JP2016220416A - Semiconductor electric power conversion device - Google Patents

Semiconductor electric power conversion device Download PDF

Info

Publication number
JP2016220416A
JP2016220416A JP2015103425A JP2015103425A JP2016220416A JP 2016220416 A JP2016220416 A JP 2016220416A JP 2015103425 A JP2015103425 A JP 2015103425A JP 2015103425 A JP2015103425 A JP 2015103425A JP 2016220416 A JP2016220416 A JP 2016220416A
Authority
JP
Japan
Prior art keywords
transformer
storage chamber
semiconductor unit
semiconductor
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015103425A
Other languages
Japanese (ja)
Other versions
JP6296303B2 (en
Inventor
健裕 中島
Takehiro Nakajima
健裕 中島
貴悠 酒井
Takahiro Sakai
貴悠 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2015103425A priority Critical patent/JP6296303B2/en
Priority to CN201610141886.0A priority patent/CN106169875B/en
Publication of JP2016220416A publication Critical patent/JP2016220416A/en
Application granted granted Critical
Publication of JP6296303B2 publication Critical patent/JP6296303B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20909Forced ventilation, e.g. on heat dissipaters coupled to components

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor electric power conversion device having a small and stable structure capable of efficiently cooling a transformer and a semiconductor unit while increasing the capacity and the voltage.SOLUTION: A semiconductor electric power conversion device 1 includes: a first route in which the cooling air flows in a semiconductor unit 7 while cooling the same into a transformer storage 12 via opening 9a for cooling fin and an opening 9b for electrolytic capacitor, and is exhausted by an exhaust fan 4 after cooling the outer side of the transformer 8; and a second route that the cooling air flows into an air channel 15 from an opening 9c for a transformer primary wiring via front side opening 10c and is exhausted by the exhaust fan 4 after cooling the inside of the transformer 8.SELECTED DRAWING: Figure 5

Description

本発明は、変圧器および半導体ユニットを筐体内に収納する半導体電力変換装置に関する。   The present invention relates to a semiconductor power conversion device that houses a transformer and a semiconductor unit in a housing.

冷却機能を有する半導体電力変換装置の先行技術が、例えば、特許文献1(特開2007−74865号公報)に開示されている。この先行技術について、図を参照しつつ説明する。図6は、特許文献1の記載に基づく半導体電力変換装置であり、図6(a)は左側面から視た内部構造図、図6(b)は正面から視た内部構造図である。この電力変換装置100は、筐体101、変圧器102、半導体ユニット103、制御・出力盤104、排気ファン105を備える。   A prior art of a semiconductor power conversion device having a cooling function is disclosed in, for example, Japanese Patent Application Laid-Open No. 2007-74865. This prior art will be described with reference to the drawings. 6A and 6B show a semiconductor power conversion device based on the description in Patent Document 1. FIG. 6A is an internal structure diagram viewed from the left side, and FIG. 6B is an internal structure diagram viewed from the front. The power conversion apparatus 100 includes a casing 101, a transformer 102, a semiconductor unit 103, a control / output panel 104, and an exhaust fan 105.

図6(b)で示すように、正面から視て、筐体101の内部右側に制御・出力盤104が配置される。また、図6(a),(b)で示すように、筐体101の内部左側の中段に敷設した仕切板101aが、残る内部空間を上下に仕切って、下側空間101bおよび上側空間101cを形成する。下側空間101bに変圧器102が配置される。また、上側空間101cに、図6(b)の正面から視て二列三段の半導体ユニット103が配置される。   As shown in FIG. 6B, the control / output board 104 is arranged on the right side inside the housing 101 when viewed from the front. Further, as shown in FIGS. 6A and 6B, a partition plate 101a laid on the middle left side of the housing 101 divides the remaining internal space up and down so that the lower space 101b and the upper space 101c are separated. Form. The transformer 102 is arranged in the lower space 101b. In addition, two rows and three stages of semiconductor units 103 are arranged in the upper space 101c as viewed from the front of FIG. 6B.

この仕切板101aの背面側に、導風口101dが形成される。そして、下側空間101bの一部であって変圧器102の背面側の空間である下側風洞101eと、上側空間101cの一部であって半導体ユニット103の背面側の空間である上側風洞101fと、が導風口101dにより連通する。筐体101の正面には図示しない扉部が形成され、この扉部には図示しない吸気口が形成されている。   An air guide port 101d is formed on the back side of the partition plate 101a. A lower wind tunnel 101e which is a part of the lower space 101b and is a space on the back side of the transformer 102, and an upper wind tunnel 101f which is a part of the upper space 101c and is a space on the back side of the semiconductor unit 103. Are communicated by the air guide port 101d. A door portion (not shown) is formed on the front surface of the housing 101, and an air inlet (not shown) is formed on the door portion.

変圧器102の冷却について、図示しない扉部前面の吸気口から冷却空気を取り込み、その冷却空気は、図6(a)の一点鎖線で示す矢印の方向に流れる。冷却空気は、変圧器102の表面に沿って流れて変圧器102を冷却し、下側風洞101eまで流れる。下側風洞101e内の暖められた空気は、導風口101dを通じて、上側風洞101fへ流れる。   As for cooling of the transformer 102, cooling air is taken in from an intake port on the front surface of the door (not shown), and the cooling air flows in the direction of the arrow indicated by the one-dot chain line in FIG. The cooling air flows along the surface of the transformer 102, cools the transformer 102, and flows to the lower wind tunnel 101e. The warmed air in the lower wind tunnel 101e flows to the upper wind tunnel 101f through the air guide port 101d.

