JP2016221270A - 光音響装置 - Google Patents

光音響装置 Download PDF

Info

Publication number
JP2016221270A
JP2016221270A JP2016104227A JP2016104227A JP2016221270A JP 2016221270 A JP2016221270 A JP 2016221270A JP 2016104227 A JP2016104227 A JP 2016104227A JP 2016104227 A JP2016104227 A JP 2016104227A JP 2016221270 A JP2016221270 A JP 2016221270A
Authority
JP
Japan
Prior art keywords
light
subject
image signal
signal
contrast agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016104227A
Other languages
English (en)
Other versions
JP2016221270A5 (ja
JP6740004B2 (ja
Inventor
健吾 金崎
Kengo Kanezaki
健吾 金崎
福井 樹
Shige Fukui
樹 福井
湯浅 聡
Satoshi Yuasa
聡 湯浅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Publication of JP2016221270A publication Critical patent/JP2016221270A/ja
Publication of JP2016221270A5 publication Critical patent/JP2016221270A5/ja
Application granted granted Critical
Publication of JP6740004B2 publication Critical patent/JP6740004B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0093Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy
    • A61B5/0095Detecting, measuring or recording by applying one single type of energy and measuring its conversion into another type of energy by applying light and detecting acoustic waves, i.e. photoacoustic measurements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14542Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring blood gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14546Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring analytes not otherwise provided for, e.g. ions, cytochromes

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • Signal Processing (AREA)
  • Physiology (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Psychiatry (AREA)
  • Optics & Photonics (AREA)
  • Acoustics & Sound (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Power Engineering (AREA)

Abstract

【課題】より正確な被検体情報を取得可能な光音響装置を提供する。【解決手段】第1および第2の光を発生する光源と、造影剤を含有する被検体に光源からの第1の光を照射することで被検体から第1の音響波を発生させた後、造影剤を含有する被検体に光源からの第2の光を照射することで被検体内の造影剤を退色させるとともに、造影剤を退色させた後、被検体に光源からの第1の光を照射することで被検体から第2の音響波を発生させる照射部と、第1の音響波を受信して第1の電気信号を出力するとともに、第2の音響波を受信して第2の電気信号を出力する受信部と、第1の電気信号に基づいて被検体の第1の特性情報を取得するとともに、第2の電気信号に基づいて被検体の第2の特性情報を取得する取得部と、を有する光音響装置を用いる。【選択図】図1

