JP2017112190A - Cooler and power converter - Google Patents

Cooler and power converter Download PDF

Info

Publication number
JP2017112190A
JP2017112190A JP2015244682A JP2015244682A JP2017112190A JP 2017112190 A JP2017112190 A JP 2017112190A JP 2015244682 A JP2015244682 A JP 2015244682A JP 2015244682 A JP2015244682 A JP 2015244682A JP 2017112190 A JP2017112190 A JP 2017112190A
Authority
JP
Japan
Prior art keywords
air
housing
cooling device
power converter
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015244682A
Other languages
Japanese (ja)
Other versions
JP6728667B2 (en
Inventor
健裕 中島
Takehiro Nakajima
健裕 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2015244682A priority Critical patent/JP6728667B2/en
Priority to CN201610993607.3A priority patent/CN106888566B/en
Publication of JP2017112190A publication Critical patent/JP2017112190A/en
Application granted granted Critical
Publication of JP6728667B2 publication Critical patent/JP6728667B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/20909Forced ventilation, e.g. on heat dissipaters coupled to components
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2089Modifications to facilitate cooling, ventilating, or heating for power electronics, e.g. for inverters for controlling motor
    • H05K7/209Heat transfer by conduction from internal heat source to heat radiating structure

Abstract

PROBLEM TO BE SOLVED: To provide a cooler capable of cooling the electrical hating elements, such as power conversion elements, in a power converter efficiently.SOLUTION: A cooler includes a rectangular flat heat receiving body for receiving the heat emitted from electrical heating elements and having one side as an electrical hating elements mounting surface, multiple radiation fins projecting on the other side of this heat receiving body in parallel with one side thereof, an air duct having openings facing the opposite ends of these multiple radiation fins, and provided to cover the radiation fins and to form a flow path of the air flowing from the opening, and an exhaust port located substantially in the center of flow path of the air, and opening to the air duct thus exhausting the air flowing through the flow path.SELECTED DRAWING: Figure 1

Description

本発明は、電力変換器における半導体スイッチング素子等の発熱体を少ない風量で効率良く冷却することのできる冷却装置、並びに電力変換器を搭載した複数台の冷却装置を筐体内に収納して構築される電力変換装置に関する。   The present invention is constructed by housing a cooling device capable of efficiently cooling a heating element such as a semiconductor switching element in a power converter with a small air volume, and a plurality of cooling devices equipped with the power converter in a housing. The present invention relates to a power converter.

図4は複数の電力変換器1を箱型の筐体2に収納して構成される従来一般的な電力変換装置3の概略構成例を示す図で、図4(a)は前記電力変換装置3の内部構造を前面側から見たときの構成を、また図4(b)は前記電力変換装置3の内部構造を側面側から見たときの構成を示している。尚、図中4は前記筐体2の上部に設けられて前記電力変換器1の動作に伴って暖められた該筐体2の内部の空気を外部に排出する吸気ファンである。このように構成された電力変換装置3については、例えば特許文献1等に詳しく開示される通りである。   FIG. 4 is a diagram showing a schematic configuration example of a conventional general power conversion device 3 configured by housing a plurality of power converters 1 in a box-shaped housing 2, and FIG. 3 shows a configuration when the internal structure 3 is viewed from the front side, and FIG. 4B shows a configuration when the internal structure of the power converter 3 is viewed from the side. In the figure, reference numeral 4 denotes an intake fan that is provided at the top of the casing 2 and discharges the air inside the casing 2 that has been warmed with the operation of the power converter 1 to the outside. About the power converter device 3 comprised in this way, it is as having disclosed in patent document 1 etc. in detail, for example.

ここで前記電力変換器1は、通常、電力変換素子としての半導体スイッチング素子等からなる発熱体を備えており、この発熱体を冷却する為の冷却装置5を一体に備えて構成される。この冷却装置5は、例えば図5にその概略構成を模式的に示すように、一面を前記発熱体の搭載面とし、他面に複数の放熱フィン6を平行に突設した受熱体7と、前記放熱フィン6を覆って設けられた風洞体8とを備えて構成される。   Here, the power converter 1 normally includes a heating element including a semiconductor switching element or the like as a power conversion element, and is integrally provided with a cooling device 5 for cooling the heating element. The cooling device 5 includes, for example, a heat receiving body 7 in which one surface is a mounting surface of the heating element and a plurality of radiating fins 6 project in parallel on the other surface, as schematically shown in FIG. And a wind tunnel body 8 provided so as to cover the radiation fins 6.