また、半導体ユニット103の冷却について、図示しない扉部前面の吸気口から冷却空気を取り込み、その冷却空気は、図6(a)の破線で示す矢印のように流れる。冷却空気は、半導体ユニット103の下部に配置した冷却フィン部103aを通過し、半導体ユニット103の内側を冷却して上側風洞101fへ流れる。上側風洞101f内の温められた空気は、排気ファン105により排気され、排熱される。   As for cooling of the semiconductor unit 103, cooling air is taken from an air inlet on the front surface of the door (not shown), and the cooling air flows as indicated by an arrow indicated by a broken line in FIG. The cooling air passes through the cooling fin portion 103a disposed at the lower part of the semiconductor unit 103, cools the inside of the semiconductor unit 103, and flows to the upper wind tunnel 101f. The warmed air in the upper wind tunnel 101f is exhausted by the exhaust fan 105 and exhausted.

特開2007−74865号公報(段落番号[0006]〜[0009]、図1,図2)JP 2007-74865 A (paragraph numbers [0006] to [0009], FIGS. 1 and 2)

この先行技術の半導体電力変換装置の電圧および容量を大きくすると、新たに以下(1)〜(3)の問題が生ずることが知見された。   It has been found that when the voltage and capacity of the semiconductor power conversion device of the prior art are increased, the following problems (1) to (3) are newly generated.

(1)半導体電力変換装置の大型化
半導体電力変換装置100の電圧および容量を大きくする場合、変圧器102および半導体ユニット103も大型化する。半導体電力変換装置100は、変圧器102および半導体ユニット103を上下に配置していることから、特に筺体101の高さが増大し、半導体電力変換装置100を機械的に安定して設置できないという問題の発生が予想される。また、高さ寸法の増大により機械室等に設置できないという問題の発生が予想される。半導体電力変換装置の電圧および容量を大きくする場合でも、半導体電力変換装置を安定して設置できるような小型の構造を目指すという課題については着目されていなかった。
(1) Increasing the size of the semiconductor power converter When the voltage and capacity of the semiconductor power converter 100 are increased, the transformer 102 and the semiconductor unit 103 are also increased in size. In the semiconductor power conversion device 100, since the transformer 102 and the semiconductor unit 103 are arranged one above the other, the height of the casing 101 increases, and the semiconductor power conversion device 100 cannot be installed mechanically and stably. Is expected to occur. In addition, it is expected that a problem that it cannot be installed in a machine room or the like due to an increase in height dimension. Even when the voltage and capacity of the semiconductor power conversion device are increased, attention has not been paid to the problem of aiming for a small structure that can stably install the semiconductor power conversion device.

(2)排気ファンの大型化
半導体電力変換装置100の電圧および容量を増加する場合、冷却機能を高めるため、排気ファン105の容量も増加する必要がある。しかしながら、この場合に排気ファン105の形状が大型化するため、筐体101上に安定して設置できないという別の問題の発生が予想される。排気ファンの容量を大きくする場合でも、半導体電力変換装置を安定して設置できるような小型の構造を目指すという課題については着目されていなかった。
(2) Increasing the size of the exhaust fan When increasing the voltage and capacity of the semiconductor power conversion device 100, it is necessary to increase the capacity of the exhaust fan 105 in order to enhance the cooling function. However, since the shape of the exhaust fan 105 is increased in this case, another problem that it cannot be stably installed on the housing 101 is expected. Even when the capacity of the exhaust fan is increased, attention has not been paid to the problem of aiming for a small structure that can stably install the semiconductor power conversion device.

(3)排熱の困難性
半導体電力変換装置100は、排熱のための導風口101dの通風路断面積が、スペースの制限のため小さく、変圧器102を積極的に冷却する能力が低かった。変圧器102の大型化により損失が大きくなると特に下側風洞101eや上側風洞101f内の温度が高くなり、効率的な冷却が困難になる。効率的な冷却が可能ならば、排気ファンの容量を小さくすることも可能になる。このような半導体電力変換装置の電圧および容量を大きくする場合でも、変圧器および半導体ユニットを効率的に冷却して温度上昇を抑える構造を目指すというという課題については着目されていなかった。
(3) Difficulties in exhaust heat In the semiconductor power conversion device 100, the cross-sectional area of the ventilation passage 101d for exhaust heat is small due to space limitations, and the ability to actively cool the transformer 102 is low. . When the loss increases due to the increase in size of the transformer 102, the temperatures in the lower wind tunnel 101e and the upper wind tunnel 101f in particular increase, and efficient cooling becomes difficult. If efficient cooling is possible, the capacity of the exhaust fan can be reduced. Even when the voltage and capacity of such a semiconductor power conversion device are increased, attention has not been paid to the problem of aiming at a structure that efficiently cools the transformer and the semiconductor unit to suppress the temperature rise.

そこで、本発明は上記の問題に鑑みてなされたものであり、その目的は、変圧器および半導体ユニットを効率的に冷却する小型で安定的な構造を採用し、容量および電圧をより大きくする半導体電力変換装置を提供することにある。   Accordingly, the present invention has been made in view of the above problems, and an object of the present invention is to adopt a small and stable structure for efficiently cooling a transformer and a semiconductor unit, and to increase the capacity and voltage. The object is to provide a power converter.

