is in the infrared region is formed.

本態様の成形型は、エッチング防止マスクのためのパターニングを使用せずに簡単な工程で製造することができる。また、赤外域を含む広い範囲のピッチの微細凹凸構造を、大きな面積の面や曲面を含む面に備えた成形型が得られる。   The mold according to this aspect can be manufactured by a simple process without using patterning for an etching prevention mask. Moreover, a mold having a fine concavo-convex structure with a wide range of pitches including the infrared region on a surface having a large area or a curved surface is obtained.

本発明の第3の態様による光学素子の製造方法は、反応性イオンエッチング装置を使用した光学素子の製造方法である。該装置内に、六フッ化硫黄と酸素との混合ガスを導入し、六フッ化硫黄と反応する半導体からなる基材を配置し、該基材の表面に酸化物を点在させ、該酸化物をエッチング防止マスクとして、六フッ化硫黄によって該基材の表面にエッチングを進行させることにより該基材の表面にピッチの上限が赤外域である微細凹凸構造を形成する。   The optical element manufacturing method according to the third aspect of the present invention is an optical element manufacturing method using a reactive ion etching apparatus. A mixed gas of sulfur hexafluoride and oxygen is introduced into the apparatus, a base material made of a semiconductor that reacts with sulfur hexafluoride is disposed, oxides are scattered on the surface of the base material, and the oxidation is performed. Using the object as an etching prevention mask, etching is performed on the surface of the base material by sulfur hexafluoride, thereby forming a fine uneven structure having an upper limit of the pitch in the infrared region on the surface of the base material.

本態様の製造方法は、エッチング防止マスクのためのパターニングを必要としないので手間がかからない。また、本態様の製造方法によれば、赤外域を含む広い範囲のピッチの微細凹凸構造を、大きな面積の面や曲面を含む面に形成することができる。   Since the manufacturing method of this aspect does not require patterning for the etching prevention mask, it does not take time. Moreover, according to the manufacturing method of this aspect, a fine uneven structure having a wide range of pitches including the infrared region can be formed on a surface having a large area or a curved surface.

本発明の第4の態様による光学素子は、反応性イオンエッチング装置内に、六フッ化硫黄と酸素との混合ガスを導入し、六フッ化硫黄と反応する半導体からなる基材を配置し、該基材の表面に酸化物を点在させ、該酸化物をエッチング防止マスクとして、六フッ化硫黄によって該基材の表面にエッチングを進行させることにより該基材の表面に、ピッチの上限が赤外域である微細凹凸構造を形成したものである。   The optical element according to the fourth aspect of the present invention introduces a mixed gas of sulfur hexafluoride and oxygen into a reactive ion etching apparatus, and disposes a substrate made of a semiconductor that reacts with sulfur hexafluoride, An oxide is scattered on the surface of the base material, and etching is performed on the surface of the base material with sulfur hexafluoride using the oxide as an etching prevention mask, whereby the upper limit of the pitch is increased on the surface of the base material. A fine uneven structure in the infrared region is formed.

本態様の光学素子は、エッチング防止マスクのためのパターニングを使用せずに簡単な工程で製造することができる。また、赤外域を含む広い範囲のピッチの微細凹凸構造を、大きな面積の面や曲面を含む面に備えた光学素子が得られる。   The optical element of this aspect can be manufactured by a simple process without using patterning for an etching prevention mask. In addition, an optical element having a fine concavo-convex structure with a wide range of pitches including the infrared region on a surface having a large area or a curved surface can be obtained.

本発明による、表面に微細凹凸構造を備えた成形型または光学素子に使用される反応性イオンエッチング装置200の構成を示す図である。It is a figure which shows the structure of the reactive ion etching apparatus 200 used for the shaping | molding die or optical element which provided the fine uneven structure on the surface by this invention. 本発明による成形型製造方法の原理を説明するための流れ図である。It is a flowchart for demonstrating the principle of the shaping | molding die manufacturing method by this invention. 平面に微細凹凸構造を備えた成形型を製造する方法を説明するための図である。It is a figure for demonstrating the method to manufacture the shaping | molding die provided with the fine uneven structure on the plane. 表面に微細凹凸構造を備えた光学素子を製造する方法を説明するための図である。It is a figure for demonstrating the method to manufacture the optical element provided with the fine concavo-convex structure on the surface. 本発明による成形型の製造方法の一例として、反射防止構造用金型製造方法のエッチング条件を決定する方法を示す流れ図である。It is a flowchart which shows the method of determining the etching conditions of the metal mold | die manufacturing method for antireflection structures as an example of the manufacturing method of the shaping | molding die by this invention. 表1のエッチング条件を維持して、高周波電源の電力を100ワット及び200ワットとした場合のエッチング時間と微細凹凸構造のピッチとの関係を示す図である。It is a figure which shows the relationship between the etching time at the time of maintaining the etching conditions of Table 1, and making the electric power of a high frequency power supply into 100 watts and 200 watts, and the pitch of a fine concavo-convex structure. 表1のエッチング条件を維持して、高周波電源の電力を100ワット及び200ワットとした場合のエッチング時間と微細凹凸構造の深さとの関係を示す図である。It is a figure which shows the relationship between the etching time at the time of maintaining the etching conditions of Table 1, and making the electric power of a high frequency power supply into 100 watts and 200 watts, and the depth of a fine concavo-convex structure. 微細凹凸構造を備えた基材に入射する赤外線の波長と透過率との関係を示す図である。It is a figure which shows the relationship between the wavelength of the infrared rays which inject into a base material provided with the fine concavo-convex structure, and the transmittance | permeability. 透過率を説明するための図である。It is a figure for demonstrating the transmittance | permeability. 透過率を向上させたい光の波長と、透過率を向上させる凹凸微細構造のピッチとの関係を示す図である。It is a figure which shows the relationship between the wavelength of the light which wants to improve the transmittance | permeability, and the pitch of the uneven | corrugated microstructure which improves the transmittance | permeability. 表面に微細凹凸構造を備えていない基板1、表面に可視光用の微細凹凸構造を備えた基板2、及び表面に微細凹凸構造3を備えた基板3の外観写真を示す図である。It is a figure which shows the external appearance photograph of the board | substrate 1 which is not provided with the fine uneven structure on the surface, the board | substrate 2 provided with the fine uneven structure for visible light on the surface, and the substrate 3 provided with the fine uneven structure on the surface. 微細凹凸構造3の走査型電子顕微鏡写真である。3 is a scanning electron micrograph of the fine concavo-convex structure 3.