この風洞体8は、前記放熱フィン6の両端部にそれぞれ対峙する端面に開口部を備え、これらの開口部間に空気の通流路を形成したものである。即ち、前記風洞体8は、一方の開口部から導入した空気を、前記放熱フィン6に沿って通流させて他方の開口部に向けて導く空気の通流路を形成する。前記受熱体7および前記放熱フィン6は、前記発熱体から発せられる熱を伝達し、前記通流路を流れる空気との間で熱交換することで前記発熱体を冷却する役割を担う。尚、図中9は、前記風洞体8の前記他方の開口部に連接された補助風洞体である。   This wind tunnel body 8 is provided with openings on the end faces facing the both end portions of the heat radiating fin 6, and an air flow path is formed between these openings. That is, the wind tunnel body 8 forms an air flow path that guides air introduced from one opening along the heat radiating fins 6 to the other opening. The heat receiving body 7 and the heat radiating fins 6 serve to cool the heating element by transferring heat generated from the heating element and exchanging heat with the air flowing through the passage. In the figure, reference numeral 9 denotes an auxiliary wind tunnel body connected to the other opening of the wind tunnel body 8.

ちなみに前記放熱フィン6は、一般的には前記電力変換器1を前記筐体2に収納した状態において該電力変換器1の一端部が対峙する前記筐体2の前面側から、前記電力変換器1の他端部が対峙する前記筐体2の背面側に向けて延びるように設けられている。従って前記冷却装置5は、図6(a)(b)に示すように前記放熱フィン6に沿って該冷却装置5の一方の端部(前面側)から他方の端部(背面側)に向う空気流を形成して前記電力変換器1の発熱体を冷却する。尚、図6(a)は前記冷却装置5を下面側から見たときの空気の流れを示しており、図6(b)は前記冷却装置5を側面側から見たときの空気の流れを示している。   Incidentally, the heat radiating fin 6 is generally connected to the power converter from the front side of the casing 2 where one end of the power converter 1 faces in a state where the power converter 1 is housed in the casing 2. 1 is provided so as to extend toward the back side of the casing 2 facing the other end. Therefore, as shown in FIGS. 6 (a) and 6 (b), the cooling device 5 moves from one end (front side) of the cooling device 5 to the other end (back side) along the radiation fin 6. An air flow is formed to cool the heating element of the power converter 1. 6A shows the air flow when the cooling device 5 is viewed from the lower surface side, and FIG. 6B shows the air flow when the cooling device 5 is viewed from the side surface side. Show.

従って上記構成の冷却装置5をそれぞれ備えた複数台の電力変換器1を上下方向に積み重ねて前記筐体2に収納した前記電力変換装置3においては、図4(a)(b)に示すように前記筐体2の前面側から該筐体2内に導入された空気は、前記各冷却装置5の前面側から背面側に向けて前記風洞体8内の前記放熱フィン6に沿ってそれぞれ流れる。そして前記電力変換器1の発熱体からの熱を吸熱して前記冷却装置5の背面側から排出される空気は、前記筐体2の背面側奥部の空間2aを介して前記吸気ファン4によって吸い込まれて該筐体2の外部に放出される。   Therefore, in the power conversion device 3 in which a plurality of power converters 1 each having the cooling device 5 having the above-described configuration are stacked in the vertical direction and housed in the housing 2, as shown in FIGS. 4 (a) and 4 (b). The air introduced into the casing 2 from the front side of the casing 2 flows along the radiation fins 6 in the wind tunnel body 8 from the front side to the rear side of each cooling device 5. . And the air exhausted from the back side of the cooling device 5 by absorbing the heat from the heating element of the power converter 1 is sent by the intake fan 4 via the space 2a at the back side of the housing 2. It is sucked and discharged to the outside of the housing 2.