上記課題を解決する本発明は、
変圧器と半導体ユニットを内部に収容する内部空間を有する筐体と、
正面側に前記半導体ユニットを収納する半導体ユニット収納室と背面側に前記変圧器を収納する変圧器収納室とを形成するように前記内部空間内の前後を仕切る仕切部と、
前記変圧器収納室内の下側に配置され、前記変圧器の下側の一部を収容し、前記変圧器の内側と連通する風洞を形成する隔壁部と、
前記隔壁部に形成される正面側開口部と、
前記仕切部に形成され、前記半導体ユニット収納室と前記変圧器収納室とを連通させる上側開口部と、
前記隔壁部の前記正面側開口部と対向するように前記仕切部に形成され、前記半導体ユニット収納室と前記風洞とを連通させる下側開口部と、
前記筐体の上側に設置され、前記変圧器収納室の上側から排気する排気ファンと、
を有し、前記半導体ユニット収納室へ取り込まれた冷却空気は、第一のルートと第二のルートに分かれて流れ、
前記第一のルートでは、前記半導体ユニットの内側に形成される流路を通過して冷却しつつ流れ、前記上側開口部を通じて前記半導体ユニット収納室から前記変圧器収納室へ流れ、前記変圧器の外側を冷却してから前記排気ファンにより前記変圧器収納室から排気され、
前記第二のルートでは、前記半導体ユニット収納室、前記下側開口部および前記正面側開口部を経て前記風洞へ流れ、前記変圧器の内側を冷却してから前記変圧器収納室へ流れ、前記排気ファンにより前記変圧器収納室から排気される半導体電力変換装置とした。
The present invention for solving the above problems
A housing having an internal space for accommodating the transformer and the semiconductor unit;
A partition part for partitioning the front and rear in the internal space so as to form a semiconductor unit storage chamber for storing the semiconductor unit on the front side and a transformer storage chamber for storing the transformer on the back side;
A partition portion disposed below the transformer storage chamber, accommodating a part of the lower side of the transformer, and forming a wind tunnel communicating with the inside of the transformer;
A front side opening formed in the partition;
An upper opening formed in the partition for communicating the semiconductor unit storage chamber and the transformer storage chamber;
A lower opening that is formed in the partition so as to face the front opening of the partition wall and communicates the semiconductor unit storage chamber and the wind tunnel;
An exhaust fan installed on the upper side of the casing and exhausting from the upper side of the transformer storage chamber;
The cooling air taken into the semiconductor unit storage chamber flows divided into a first route and a second route,
In the first route, it flows while passing through a flow path formed inside the semiconductor unit, flows through the upper opening, flows from the semiconductor unit storage chamber to the transformer storage chamber, After the outside is cooled, the exhaust fan exhausts the transformer storage room,
In the second route, it flows to the wind tunnel through the semiconductor unit storage chamber, the lower opening and the front opening, and after cooling the inside of the transformer, flows to the transformer storage chamber, A semiconductor power converter exhausted from the transformer storage chamber by an exhaust fan was obtained.

また、この発明の半導体電力変換装置は、前記第一のルートでは、前記半導体ユニットから排気した冷却空気を前記上側開口部で流速を上げつつ排気し、この冷却空気を前記半導体ユニットの後ろに存在する前記変圧器の外側に当てるように噴射して冷却することが好ましい。   In the semiconductor power conversion device of the present invention, in the first route, the cooling air exhausted from the semiconductor unit is exhausted while increasing the flow velocity at the upper opening, and the cooling air exists behind the semiconductor unit. It is preferable to cool by spraying so as to hit the outside of the transformer.

また、この発明の電力変換装置は、前記第一のルートでは、前記半導体ユニットの後ろで前記変圧器が不存在の箇所に前記上側開口部から一定距離を隔てて板状の遮蔽部を設置し、前記上側開口部から噴出される冷却空気の流速の均一化を図りつつ、前記遮蔽部に沿って冷却空気を流して前記変圧器の外側に当てるように冷却空気の流れを集約させることが好ましい。   In the power conversion device of the present invention, in the first route, a plate-shaped shielding portion is installed at a certain distance from the upper opening at a location where the transformer is not present behind the semiconductor unit. It is preferable that the flow of the cooling air is concentrated so that the cooling air flows along the shielding portion and hits the outside of the transformer while making the flow velocity of the cooling air ejected from the upper opening uniform. .

本発明によれば、変圧器および半導体ユニットを効率的に冷却する小型で安定的な構造を採用し、容量および電圧をより大きくする半導体電力変換装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the semiconductor power converter device which employ | adopts the small and stable structure which cools a transformer and a semiconductor unit efficiently, and enlarges a capacity | capacitance and a voltage can be provided.

本発明を実施するための形態の半導体電力変換装置の正面図である。It is a front view of the semiconductor power converter of the form for carrying out the present invention. 本発明を実施するための形態の半導体電力変換装置のうち排気ファン、扉および制御部扉を取り外して正面から視た内部構造図である。It is the internal structure figure which removed the exhaust fan, the door, and the control part door among the semiconductor power converters of the form for implementing this invention, and was seen from the front. 本発明を実施するための形態の半導体電力変換装置のうち天板および排気ファンを取り外して平面から視た内部構造図である。It is the internal structure figure which removed the top plate and the exhaust fan from the semiconductor power converter of the form for carrying out the present invention, and was seen from the plane. 本発明を実施するための形態の半導体電力変換装置のうち排気ファン、扉、半導体ユニットおよび制御部扉を取り外して正面から視た内部構造図である。It is the internal structure figure which removed the exhaust fan, the door, the semiconductor unit, and the control part door among the semiconductor power converters of the form for implementing this invention, and was seen from the front. 本発明を実施するための形態の半導体電力変換装置のうち側壁を取り外して左側面から視た内部構造図である。It is the internal structure figure which removed the side wall among the semiconductor power converter devices of the form for implementing this invention, and was seen from the left side surface. 先行技術の半導体電力変換装置であり、図6(a)は左側面から視た内部構造図、図6(b)は正面から視た内部構造図である。FIG. 6A is an internal structure diagram viewed from the left side, and FIG. 6B is an internal structure diagram viewed from the front.

続いて、本発明を実施するための形態に係る半導体電力変換装置について、図を参照しつつ以下に説明する。まず、本形態の半導体電力変換装置1が備える構成について説明する。この電力変換装置1は、外観としては図1で示すように、筐体2、制御部3、排気ファン4、扉5、吸気口6を備える。   Then, the semiconductor power converter device concerning the form for carrying out the present invention is explained below, referring to figures. First, the structure with which the semiconductor power converter device 1 of this form is provided is demonstrated. As shown in FIG. 1, the power conversion device 1 includes a housing 2, a control unit 3, an exhaust fan 4, a door 5, and an intake port 6.