Description

本発明は、光音響装置に関する。
レーザなどの光源から光を生体に照射し、入射した光に基づいて得られる生体内の情報を画像化する光イメージング装置の研究が医療分野で積極的に進められている。この光イメージング技術の一つとして、Photoacoustic Tomography(PAT:光音響トモグラフィー)がある。光音響トモグラフィーでは、光源から発生したパルス光を生体に照射し、生体内で伝搬・拡散したパルス光のエネルギーを吸収した生体組織から発生した音響波(典型的には超音波である)を検出する。そして情報処理装置により、得られた信号に数学的解析処理(画像再構成処理)を施し、被検体内部の光学特性値に関連した情報を可視化する。これにより、被検体内の情報、例えば初期音圧、光学特性値(特に光エネルギー吸収密度や吸収係数)およびそれらの分布を得ることができ、生体内の吸収体の分布や悪性腫瘍場所の特定などに利用できる。
PATにおいて、被検体内における光吸収体から発生する音響波の初期音圧P0は下記(式I)で表すことができる。
P0=Γ・μa・Φ ・・・(式I)
ここでΓはグルナイゼン係数であり、体積膨張係数βと音速cの2乗の積を定圧比熱Cpで除したものである。Γは被検体が決まれば、ほぼ一定の値をとることが知られている。μaは光吸収体の吸収係数、Φは光吸収体の位置での光量(光吸収体に照射された光量であり、光フルエンスとも呼ばれる)である。被検体内の光吸収体で発生した初期音圧P0は、被検体内を音響波として伝搬し被検体の表面に配置した音響検出器によって検出される。この検出された音響波の音圧の時間変化を測定し、その測定結果からバックプロジェクション法等の画像再構成手法を用いることにより、初期音圧分布P0を算出することが可能となる。算出された初期音圧分布P0は、グルナイゼン係数Γを除することにより、μaとΦの積の分布、つまり光エネルギー密度分布を得ることができる。また、被検体内の光量分布Φが分かれば、光エネルギー密度分布を光量分布Φで除することにより、吸収係数分布μaを得ることができる。すなわち、被検体に照射する光に対して既知の光学特性を持つ吸収体を造影剤として投与すると、該造影剤の存在量に応じた超音波信号を取得することができる。
被検体として生体を想定した場合、近赤外光に対する吸収が高いもののひとつは血液(ヘモグロビン)である。すなわち近赤外光を用いたPATで生体の測定を行うと血液の空間分布に関する情報を得ることが可能となる。しかしヘモグロビンの存在量だけでは信号のコントラスト(S/N)が十分ではない場合、生体内に光吸収体を造影剤としてさらに投与すれば、光吸収体が存在する濃度に応じてS/Nが強調されたPAT画像を取得することができる。生体で使用され得る血管用造影剤の性能としては、生体への透過性が高い波長領域の光をよく吸収する光学特性を有することと、生体への影響が少ないことなどが求められる。上記の性能を満たす血管イメージング用造影剤として、インドシアニングリーン(Indocyanine Green、以下ICGと略すことがある)を一例として挙げることができる。ICGは、人体に照射した際の影響が少なくかつ生体への透過性が高い近赤外波長領域の光をよく吸収する光吸収体であることから(非特許文献1)、PAT装置における造影剤として好適に用いることができる。
Gilbert R. Cherrick, Samuel W. Stein, Carroll M. Leevy, Charles S. Davidson、 "INDOCYANINE GREEN: OBSERVATIONS ON ITS PHYSICAL PROPERTIES, PLASMA DECAY, AND HEPATIC EXTRACTION"、 J Clin Invest.、1960 April; 39(4): p.592−600 Elana M. S. Stennett, Monika A. Ciuba, Marcia Levitus, "Photophysical processes in single molecule organic fluorescent probes", Chemical Society Reviews, 2014 April; 43,p.1057−1075
ここで、ヘモグロビンからの光音響波に基づく画像信号成分と造影剤からの光音響波に基づく画像信号成分とを区別することは困難であり、双方の画像信号成分が混在した情報しか取得できないという課題が残されている。本発明の目的は、上記に鑑み、より正確な被検体情報を取得可能な光音響装置を提供することにある。
上記目的を達成するため、本発明は、
第1および第2の光を発生する光源と、
造影剤を含有する被検体に前記光源からの前記第1の光を照射することで前記被検体から第1の音響波を発生させた後、前記造影剤を含有する前記被検体に前記光源からの前記第2の光を照射することで前記被検体内の前記造影剤を退色させるとともに、前記造影剤を退色させた後、前記被検体に前記光源からの前記第1の光を照射することで前記被検体から第2の音響波を発生させる照射部と、
前記第1の音響波を受信して第1の電気信号を出力するとともに、前記第2の音響波を受信して第2の電気信号を出力する受信部と、
前記第1の電気信号に基づいて前記被検体の第1の特性情報を取得するとともに、前記第2の電気信号に基づいて前記被検体の第2の特性情報を取得する取得部と、
を有する光音響装置を提供する。
上記のように、本発明によれば、より正確な被検体情報を取得可能な光音響装置が提供される。
本発明の光音響装置の実施例1を示すブロック図。 本発明の実施例1における装置100の機能を示すフローチャート。 実施例3の電気信号の減少量と照射エネルギー量との関係を示す図。 実施例4の電気信号の減少量と照射エネルギー量との関係を示す図。 実施例4の光照射前後のデジタル電気信号の変化を示す図。 本発明の光音響装置の実施例5を示すブロック図。 本発明の光音響装置の実施例6を示すブロック図。 本発明の実施例6における探触子522と照射部508の平面図。 本発明の実施例7における光音響画像および差分画像を示す図。
以下に図面を参照しつつ、本発明の実施の形態を詳しく説明する。なお、同一の構成要
素には原則として同一の参照番号を付して、説明を省略する。ただし、以下に記載されている詳細な計算式、計算手順などは、発明が適用される装置の構成や各種条件により適宜変更されるべきものであり、この発明の範囲を以下の記載に限定する趣旨のものではない。
本発明の光音響装置には、被検体に近赤外線等の光(電磁波)を照射することにより被検体内で発生した音響波を受信して、被検体情報を画像信号(画像データともいう)として取得する光音響効果を利用した装置を含む。また、被検体に近赤外線等の光(電磁波)を照射することにより被検体内で発生した音響波を受信して、被検体情報を画像信号として取得することを光音響測定あるいはPAT(Photoacoustic Tomography)測定と称する。なお、説明の便宜のため、例えば図2等では、光が被検体に照射され、その照射に基づき音響波が受信され、その受信に基づきデジタル電気信号が取得されるまでの一連の処理を、適宜、光音響測定と称する場合もある。
光音響効果を利用した装置(光音響装置)の場合、取得される被検体情報とは、光照射によって生じた音響波の発生源分布を示す。あるいは、被検体内の初期音圧分布、あるいは初期音圧分布から導かれる光エネルギー吸収密度分布や吸収係数分布、組織を構成する物質の濃度分布を示す。物質の濃度分布とは、例えば、酸素飽和度分布、トータルヘモグロビン濃度分布、酸化・還元ヘモグロビン濃度分布、造影剤濃度分布などである。
また、複数位置の被検体情報である特性情報を、2次元または3次元の特性分布として取得してもよい。特性分布は被検体内の特性情報を示す画像信号として生成され得る。
本発明でいう音響波とは、典型的には超音波であり、音波、超音波と呼ばれる弾性波を含む。光音響効果により発生した音響波のことを、光音響波または光超音波と呼ぶ。音響検出器(例えば探触子)は、被検体内で発生または反射した音響波を受信する。
<実施例1>
図1は、本発明の実施の形態に係る光音響装置の実施例1を示すブロック図である。実施例1の光音響装置100(以下「装置100」と略称する)は、光源2、ミラー6、照射部8を有する。装置100は、さらに、探触子(受信部に対応する)22、信号収集部(取得部の一部に対応する)24、信号処理部(取得部の他の一部に対応する)26、表示部28を有する。なお、以下では、3つの光吸収体を定義して説明に用いる。すなわち、その3つの光吸収体は、以下のように定義する。すなわち、人工の光吸収体である造影剤14、造影剤14以外の光吸収体である非人工吸収体12(以下、「吸収体12」と略称する)、その両者を合わせた光吸収体である統合吸収体16(以下、「吸収体16」と略称する)とそれぞれ定義する。
≪光源2≫
光源2は、被検体20から音響波を発生させる際には、パルス光である光4を射出し、造影剤14を退色させる際には、光4とは異なるパルス光である光30を射出するものである。しかしこれに限られず、装置100は、光源2により光4が射出され、他の光源により光30が射出されるように構成しても良い。これについては後述する。光4の波長は、被検体20が生体の場合、この生体内の例えば吸収体12である血液や造影剤14などの光吸収体に吸収される特定の波長である。光4の時間的なパルス幅(パルスのオン時間、ハイレベルの時間幅)は、数ナノから数百ナノ秒オーダーのものが好ましい。なお、光4のパルス光のパルス間隔(ローレベルの時間幅)をオフ時間とする。光源2は、また、レーザ(レーザ装置)から構成されることが好ましい。しかしこれに限られず、レーザのかわりに発光ダイオードなどを用いることも可能である。光源2は、例えば、固体レーザ、ガスレーザ、色素レーザ、または半導体レーザなど種々のレーザが適用可能である。
光源2は、単一の光源でも良いし、複数の光源から構成されるものであっても良い。光源2は、複数の光源から構成される場合には、被検体20に照射する光の強度を上げるという点で有利である。光源2は、この場合、略同一の波長の光を発振可能な光源を複数設
けて構成されても良い。光源2は、複数の波長の光を切替て発振可能なものから構成されても良いし、または発振波長の異なる光源を複数設けて構成しても良い。装置100は、この場合に、光源2により波長毎にそれぞれ光音響測定を行うことで、波長によって異なる光学特性値分布を取得し、各光学特性値分布に基づいて酸素飽和度等を取得可能である。光源2は、複数の波長の光を切替て発振可能なものから構成される場合、発振する波長を変換可能な色素やOPO(Optical Parametric Oscillators)を用いたレーザから構成されても良い。
光4の波長は、被検体20である生体内に含まれる造影剤14および吸収体12に対して選択的に吸収されやすい600nmから1300nmの波長領域のものが好ましい。また、光4の波長は、生体表面に比較的近い生体組織の光学特性値分布を求める場合、上記の波長領域よりも広い範囲である例えば400nmから1600nmの波長領域のものが好ましい。光4の時間的なパルス幅は、吸収体12或いは造影剤14に吸収エネルギーを効率的に閉じ込めるために、熱・ストレス閉じ込め条件を満たすようにすることが好ましい。光4の時間的なパルス幅は、例えば、1ナノ秒から200ナノ秒程度である。吸収体12、造影剤14、或いは吸収体16は、光エネルギーを吸収した場合、自身の温度が上昇し、その温度上昇により自身の体積が膨張することで音響波を発生させる。
光30の波長は、造影剤14に吸収される特定のものであって、造影剤14の極大吸収波長の前後50nm程度の波長が好ましく、造影剤14の極大吸収波長の前後20nm程度の波長であればさらに好ましい。光30のパルス間隔は、造影剤14の三重項励起状態緩和時間より短いものが好ましい。光30のパルス間隔(光30のローレベルの時間)は、例えばICGの場合、0.7ミリ秒以下であることが好ましい。光30のパルス幅τおよび光30のパルス周波数fは、光30のパルス間隔が一定の場合、以下の式(式II)を満たすのが好ましい。
(1−τ・f)/f<7×10−4
・・・(式II)
光源2は、連続光を発生可能に構成しても良い。これにより、造影剤14を効率よく光退色させることができるからである。なお、連続光は、例えば、パルスではなく定常的に一定の強度で出力される光であっても良い。有機色素の大半は、外部からの充分な強度の光を吸収すると基底状態S0から励起状態S1にエネルギー遷移する。本実施例の造影剤14は、このような有機色素から構成される。この有機色素は、励起状態S1から基底状態S0の状態にエネルギー遷移する際に、吸収した光エネルギーの一部を蛍光発光に、一部を熱・振動エネルギーとして放出する。この有機色素は、一方で、状態S1から内部緩和(系間交差とも呼ぶ)によっていわゆる三重項励起状態T1へのエネルギー遷移が生じる。光退色の主な原因は、状態T1において周囲の酸素等との相互作用によって有機色素が分解することである。また、状態S1は、数ナノ秒で状態S0にエネルギー遷移するが、状態T1は、数マイクロ秒の間、比較的安定して持続した後、状態S0にエネルギー遷移する。
造影剤14における状態S0から状態S1または状態T1へのエネルギー遷移の早さは、以下のようなものである。すなわち、この早さは、上記式(II)を満たすパルス幅τおよびパルス周波数fの光30または連続光を造影剤14に照射することにより、造影剤14の状態T1が状態S0に遷移するときのエネルギー遷移の早さよりも早くなるものである。したがって、状態T1の造影剤14が増加し、光退色の反応の効率性が増す。このことは後述の実施例からも明らかである。状態T1の造影剤14は、周囲の酸素との相互作用により自身の光退色を進行させる。このことから、三重項励起状態緩和時間は、酸素濃度の低い領域(例えば癌等の腫瘍が存在する領域は一般的に低酸素状態である)では、酸素濃度の高い領域と比較して長くなる。三重項励起状態緩和時間は、更に、粘度の高い
領域(例えば血液中や細胞間質中は、水中と比較して粘度が高い領域である)では酸素の拡散速度が遅くなるため、粘度の低い領域と比較して長くなる。光30の光量は、最大許容露光量(Maxium Permissible Exposure;MPEと略すことがある)以下であり、かつ、なるべく大きいものが好ましい。これにより、造影剤14の光退色を効率良く進行させられる。
なお、装置100は、被検体20である人体や動物等の生体への治療に用いることも可能である。装置100は、後述するように、光音響測定に使用される光源と、造影剤を光退色させるレーザ光の光源とを有するように構成しても良い。これにより、装置100は、フォトダイナミックセラピー(Photo Dynamic Therapy;光線力学的治療とも呼ぶ)を行えるように構成可能である。あるいは、装置100は、フォトサーマルセラピー(Photo Thermal Therapy)といった光を利用した治療も行えるように構成可能である。上述のフォトダイナミックセラピーによる治療効果は、一重項励起状態の酸素(一重項酸素とも呼ぶ)に基づいて発生する活性酸素種に、主に起因することが知られている。一重項酸素は、特定の光を吸収し第一励起三重項状態(T1)になった有機色素と、近傍の酸素が相互作用することにより発生する。このことは、装置100における造影剤14を光退色させる過程において、造影剤14が第一励起三重項状態(T1)となり、一重項酸素を発生させ、更に発生した一重項酸素により活性酸素種が生じるものである。そして、これにより、フォトダイナミックセラピーによる治療効果が期待できるものである。装置100は、さらに、レーザ光を照射することにより、被照射体(光照射部位)や造影剤14の温度を上昇させる効果を有するため、フォトサーマルセラピーによる治療効果が期待できる。