特開2012−186352号公報JP 2012-186352 A

ところで前記電力変換器1に一体に設けられて前記筐体2に収納される前記冷却装置5の放熱フィン6は、図4〜図6に示したように前記筐体2の前後方向にフィン面が延びるように設けられる。そして前記放熱フィン6を覆って設けられる前記風洞体8は、前記放熱フィン6の全長に亘って一方向に空気が通流するように設けられる。この為、前記風洞体8によって形成される空気の通流路が長くなり、該通流路内における圧力損失の増大を招くことが否めない。しかもこの圧力損失に起因して前記風洞体8内を通流する空気量が低下し、前記放熱フィン6との間での熱交換によって温度上昇する空気流が前記通流路の風上側と風下側とで大きな温度差を生じる。   By the way, the radiating fins 6 of the cooling device 5 provided integrally with the power converter 1 and housed in the casing 2 are fin surfaces in the front-rear direction of the casing 2 as shown in FIGS. Is provided to extend. The wind tunnel body 8 provided so as to cover the heat radiating fins 6 is provided so that air flows in one direction over the entire length of the heat radiating fins 6. For this reason, the air flow path formed by the wind tunnel body 8 becomes long, and it cannot be denied that the pressure loss in the flow path increases. In addition, due to this pressure loss, the amount of air flowing through the wind tunnel body 8 decreases, and the air flow that rises in temperature due to heat exchange with the radiating fins 6 is caused by the leeward side and leeward side of the passage. A large temperature difference occurs between the two sides.

このような不具合を解消するには、例えば前記吸気ファン4として吸引能力の大きい大型のものを用いたり、或いは圧力損失が小さくなるように前記放熱フィン6の形状を工夫することが必要となる。しかし前記吸気ファン4の吸引能力を高めた場合には、その作動音(羽切り音)が大きくなると共にコストアップの要因となる。また前記放熱フィン6での圧力損失を低減した場合、逆に該放熱フィン6の放熱性能が劣化すると言う問題が生じる。   In order to eliminate such a problem, for example, it is necessary to use a large-sized suction fan 4 having a large suction capability, or to devise the shape of the radiating fin 6 so as to reduce the pressure loss. However, when the suction capacity of the intake fan 4 is increased, its operating sound (feathering sound) increases and causes an increase in cost. Further, when the pressure loss in the heat radiating fin 6 is reduced, there arises a problem that the heat radiating performance of the heat radiating fin 6 is deteriorated.

また前記放熱フィン6の局所的な温度上昇を防ぐには、例えば前記吸気ファン4の風量を大きくして前記通流路内を通流する空気の絶対量を増やしたり、前記放熱フィン6を大型化してその放熱性能を高めることが必要となる。しかしこのような対策を施すと前記冷却装置5のみならず前記電力変換装置3が大型化し、その製造コスト(部品コスト)が増大すると言う問題が生じる。   Further, in order to prevent a local temperature rise of the radiating fin 6, for example, the air volume of the intake fan 4 is increased to increase the absolute amount of air flowing through the passage, or the radiating fin 6 is increased in size. It is necessary to improve the heat dissipation performance. However, when such measures are taken, there arises a problem that not only the cooling device 5 but also the power conversion device 3 is enlarged and its manufacturing cost (component cost) increases.

本発明はこのような事情を考慮してなされたもので、その目的は、製造コスト(部品コスト)の増大を招くことなしに放熱フィンでの放熱性能を高めて発熱体を効率的に冷却することのできる冷却装置を提供することにある。   The present invention has been made in view of such circumstances, and its purpose is to efficiently cool the heating element by increasing the heat radiation performance of the heat radiation fin without incurring an increase in manufacturing cost (component cost). It is an object of the present invention to provide a cooling device that can handle the above.

更に本発明は、複数の電力変換器をそれぞれ搭載した上記構成の複数台の冷却装置を上下方向に積み重ねて箱型の筐体内に収納して電力変換装置を構成する場合であっても、前記複数台の電力変換器を効率的に冷却することのできる電力変換装置を提供することを目的としている。   Further, the present invention is a case where a plurality of cooling devices having the above-described configurations each mounted with a plurality of power converters are stacked in the vertical direction and housed in a box-shaped housing to constitute a power conversion device. It aims at providing the power converter which can cool a plurality of power converters efficiently.