直方体であって堅牢な構造体である筐体2の前面に、二枚の扉5は開閉可能に構成される。これら扉5の前面にグリル状に開口された吸気口6が形成される。筐体2の上側には半導体電力変換装置1の内部から空気を排気する排気ファン4が配置される。排気ファン4が稼働すると、冷却空気として外気が吸気口6を通じて半導体電力変換装置1内に吸い込まれ、後述する半導体電力変換装置1内の第一,第二のルートを経て、排気ファン4から排気される。   Two doors 5 are configured to be openable and closable on the front surface of the casing 2 which is a rectangular parallelepiped and is a robust structure. An intake port 6 opened in a grill shape is formed in front of these doors 5. An exhaust fan 4 that exhausts air from the inside of the semiconductor power conversion device 1 is disposed above the housing 2. When the exhaust fan 4 is operated, outside air is sucked into the semiconductor power conversion device 1 through the intake port 6 as cooling air, and exhausted from the exhaust fan 4 through first and second routes in the semiconductor power conversion device 1 described later. Is done.

また、その内部では、図2,図3,図5で示すように半導体ユニット7を、図3,図5で示すように変圧器8、隔壁10、半導体ユニット収納室11、変圧器収納室12を、図3,図4,図5で示すように仕切部9を、図5で示すように遮蔽部13、台座部14、風洞15を備える。   In addition, inside the semiconductor unit 7 as shown in FIGS. 2, 3, and 5, the transformer 8, the partition 10, the semiconductor unit storage chamber 11, and the transformer storage chamber 12 as shown in FIGS. 3 and 5. 3, 4, and 5, the partition portion 9 is provided, and the shield portion 13, the pedestal portion 14, and the wind tunnel 15 are provided as illustrated in FIG. 5.

半導体電力変換装置1は、図1で示すように、正面から視て、筐体2の内部右側に制御3が配置される。制御部3の中は複数の制御機器で構成されている。また、図3,図4,図5で示すように、仕切部9が、残る内部空間の前後を仕切るように敷設され、半導体ユニット収納室11および変圧器収納室12を形成する。半導体電力変換装置1の内部構成は、図2,図3,図5に示すように、半導体ユニット収納室11に正面から視て五列三段(特に図2参照)の半導体ユニット7が、また、変圧器収納室12に変圧器8が配置される。   As shown in FIG. 1, the semiconductor power conversion device 1 has a control 3 disposed on the right side inside the housing 2 when viewed from the front. The control unit 3 includes a plurality of control devices. As shown in FIGS. 3, 4, and 5, the partition portion 9 is laid so as to partition the front and rear of the remaining internal space, thereby forming the semiconductor unit storage chamber 11 and the transformer storage chamber 12. As shown in FIGS. 2, 3, and 5, the internal configuration of the semiconductor power conversion device 1 includes five rows and three stages (particularly see FIG. 2) of semiconductor units 7 in the semiconductor unit storage chamber 11. The transformer 8 is disposed in the transformer storage chamber 12.

半導体ユニット7は、図2で示すように、冷却フィン7a、電解コンデンサ7bを備える。半導体ユニット7は、例えば、IGBT(絶縁形バイポーラトランジスタ)などの半導体スイッチング素子や、電解コンデンサ7bその他発熱量が大きい電子素子を含む電力変換回路であり、この電力変換回路が冷却フィン7aに集中的に取り付けられて、ユニット化されている。冷却フィン7aと電解コンデンサ7bは流路(図5参照)内に配置されており、これら流路を冷却空気が通過する。このような半導体ユニット7が、三段積みであってU,V,Wの三相分にわたり収納されている。   As shown in FIG. 2, the semiconductor unit 7 includes cooling fins 7a and electrolytic capacitors 7b. The semiconductor unit 7 is a power conversion circuit including, for example, a semiconductor switching element such as an IGBT (insulated bipolar transistor), an electrolytic capacitor 7b, and other electronic elements that generate a large amount of heat, and this power conversion circuit is concentrated on the cooling fin 7a. It is attached to and unitized. The cooling fins 7a and the electrolytic capacitors 7b are disposed in flow paths (see FIG. 5), and cooling air passes through these flow paths. Such semiconductor units 7 are stacked in three stages and are accommodated over three phases of U, V, and W.

仕切部9に、図4で示すような、冷却フィン用開口部9aおよび電解コンデンサ用開口部9bが形成されている。冷却フィン用開口部9aおよび電解コンデンサ用開口部9bは、本発明の上側開口部である。冷却フィン用開口部9aおよび電解コンデンサ用開口部9bはそれぞれ半導体ユニット7と同じ数(本形態ではそれぞれ15個)が形成される。冷却フィン用開口部9aおよび電解コンデンサ用開口部9bは、半導体ユニット収納室11と変圧器収納室12とを連通させ、冷却空気が流通する。正面の吸気口6から取り込まれた冷却空気は、半導体ユニット収納室11の半導体ユニット7の内側を流れ、これら冷却フィン用開口部9aおよび電解コンデンサ用開口部9bを通り、変圧器収納室12に流れる。   A cooling fin opening 9 a and an electrolytic capacitor opening 9 b as shown in FIG. 4 are formed in the partition 9. The cooling fin opening 9a and the electrolytic capacitor opening 9b are upper openings of the present invention. The same number of cooling fin openings 9a and electrolytic capacitor openings 9b as the semiconductor units 7 (15 each in this embodiment) are formed. The cooling fin opening 9a and the electrolytic capacitor opening 9b allow the semiconductor unit storage chamber 11 and the transformer storage chamber 12 to communicate with each other, and cooling air flows therethrough. Cooling air taken in from the front air inlet 6 flows inside the semiconductor unit 7 of the semiconductor unit storage chamber 11, passes through the cooling fin opening 9 a and the electrolytic capacitor opening 9 b, and enters the transformer storage chamber 12. Flowing.

また、この仕切部9に、図4で示すような、変圧器一次巻線用開口部9cも形成されている。変圧器一次巻線用開口部9cは本発明の下側開口部である。後述するが、隔壁10の前側開口部10cと対向するように形成される。   In addition, a transformer primary winding opening 9c as shown in FIG. The transformer primary winding opening 9c is a lower opening of the present invention. Although mentioned later, it forms so that the front side opening part 10c of the partition 10 may be opposed.