≪光学系36≫
光学系36は、ミラー6および照射部8から構成される。ミラー6は、光源2から射出された光4、30を照射部8まで導く。照射部8は、レンズ等の光学部品から構成され、この導かれた光4,30を所望の光分布形状の光10に加工して被検体20に照射する。しかしこれに限られず、光学系36は、光源2から射出された光4、30を光源2から照射部8まで伝搬させて導光する光ファイバなどの光導波路から構成されても良い。すなわち、光学系36は、例えば、光4,30を反射するミラーや、光4,30を集光し或いは拡大してその形状を変化させるレンズ、光を拡散させる拡散板などから構成されても良い。しかしこれに限られず、このような光学部品は、光源2から発せられた光4,30を所望の形状に形成して被検体20に照射可能な種々のものを適用できる。なお、光4,30は、レンズで集光させるより、ある程度の面積に広げる方が生体への安全性ならびに診断領域を広げられるという観点で好ましい。
≪被検体20≫
被検体20は、装置100を構成するものではないが、説明の便宜のためここで説明する。被検体20は、生体であり、例えば、人体や動物の乳房や指、手足などの診断の対象部位である。装置100は、人や動物の悪性腫瘍や血管疾患などの診断或いは化学治療の経過観察などに用いられても良い。
≪吸収体12,14,16≫
吸収体12は、生体由来の非人工のものであり、例えば、被検体20の内部に最初から存在する酸素化ヘモグロビンあるいは還元ヘモグロビンやそれらを含む多く含む血管などである。造影剤14は、被検体20の外部から投与された人工の光吸収体である。なお、造影剤14の換わりに、造影剤のような性質をもつものであって種々の人工の光吸収体が適用されても良い。造影剤14は、光30を吸収することにより自身が光退色する性質を有するものである。造影剤14は、例えば、有機色素等であって、人体に対する透過性が比較的高い近赤外波長領域の光を吸収する性質を有するものが好ましい。この近赤外波長
領域は、600nmから1300nmまでの波長領域である。造影剤14は、例えば、アジン系色素、アクリジン系色素、トリフェニルメタン系色素、キサンテン系色素、ポルフィリン系色素、シアニン系色素、フタロシアニン系色素であっても良い。あるいは、スチリル系色素、ピリリウム系色素、アゾ系色素、キノン系色素、テトラサイクリン系色素、フラボン系色素、ポリエン系色素、BODIPY(登録商標)系色素、またはインジゴイド系色素であっても良い。造影剤14は、また、インドシアニングリーン(ICG)、Alexa Fluor(登録商標)750などのAlexa Fluor(登録商標)系色素(Life Technologies Japan社製)であっても良い。あるいは、Cy(登録商標)系色素(GE Healthcare社製)、IR−783、IR−806、IR−820(Sigma Aldrich Japan社製)であっても良い。あるいは、IRDye 800CW(登録商標)、IRDye 800RS(登録商標)(LI−COR社製)、ADS780WSであっても良い。あるいは、ADS795WS、ADS830WS、ADS832WS(American Dye Source社製)、DyLight(登録商標)系色素(Thermo Fisher Scientific社製)であっても良い。あるいは、Hilyte Fluor(登録商標)系色素(AnaSpec社製)、またはDY(登録商標)系色素(Dyomics社製)であっても良い。吸収体16は、説明の便宜上、吸収体12および吸収体14をまとめたものと定義し、実際に存在するものは、吸収体12、14である。
本実施形態におけるシアニン系色素は、吸収極大波長におけるモル吸光係数が10−1cm−1以上であることが好ましい。本実施形態におけるシアニン系色素の構造の例として下記一般式(1)乃至(4)で表わされるものが挙げられる。
Figure 2016221270
・・・(1)
式(1)において、R201乃至R212は互いに独立に水素原子、ハロゲン原子、SO201、PO201、ベンゼン環、チオフェン環、ピリジン環、または直鎖もしくは分岐の炭素数1乃至18のアルキル基を表す。前記T201は、水素原子、ナトリウム原子、カリウム原子のいずれかを表す。式(1)において、R21乃至R24は互いに独立に水素原子、または直鎖もしくは分岐の炭素数1乃至18のアルキル基を表す。式(1)において、A21、B21は、互いに独立に直鎖もしくは分岐の炭素数1乃至18のアルキレン基を表す。式(1)において、L21乃至L27は互いに独立にCH、またはCR25である。前記R25は、直鎖もしくは分岐の炭素数1乃至18のアルキル基、ハロゲン原子、ベンゼン環、ピリジン環、ベンジル基、ST202、または、直鎖もしくは分岐の炭素数1乃至18のアルキレン基を表す。前記T202は、直鎖もしくは分岐の炭素数1乃至18のアルキル基、ベンゼン環、または、直鎖もしくは分岐の炭素数1乃至
18のアルキレン基を表す。 なお、式(1)において、 L21乃至L27は4員環乃
至6員環を形成していてもよい。式(1)において、R28は、−H、−OCH、−NH、−OH、−CO28、−S(=O)OT28、−P(=O)(OT28、−CONH−CH(CO28)−CH(C=O)OT28、−CONH−CH(CO28)−CHCH(C=O)OT28、及び−OP(=O)(OT28、のいずれかを表す。前記T28は、水素原子、ナトリウム原子、カリウム原子のいずれかを表す。式(1)において、R29は、−H、−OCH、−NH、−OH、−CO29、−S(=O)OT29、−P(=O)(OT29、−CONH−CH(CO29)−CH(C=O)OT29、−CONH−CH(CO29)−CHCH(C=O)OT29、及び−OP(=O)(OT29、のいずれかを表す。前記T29は、水素原子、ナトリウム原子、カリウム原子のいずれかを表す。
Figure 2016221270
・・・(2)
式(2)において、R401乃至R412は互いに独立に水素原子、ハロゲン原子、SO401、PO401、ベンゼン環、チオフェン環、ピリジン環、または直鎖もしくは分岐の炭素数1乃至18のアルキル基を表す。前記T401は、水素原子、ナトリウム原子、カリウム原子のいずれかを表す。式(2)において、R41乃至R44は互いに独立に水素原子、または直鎖もしくは分岐の炭素数1乃至18のアルキル基を表す。式(2)において、A41、B41は、互いに独立に直鎖もしくは分岐の炭素数1乃至18のアルキレン基を表す。式(2)において、L41乃至L47は互いに独立にCH、またはCR45である。前記R45は、直鎖もしくは分岐の炭素数1乃至18のアルキル基、ハロゲン原子、ベンゼン環、ピリジン環、ベンジル基、ST402、または、直鎖もしくは分岐の炭素数1乃至18のアルキレン基を表す。前記T402は、直鎖もしくは分岐の炭素数1乃至18のアルキル基、ベンゼン環、または、直鎖もしくは分岐の炭素数1乃至18のアルキレン基を表す。なお、式(2)において、 L41乃至L47は4員環乃至6員環を形成していてもよい。式(2)において、R48は、−H、−OCH、−NH、−OH、−CO48、−S(=O)OT48、−P(=O)(OT48、−CONH−CH(CO48)−CH(C=O)OT48、−CONH−CH(CO48)−CHCH(C=O)OT48、及び−OP(=O)(OT48、のいずれかを表す。前記T48は、水素原子、ナトリウム原子、カリウム原子のいずれかを表す。式(2)において、R49は、−H、−OCH、−NH、−OH、−CO49、−S(=O)OT49、−P(=O)(OT49、−CONH−CH(CO49)−CH(C=O)OT49、−CONH−CH(CO49)−CHCH(C=O)OT49、及び−OP(=O)(OT49、のいずれかを表す。前記T49は、水素原子、ナトリウム原子、カリウム原子のいずれかを表す。
Figure 2016221270
・・・(3)
式(3)において、R601乃至R612は互いに独立に水素原子、ハロゲン原子、SO601、PO601、ベンゼン環、チオフェン環、ピリジン環、または直鎖もしくは分岐の炭素数1乃至18のアルキル基を表す。前記T601は、水素原子、ナトリウム原子、カリウム原子のいずれかを表す。式(3)において、R61乃至R64は互いに独立に水素原子、または直鎖もしくは分岐の炭素数1乃至18のアルキル基を表す。式(3)において、A61、B61は、互いに独立に直鎖もしくは分岐の炭素数1乃至18のアルキレン基を表す。式(3)において、L61乃至L67は互いに独立にCH、またはCR65である。前記R65は、直鎖もしくは分岐の炭素数1乃至18のアルキル基、ハロゲン原子、ベンゼン環、ピリジン環、ベンジル基、ST602、または、直鎖もしくは分岐の炭素数1乃至18のアルキレン基を表す。前記T602は、直鎖もしくは分岐の炭素数1乃至18のアルキル基、ベンゼン環、または、直鎖もしくは分岐の炭素数1乃至18のアルキレン基を表す。なお、式(3)において、L61乃至L67は4員環乃至6員環を形成していてもよい。式(3)において、R68は、−H、−OCH、−NH、−OH、−CO68、−S(=O)OT68、−P(=O)(OT68、−CONH−CH(CO68)−CH(C=O)OT68、−CONH−CH(CO68)−CHCH(C=O)OT68、及び−OP(=O)(OT68、のいずれかを表す。前記T68は、水素原子、ナトリウム原子、カリウム原子のいずれかを表す。式(3)において、R69は、−H、−OCH、−NH、−OH、−CO69、−S(=O)OT69、−P(=O)(OT69、−CONH−CH(CO69)−CH(C=O)OT69、−CONH−CH(CO69)−CHCH(C=O)OT69、及び−OP(=O)(OT69、のいずれかを表す。前記T69は、水素原子、ナトリウム原子、カリウム原子のいずれかを表す。
Figure 2016221270
・・・(4)
式(4)において、R901乃至R908は互いに独立に水素原子、ハロゲン原子、S
901、PO901、ベンゼン環、チオフェン環、ピリジン環、または直鎖もしくは分岐の炭素数1乃至18のアルキル基を表す。前記T901は、水素原子、ナトリウム原子、カリウム原子のいずれかを表す。式(4)において、R91乃至R94は互いに独立に水素原子、または直鎖もしくは分岐の炭素数1乃至18のアルキル基を表す。式(4)において、A91、B91は、互いに独立に直鎖もしくは分岐の炭素数1乃至18のアルキレン基を表す。式(4)において、L91乃至L97は互いに独立にCH、またはCR95である。前記R95は、直鎖もしくは分岐の炭素数1乃至18のアルキル基、ハロゲン原子、ベンゼン環、ピリジン環、ベンジル基、ST902、または、直鎖もしくは分岐の炭素数1乃至18のアルキレン基を表す。前記T902は、直鎖もしくは分岐の炭素数1乃至18のアルキル基、ベンゼン環、または、直鎖もしくは分岐の炭素数1乃至18のアルキレン基を表す。なお、式(4)において、L91乃至L97は4員環乃至6員環を形成していてもよい。式(4)において、R98は、−H、−OCH、−NH、−OH、−CO98、−S(=O)OT98、−P(=O)(OT98、−CONH−CH(CO98)−CH(C=O)OT98、−CONH−CH(CO98)−CHCH(C=O)OT98、及び−OP(=O)(OT98、のいずれかを表す。前記T98は、水素原子、ナトリウム原子、カリウム原子のいずれかを表す。式(4)において、R99は、−H、−OCH、−NH、−OH、−CO99、−S(=O)OT99、−P(=O)(OT99、−CONH−CH(CO99)−CH(C=O)OT99、−CONH−CH(CO99)−CHCH(C=O)OT99、及び−OP(=O)(OT99、のいずれかを表す。前記T99は、水素原子、ナトリウム原子、カリウム原子のいずれかを表す。
本実施形態におけるシアニン系色素の例としては、インドシアニングリーン、化学式1で表わされる、ベンゾトリカルボシアニン構造を有するSF−64、化学式(i)乃至(v)で表わされる化合物が挙げられる。
Figure 2016221270
・・・化学式(i)
Figure 2016221270
・・・化学式(ii)
Figure 2016221270
・・・化学式(iii)
Figure 2016221270
・・・化学式(iv)
Figure 2016221270
・・・化学式(v)
また、上記シアニン系色素は、芳香環がスルホン酸基、カルボキシル基、または、リン酸基で置換されていても良い。また、芳香環以外の部分に、スルホン酸基、カルボキシル基、リン酸基が導入されていても良い。
被検体20への造影剤14を投与する方法は、医療従事者の手によるものでも良い。あるいは、装置100は、造影剤14を自動的に注入する注入部である公知のインジェクションシステムやインジェクタなどを有するようにし、この注入部を用いるものでも良い。
≪探触子22≫
探触子22は、光4が被検体20の表面に照射されることにより被検体20の表面部及び内部で発生する音響波を検出する音響波検出器である。探触子22は、この音響波を自身が有する変換素子により受信し、その受信した音響波をアナログ電気信号に変換して信号収集部24に送出するものである。この変換素子は、圧電現象を用いたものである圧電素子(ピエゾ素子)、光の共振を用いたもの、容量の変化を用いたものなど、上記音響波を検出可能な種々のものが適用できる。探触子22は、複数の変換素子が1次元あるいは2次元に配置されたものが好ましい。探触子22は、このような複数の変換素子からなる
多次元配列素子から構成されることで、同時に複数の場所で音響波を検出することができ、検出時間を短縮できると共に、被検体20の振動などによる再構成画像信号への影響を低減できる。
探触子22は、被検体20から伝搬する音響波をできるだけ全方位から検出できるほうが好ましい。画像再構成に十分な量のデータを被検体20の全体から均一に確保できるからである。探触子22は、このため、ステッピングモータ、或いは連続移動をさせることが可能なモータ等の駆動装置により被検体20の裏面に沿って音響波を取得するための位置まで移動が可能に構成される。しかしこれに限られず、駆動装置は、探触子22を任意の位置に移動可能に構成されても良い。また、探触子22の形状は、後述の略球冠形状に構成されても良い。
探触子22は、変換素子を128個設け、それらの変換素子を2次元状に配置して構成されたマルチ探触子であっても良い。このマルチ探触子は、被検体20の周囲に対して移動しながら音響波を受信することで、被検体20の内部の音源の空間的な配置に関する情報を得るための十分な音響波を受信することができる。探触子20は、このようなマルチ探触子の場合、例えば、被検体20の周辺の120個所の探触子20が位置するべき音響波受信位置毎に音響波を受信するものである。探触子20は、この場合、合計15360個の変換素子で被検体20からの音響波をアナログ電気信号に変換するのと実質的に同じである。なお、これに限られず、駆動装置は、被検体20を探触子22に対して移動させるものであっても良い。或いは駆動装置は、被検体20と探触子22との相対移動を行い、探触子22と被検体20とを、音響波が好適に取得される位置関係にするものであっても良い。探触子20は、この場合、その位置関係において音響波を受信するようにしても良い。