図1は、本発明による、表面に微細凹凸構造を備えた成形型または光学素子の製造に使用される反応性イオンエッチング装置200の構成を示す図である。反応性イオンエッチング装置200は、エッチング室201を有する。真空排気されたエッチング室201には、ガス供給口207からガスが供給される。さらに、エッチング室201には、ガス排気口209が設けられ、ガス排気口209には、バルブ217が取り付けられている。エッチング室201に取り付けられたガス圧力計213の測定値にしたがって、制御装置215にバルブ217を操作させることにより、エッチング室201内のガス圧力を所望の圧力値とすることができる。エッチング室201には、上部電極203及び下部電極205が備わり、両電極間に高周波電源211により高周波電圧をかけてプラズマを発生させることができる。下部電極205には、成形型の母材である基材101が配置される。下部電極205は、冷却装置219によって所望の温度に冷却することができる。冷却装置219は、たとえば、冷却に水冷式チラーを使用するものである。下部電極205を冷却するのは、基材101の温度を所望の温度とすることによりエッチング反応を制御するためである。   FIG. 1 is a diagram showing a configuration of a reactive ion etching apparatus 200 used for manufacturing a mold or an optical element having a fine concavo-convex structure on the surface according to the present invention. The reactive ion etching apparatus 200 has an etching chamber 201. A gas is supplied from the gas supply port 207 to the evacuated etching chamber 201. Further, the etching chamber 201 is provided with a gas exhaust port 209, and a valve 217 is attached to the gas exhaust port 209. The gas pressure in the etching chamber 201 can be set to a desired pressure value by causing the control device 215 to operate the valve 217 in accordance with the measured value of the gas pressure gauge 213 attached to the etching chamber 201. The etching chamber 201 is provided with an upper electrode 203 and a lower electrode 205, and plasma can be generated by applying a high-frequency voltage by a high-frequency power source 211 between both electrodes. The lower electrode 205 is provided with a base material 101 which is a base material of a mold. The lower electrode 205 can be cooled to a desired temperature by the cooling device 219. The cooling device 219 uses, for example, a water-cooled chiller for cooling. The reason why the lower electrode 205 is cooled is to control the etching reaction by setting the temperature of the substrate 101 to a desired temperature.

ここで、エッチング室201に供給されるガスは、六フッ化硫黄と酸素との混合ガスである。また、基材の材料は、六フッ化硫黄と反応する半導体または金属である。   Here, the gas supplied to the etching chamber 201 is a mixed gas of sulfur hexafluoride and oxygen. The base material is a semiconductor or metal that reacts with sulfur hexafluoride.

図2は、本発明による成形型製造方法の原理を説明するための流れ図である。   FIG. 2 is a flowchart for explaining the principle of the mold manufacturing method according to the present invention.

図2のステップS1010において、プラズマドライエッチングを実施するように、高周波電圧をかけることにより、混合ガスがプラズマ化される。   In step S1010 of FIG. 2, the mixed gas is turned into plasma by applying a high-frequency voltage so as to perform plasma dry etching.

図2のステップS1020において、プラズマ中の酸素イオンと、フッ素系ガス(六フッ化硫黄)に反応した基材の金属または半導体イオンとが結合し、酸化物として基材表面のランダムな位置に付着する。上記の酸化物は、六フッ化硫黄でほとんどエッチングされず、エッチング防止マスクとして機能する。   In step S1020 of FIG. 2, the oxygen ions in the plasma and the metal or semiconductor ions of the base material reacted with the fluorine-based gas (sulfur hexafluoride) are combined and attached as oxides at random positions on the surface of the base material. To do. The above oxide is hardly etched with sulfur hexafluoride and functions as an etching prevention mask.