図5で示すように、変圧器収納室12では、仕切部9の背面側に、変圧器8が設置されている。変圧器8は、台座部14により下側で支持されている。変圧器8は例えば三相式変圧器であり、上側と下側に鉄心8aの一部が位置する。この変圧器8も発熱ユニットである。変圧器8は重量物であるため下部に配置され、また、比較的保守の必要がないとの理由で背面側の変圧器収納室12に配設される。   As shown in FIG. 5, in the transformer storage chamber 12, a transformer 8 is installed on the back side of the partition 9. The transformer 8 is supported on the lower side by the pedestal portion 14. The transformer 8 is, for example, a three-phase transformer, and a part of the iron core 8a is located on the upper side and the lower side. This transformer 8 is also a heat generating unit. Since the transformer 8 is heavy, it is disposed in the lower portion, and is disposed in the transformer storage chamber 12 on the back side because it does not require relatively maintenance.

隔壁10は、上板10a、縦板10b、前側開口部10cを有し、隔壁10により区画されて変圧器下部の空間である風洞15を形成する。隔壁10の前側の縦板10bは、仕切部9と対向(または接触)し、また、上板10aの背面側の端部は筺体2の背面内壁と接触する。また、隔壁10の左右両端にも図示しない仕切板が形成されており、風洞15の区画に利用される。   The partition 10 has an upper plate 10a, a vertical plate 10b, and a front opening 10c, and is partitioned by the partition 10 to form a wind tunnel 15 that is a space below the transformer. The vertical plate 10 b on the front side of the partition wall 10 faces (or contacts) the partition portion 9, and the end portion on the back surface side of the upper plate 10 a contacts the back inner wall of the housing 2. In addition, partition plates (not shown) are also formed on the left and right ends of the partition wall 10, and are used for partitioning the wind tunnel 15.

この風洞15内に変圧器8の鉄心8aが位置する。隔壁10の上板10aは、巻線直下の平面方向に取り付けられる仕切板であり、この上板10aに孔が開いている。この孔は、例えば、鉄心8aが通過する孔であり、また、変圧器8内部の一次巻線へ冷却空気が到達するような孔である。巻線はU,V,Wと3つあり、これらにそれぞれ到達するように孔が形成されている。変圧器一次巻線用開口部9cより取り込まれた空気は、前側開口部10cを経て風洞15へ流れ、下側の鉄心8aを冷却し、この風洞15から孔を通じて変圧器8の一次巻線の内側を通過し、上側の鉄心8aを冷却し、最終的に変圧器収納室12へ流れる。   The iron core 8 a of the transformer 8 is located in the wind tunnel 15. The upper plate 10a of the partition wall 10 is a partition plate that is attached in a planar direction directly below the winding, and a hole is formed in the upper plate 10a. This hole is, for example, a hole through which the iron core 8 a passes, and is a hole through which cooling air reaches the primary winding inside the transformer 8. There are three windings, U, V, and W, and holes are formed so as to reach each of them. The air taken in from the transformer primary winding opening 9c flows to the wind tunnel 15 through the front opening 10c, cools the lower iron core 8a, and the primary winding of the transformer 8 from the wind tunnel 15 through the hole. It passes through the inside, cools the upper iron core 8a, and finally flows to the transformer housing chamber 12.

続いて冷却空気の流れについて説明する。半導体ユニット収納室11へ吸気された冷却空気の流れは、図5の一点鎖線の矢印で示される第一のルート、および、破線の矢印で示される第二のルート、の二通りとなる。   Next, the flow of cooling air will be described. The flow of the cooling air sucked into the semiconductor unit storage chamber 11 has two types, a first route indicated by a one-dot chain line arrow in FIG. 5 and a second route indicated by a broken line arrow.

第一のルートは、半導体ユニット7を経由する上側を流れるルートである。正面の扉5の吸気口6より取り込まれた冷却空気は、一点鎖線の矢印のように半導体ユニット7の冷却フィン部7aおよび電解コンデンサ部7bが配置された流路を流れて半導体ユニット7の内側を冷却する。そして、冷却空気は、仕切部9の冷却フィン用開口部9aおよび電解コンデンサ用開口部9bを通って変圧器収納室12へ流入する。この流入した冷却空気は、変圧器8の二次巻線の前側を冷却する。そして、変圧器8の背面側へ回り込み二次巻線の後側も冷却する。そして冷却空気は、二次巻線の全表面を冷却しつつ変圧器収納室12を上方向に流れ、排気ファン4を通じて筺体2の外部へ排気され、排熱が行われる。   The first route is a route that flows on the upper side via the semiconductor unit 7. The cooling air taken in from the air inlet 6 of the front door 5 flows through the flow path in which the cooling fin portion 7a and the electrolytic capacitor portion 7b of the semiconductor unit 7 are arranged as indicated by the one-dot chain line arrow. Cool down. Then, the cooling air flows into the transformer housing chamber 12 through the cooling fin opening 9 a and the electrolytic capacitor opening 9 b of the partition 9. The inflowing cooling air cools the front side of the secondary winding of the transformer 8. And it goes around to the back side of transformer 8, and also cools the back side of a secondary winding. Then, the cooling air flows upward through the transformer housing chamber 12 while cooling the entire surface of the secondary winding, and is exhausted to the outside of the housing 2 through the exhaust fan 4 to be exhausted.

ここで半導体ユニット7から排出される冷却空気は、仕切部9の冷却フィン用開口部9aおよび電解コンデンサ用開口部9bを通過する。これら開口部は比較的通風路断面積が小さい孔であり、通過時に冷却空気の流速が高められ、その冷却空気が変圧器8の二次巻線の表面に直接当たる。この速い流れの冷却空気が熱を効率的に奪い、冷却効率を向上させることができる。   Here, the cooling air discharged from the semiconductor unit 7 passes through the cooling fin opening 9 a and the electrolytic capacitor opening 9 b of the partition 9. These openings are holes having a relatively small cross-sectional area of the ventilation path, and the flow velocity of the cooling air is increased when passing, and the cooling air directly hits the surface of the secondary winding of the transformer 8. This fast flow of cooling air can efficiently remove heat and improve cooling efficiency.