≪信号収集部24≫
信号収集部24は、アナログ/デジタルコンバータ(以下、「ADC」と称する)、増幅器などで構成される。このADCは、探触子22から送出されるアナログの電気信号を入力し、このアナログ電気信号をデジタル電気信号に変換し、このデジタル電気信号を増幅器へ送出するものである。この増幅器は、ADCから送出されたデジタル電気信号を所定の利得で増幅し、その増幅したデジタル信号を信号処理部26に送出する。しかしこれに限られず、信号収集部24は、FPGA(Field Programmable Gate Array)チップ等から構成されても良い。信号収集部24は、探触子17から送出されるアナログ電気信号が複数ある場合は、それらのアナログ電気信号を同時にパラレル処理できることが好ましい。信号処理時間の短縮が図れるとともに、画像信号を形成するまでの時間を短縮できるからである。
≪信号処理部26≫
信号処理部26は、信号収集部24から送出されるデジタル電気信号を順次格納する記憶部と、その格納されているデジタル電気信号を読み出し、その読み出したデジタル電気信号に対して画像再構成処理を行うことで画像信号を生成する再構成部とを有する。信号処理部26は、さらに、温度補正部を有しても良い。温度補正部は、被検体20内の造影剤14が光退色させられる場合に、光30が被検体20に照射されることで被検体20の温度の上昇を、光30の照射エネルギー量から測定する。温度補正部は、その測定値に基づいてデジタル電気信号、画像信号、或いは表示部28により表示される表示画像の画像特徴量である輝度値、コントラストや、或いは強度、デジタル電気信号等を補正する。信号処理部26は、さらに、差分演算を行う演算部を有する。
演算部が行うこの差分演算は、1回目の光音響測定に基づく画像信号と、光30による光退色後に行う2回目の光音響測定に基づく画像信号との差分演算である。これらの画像
信号は、各画素値或いは画像特徴量等が2次元状、或いは3次元状に規定されて形成されるものである。この画像特徴量は、輝度値、或いはコントラスト値等であっても良い。この差分演算は、一方の画像信号である1回目の光音響測定に基づく画像信号のある座標の輝度値から、他方の画像信号である2回目の光音響測定に基づく画像信号の座標であって、上記一方の画像信号のある座標と同一の座標の輝度値を減算するものである。この差分演算は、この減算結果に基づいて差分値を取得するものである。差分演算は、さらに、その差分を取る処理を全座標について行うものである。しかしこれに限られず、この差分演算は、以下のものでも良い。すなわち、上記一方の画像信号が形成される前段のメモリに格納されているデジタル電気信号と、上記他方の画像信号が形成される前のメモリに格納されているデジタル電気信号(画像信号の基となる信号)との差分を取るものである。また、1回目の光音響測定の際に取得されたデジタル電気信号のうち造影剤14に起因する信号成分は、1回目の光音響測定と2回目の光音響測定との間のデジタル電気信号の減少分に相当する。よって、この造影剤14に起因する信号成分を取得する方法は、例えば、上記減少分のうち一定値以上の部分を取得するものでも良い。この一定値は、適宜ユーザーにより任意に定められるようにしても良い。
また、装置100では、1回目の光音響測定を行った後に光30の照射による造影剤14の光退色処理を行い、その後に2回目の光音響測定を行い、その後上記の差分演算を行うという一連の処理をn(nは自然数)回繰り返すようにしても良い。演算部は、n個の差分演算結果に基づいて各差分演算結果間での変化量を算出することで、より精緻に実質的に造影剤14にのみ由来するデジタル電気信号を取得できるからである。また、上記差分演算結果に基づく造影剤14由来のデジタル電気信号を画像再構成して画像信号を形成するに当たり、画像類似度を基にして差分演算結果を取得しても良い。
≪表示部28≫
表示部28は、信号処理部26から送出される画像信号を入力し、その画像信号に基づき人間が視認可能な表示画像を形成する。表示部28は、例えば、液晶ディスプレイ、プラズマディスプレイ、LEDディスプレイ、有機ELディスプレイ等である。しかしこれに限られず、表示部28は、装置100とは別体として設けられても良い。
<温度補正>
装置100は、上記1回目の光音響測定と2回目の光音響測定との間で光30の照射を被検体20に対して行うことで被検体20内の造影剤14の光退色を行う。被検体20は、この場合、光30の照射により自身の温度が上昇する。その温度上昇は、少なくとも被検体20の音速cおよび体積膨張係数βを増大させる。グルナイゼン係数Γは、この場合、音速cおよび体積膨張係数βの増大に基づいて増大する。
装置100は、このため、上記被検体20の温度上昇に基づき2回目の光音響測定の際に取得したデジタル電気信号を補正する温度補正部を有し、その補正後のデジタル電気信号に基づいて画像信号を形成するようにしても良い。または、温度補正部は、2回目の光音響測定の際に取得したデジタル電気信号から形成した画像信号を、上記被検体20の温度上昇に基づき補正するようにしても良い。これにより、上記温度上昇による上記音速c、体積膨張係数β、およびグルナイゼン係数Γの変化に基づいて、2回目の光音響測定によるデジタル電気信号のうちその温度上昇による所望値からのズレを補正できる。このズレは、その温度上昇の上昇量が大きくなるほど大きくなるものである。この所望値は、2回目の光音響測定であって、仮に温度上昇がないとした場合の光音響測定により得られるであろうデジタル電気信号であっても良い。
温度補正部は、以下の方法により被検体20の温度上昇を測定する。温度補正部のこの測定方法は、侵襲的な方法と非侵襲的な方法がある。侵襲的な測定方法は、例えば、熱電
対やサーミスタ等の測温端子を被検体20に刺入して測定する方法がある。非侵襲的な測定方法は、例えば、MRIやマイクロ波CTやラジオメトリ等を使用して測定する方法である。本実施例の上記温度上昇の測定方法は、光30のエネルギーから、被検体20に吸収されるエネルギーと、吸収された分から損失するエネルギーとを見積もり、被検体20の温度上昇を測定するものである。この測定方法は、具体的には、エネルギーの保存に関する微分方程式を解くことにより温度上昇を求めるものである。光30を照射した場合の被検体20の温度上昇は、被検体20の密度ρ、熱容量C、被検体20が吸収したエネルギーE’からなる以下の式3で表わされる。
ΔT=E’/(ρC)・・・(式3)
また、被検体20が吸収したエネルギーE’は、光吸収体の吸収係数μaおよび光吸収体の位置での光量Φからなる以下の式4で表される。
’=μa・Φ ・・・(式4)
被検体20の外部から照射した光30のエネルギーは、被検体20の内部で指数関数的に減少する。一方で、被検体20の外部から照射した光30のエネルギーの損失は、被検体20の温度が上昇する部位とその周囲とに温度差が生じることにより起こる熱輸送(例えば被検体20の表面と外部との間の熱輸送)や熱伝導(被検体20の内部)に基づいて発生する。上記温度上昇の測定は、これらの微分方程式を連立し解くことにより照射した光30のエネルギーから被検体20の温度上昇を見積ることで行うものである。
図2は、上記本発明の実施例1における装置100の機能を示すフローチャートである。フローは、装置100に被検体20が保持されてスタートする。この場合、装置100は、2つのプレートを備える構成の場合には、そのプレートに被検体20が挟持されるようにして保持されても良いし、探触子22が後述の略球冠形状に構成される場合は、カップに被検体20が挿入されるように保持されても良い。
ステップS2で、被検体20が装置100に保持された状態で装置100に電源が供給され、ステップS4に移行する。しかしこれに限られず、装置100に電源が供給されてから、装置100の機能に基づき被検体20が保持されるようにしても良い。装置100により被検体20の硬度や、保持される位置等が自動的に調整されることで、被検体20が生きている人間の場合には、その負担を軽減できるからである。ステップS4で、装置100が備える造影剤注入部により被検体20に造影剤14が注入され、ステップS6に移行する。しかしこれに限られず、この造影剤14の注入は、人間により行われても良い。
ステップS6で、造影剤14を含有している被検体20に対して照射部8により光10が照射される。この光10は、被検体20の表面の略全域にまんべんなく行き渡るように広げられて照射される。被検体20内部の吸収体12,14に効率よく光10を吸収させられるからである。そして、探触子22が駆動装置により被検体20の裏面に沿って移動される。この移動が行われながら、光10の照射に基づき被検体20内の吸収体12,14から発生した音響波が変換素子により順次受信されてアナログ電気信号に変換される。そして、そのアナログ電気信号が信号収集部24へ順次送出される。この場合、探触子22が駆動装置により連続的に移動されても良いし、ステップ移動されても良い。探触子22がステップ移動される場合は、そのステップ移動のステップごとに光10が照射され、その照射毎に音響波が受信されるようにしても良い。しかしこれに限られず、照射部8が探触子22と同期して被検体20の表面に沿って移動されながら光が照射されても良い。より全域にまんべんなく被検体20に光10が照射できるからである。また、探触子22が略球冠形状に構成されるものであるときは、その探触子22が螺旋状に移動されながら音響波がその探触子22により受信されるようにしても良い。そして、上記のようにして送出されたアナログの電気信号が信号収集部24によりアナログデジタル変換されること
でデジタル電気信号に変換された後、信号処理部26に送出される。そして、送出されたデジタル電気信号が信号処理部26内のメモリに順次格納され、ステップS8に移行する。
ステップS8で、メモリに格納されているデジタル電気信号に対して画像再構成処理が施されることで、画像信号が形成され、ステップS12に移行する。この形成の仕方は、ユニバーサルバックプロジェクション法等により行われるが、種々の画像再構成法が適用可能である。ステップS12で、被検体20に最大許容露光量以下のレーザ光30が任意の時間だけ照射される。そして、この照射により被検体20の内部に存在する造影剤14が光退色させられる。この場合、光10により造影剤14の結合の一部が破壊されることにより光退色させられ、ステップS14に移行する。この処理により後段の2回目の光音響測定の場合に、造影剤14由来の音響波の発生は減少するものである。
ステップS14では、被検体20内の造影剤14の大半或いは全てが光退色している状態で、ステップS10と同様の2回目の光音響測定が行われ、ステップS15に移行する。この場合、光音響測定で得られるデジタル電気信号は、造影剤14由来の信号成分が1回目の光音響測定のデジタル電気信号よりも少ないか、或いは全くないものである。ステップS15で、得られたデジタル電気信号に対して被検体20の温度上昇の影響を補正するか否か判断される。この場合、温度補正が予め行われるようにユーザーにより設定されても良い。あるいは、装置100が上記の侵襲的または非侵襲的に温度測定可能な温度測定装置を備え、その温度測定装置により被検体20の温度が所定の温度以上と判断された場合に温度補正処理を行うと判断されても良い。ステップS15で、温度補正しないと判断された場合は、ステップS16に移行し、温度補正すると判断された場合は、ステップS24に移行する。ステップS16で、その温度補正していないデジタル電気信号からステップS8と同様の処理により画像信号が形成され、ステップS18に移行する。ステップS18では、ステップS10と同様に信号処理部26内のメモリに画像信号が記憶され、ステップS20に移行する。
ステップS24で、メモリに記憶されている2回目の光音響測定に基づくデジタル電気信号が読み出され、その読み出されたデジタル電気信号に対して温度上昇の影響を低減する方向に補正処理が行われる。この補正処理は、その温度上昇分だけ被検体20の温度が降下したときの被検体20(すなわち、温度が上昇しないと仮定した場合の被検体20)の音速c、体積膨張係数β、およびグルナイゼン係数Γが算出されるものである。この補正処理は、さらに、その算出結果をそれぞれ温度上昇したときの被検体20の音速c、体積膨張係数β、およびグルナイゼン係数Γで除算した値が算出されるものである。この補正処理は、さらに、この除算値がその読み出された2回目の光音響測定によるデジタル電気信号のそれぞれに乗算されるものである。これにより、上記温度上昇に応じて上記音速c、体積膨張係数β、およびグルナイゼン係数Γが増大することによる影響を低減する方向に補正できる。すなわち、被検体20が上記温度上昇しなかった場合の音速c、体積膨張係数β、およびグルナイゼン係数Γに上記温度上昇した場合のそれらが近づくように補正される。その乗算されて形成されるデジタル電気信号が補正デジタル電気信号として新たにメモリに格納され、ステップS16に移行する。ステップS16では、この温度補正処理後の場合には、この補正デジタル電気信号に対して上記同様の画像再構成処理が行われることで画像信号が形成され、ステップS18に移行する。そして、ステップS18で、この画像信号が信号処理部26内のメモリに記憶され、ステップS20に移行する。
ステップS20では、前段のステップで格納されている1回目の光音響測定に基づく画像信号および2回目のそれがともに読み出され、それらの比較演算が行われる。この比較演算は、各画像信号の共通する2次元或いは3次元座標同士における輝度値、コントラスト値、信号強度、またはその他の画像特徴量の差分値が算出されるものである。この比較
演算が全座標について行われ、その比較演算結果が信号処理部26内のメモリに格納され、ステップS22に移行する。しかしこれに限られず、ステップS20では、比較演算の換わりに、1回目の光音響測定に基づく画像信号と2回目の光音響測定に基づく画像信号との差異を反映可能な種々の演算が適用されても良い。例えば、1回目の光音響測定に基づく画像信号の画像特徴量が2回目の光音響測定に基づく画像信号の画像特徴量で除されるようにしても良い。ステップS22で、この全座標における差分値に基づき画像再構成が行われることで、画像信号が形成され、フローを終了する。この場合、この画像信号は、被検体20内部の造影剤14の含有量の減少量に基づいた画像信号であり、延いては実質的に造影剤14由来の音響波のみに基づく画像信号である。また、この画像信号は、吸収体16に基づいた画像信号である1回目の光音響測定に基づく画像信号から、2回目の光音響測定に基づく画像信号の信号成分を除いたものである。すなわち、この画像信号は、実質的に吸収体12のみからの音響波に基づくものである。しかしこれに限られず、温度補正処理が必要のない場合、上記温度補正処理のステップを省略するように装置100が構成されても良い。温度補正処理が必要のない場合とは、例えば、光30の照射によって被検体20の温度が上がりにくい例えば寒冷な環境で装置100を使用する場合、信号処理速度を高めたい場合、あるいは光30の強度が比較的小さい場合等である。