図2のステップS1030において、基材表面に付着した上記の酸化物をマスクとして六フッ化硫黄によって基材表面の酸化物に覆われていない部分のエッチングが進行する。この結果、基材表面に微細凹凸構造が形成される。   In step S1030 of FIG. 2, the etching of the portion not covered with the oxide on the substrate surface by sulfur hexafluoride proceeds using the above-mentioned oxide attached to the substrate surface as a mask. As a result, a fine uneven structure is formed on the substrate surface.

使用するガスは、上述のように、六フッ化硫黄(SF)と酸素との混合ガスである。 The gas to be used is a mixed gas of sulfur hexafluoride (SF 6 ) and oxygen as described above.

基材の材料は、六フッ化硫黄と反応する、半導体、金属である。具体的には、シリコン、チタン、タングステン、タンタル、チタンに他の元素を添加したチタン合金、タングステンに他の元素を添加したタングステン合金などである。   The base material is a semiconductor or metal that reacts with sulfur hexafluoride. Specific examples include silicon, titanium, tungsten, tantalum, a titanium alloy in which other elements are added to titanium, and a tungsten alloy in which other elements are added to tungsten.

図3は、平面に微細凹凸構造を備えた成形型を製造する方法を説明するための図である。   FIG. 3 is a diagram for explaining a method of manufacturing a mold having a fine concavo-convex structure on a plane.

図3(a)は、エッチング前の基材101の断面を示す図である。   FIG. 3A is a diagram showing a cross section of the base material 101 before etching.

図3(b)は、基材101の表面に反応性イオンエッチング装置を使用して微細凹凸構造の形状をエッチングしたものの断面を示す図である。なお、図3(b)において、わかりやすくするために、基材と比較して微細凹凸構造の寸法を拡大して記載している。   FIG. 3B is a view showing a cross section of the surface of the substrate 101 obtained by etching the shape of the fine concavo-convex structure using a reactive ion etching apparatus. In FIG. 3B, the dimensions of the fine concavo-convex structure are illustrated in an enlarged manner as compared with the base material for easy understanding.

図4は、表面に微細凹凸構造を備えた光学素子を製造する方法を説明するための図である。   FIG. 4 is a diagram for explaining a method of manufacturing an optical element having a fine concavo-convex structure on the surface.

図4(a)は、切削加工などにより曲面に加工したシリコン製の光学素子の断面を示す図である。シリコン製の光学素子は赤外線用に使用される。   FIG. 4A is a diagram showing a cross section of a silicon optical element processed into a curved surface by cutting or the like. A silicon optical element is used for infrared rays.

図4(b)はシリコン製の光学素子の表面に反応性イオンエッチング装置を使用して微細凹凸構造の形状をエッチングしたものの断面を示す図である。光学素子の表面の微細凹凸構造は、反射防止構造として機能する。なお、わかりやすくするために、図4(b)において、光学素子と比較して微細凹凸構造の寸法を拡大して記載している。   FIG. 4B is a view showing a cross section of the surface of a silicon optical element obtained by etching the shape of the fine concavo-convex structure using a reactive ion etching apparatus. The fine uneven structure on the surface of the optical element functions as an antireflection structure. For easy understanding, in FIG. 4B, the dimensions of the fine concavo-convex structure are illustrated in an enlarged manner as compared with the optical element.

図5は、本発明による成形型の製造方法の一例として、反射防止構造用成形型製造方法のエッチング条件を決定する方法を示す流れ図である。   FIG. 5 is a flowchart showing a method for determining etching conditions of a method for manufacturing a mold for an antireflection structure as an example of a method for manufacturing a mold according to the present invention.

図5のステップS2010において、エッチング条件の初期値を設定する。   In step S2010 of FIG. 5, initial values of etching conditions are set.

図5のステップS2020において、設定したエッチング条件にしたがって反応性イオンエッチング装置を使用して基材をエッチングする。   In step S2020 of FIG. 5, the substrate is etched using a reactive ion etching apparatus in accordance with the set etching conditions.

図5のステップS2030において、製造した成形型の反射率を評価する。   In step S2030 of FIG. 5, the reflectance of the manufactured mold is evaluated.

図5のステップS2040において、製造した成形型の形状を評価する。形状の評価は、たとえば、走査型電子顕微鏡を使用して行う。   In step S2040 of FIG. 5, the shape of the manufactured mold is evaluated. The shape is evaluated using, for example, a scanning electron microscope.

図5のステップS2050において、製造した成形型が反射防止構造用成形型として適切かどうか判断する。適切であれば処理を終了する。適切でなければステップS2060に進む。   In step S2050 of FIG. 5, it is determined whether or not the manufactured mold is appropriate as an antireflection structure mold. If appropriate, terminate the process. If not appropriate, the process proceeds to step S2060.

図5のステップS2060において、エッチング条件を修正する。   In step S2060 of FIG. 5, the etching conditions are corrected.

エッチング条件について、以下において詳細に説明する。   The etching conditions will be described in detail below.

表1は、エッチング条件の一部を示す表である。
Table 1 is a table showing a part of the etching conditions.