また、本形態では遮蔽部13を設けている。変圧器8の高さが筺体2に対して低い場合、仮に遮蔽部13がないと、上段の半導体ユニット7から排出される冷却空気は変圧器8の二次巻線を冷却することなく直接排気ファン4により排気されてしまう。変圧器8を効率的に冷却するために半導体ユニット7が排出した冷却空気はできる限り変圧器8に向けて噴射したい。そこで、板状の遮蔽部13を設けて冷却空気が流れる方向を変え、変圧器8へ向けて流すようにした。これにより、冷却フィン用開口部9aおよび電解コンデンサ用開口部9bを通過する全ての冷却空気が変圧器8を冷却するので冷却効率を高めている。   In the present embodiment, a shielding part 13 is provided. If the height of the transformer 8 is lower than the housing 2, if there is no shielding part 13, the cooling air discharged from the upper semiconductor unit 7 is directly exhausted without cooling the secondary winding of the transformer 8. The air is exhausted by the fan 4. In order to cool the transformer 8 efficiently, the cooling air discharged by the semiconductor unit 7 is desired to be injected toward the transformer 8 as much as possible. Therefore, a plate-shaped shielding portion 13 is provided to change the direction in which the cooling air flows, and to flow toward the transformer 8. Thereby, since all the cooling air which passes the opening part 9a for cooling fins and the opening part 9b for electrolytic capacitors cools the transformer 8, the cooling efficiency is improved.

また、仮に上段の半導体ユニット7の後ろ側に遮蔽部13がないと、上段の冷却フィン用開口部9aおよび電解コンデンサ用開口部9bを通過する冷却空気は、中段と下段と比較して、風速が上昇して多量の冷却空気が流れ、冷却バランスが悪くなるおそれがある。本発明では冷却空気を流れにくくする板状の遮蔽部13を上段の半導体ユニット7の後ろ側に設けたため、上中下段の全ての冷却フィン用開口部9aおよび電解コンデンサ用開口部9bを通過する冷却空気の風速が等しくなるように機能させ、冷却バランスを偏らせないようにしている。   If there is no shielding part 13 behind the upper semiconductor unit 7, the cooling air passing through the upper cooling fin opening 9 a and the electrolytic capacitor opening 9 b has a higher wind speed than the middle and lower stages. Rises and a large amount of cooling air flows, which may deteriorate the cooling balance. In the present invention, since the plate-shaped shielding portion 13 that makes it difficult for the cooling air to flow is provided on the rear side of the upper semiconductor unit 7, it passes through all the upper and lower cooling fin openings 9a and the electrolytic capacitor openings 9b. It is made to function so that the wind speeds of the cooling air are equal, so that the cooling balance is not biased.

第二のルートは、半導体ユニット7を経由しないで下側を流れるルートである。吸気口6から取り込まれた冷却空気は、変圧器一次巻線用開口部9cおよび前側開口部10cを通過して、変圧器下部の風洞15へ流入する。下側の鉄心8aを冷却し、変圧器8の一次巻線の内側を冷却空気が通過して冷却し、上側の鉄心8aを冷却して、変圧器収納室12へ流れ、排気ファン4を通じて筺体2の外部へ排気され、排熱が行われる。この冷却空気は半導体ユニット7を通らないため、温められていない冷却空気であり、変圧器8の内側の一次巻線を効率的に冷却することが可能である。   The second route is a route that flows below without passing through the semiconductor unit 7. The cooling air taken in from the intake port 6 passes through the transformer primary winding opening 9c and the front opening 10c and flows into the wind tunnel 15 below the transformer. The lower iron core 8 a is cooled, the cooling air passes through the inside of the primary winding of the transformer 8 to cool it, the upper iron core 8 a is cooled, flows to the transformer housing chamber 12, and the housing through the exhaust fan 4. 2 is exhausted to the outside to exhaust heat. Since this cooling air does not pass through the semiconductor unit 7, it is unwarmed cooling air, and the primary winding inside the transformer 8 can be efficiently cooled.

以上、本発明の半導体電力変換装置1について説明した。この半導体電力変換装置1によれば、半導体ユニット7と変圧器8とを前後方向に並べて同一筺体2に収納する。これにより、特に高さが低い装置となって小型化が実現し、排気ファン4、半導体ユニット7および変圧器8が大型になった場合でも不安定になって倒れるおそれが低減され、安定化を実現した。   The semiconductor power conversion device 1 of the present invention has been described above. According to this semiconductor power conversion device 1, the semiconductor unit 7 and the transformer 8 are arranged in the front-rear direction and housed in the same housing 2. As a result, the device is particularly low in height and reduced in size, and even when the exhaust fan 4, the semiconductor unit 7 and the transformer 8 become large in size, the possibility of becoming unstable and falling down is reduced. It was realized.

また、この半導体電力変換装置1によれば、第一のルートで冷たい冷却空気により半導体ユニット7を冷却し、かつ第二のルートで冷たい冷却空気により変圧器8を冷却しており、半導体ユニット7および変圧器8の冷却効果が高まり、半導体電力変換装置1の容量の増加または過負荷耐量を高めることができる。   Moreover, according to this semiconductor power converter 1, the semiconductor unit 7 is cooled by the cold cooling air in the first route, and the transformer 8 is cooled by the cold cooling air in the second route. And the cooling effect of the transformer 8 increases and the increase in the capacity | capacitance or overload tolerance of the semiconductor power converter device 1 can be improved.