これにより、実質的に吸収体12であるヘモグロビン等のみからの光音響波に基づく画像信号成分から形成される画像信号と、実質的に造影剤14のみからの光音響波に基づく画像信号成分から形成される画像信号とを区別して取得できる。このため、後者の画像信号は、例えば、造影剤14を多く取り込む癌等の被検体20内での位置をより正確に示すものである。癌等の存在位置の輝度値等が特に強調されたものだからである。
また、光30の照射に基づき被検体20の温度が上昇することによって、2回目の光音響測定に基づく画像信号成分への影響を低減することで、上記双方の画像信号をより高精度に取得可能である。
<実施例2>
装置100を使用するに当たっては、例えば、以下のようにした。すなわち、光源2は、パルスレーザ光である光4を被検体20であるサンプルに照射する。そして、探触子22が有する変換素子である圧電素子は、その照射によりサンプルから発生した音響波をアナログの電気信号に変換してそれを信号収集部24に送出する。そして、信号収集部24が有する高速プリアンプは、その送出されたアナログの電気信号を増幅するとともにデジタル電気信号に変換し、信号処理部26に送出する。そして、デジタル電気信号の状態を観測するために準備したデジタルオシロスコープは、その送出されたデジタル電気信号を入力して、そのデジタル電気信号の状態を表示するようにした。
光源2は、チタンサファイアレーザー(LT−2211−PC、Lotis社製)を適用した。光源2から射出される光4の波長は、700〜1000nmの範囲内のものであり、可変に制御されるものとした。光4のエネルギー密度は、およそ10から20mJ/cm、光4のパルス幅(オン時間あるいはハイレベル時間)は、約20ナノ秒、パルス繰返し周波数は10Hzであるものとした。探触子22が有する圧電素子は、エレメント径1.27cm、中心帯域1MHzの非収束型超音波トランスデューサ(V303、Panametrics−NDT製)を用いた。測定容器は、ポリスチレン製キュベットで、光路長1mm、サンプル容量は約200μlであった。この測定容器と圧電素子は、ガラス容器内に満たした水に浸され、測定容器と圧電素子との間隔は、2.5cmとした。信号収集部24内の高速プリアンプは、圧電素子からのアナログ電気信号あるいはそれに基づくデジタル電気信号の信号強度を増幅するものである。この高速プリアンプは、増幅度(利得)が+30dBである超音波プリアンプ(Model5682、オリンパス製)を適用した。
実験用に設けた上記デジタルオシロスコープ(DPO4104、テクトロニクス製)は
、増幅されて形成されたデジタル電気信号を入力して、その入力に基づきデジタル電気信号の状態を表示するものである。光源2は、ガラス容器の外からパルスレーザ光4をポリスチレン製キュベットに照射するようにした。また、フォトダイオードは、デジタルオシロスコープとともに実験用に設けられ、このデジタルオシロスコープにトリガー信号を送出するものである。デジタルオシロスコープは、このトリガー信号を入力し、その入力に基づいてデジタル電気信号の入力を開始する。このフォトダイオードは、パルスレーザ光4がポリスチレン製キュベットに照射されることのより発生する散乱光の一部を検出し、その検出に基づきトリガー信号を送出する。デジタルオシロスコープは、32回平均表示モードとし、パルスレーザ光4の照射回数を32回とし、その32回の照射に基づくデジタル電気信号を取得するようにした。そして取得した32回の照射に基づくデジタル電気信号の平均値を算出するようにした。
これにより、装置100の性能を評価できるとともに装置100が取得するデジタル電気信号の状態を見て取ることができる。
<実施例3>
図3Aは、実施例3における退色前後のデジタル電気信号の減少量を光30の照射エネルギー量で規格化したものを示す図である。造影剤14は、滅菌水にICGを溶解させ、1mm吸光セルによる吸光度測定において吸収極大での吸光度が0.4程度となるように調製したものである。その造影剤14は、10Hz、約20ナノ秒のパルス幅のパルス光またはLED連続光が照射されるようにした。そして装置100の操作者は、その照射前後で造影剤14から発生する音響波を変換素子により変換して形成されたアナログ電気信号を測定した。照射前後でのアナログ電気信号の減少量を測定し、その減少量をその光の照射量で規格化し、比較したものを示すものである。図3Aは、この結果、パルス光よりもLEDによる連続光の方が照射前後でのデジタル電気信号の減少量が大きく、造影剤14を光退色させるに当たり連続光が適していることを示すものである。
よって、装置100の光30を出力する光源を、連続光を出力可能なLEDから構成することで、光退色効果を増大させることができる。これにより、実質的に造影剤14のみの音響波に基づく画像信号の取得精度が向上し、延いては、そこに現れる癌等に由来する画像信号の輝度値等の精度が向上する。
<実施例4>
図3Bは、実施例4における退色前後のデジタル電気信号の減少量を照射エネルギー量で規格化した図である。造影剤14は、滅菌水へICGを溶解させ、1mm吸光セルによる吸光度測定で吸収極大での吸光度が0.4程度となるように調製して構成したものである。その造影剤14は、10Hz、約20ナノ秒のパルス幅のパルス光が照射されるようにした。照射したパルス光の波長は、それぞれ、710、780、810nmである。そして装置100の操作者は、それらの波長毎における照射前後で造影剤14から発生する音響波を変換素子により変換して形成されたアナログ電気信号を測定した。図3Bは、それらの波長毎における照射前後でのアナログ電気信号の減少量を測定し、その減少量をその光の照射エネルギー量で規格化し、比較したものである。その結果、ICGの吸収スペクトル(黒線)とアナログ電気信号の減少量(白丸)は重なり合う傾向にあることが確認された。光源2は、この場合、造影剤14の光退色を行うに当たり、造影剤14の吸収極大付近の波長のレーザ光を照射可能なものが好ましいことが示された。なお、吸収極大での波長は、吸収極大波長とも称する。
図3Cは、実施例4における光30の照射前後のデジタル電気信号の変化を示す図である。図3Cは、上記調整して構成されるICG水溶液のサンプルに対して、波長が780nmであり、光退色させるためのパルス光を照射した場合の、その光30の照射前後において光音響測定で取得したデジタル電気信号の変化を示すものである。本図から、光退色させるためのレーザ光の照射により、その前後で取得されるデジタル電気信号が減少する
ことを確認した。本図では、光30の照射前のデジタル電気信号の振動中心からの振幅は、照射後のそれよりも大きいものである。なお、デジタル電気信号に変換する前のアナログ電気信号についても同様のことが言える。
<実施例5>
図4は、本発明の実施の形態に係る光音響装置の実施例5を示すブロック図であり、図1に対応する部分には同一の番号を付して必要のない限り説明を省略する。また実施例1と類似する構成については四百番台の番号を付すとともにその十の位および一の位に共通番号を付して、必要のない限り説明を省略する。実施例5の光音響装置400(以下「装置400」と略称する)は、光4および光30の発生源をそれぞれ光源402と光源401とに分けた点が装置100と異なるものである。光源402は、光4のみを射出するものであり、光源401は、光30のみを射出するものである。照射部408は、被検体20の側面から照射するものである。これにより、装置100により光30が照射されるときに比べて、被検体20に対してその深さ方向(Z方向)にムラなくかつ全体的に照射光411を照射できる。このため、造影剤14は、被検体20に対する深さ方向についてまんべんなく光退色される。照射光411は、照射部8と同様な構成の照射部408により、光30が広げられて形成されるものである。照射部408は、また、被検体20の側面に沿ってZ方向に移動可能に構成しても良い。これにより、光30から形成される光411を、被検体20に対してよりムラなくかつ全体的に照射可能である。また、照射部408、照射部410、並びに探触子22を移動可能にすることで、より高精度に光音響測定および光退色を行うことが可能である。照射部408は、また、被検体20の周囲に沿って、円を描くように移動しながら連続的に或いは断続的に光411を照射するようにしても良い。そして、光411が、被検体20の周囲全体に照射されるようにしても良い。これにより、造影剤14の光退色の効率が上がり、より高精度に光音響測定および光退色を行うことが可能である。なお、装置400は、照射部408と被検体20との相対移動を行いながら、上記の処理を行うようにしても良い。その他は、装置100と同様である。
<実施例6>
図5は、本発明の実施の形態に係る光音響装置の実施例6を示すブロック図であり、図1に対応する部分には同一の番号を付して必要のない限り説明を省略する。また実施例1と類似する構成については五百番台の番号を付すとともにその十の位および一の位に共通番号を付して、必要のない限り説明を省略する。なお、図5の522として示される探触子は、図6の切断線AA’での切断部端面を示すものである。本実施例の光音響装置500(以下、「装置500」と略称する)は、探触子522の構成に特徴を有する。探触子522は、複数の変換素子532、保持体534を有する。保持体534は、略球冠形状に形成されており、その略球冠形状に沿って複数の変換素子532を保持している。変換素子532は、それぞれ最も受信感度の高い方向が集中するように保持されている。本実施例では、複数の変換素子532のそれぞれの最も受信感度の高い方向は、保持体534の略球冠形状の曲率中心を含む領域に向かうものである。変換素子532のアナログ電気信号の出力端は、それぞれ信号配線と接続されている。変換素子532のそれぞれが出力したアナログ電気信号は、それぞれ信号配線が共通接続されて構成される信号線536により合成されるとともに、その信号線536を介して信号収集部24へと送出される。その後の信号処理等は各実施例と同様である。しかしこれに限られず、変換素子532のそれぞれが出力したアナログ電気信号は、それぞれ信号配線が共通接続されて構成される信号線536により合成されずにパラレルに別々の信号として各別に信号収集部24へと送出されるようにしても良い。
照射部508は、保持体508の中心に保持されることにより探触子522と一体化して構成されている。照射部508は、被検体20に対して実施例1とは逆方向に光10を照射する。すなわち、実施例1では、照射部8は、探触子22に向かう方向(図1のZ方
向)に光を照射するが、本実施例では、照射部508は、探触子522側から光を照射する(図5の−Z方向に光を照射する)ものである。駆動装置すなわち位置制御部538は、探触子522を移動させるものである。位置制御部538は、例えば、探触子522を螺旋状に移動させるようにし、照射部508は、その螺旋移動により自身が移動する螺旋軌道上の位置であって、光を照射するための任意の位置で光10を照射するようにしても良い。探触子522と一体化されている照射部508は、この場合、位置制御部538による螺旋移動に伴って音響波受信位置(光照射位置)毎に光10を照射しても良い。変換素子532は、この照射に基づく音響波を受信してアナログ電気信号に変換して信号収集部24に送出するようにしても良い。これにより、探触子522と被検体20との間に音響マッチング液が設けられているとき、探触子522の移動に起因する音響マッチング液の揺れに基づく音響波ノイズを低減可能に構成できる。
図6は、上記本発明の実施例6の探触子522および照射部508を示す被検体20側から見た平面図である。図5に対応する部分には同一の番号を付して必要のない限り説明を省略する。図6において、探触子522では、変換素子532が同心円状に配列されて構成されている。しかしこれに限られず、探触子522では、変換素子532がらせん状に配列されても良い。照射部508は、変換素子532の同心円の中心部に設けられても良い。照射部508の光の射出端も円形状であるが、これに限られず、種々の形状が適用できる。これにより、被検体20からの音響波を効率よく受信可能に構成できる。
<実施例7>
図7は、実施例7における1回目の光音響測定に基づく画像、2回目の光音響測定に基づく画像、およびその差分の画像を示す図である。
造影剤14は、滅菌水にICGを終濃度1mMとなるように溶解させ、調製したものである。吸収体12は、マウスから採血した血液と滅菌水を体積比で1:1となるように混合させ、調製したものである。吸収体16は、マウスから採血した血液と前記造影剤14を体積比で1:1となるように混合させ、調製したものである。
装置100は、20Hz、約7ナノ秒のパルス幅の光4が照射されるものを使用した。測定容器は、容量1.5mlのマイクロチューブで、サンプル容量は約100μlであった。
装置100の操作者は、吸収体12および吸収体16の1回目の光音響測定を実施し、再構成画像を得た。次に、吸収体12および吸収体16は、光30を10分間照射されるようにした。引き続いて、装置100の操作者は、吸収体12および吸収体16の2回目の光音響測定を実施し、再構成画像を得た。最後に操作者は、1回目の光音響測定に基づく画像と、2回目の光音響測定に基づく画像からOsirix Software(オープンソース)を用いて差分画像を作製した。
図7Aは、この結果、吸収体12(血液のみ)では退色がほとんど起こらないため、1回目と2回目の光音響測定に基づく画像での差分はほとんど観察できないことを示すものである。一方で、図7Bは、吸収体16(血液と造影剤14の混合体)では造影剤14が退色するため、造影剤14の光退色量に応じた差分画像の輝度値が観察できることを示すものである。
よって、造影剤14と血液が混在する場合においても、造影剤14と血液からの光音響信号を区別できることが示された。
以上の各実施例では、造影剤14(ICG等)がレーザ光等の照射によって光退色すると、造影剤14の吸収係数が低下するため、その後の光音響測定により取得されるデジタル電気信号は減少する。一方で、ヘモグロビン等の吸収体12の吸収係数は、レーザ光照射に関わらず変化しないため、その後取得されるデジタル電気信号は変化しない。各実施例の光音響装置は、1回目の光音響測定と2回目の光音響測定の間に光退色のためのレーザ光照射を行うものである。そして、1回目のPAT撮像情報(画像信号)と2回目のP
AT撮像情報(画像信号)との差分を得ることで、光退色前後での造影剤14からのデジタル電気信号から、その減少量に基づくデータを取得することができる。つまり、各実施例の光音響装置によってヘモグロビン等の吸収体12由来のデジタル電気信号と造影剤14由来のデジタル電気信号とを区別できるものである。これにより、造影剤14が存在する部位である例えば癌を有する部位を特定可能である。例えば、癌は、癌でない部位に比べてより多くの酸素を必要とするため、自身が新たに形成する新生血管により、より多くの血液を取り込むことでより多くの造影剤14を取り込むものだからである。
本発明の種々の特徴の実施は上記に説明した実施例に限るものではない。例えば、実施例6の探触子522はステップ移動させるようにしても良いし、各実施例の光音響装置は、造影剤14を保持する注入部を有するようにして、この注入部から自動的に被検体20に造影剤14を注入するようにしても良い。
<その他の実施形態>
本発明は、上述の実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
2 光源、8 照射部、22 受信部、26 信号処理部