反応性イオンエッチング装置200のエッチング室201には、ガス供給口207から六フッ化硫黄と酸素との混合ガスが供給される。六フッ化硫黄及び酸素の供給流量は、それぞれ、毎分50ミリ・リットルである。エッチング室201の圧力は、1パスカルに制御される。基材101が配置される下部電極205の温度は、摂氏3度に制御される。基材101はシリコン製である。   A mixed gas of sulfur hexafluoride and oxygen is supplied from the gas supply port 207 to the etching chamber 201 of the reactive ion etching apparatus 200. The supply flow rates of sulfur hexafluoride and oxygen are 50 milliliters per minute, respectively. The pressure in the etching chamber 201 is controlled to 1 pascal. The temperature of the lower electrode 205 on which the substrate 101 is disposed is controlled to 3 degrees Celsius. The base material 101 is made of silicon.

図6は、表1のエッチング条件を維持して、高周波電源211の電力を100ワット及び200ワットとした場合のエッチング時間と微細凹凸構造のピッチとの関係を示す図である。図6の横軸は、エッチング時間を表し、図6の縦軸は微細凹凸構造のピッチを表す。時間の単位は分であり、ピッチの単位はマイクロメータである。なお、高周波電源211の周波数は、13.56MHzである。   FIG. 6 is a diagram showing the relationship between the etching time and the pitch of the fine concavo-convex structure when the etching conditions in Table 1 are maintained and the power of the high frequency power supply 211 is 100 watts and 200 watts. The horizontal axis in FIG. 6 represents the etching time, and the vertical axis in FIG. 6 represents the pitch of the fine relief structure. The unit of time is minutes and the unit of pitch is micrometers. The frequency of the high frequency power supply 211 is 13.56 MHz.

ここで、微細凹凸構造のピッチは、原子間力顕微鏡などによって得られた微細凹凸構造の断面における、隣接する凸部間または隣接する凹部間の基材面に平行な方向の距離の平均値である。微細凹凸構造の断面のフーリエ解析により求めてもよい。   Here, the pitch of the fine concavo-convex structure is the average value of the distance in the direction parallel to the substrate surface between adjacent convex parts or between adjacent concave parts in the cross section of the fine concavo-convex structure obtained by an atomic force microscope or the like. is there. You may obtain | require by the Fourier analysis of the cross section of a fine concavo-convex structure.

図6によれば、微細凹凸構造のピッチは、エッチング時間が増加するにしたがって大きくなる。また、時間に対する微細凹凸構造のピッチの増加率は、高周波電源211の電力が増加するにしたがって大きくなる。   According to FIG. 6, the pitch of the fine relief structure increases as the etching time increases. Further, the increasing rate of the pitch of the fine concavo-convex structure with respect to time increases as the power of the high-frequency power source 211 increases.

図7は、表1のエッチング条件を維持して、高周波電源211の電力を100ワット及び200ワットとした場合のエッチング時間と微細凹凸構造の深さとの関係を示す図である。基材101はシリコン製である。図7の横軸は、エッチング時間を表し、図7の縦軸は微細凹凸構造の深さを表す。時間の単位は分であり、深さの単位はマイクロメータである。   FIG. 7 is a diagram showing the relationship between the etching time and the depth of the fine concavo-convex structure when the etching conditions in Table 1 are maintained and the power of the high frequency power supply 211 is 100 watts and 200 watts. The base material 101 is made of silicon. The horizontal axis in FIG. 7 represents the etching time, and the vertical axis in FIG. 7 represents the depth of the fine relief structure. The unit of time is minutes and the unit of depth is micrometers.

ここで、微細凹凸構造の深さは、原子間力顕微鏡などによって得られた微細凹凸構造の断面における、隣接する凸部及び凹部間の基材面に垂直な方向の距離の平均値である。   Here, the depth of the fine concavo-convex structure is an average value of distances in the direction perpendicular to the substrate surface between adjacent convex portions and concave portions in a cross section of the fine concavo-convex structure obtained by an atomic force microscope or the like.

図7によれば、微細凹凸構造の深さは、エッチング時間が増加するにしたがって大きくなる。また、時間に対する微細凹凸構造の深さの増加率は、高周波電源211の電力が増加するにしたがって大きくなる。   According to FIG. 7, the depth of the fine relief structure increases as the etching time increases. Moreover, the increasing rate of the depth of the fine concavo-convex structure with respect to time increases as the power of the high-frequency power source 211 increases.

このように、高周波電源211の電力及びエッチング時間を含むエッチング条件を調整することにより、可視光域及び赤外域に対応するピッチ及び深さを備えた微細凹凸構造を製造することができる。   Thus, by adjusting the etching conditions including the power of the high-frequency power source 211 and the etching time, a fine concavo-convex structure having a pitch and a depth corresponding to the visible light region and the infrared region can be manufactured.