上述した目的を達成するべく本発明に係る冷却装置は、   In order to achieve the above-described object, the cooling device according to the present invention includes:

一面を発熱体の搭載面として該発熱体が発する熱を受熱する、例えば熱伝導率の高い材料からなる矩形平板状の受熱体と、
前記搭載面とは反対側の前記受熱体の他面に該受熱体の一側辺と平行に突設された複数条の放熱フィンと、
前記複数条の放熱フィンの両端部にそれぞれ対向する開口部を有し、前記複数の放熱フィンを一括して覆って設けられて該放熱フィン間に前記開口部から流入する空気の通流路を形成した風洞体と、
前記空気の通流路の略中央に位置して前記風洞体に開口されて前記通流路を通流する空気を前記受熱体とは反対側に向けて排出する排出口と
を備えたことを特徴としている。
A rectangular plate-shaped heat receiving body made of a material having a high thermal conductivity, for example, which receives heat generated by the heat generating body as a mounting surface of the heating element;
A plurality of radiating fins protruding in parallel with one side of the heat receiving body on the other surface of the heat receiving body opposite to the mounting surface;
The plurality of radiating fins have openings opposed to both ends, respectively, and the plurality of radiating fins are collectively covered to provide a flow path for air flowing from the openings between the radiating fins. The formed wind tunnel body,
A discharge port that is located at substantially the center of the air flow path and is open to the wind tunnel body and discharges the air flowing through the flow path toward the side opposite to the heat receiving body. It is a feature.

また前記冷却装置は、更に前記排出口に連通して設けられて、該排出口から排出される空気を前記放熱フィンの延在方向と直交する向きに変位させて導く補助風洞体を備えて構成されることを特徴としている。   The cooling device further includes an auxiliary wind tunnel body that is provided in communication with the discharge port and that guides the air discharged from the discharge port by displacing the air in a direction perpendicular to the extending direction of the radiating fins. It is characterized by being.

好ましくは前記放熱フィンは、例えば前記受熱体と一体に形成されたプレートフィンからなる。また前記排出口は、好ましくは前記風洞体における前記受熱体の他面に対峙する部位に前記複数の放熱フィンの並び方向の幅に亘って設けられる。尚、前記発熱体は、例えば電力変換器における電力変換素子、具体的には半導体スイッチング素子からなる。また前記風洞体によって形成された通流路に流れる空気は、例えば吸気ファンにより強制的に吸引されて前記放熱フィンを除熱する空気流をなす。   Preferably, the heat radiating fin includes, for example, a plate fin formed integrally with the heat receiving body. Moreover, the said discharge port is preferably provided in the site | part facing the other surface of the said heat receiving body in the said wind tunnel body over the width | variety of the arrangement direction of these radiation fins. In addition, the said heat generating body consists of a power conversion element in a power converter, for example, specifically a semiconductor switching element. Further, the air flowing through the flow path formed by the wind tunnel body is forcibly sucked by, for example, an intake fan to form an air flow for removing heat from the radiating fins.

また本発明に係る電力変換装置は、電力変換器をそれぞれ搭載した上述した構成の複数台の冷却装置を上下方向に積み重ねて箱型の筐体内に収納して構成されるものであって、
前記筐体は、該筐体の幅方向の両側面に前記風洞体の開口部を対峙させて前記複数台の冷却装置をそれぞれ収納する構造を有し、
前記筐体の前面部に設けた吸気口と前記各冷却装置の前記開口部との間に形成した第1の空気通流路、並びに前記筐体の上部に設けられた排気口と前記複数の冷却装置の前記各排出口との間に形成した第2の空気通流路とを備えたことを特徴としている。
Further, the power conversion device according to the present invention is configured by stacking a plurality of cooling devices having the above-described configurations each mounted with a power converter in a vertical direction and storing them in a box-shaped housing,
The housing has a structure in which the plurality of cooling devices are respectively stored by facing the openings of the wind tunnel body on both side surfaces in the width direction of the housing,
A first air passage formed between an air inlet provided in the front surface of the housing and the opening of each cooling device; an air outlet provided in an upper portion of the housing; A second air flow path formed between each discharge port of the cooling device is provided.

好ましくは前記第2の空気通流路は、前記筐体内に積み重ねて収納された前記複数台の冷却装置の後側に位置する前記筐体の背面側奥部に形成される。また前記排気口には、例えば前記筐体内の空気を外部に排出する吸気ファンを設けることが好ましい。   Preferably, the second air flow path is formed in a back side deep part of the casing located on the rear side of the plurality of cooling devices stacked and accommodated in the casing. The exhaust port is preferably provided with an intake fan for discharging the air in the housing to the outside, for example.