Claims (15)

  1. 第1および第2の光を発生する光源と、
    造影剤を含有する被検体に前記光源からの前記第1の光を照射することで前記被検体から第1の音響波を発生させた後、前記造影剤を含有する前記被検体に前記光源からの前記第2の光を照射することで前記被検体内の前記造影剤を退色させるとともに、前記造影剤を退色させた後、前記被検体に前記光源からの前記第1の光を照射することで前記被検体から第2の音響波を発生させる照射部と、
    前記第1の音響波を受信して第1の電気信号を出力するとともに、前記第2の音響波を受信して第2の電気信号を出力する受信部と、
    前記第1の電気信号に基づいて前記被検体の第1の特性情報を取得するとともに、前記第2の電気信号に基づいて前記被検体の第2の特性情報を取得する取得部と、
    を有する光音響装置。
  2. 前記取得部は前記第1の電気信号に基づいて画像信号を形成することにより前記第1の特性情報である第1の画像信号を取得するとともに、前記第2の電気信号に基づいて画像信号を形成することにより前記第2の特性情報である第2の画像信号を取得する請求項1に記載の光音響装置。
  3. 前記取得部は前記第1および第2の画像信号に基づいて前記第1の画像信号のうち退色する前の前記造影剤から発生した音響波に起因する信号成分に基づく第3の画像信号をさらに取得する請求項2に記載の光音響装置。
  4. 前記取得部は前記第1の画像信号と前記第2の画像信号との差異に基づいて前記第3の画像信号を取得する請求項3に記載の光音響装置。
  5. 前記取得部は前記第1の画像信号の画像特徴量と前記第2の画像信号の画像特徴量との比較演算を行うことにより前記第3の画像信号を取得する請求項4に記載の光音響装置。
  6. 前記比較演算は差分演算である請求項5に記載の光音響装置。
  7. 前記取得部は前記第1の画像信号の画像特徴量と前記第2の画像信号の画像特徴量との比に基づいて前記第3の画像信号を取得する請求項4に記載の光音響装置。
  8. 前記照射部は前記第2の光を照射することにより、活性酸素種の発生および前記被検体における光照射部位の温度上昇のうち少なくとも一方を生じさせるものである請求項1乃至7のいずれか1項に記載の光音響装置。
  9. 前記第2の光の波長は前記造影剤の極大吸収波長より50nmだけ短い波長から前記極大吸収波長より50nmだけ長い波長までの範囲内の波長である請求項1乃至8のいずれか1項に記載の光音響装置。
  10. 前記第2の光はパルス光であり、
    前記第2の光のパルス間隔は前記造影剤の三重項励起状態緩和時間よりも短い時間である請求項1乃至9のいずれか1項に記載の光音響装置。
  11. 前記第2の光のパルス間隔は0.7ミリ秒以下である請求項10に記載の光音響装置。
  12. 前記第2の光のパルス幅の値をτとするとともに前記第2の光の周波数の値をfとすると、前記τおよびfが下記式(II)を満たす請求項10または11に記載の光音響装置