図8は、微細凹凸構造を備えた基材に入射する赤外線の波長と透過率との関係を示す図である。図8の横軸は、基材に入射する赤外線の波長を表し、図8の縦軸は、赤外線の透過率を表す。図8において実線は、微細凹凸構造を備えていない基材に入射する赤外線の波長と透過率との関係を示し、二点鎖線は、以下に説明するエッチング条件1で製造した微細凹凸構造を備えた基材に入射する赤外線の波長と透過率との関係を示し、破線は、以下に説明するエッチング条件2で製造した微細凹凸構造を備えた基材に入射する赤外線の波長と透過率との関係を示す。   FIG. 8 is a diagram showing the relationship between the wavelength of infrared light incident on a substrate having a fine relief structure and the transmittance. The horizontal axis of FIG. 8 represents the wavelength of infrared rays incident on the substrate, and the vertical axis of FIG. 8 represents infrared transmittance. In FIG. 8, the solid line indicates the relationship between the wavelength and transmittance of infrared rays incident on a substrate that does not have a fine concavo-convex structure, and the two-dot chain line has a fine concavo-convex structure manufactured under etching conditions 1 described below. The relationship between the wavelength of infrared rays incident on the substrate and the transmittance is shown, and the broken line indicates the relationship between the wavelength and transmittance of infrared rays incident on the substrate having a fine concavo-convex structure manufactured under the etching condition 2 described below. Show the relationship.

図9は、透過率を説明するための図である。透過率は、透過光の入射光に対する比率である。基材101の面に設置された微細凹凸構造1011の機能によって、透過率が変化する。   FIG. 9 is a diagram for explaining the transmittance. The transmittance is a ratio of transmitted light to incident light. The transmittance varies depending on the function of the fine concavo-convex structure 1011 installed on the surface of the substrate 101.

表2は、エッチング条件1及びエッチング条件2を示す表である。
Table 2 is a table showing the etching conditions 1 and 2.

エッチング条件1で製造した微細凹凸構造(以下、微細凹凸構造1と呼称する)のピッチは、1.0マイクロメータであり、深さは1.21マイクロメータである。微細凹凸構造1の深さに対するピッチの比は、0.83である。エッチング条件2で製造した微細凹凸構造(以下、微細凹凸構造2と呼称する)のピッチは、3.0マイクロメータであり、深さは2.79マイクロメータである。微細凹凸構造2の深さに対するピッチの比は、1.1である。   The pitch of the fine concavo-convex structure manufactured under the etching condition 1 (hereinafter referred to as the fine concavo-convex structure 1) is 1.0 micrometers, and the depth is 1.21 micrometers. The ratio of the pitch to the depth of the fine concavo-convex structure 1 is 0.83. The pitch of the fine concavo-convex structure manufactured under the etching condition 2 (hereinafter referred to as the fine concavo-convex structure 2) is 3.0 micrometers and the depth is 2.79 micrometers. The ratio of the pitch to the depth of the fine concavo-convex structure 2 is 1.1.

図8によれば、微細凹凸構造1を備えた基材は、2乃至15マイクロメータの波長範囲で、微細凹凸構造を備えていない基材と比較して透過率が高い。特に、3乃至7マイクロメータの波長範囲で、微細凹凸構造を備えていない基材と比較して透過率が約10%以上高い。微細凹凸構造2を備えた基材は、6乃至15マイクロメータの波長範囲で、微細凹凸構造を備えていない基材と比較して透過率が高い。特に、7乃至12マイクロメータの波長範囲で、微細凹凸構造を備えていない基材と比較して透過率が約7%以上高い。上記の結果から、透過率を向上させる、すなわち、反射率を低下させる微細凹凸構造のピッチは、透過率を向上させたい波長の1/5から1/2の範囲であるのが好ましい。   According to FIG. 8, the base material provided with the fine concavo-convex structure 1 has a higher transmittance in the wavelength range of 2 to 15 micrometers than the base material not provided with the fine concavo-convex structure. In particular, in the wavelength range of 3 to 7 micrometers, the transmittance is about 10% or more higher than that of a substrate not having a fine relief structure. The base material provided with the fine concavo-convex structure 2 has a higher transmittance in the wavelength range of 6 to 15 micrometers compared to the base material not provided with the fine concavo-convex structure. In particular, in the wavelength range of 7 to 12 micrometers, the transmittance is about 7% or more higher than that of a substrate not having a fine relief structure. From the above results, it is preferable that the pitch of the fine concavo-convex structure that improves the transmittance, that is, reduces the reflectance, is in the range of 1/5 to 1/2 of the wavelength for which the transmittance is desired to be improved.

図10は、透過率を向上させたい光の波長と、透過率を向上させる凹凸微細構造のピッチとの関係の一例を示す図である。図10の横軸は、透過率を向上させたい光の波長を表し、図10の縦軸は、透過率を向上させる凹凸微細構造のピッチを表す。   FIG. 10 is a diagram illustrating an example of the relationship between the wavelength of light for which the transmittance is to be improved and the pitch of the uneven microstructure that is to improve the transmittance. The horizontal axis in FIG. 10 represents the wavelength of light for which the transmittance is desired to be improved, and the vertical axis in FIG. 10 represents the pitch of the concavo-convex microstructure that improves the transmittance.