また、変圧器8の冷却空気が、変圧器8の外側(二次巻線)を冷却する第一のルートと、変圧器8の内側(一次巻線)を冷却する第二のルートと、に分けられている。第一のルートでは、半導体ユニット7を経由して暖められているが、通風路断面積が狭い冷却フィン用開口部9aおよび電解コンデンサ用開口部9bを経由したことにより、流速が速くなった冷却空気を変圧器8の二次巻線に当てることで二次巻線の冷却効率を向上させている。第二のルートでは、変圧器8の特に温度が上昇しやすい内側を冷たい冷却空気が効率的に排熱して一次巻線の冷却効果を高めている。   In addition, the cooling air of the transformer 8 is divided into a first route for cooling the outside (secondary winding) of the transformer 8 and a second route for cooling the inside (primary winding) of the transformer 8. It is divided. In the first route, the heating is performed via the semiconductor unit 7, but the cooling speed is increased due to the passage through the cooling fin opening 9a and the electrolytic capacitor opening 9b having a narrow cross-sectional area of the ventilation path. The cooling efficiency of the secondary winding is improved by applying air to the secondary winding of the transformer 8. In the second route, the cooling air that cools the inside of the transformer 8 where the temperature is particularly likely to rise is efficiently exhausted to enhance the cooling effect of the primary winding.

また、半導体ユニット7と変圧器8とを冷却するための排気ファン4や吸気口6を共通構成としており、少ない部品点数で効率的に冷却空気を導入することができ、小型化にも寄与する。   Further, the exhaust fan 4 and the intake port 6 for cooling the semiconductor unit 7 and the transformer 8 have a common configuration, so that cooling air can be efficiently introduced with a small number of parts, contributing to downsizing. .

本発明の半導体電力変換装置は、変圧器と半導体ユニットを用いる装置であって、例えば、交流電力を直流電力に変換するコンバータや、直流電力を所望の電圧と周波数の交流電力に変換するインバータなどの装置に適用可能とし、広範囲な利用を期待できる。   The semiconductor power conversion device of the present invention is a device that uses a transformer and a semiconductor unit, such as a converter that converts AC power into DC power, an inverter that converts DC power into AC power of a desired voltage and frequency, and the like. It can be applied to other devices and can be expected to be used in a wide range.

1:半導体電力変換装置
2:筐体
3:制御部
4:排気ファン
5:扉
6:吸気口
7:半導換ユニット
7a:冷却フィン
7b:電解コンデンサ
8:変圧器
8a:鉄心
9:仕切部
9a:冷却フィン用開口部
9b:電解コンデンサ用開口部
9c:変圧器一次巻線用開口部
10:隔壁
10a:上板
10b:前板
10c:前側開口部
11:半導体ユニット収納室
12:変圧器収納室
13:遮蔽部
14:台座部
15:風洞
DESCRIPTION OF SYMBOLS 1: Semiconductor power converter 2: Case 3: Control part 4: Exhaust fan 5: Door 6: Intake port 7: Semiconducting unit 7a: Cooling fin 7b: Electrolytic capacitor 8: Transformer 8a: Iron core 9: Partition part 9a: Cooling fin opening 9b: Electrolytic capacitor opening 9c: Transformer primary winding opening 10: Partition 10a: Upper plate 10b: Front plate 10c: Front opening 11: Semiconductor unit storage chamber 12: Transformer Storage room 13: Shielding part 14: Pedestal part 15: Wind tunnel

Claims (3)

変圧器と半導体ユニットを内部に収容する内部空間を有する筐体と、
正面側に前記半導体ユニットを収納する半導体ユニット収納室と背面側に前記変圧器を収納する変圧器収納室とを形成するように前記内部空間内の前後を仕切る仕切部と、
前記変圧器収納室内の下側に配置され、前記変圧器の下側の一部を収容し、前記変圧器の内側と連通する風洞を形成する隔壁部と、
前記隔壁部に形成される正面側開口部と、
前記仕切部に形成され、前記半導体ユニット収納室と前記変圧器収納室とを連通させる上側開口部と、
前記隔壁部の前記正面側開口部と対向するように前記仕切部に形成され、前記半導体ユニット収納室と前記風洞とを連通させる下側開口部と、
前記筐体の上側に設置され、前記変圧器収納室の上側から排気する排気ファンと、
を有し、前記半導体ユニット収納室へ取り込まれた冷却空気は、第一のルートと第二のルートに分かれて流れ、
前記第一のルートでは、前記半導体ユニットの内側に形成される流路を通過して冷却しつつ流れ、前記上側開口部を通じて前記半導体ユニット収納室から前記変圧器収納室へ流れ、前記変圧器の外側を冷却してから前記排気ファンにより前記変圧器収納室から排気され、
前記第二のルートでは、前記半導体ユニット収納室、前記下側開口部および前記正面側開口部を経て前記風洞へ流れ、前記変圧器の内側を冷却してから前記変圧器収納室へ流れ、前記排気ファンにより前記変圧器収納室から排気されることを特徴とする半導体電力変換装置。
A housing having an internal space for accommodating the transformer and the semiconductor unit;
A partition part for partitioning the front and rear in the internal space so as to form a semiconductor unit storage chamber for storing the semiconductor unit on the front side and a transformer storage chamber for storing the transformer on the back side;
A partition portion disposed below the transformer storage chamber, accommodating a part of the lower side of the transformer, and forming a wind tunnel communicating with the inside of the transformer;
A front side opening formed in the partition;
An upper opening formed in the partition for communicating the semiconductor unit storage chamber and the transformer storage chamber;
A lower opening that is formed in the partition so as to face the front opening of the partition wall and communicates the semiconductor unit storage chamber and the wind tunnel;
An exhaust fan installed on the upper side of the casing and exhausting from the upper side of the transformer storage chamber;
The cooling air taken into the semiconductor unit storage chamber flows divided into a first route and a second route,
In the first route, it flows while passing through a flow path formed inside the semiconductor unit, flows through the upper opening, flows from the semiconductor unit storage chamber to the transformer storage chamber, After the outside is cooled, the exhaust fan exhausts the transformer storage room,
In the second route, it flows to the wind tunnel through the semiconductor unit storage chamber, the lower opening and the front opening, and after cooling the inside of the transformer, flows to the transformer storage chamber, A semiconductor power converter characterized in that it is exhausted from the transformer storage chamber by an exhaust fan.
請求項1に記載の半導体電力変換装置において、
前記第一のルートでは、前記半導体ユニットから排気した冷却空気を前記上側開口部で流速を上げつつ排気し、この冷却空気を前記半導体ユニットの後ろに存在する前記変圧器の外側に当てるように噴射して冷却することを特徴とする半導体電力変換装置。
The semiconductor power conversion device according to claim 1,
In the first route, the cooling air exhausted from the semiconductor unit is exhausted while increasing the flow velocity at the upper opening, and the cooling air is injected so as to be applied to the outside of the transformer existing behind the semiconductor unit. And cooling the semiconductor power converter.
請求項2に記載の半導体電力変換装置において、
前記第一のルートでは、前記半導体ユニットの後ろで前記変圧器が不存在の箇所に前記上側開口部から一定距離を隔てて板状の遮蔽部を設置し、前記上側開口部から噴出される冷却空気の流速の均一化を図りつつ、前記遮蔽部に沿って冷却空気を流して前記変圧器の外側に当てるように冷却空気の流れを集約させることを特徴とする半導体電力変換装置。
The semiconductor power conversion device according to claim 2,
In the first route, a plate-shaped shielding portion is installed at a certain distance from the upper opening at a location where the transformer is not present behind the semiconductor unit, and cooling is performed from the upper opening. A semiconductor power conversion device that collects a flow of cooling air so as to flow outside the transformer while flowing the cooling air along the shielding portion while achieving a uniform air flow rate.
JP2015103425A 2015-05-21 2015-05-21 Semiconductor power converter Active JP6296303B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015103425A JP6296303B2 (en) 2015-05-21 2015-05-21 Semiconductor power converter
CN201610141886.0A CN106169875B (en) 2015-05-21 2016-03-14 Semiconductor power conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015103425A JP6296303B2 (en) 2015-05-21 2015-05-21 Semiconductor power converter