    (1−τ・f)/f<7×10−4 ・・・(式II)
  13. 前記受信部は前記第1及び第2の音響波を受信してそれぞれ前記第1及び第2の電気信号を出力する複数の変換素子と、前記複数の変換素子を保持するとともに略球冠形状の保持体とを有し、
    前記照射部は前記受信部と一体化される請求項1乃至12のいずれか1項に記載の光音響装置。
  14. 前記取得部は前記第1及び第2の電気信号をデジタル変換することによりそれぞれ第1および第2のデジタル電気信号を生成するとともに、前記第1および第2のデジタル電気信号に基づいてそれぞれ前記第1及び第2の特性情報を取得し、
    前記第2の光が前記被検体に照射されることにより前記被検体の温度が上昇するときに、前記被検体の温度が上昇しないときの前記第2のデジタル電気信号または前記第2の特性情報の値に近づくように、前記第2の光の照射による前記被検体の温度の上昇量に基づいてそれぞれ前記第2のデジタル電気信号または前記第2の特性情報を補正する温度補正部をさらに有する請求項1乃至13のいずれか1項に記載の光音響装置。
  15. 前記温度補正部は前記第2のデジタル電気信号または前記第2の特性情報を補正するにあたり、照射された前記第2の光のエネルギー量に基づいた前記被検体の温度上昇により変化した前記被検体の音速および体積膨張係数を前記温度上昇がないときの前記被検体の音速および体積膨張係数に近づくように補正する請求項14に記載の光音響装置。
JP2016104227A 2015-05-26 2016-05-25 光音響装置 Active JP6740004B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015106577 2015-05-26
JP2015106577 2015-05-26