微細凹凸構造2のピッチよりもさらに大きな赤外域のピッチの微細凹凸構造(以下、微細凹凸構造3と呼称)を製造した。   A fine concavo-convex structure (hereinafter referred to as fine concavo-convex structure 3) having a pitch in the infrared region larger than the pitch of the fine concavo-convex structure 2 was produced.

表3は、微細凹凸構造3のエッチング条件を示す表である。
Table 3 is a table showing the etching conditions of the fine relief structure 3.

微細凹凸構造3のピッチは、18.0マイクロメータであり、深さは6.0マイクロメータである。微細凹凸構造3の深さに対するピッチの比は、3.0である。   The pitch of the fine concavo-convex structure 3 is 18.0 micrometers, and the depth is 6.0 micrometers. The ratio of the pitch to the depth of the fine relief structure 3 is 3.0.

表3に示したエッチング条件において、六フッ化硫黄の供給量よりも酸素の供給量を減少させている。この結果、基材表面に付着し、エッチングマスクとして機能する酸化物の相互の間隔が大きくなる。したがって、微細凹凸構造3の深さに対するピッチの比は、微細凹凸構造1及び2の深さに対するピッチの比よりも大きくなる。このように、六フッ化硫黄の供給量と酸素の供給量との比を変えることにより、微細凹凸構造の深さに対するピッチの比を変えることができる。   Under the etching conditions shown in Table 3, the supply amount of oxygen is made smaller than the supply amount of sulfur hexafluoride. As a result, the distance between oxides that adhere to the substrate surface and function as an etching mask increases. Therefore, the ratio of the pitch to the depth of the fine concavo-convex structure 3 is larger than the ratio of the pitch to the depth of the fine concavo-convex structures 1 and 2. Thus, by changing the ratio between the supply amount of sulfur hexafluoride and the supply amount of oxygen, the ratio of the pitch to the depth of the fine relief structure can be changed.

図11は、表面に微細凹凸構造を備えていない基板1、表面に可視光用の微細凹凸構造を備えた基板2、及び表面に微細凹凸構造3を備えた基板3の外観写真を示す図である。基板2の微細構造のピッチは、0.2マイクロメータである。基板2の表面における反射は微細凹凸構造によって低減されるので、基板2は基板1と比較して黒く見える。微細凹凸構造3のピッチは、可視光の波長よりも十分に大きい。他方、微細凹凸構造3の隣接する凸部または凹部間の基材面に平行な方向の距離は一定ではなく所定の範囲に分布している。したがって、基板3の微細凹凸構造3によって、種々の波長の種々の次数の回折光が生じ、基板3は基板1と比較して白濁して見える。すなわち、表面に微細凹凸構造3を備えた基板3は、可視光を拡散させている。   FIG. 11 is a view showing external photographs of the substrate 1 having no fine uneven structure on the surface, the substrate 2 having a fine uneven structure for visible light on the surface, and the substrate 3 having the fine uneven structure 3 on the surface. is there. The pitch of the fine structure of the substrate 2 is 0.2 micrometers. Since reflection on the surface of the substrate 2 is reduced by the fine concavo-convex structure, the substrate 2 appears black compared to the substrate 1. The pitch of the fine concavo-convex structure 3 is sufficiently larger than the wavelength of visible light. On the other hand, the distance in the direction parallel to the substrate surface between adjacent convex portions or concave portions of the fine concavo-convex structure 3 is not constant but distributed in a predetermined range. Therefore, diffracted light of various orders with various wavelengths is generated by the fine concavo-convex structure 3 of the substrate 3, and the substrate 3 appears cloudy compared to the substrate 1. That is, the substrate 3 provided with the fine concavo-convex structure 3 on the surface diffuses visible light.

このように、微細凹凸構造3を備えた基板3は、拡散板として機能する。   Thus, the board | substrate 3 provided with the fine uneven structure 3 functions as a diffusion plate.

図12は、微細凹凸構造3の走査型電子顕微鏡写真である。   FIG. 12 is a scanning electron micrograph of the fine relief structure 3.

Claims (3)