上記構成の冷却装置によれば、前記受熱体に平行に突設されて一方向に延びる前記複数の放熱フィンと前記風洞体とによって形成される空気の通流路は、前記風洞体の略中央部に開口された前記排出口を挟んで2つの領域に区分される。そして前記放熱フィンの両端部にそれぞれ対向して設けられた前記開口部から前記風洞体内にそれぞれ流入する空気は前記放熱フィンに沿って通流し、前記排出口から外部に排出される。従って前記複数の放熱フィンと前記風洞体とによって形成される空気の通流路の長さを前記放熱フィンの長さの略半分にすることができる。即ち、前記開口部から前記排出口に至る空気の通流路の長さを、前記放熱フィンの全長に亘って空気の通流路を形成する場合の略半分程度に短くすることができる。   According to the cooling device having the above configuration, the air flow path formed by the plurality of radiating fins extending in one direction and projecting in parallel with the heat receiving body and the wind tunnel body is substantially at the center of the wind tunnel body. It is divided into two regions across the discharge port opened in the part. The air flowing into the wind tunnel through the openings provided opposite to both ends of the heat radiating fins flows along the heat radiating fins and is discharged to the outside through the discharge port. Therefore, the length of the air flow path formed by the plurality of radiating fins and the wind tunnel body can be made approximately half of the length of the radiating fins. In other words, the length of the air flow path from the opening to the discharge port can be shortened to about half that in the case of forming the air flow path over the entire length of the radiating fin.

この結果、前記放熱フィンと前記風洞体とによって形成される通流路の流路断面積を変えることなしに該通流路を通流する空気の圧力損失を抑えることができる。従って前記通流路での圧力損失を抑えることができる分、該通流路を通流する空気の流量を多くすることができるので前記放熱フィンに対する除熱効率を高めることが可能となる。   As a result, the pressure loss of the air flowing through the flow path can be suppressed without changing the cross-sectional area of the flow path formed by the radiating fin and the wind tunnel body. Therefore, since the flow rate of the air flowing through the flow path can be increased by the amount of pressure loss in the flow path, the heat removal efficiency for the radiating fin can be increased.

また前記構成の電力変換装置は、上下方向に積み重ねて箱型の筐体に収納される複数台の冷却装置における前記風洞体の開口部を、それぞれ前記筐体の幅方向の両側面に対峙させて設ける。そして前記筐体の前面部に設けた吸気口と前記各冷却装置の前記開口部との間に第1の空気通流路を形成すると共に、前記筐体の上部に設けられた排気口と前記複数の冷却装置の前記各排出口との間に第2の空気通流路を形成した構造をなす。   In the power conversion device having the above configuration, the openings of the wind tunnel body in the plurality of cooling devices stacked in the vertical direction and housed in the box-shaped housing are opposed to both side surfaces in the width direction of the housing. Provide. And while forming the 1st air passage between the inlet provided in the front part of the case, and the opening of each cooling device, the exhaust provided in the upper part of the case, A structure is provided in which a second air passage is formed between the plurality of cooling devices and the respective discharge ports.

上記構成の電力変換装置によれば、前記筐体の前面部に設けた吸気口から該筐体内に導入される空気は、前記筐体の両側面に沿って前記各冷却装置の風洞体内に導かれる。そして各風洞体からそれぞれ排出される空気は、前記複数の冷却装置の後側に位置する前記筐体の背面側奥部を介して前記吸気ファンが設けられた前記筐体内の上部に導かれる。従って前記電力変換装置によれば、前記筐体の内部において、上下方向に積み重ねられた複数台の冷却装置を囲むように前記筐体の前面側から両側面部、更には背面側奥部を介してその上部に至る空気の通流路を形成することができる。   According to the power conversion device configured as described above, air introduced into the housing from the air inlet provided in the front portion of the housing is guided into the wind tunnel body of each cooling device along both side surfaces of the housing. It is burned. And the air discharged | emitted from each wind tunnel body is guide | induced to the upper part in the said housing | casing in which the said intake fan was provided through the back side back part of the said housing located in the back side of these cooling devices. Therefore, according to the power conversion device, inside the housing, through the both sides of the housing from the front side of the housing and further through the back of the back so as to surround a plurality of cooling devices stacked in the vertical direction. An air flow path leading to the upper portion can be formed.