Publications (3)

Publication Number Publication Date
JP2016221270A true JP2016221270A (ja) 2016-12-28
JP2016221270A5 JP2016221270A5 (ja) 2020-05-14
JP6740004B2 JP6740004B2 (ja) 2020-08-12

Family

ID=57397460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016104227A Active JP6740004B2 (ja) 2015-05-26 2016-05-25 光音響装置

Country Status (2)

Country Link
US (1) US10743770B2 (ja)
JP (1) JP6740004B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170325693A1 (en) * 2016-05-10 2017-11-16 Canon Kabushiki Kaisha Photoacoustic apparatus and control method of photoacoustic apparatus
JP2018126389A (ja) * 2017-02-09 2018-08-16 キヤノン株式会社 情報処理装置、情報処理方法、およびプログラム

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008103982A2 (en) * 2007-02-23 2008-08-28 The Regents Of The University Of Michigan System and method for monitoring photodynamic therapy
JP4739363B2 (ja) * 2007-05-15 2011-08-03 キヤノン株式会社 生体情報イメージング装置、生体情報の解析方法、及び生体情報のイメージング方法
US8652441B2 (en) 2009-10-05 2014-02-18 Canon Kabushiki Kaisha Contrast agent for photoacoustic imaging and photoacoustic imaging method
JPWO2011043061A1 (ja) 2009-10-05 2013-03-04 キヤノン株式会社 光音響イメージング用造影剤、及び、それを用いた光音響イメージング方法
US20120027679A1 (en) 2009-10-05 2012-02-02 Canon Kabushiki Kaisha Contrast agent for photoacoustic imaging and photoacoustic imaging method using the same
US9086365B2 (en) * 2010-04-09 2015-07-21 Lihong Wang Quantification of optical absorption coefficients using acoustic spectra in photoacoustic tomography
WO2012103903A1 (en) * 2011-02-04 2012-08-09 Helmholtz Zentrum München Deutsches Forschungszentrum Für Gesundheit Und Umwelt (Gmbh) Ultrasound detector and detecting device for optoacoustic or thermoacoustic imaging
US9743881B2 (en) * 2011-03-29 2017-08-29 Koninklijke Philips N.V. Photoacoustic catheter for functional-imaging-based ablation monitoring
JP5783779B2 (ja) * 2011-04-18 2015-09-24 キヤノン株式会社 被検体情報取得装置及び被検体情報取得方法
JP5762995B2 (ja) * 2012-02-28 2015-08-12 富士フイルム株式会社 光音響画像生成装置及び方法
US20150272444A1 (en) * 2012-08-14 2015-10-01 Koninklijke Philips N.V. Compact laser and efficient pulse delivery for photoacoustic imaging
WO2014063005A1 (en) * 2012-10-18 2014-04-24 Washington University Transcranialphotoacoustic/thermoacoustic tomography brain imaging informed by adjunct image data

Also Published As

Publication number Publication date
US10743770B2 (en) 2020-08-18
US20160345838A1 (en) 2016-12-01
JP6740004B2 (ja) 2020-08-12

Similar Documents

Publication Publication Date Title
Zhu et al. Light emitting diodes based photoacoustic imaging and potential clinical applications
JP5349839B2 (ja) 生体情報イメージング装置
JP6006773B2 (ja) 散乱媒体の画像化方法及び画像化装置
JP6590503B2 (ja) 光音響装置および情報取得装置
JP5235586B2 (ja) 生体情報処理装置及び生体情報処理方法
US20100087733A1 (en) Biological information processing apparatus and biological information processing method
CN102822661B (zh) 光声成像装置和光声成像方法
Jeon et al. Multimodal photoacoustic tomography
US20090198128A1 (en) Biological information imaging apparatus and method for analyzing biological information
US9521952B2 (en) Photoacoustic imaging apparatus, photoacoustic imaging method, and program
WO2008103982A2 (en) System and method for monitoring photodynamic therapy
JPWO2011052061A1 (ja) 光音響装置
Shao et al. Photoacoustic lifetime imaging for direct in vivo tissue oxygen monitoring
JP6461288B2 (ja) 生体情報イメージング装置、生体情報の解析方法、及び生体情報のイメージング方法
Li et al. Sound out the deep colors: photoacoustic molecular imaging at new depths
JP6859180B2 (ja) 光音響装置および光音響装置の制御方法
JP2017029610A (ja) 光音響装置、信頼度取得方法、プログラム
JP6740004B2 (ja) 光音響装置
JP2015126900A (ja) 光音響装置
JP6824636B2 (ja) 被検体情報取得装置および被検体情報取得方法
Liu et al. Photoacoustic Imaging Tools for Neurological Applications
JP6336013B2 (ja) 光音響装置
JP2017108964A (ja) 被検体情報取得装置
Singh et al. Adaptation of a Clinical High-Frequency Transrectal Ultrasound System for Prostate Photoacoustic Imaging: Implementation and Pre-clinical Demonstration
Esenaliev et al. Conference 9323: Photons Plus Ultrasound: Imaging and Sensing 2015

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20181116

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200722

R151 Written notification of patent or utility model registration

Ref document number: 6740004

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151