反応性イオンエッチング装置内に、六フッ化硫黄と反応する半導体または金属の材料からなる基材を配置し、六フッ化硫黄と酸素との混合ガスを導入し、プラズマドライエッチングプロセスにおいて、プラズマ中の酸素イオンと、六フッ化硫黄に反応した該基材の材料と、を結合させ、該基材の表面に酸化物を点在させ、該酸化物をエッチング防止マスクとして、六フッ化硫黄によって該基材の表面にエッチングを進行させることにより該基材の表面に微細凹凸構造を形成する、光学素子用成形型の製造方法であって、成形型が拡散構造用のものであり、微細凹凸構造の断面における、隣接する凸部間または隣接する凹部間の基材面に平行な方向の距離の平均値を微細凹凸構造のピッチとして、微細凹凸構造のピッチが可視光の波長よりも大きく、微細凹凸構造のピッチの上限が赤外域であるように、微細凹凸構造のピッチを定める光学素子用成形型の製造方法。 A substrate made of a semiconductor or metal material that reacts with sulfur hexafluoride is placed in a reactive ion etching apparatus, and a mixed gas of sulfur hexafluoride and oxygen is introduced. The oxygen ions of the base material and the base material material reacted with sulfur hexafluoride are bonded together, and an oxide is scattered on the surface of the base material. A method for manufacturing a molding die for an optical element, wherein a fine uneven structure is formed on the surface of the substrate by causing etching to proceed on the surface of the substrate, wherein the mold is for a diffusion structure, and the fine unevenness large in the cross section of the structure, the pitch of the fine unevenness of the average value of the distance in a direction parallel to the substrate surface between recesses or adjacent between adjacent convex portions, than the wavelength pitch of the visible light of the fine unevenness Ku, as the upper limit of the pitch of the fine unevenness are infrared region, method for producing a mold for an optical element for determining the pitch of the fine unevenness. 請求項1の方法によって成形型を製造し、
該成形型を使用して成形によって光学素子を製造する光学素子の製造方法。
A mold is produced by the method of claim 1 ,
An optical element manufacturing method for manufacturing an optical element by molding using the mold.
反応性イオンエッチング装置内に、六フッ化硫黄と反応する半導体の材料からなる基材を配置し、六フッ化硫黄と酸素との混合ガスを導入し、プラズマドライエッチングプロセスにおいて、プラズマ中の酸素イオンと、六フッ化硫黄に反応した該基材の材料と、を結合させ、該基材の表面に該基材の材料の酸化物を点在させ、該酸化物をエッチング防止マスクとして、六フッ化硫黄によって該基材の表面にエッチングを進行させることにより該基材の表面に微細凹凸構造を形成する、拡散用光学素子の製造方法であって、微細凹凸構造の断面における、隣接する凸部間または隣接する凹部間の基材面に平行な方向の距離の平均値を微細凹凸構造のピッチとして、微細凹凸構造のピッチが可視光の波長よりも大きく、微細凹凸構造のピッチの上限が赤外域であるように、微細凹凸構造のピッチを定める光学素子の製造方法。 A substrate made of a semiconductor material that reacts with sulfur hexafluoride is placed in a reactive ion etching apparatus, and a mixed gas of sulfur hexafluoride and oxygen is introduced. Ions and the material of the base material reacted with sulfur hexafluoride are bonded, and an oxide of the material of the base material is scattered on the surface of the base material. A method of manufacturing a diffusing optical element that forms a fine concavo-convex structure on the surface of the base material by causing etching to proceed on the surface of the base material with sulfur fluoride, wherein adjacent convex portions in the cross section of the fine concavo-convex structure are formed. the average value of the distance of the substrate plane direction parallel to between recess part between or adjacent as the pitch of the fine unevenness, the pitch of the fine unevenness is larger than the wavelength of visible light, on the pitch of the fine unevenness So it is infrared region, method of manufacturing an optical element defining the pitch of the fine unevenness.
JP2016185660A 2014-03-21 2016-09-23 Method of manufacturing optical element and method of manufacturing mold for optical element Active JP6539813B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201461968629P 2014-03-21 2014-03-21
US61/968,629 2014-03-21

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015030437A Division JP6074560B2 (en) 2014-03-21 2015-02-19 Method for manufacturing optical element and method for manufacturing mold for optical element

Publications (2)

Publication Number Publication Date
JP2016221980A true JP2016221980A (en) 2016-12-28
JP6539813B2 JP6539813B2 (en) 2019-07-10

Family

ID=54053774

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2015030437A Active JP6074560B2 (en) 2014-03-21 2015-02-19 Method for manufacturing optical element and method for manufacturing mold for optical element
JP2016185660A Active JP6539813B2 (en) 2014-03-21 2016-09-23 Method of manufacturing optical element and method of manufacturing mold for optical element

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2015030437A Active JP6074560B2 (en) 2014-03-21 2015-02-19 Method for manufacturing optical element and method for manufacturing mold for optical element

Country Status (2)

Country Link
JP (2) JP6074560B2 (en)
DE (1) DE102015103931B4 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017159573A (en) * 2016-03-10 2017-09-14 ナルックス株式会社 Injection compression molding device and injection compression molding method
JP6993837B2 (en) * 2017-10-13 2022-02-04 株式会社エンプラス Manufacturing method of molding mold by dry etching method
JP2019072886A (en) * 2017-10-13 2019-05-16 株式会社エンプラス Production method of molding tool by dry etching method
WO2019211920A1 (en) * 2018-04-30 2019-11-07 ナルックス株式会社 Production method for plastic molded article comprising fine uneven structure on surface thereof
CN113727827A (en) * 2019-06-11 2021-11-30 纳卢克斯株式会社 Method for manufacturing plastic element having fine uneven structure on surface

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001133772A (en) * 1999-11-02 2001-05-18 Hitachi Ltd Method of producing light guide plate, light guide plate, and liquid crystal display device
JP2002022911A (en) * 2000-07-05 2002-01-23 Nikon Corp Method for producing microprism array and mold material
JP2005303255A (en) * 2004-03-17 2005-10-27 Shinryo Corp Low-reflectance processing method of silicon substrate for solar cells
JP2009128543A (en) * 2007-11-21 2009-06-11 Panasonic Corp Method for manufacturing antireflection structure
JP2013502737A (en) * 2009-08-24 2013-01-24 エコール ポリテクニク Method for texturing silicon substrate surface and textured silicon substrate for solar cell