この結果、前記筐体が形成する内部空間を有効に活用して前記複数台の冷却装置をそれぞれ冷却するに必要な空気を供給すると共に、各冷却装置からそれぞれ排出される空気を効率的に外部に排気することができる。従って前記複数台の冷却装置がそれぞれ搭載された電力変換器の発熱体を効率的に冷却することが可能となる。更には前記複数台の冷却装置に対する冷却効率を高め得る分、前記吸気ファンに要求される吸引能力を低く抑え、該吸気ファンの作動音、いわゆる羽切り音を低減することができる等の実用上多大なる効果が奏せられる。   As a result, the air necessary for cooling each of the plurality of cooling devices is supplied by effectively utilizing the internal space formed by the housing, and the air discharged from each cooling device is efficiently discharged to the outside. Can be exhausted. Therefore, it becomes possible to efficiently cool the heating elements of the power converter on which the plurality of cooling devices are respectively mounted. Furthermore, since the cooling efficiency for the plurality of cooling devices can be increased, the suction performance required for the intake fan can be kept low, and the operation noise of the intake fan, that is, the so-called feathering noise can be reduced. A great effect is produced.

本発明の一実施形態に係る冷却装置とこの冷却装置を一体に備えて構成される電力変換器の概略構成を模式的に示す図。The figure which shows typically schematic structure of the power converter comprised integrally including the cooling device which concerns on one Embodiment of this invention, and this cooling device. 図1に示す冷却装置における空気の流れを示す図。The figure which shows the flow of the air in the cooling device shown in FIG. 本発明に係る電力変換装置の概略構成と該電力変換装置における空気の流れを示す図。The figure which shows schematic structure of the power converter device which concerns on this invention, and the flow of the air in this power converter device. 従来の電力変換装置の概略構成例と該電力変換装置における空気の流れを示す図。The figure which shows the example of schematic structure of the conventional power converter device, and the flow of the air in this power converter device. 従来の冷却装置の概略的な構成例を模式的に示す図。The figure which shows typically the example of a schematic structure of the conventional cooling device. 図5に示す冷却装置における空気の流れを示す図。The figure which shows the flow of the air in the cooling device shown in FIG.

以下、図面を参照して本発明の実施形態に係る冷却装置、並びにこの冷却装置を一体に備えて構成される複数の電力変換器を上下方向に積み重ねて箱型の筐体内に収納して構成される電力変換装置について説明する。   Hereinafter, a cooling device according to an embodiment of the present invention with reference to the drawings, and a plurality of power converters configured integrally with the cooling device are stacked in the vertical direction and housed in a box-shaped housing. The power converter to be performed will be described.

図1は本発明の一実施形態に係る冷却装置11と、この冷却装置11を一体に備えて構成される電力変換器10の概略構成を模式的に示す図である。前記冷却装置11は、前記電力変換器10における発熱体(図示せず)を冷却する役割を担うもので、一面を前記発熱体の搭載面とした矩形平板状の受熱体12を備える。この受熱体12は、例えばアルミニウム(Al)等の熱伝導の高い素材からなり、前記発熱体が発する熱を受熱する。また前記発熱体の搭載面とは反対側の前記受熱体12の他面には、該受熱体12の一辺と平行に所定高さの複数条の放熱フィン13が前記受熱体12と一体に突設されている。これらの放熱フィン13は、所定の配列ピッチで前記受熱体12の他面の全域に亘って平行に並ぶプレートフィンからなる。   FIG. 1 is a diagram schematically showing a schematic configuration of a cooling device 11 according to an embodiment of the present invention and a power converter 10 configured integrally with the cooling device 11. The cooling device 11 plays a role of cooling a heating element (not shown) in the power converter 10, and includes a rectangular plate-shaped heat receiving body 12 having one surface as a mounting surface of the heating element. The heat receiving body 12 is made of a material having high heat conductivity such as aluminum (Al), and receives heat generated by the heat generating body. On the other surface of the heat receiving body 12 opposite to the mounting surface of the heat generating body, a plurality of radiating fins 13 having a predetermined height parallel to one side of the heat receiving body 12 project integrally with the heat receiving body 12. It is installed. These heat radiation fins 13 are plate fins arranged in parallel over the entire area of the other surface of the heat receiving body 12 at a predetermined arrangement pitch.