Publications (2)

Publication Number Publication Date
JP2016220416A true JP2016220416A (en) 2016-12-22
JP6296303B2 JP6296303B2 (en) 2018-03-20

Family

ID=57358874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015103425A Active JP6296303B2 (en) 2015-05-21 2015-05-21 Semiconductor power converter

Country Status (2)

Country Link
JP (1) JP6296303B2 (en)
CN (1) CN106169875B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020129923A (en) * 2019-02-08 2020-08-27 富士電機株式会社 Power converter
US11547025B2 (en) 2018-09-04 2023-01-03 Siemens Aktiengesellschaft Frequency converter cabinet body and frequency converter

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09213532A (en) * 1996-02-06 1997-08-15 Fuji Electric Co Ltd Air-cooling structure of transformer
JP2014078542A (en) * 2012-10-09 2014-05-01 Fuji Electric Co Ltd Cooling device for transformer
JP2015065747A (en) * 2013-09-24 2015-04-09 山洋電気株式会社 Power switchboard device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10258765B4 (en) * 2002-12-16 2006-02-09 Wacker Construction Equipment Ag Frequency converter with fan cooling
JP2007074865A (en) * 2005-09-08 2007-03-22 Fuji Electric Systems Co Ltd Power converter
JP2008103576A (en) * 2006-10-20 2008-05-01 Yaskawa Electric Corp Motor controller
MX2011006492A (en) * 2008-12-19 2011-09-27 Toshiba Mitsubishi Elec Inc Electric power source device.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09213532A (en) * 1996-02-06 1997-08-15 Fuji Electric Co Ltd Air-cooling structure of transformer
JP2014078542A (en) * 2012-10-09 2014-05-01 Fuji Electric Co Ltd Cooling device for transformer
JP2015065747A (en) * 2013-09-24 2015-04-09 山洋電気株式会社 Power switchboard device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11547025B2 (en) 2018-09-04 2023-01-03 Siemens Aktiengesellschaft Frequency converter cabinet body and frequency converter
JP2020129923A (en) * 2019-02-08 2020-08-27 富士電機株式会社 Power converter
JP7192548B2 (en) 2019-02-08 2022-12-20 富士電機株式会社 power converter

Also Published As

Publication number Publication date
JP6296303B2 (en) 2018-03-20
CN106169875A (en) 2016-11-30
CN106169875B (en) 2018-09-28

Similar Documents

Publication Publication Date Title
JP6696869B2 (en) Quick charger
US10347561B2 (en) Semiconductor apparatus
JP6589295B2 (en) Power converter
JP2007074865A (en) Power converter
JP5811609B2 (en) Transformer cooling system
JP2012009636A (en) Electric power conversion device and electric power conversion unit cooling method
JP2011211773A (en) Power supply apparatus
WO2010070715A1 (en) Electric power source device
JP6296303B2 (en) Semiconductor power converter
JP5549480B2 (en) Transformer cooling system
JP5774500B2 (en) Power conditioner device and photovoltaic power generation system
JPH09213532A (en) Air-cooling structure of transformer
JP5720184B2 (en) Cooling device for power converter
JP5691663B2 (en) Semiconductor power converter cooling structure
JP6074346B2 (en) Switchboard equipment
JP6047758B2 (en) Power converter
JP4360123B2 (en) Power converter
JP5684047B2 (en) Electrical equipment
JP2014207845A (en) Power converter
JPH07131953A (en) Air cooling structure of electrical power apparatus
JP2017112190A (en) Cooler and power converter
JP2013157466A (en) Electric power conversion apparatus
JP5869093B1 (en) control panel
JP6349755B2 (en) Rack cabinet and cooling method
JP6007714B2 (en) Transformer cooling system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170313

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180207

R150 Certificate of patent or registration of utility model

Ref document number: 6296303

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250