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09232482A (en) * 1996-02-23 1997-09-05 Denso Corp Surface processing of semiconductor and semiconductor device
WO2006129514A1 (en) 2005-06-03 2006-12-07 Nalux Co., Ltd. Fine mesh and mold therefor
EP1935035A2 (en) 2005-10-10 2008-06-25 X-FAB Semiconductor Foundries AG Production of self-organized pin-type nanostructures, and the rather extensive applications thereof
DE102006013670A1 (en) 2006-03-24 2007-09-27 X-Fab Semiconductor Foundries Ag Optical component for optoelectronic integrated circuit, has surface for wide band anti-reflection coating with needle-like structures with nanometer dimensions with larger aspect ratio, and developed by reactive ion etching process
JP4986137B2 (en) 2006-12-13 2012-07-25 独立行政法人産業技術総合研究所 Method for producing mold for optical element or nanostructure having nanostructure
JP5010445B2 (en) * 2007-11-29 2012-08-29 パナソニック株式会社 Manufacturing method of mold for microlens array
WO2009125769A1 (en) * 2008-04-08 2009-10-15 株式会社ニコン Optical element, process for producing the optical element, and optical device
JP4596072B2 (en) * 2008-12-26 2010-12-08 ソニー株式会社 Manufacturing method of fine processed body and etching apparatus
JP5423758B2 (en) * 2011-09-29 2014-02-19 王子ホールディングス株式会社 Single particle film and microstructure
JP2014051710A (en) 2012-09-07 2014-03-20 Mitsubishi Rayon Co Ltd Production method of anodic oxidation porous alumina, production method of mold, and compact with fine uneven structures on the surface

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001133772A (en) * 1999-11-02 2001-05-18 Hitachi Ltd Method of producing light guide plate, light guide plate, and liquid crystal display device
JP2002022911A (en) * 2000-07-05 2002-01-23 Nikon Corp Method for producing microprism array and mold material
JP2005303255A (en) * 2004-03-17 2005-10-27 Shinryo Corp Low-reflectance processing method of silicon substrate for solar cells
JP2009128543A (en) * 2007-11-21 2009-06-11 Panasonic Corp Method for manufacturing antireflection structure
JP2013502737A (en) * 2009-08-24 2013-01-24 エコール ポリテクニク Method for texturing silicon substrate surface and textured silicon substrate for solar cell

Also Published As

Publication number Publication date
DE102015103931A1 (en) 2015-09-24
JP6539813B2 (en) 2019-07-10
DE102015103931B4 (en) 2022-06-30
JP6074560B2 (en) 2017-02-08
JP2015182465A (en) 2015-10-22

Similar Documents

Publication Publication Date Title
JP6539813B2 (en) Method of manufacturing optical element and method of manufacturing mold for optical element
TW201945797A (en) Optical grating component and method of forming the same and augmented reality/virtual reality device
JP5584907B1 (en) Anti-reflection structural mold manufacturing method and method of use as anti-reflection structural mold
US10353119B2 (en) Method for manufacturing mold or optical element
JP5264237B2 (en) Nanostructure and method for producing nanostructure
KR20000048865A (en) Reactive ion etching of silica structures
KR102606559B1 (en) Methods of forming optical grating components and augmented reality/virtual reality devices
CN103026497B (en) The manufacture method of absorbing substrate and for manufacturing the manufacture method of its finishing die
TW201534956A (en) Component with reflection preventing function and manufacturing method thereof
JP6901189B1 (en) Method of manufacturing fine uneven surface structure on quartz glass substrate
JP5948691B1 (en) Mold, mold manufacturing method and replica manufacturing method
JP6611113B1 (en) Method for manufacturing plastic element having fine uneven structure on surface
KR102606558B1 (en) How to Create Optical Grating Components
JP2009161405A (en) Silicon carbide mold having fine periodical structure and method for manufacturing the same
WO2014132586A1 (en) Method for producing a structure with fine irregularities, and structure with fine irregularities produced using said method
KR100969988B1 (en) Process of making a semiconductor optical lens and a semiconductor optical lens fabricated thereby
JP3979439B2 (en) Manufacturing method of semiconductor optical lens
JP5548997B2 (en) Silicon carbide mold having fine periodic structure and manufacturing method thereof
JP6794308B2 (en) Method for manufacturing molds for manufacturing microlens arrays
JP4725502B2 (en) Manufacturing method of semiconductor optical lens
WO2019211920A1 (en) Production method for plastic molded article comprising fine uneven structure on surface thereof
JP4025886B2 (en) Method for microfabrication of crystalline TiO2 and micromachined crystal TiO2
JP2006131954A (en) Plasma etching method, plasma etching system, molding die for optical element, and optical element
KR20210048543A (en) Molding mold and lens
TW202000578A (en) A diamond having nanostructures on one of its surface to generate structural colours and a method of producing thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190228

R150 Certificate of patent or registration of utility model

Ref document number: 6539813

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250