また前記受熱体12には、前記複数条の放熱フィン13を覆って風洞体14が設けられている。この風洞体14は、前記放熱フィン13が延在する方向の両端部に、該放熱フィン13の端部に対峙する開口部14aを有するもので、その内部に前記複数条の放熱フィン13に沿う空気の通流路を形成したものである。尚、前記受熱体12に搭載された前記電力変換器10を含んで前記放熱フィン13を覆う該電力変換器10の箱型の筐体を前記風洞体14とみなすことも勿論可能である。この場合、前記筐体の両側部に前記開口部14aが設けられることになる。   Further, the heat receiving body 12 is provided with a wind tunnel body 14 covering the plurality of radiating fins 13. The wind tunnel body 14 has openings 14a facing the end portions of the heat radiating fins 13 at both ends in the direction in which the heat radiating fins 13 extend. An air flow path is formed. Of course, the box-shaped housing of the power converter 10 including the power converter 10 mounted on the heat receiving body 12 and covering the radiation fins 13 can be regarded as the wind tunnel body 14. In this case, the opening 14a is provided on both sides of the casing.

また前記風洞体14には、前記空気の通流路の略中央に位置して前記通流路を通流する空気を排出する為の排出口14bが開口されている。そしてこの実施形態においては、更に前記風洞体14の前記排出口14bに連通して補助風洞体15が設けられている。この補助風洞体15は、図1において背面側となる一面に排気口を備えたもので、前記風洞体14内を通流し、前記排出口14bから排出された空気を前記電力変換器10の背面側に導く役割を担う。   Further, the wind tunnel body 14 is provided with a discharge port 14b that is positioned substantially at the center of the air flow path and discharges air flowing through the flow path. In this embodiment, an auxiliary wind tunnel body 15 is further provided in communication with the discharge port 14b of the wind tunnel body 14. The auxiliary wind tunnel body 15 is provided with an exhaust port on one surface on the back side in FIG. 1. The auxiliary wind tunnel body 15 flows through the wind tunnel body 14 and discharges air discharged from the exhaust port 14 b to the back surface of the power converter 10. Take the role of guiding to the side.

ちなみに上述した如く構成された冷却装置11を備えて構成される複数台の前記電力変換器10は、例えば図3(a)(b)に示すように上下方向に積み重ねて箱型の筐体21に収納されて電力変換装置20を構成する。特に前記複数台の電力変換器10は、前記各冷却装置11における前記放熱フィン13が延在する向きが前記筐体21の幅方向となる向きに、換言すれば前記風洞体14の両側部に設けられた開口部14aが前記筐体21の側壁面に所定の間隙を隔ててそれぞれ対峙するようにして前記筐体21に収納される。   Incidentally, a plurality of the power converters 10 including the cooling device 11 configured as described above are stacked in the vertical direction as shown in FIGS. The power conversion device 20 is configured by being housed. In particular, the plurality of power converters 10 are arranged so that the direction in which the radiating fins 13 extend in each cooling device 11 is the width direction of the casing 21, in other words, on both sides of the wind tunnel body 14. The provided opening 14a is housed in the housing 21 so as to face the side wall surface of the housing 21 with a predetermined gap therebetween.

そして前記筐体21は、該筐体21の前面側に設けた吸気口(図示せず)からその両側面に向けて、前記冷却装置11の両端部に設けられた前記開口部14aに至る第1の空気通流路を形成している。   The casing 21 reaches the opening 14a provided at both ends of the cooling device 11 from an inlet (not shown) provided on the front side of the casing 21 toward both sides thereof. 1 air passage is formed.

また前記筐体21の上面部には、該筐体21内の空気を吸引して該筐体21の外部に排気する吸気ファン22が設けられている。また前記筐体21の背面側奥部には、前記複数の冷却装置11の背面と前記吸気ファン22との間を結ぶ第2の空気通流路が形成されている。そして前記吸気ファン22は、前記複数台の電力変換器10を収納した前記筐体21の背面側奥部に形成される空間部(第2の空気通流路)21aを介して該筐体21内の空気を外部に強制的に排気するものとなっている。   An air intake fan 22 that sucks air inside the housing 21 and exhausts it outside the housing 21 is provided on the upper surface of the housing 21. In addition, a second air passage that connects the back surfaces of the plurality of cooling devices 11 and the intake fans 22 is formed in the back side of the housing 21. The intake fan 22 is connected to the casing 21 via a space (second air passage) 21a formed in the back side of the casing 21 in which the plurality of power converters 10 are housed. The air inside is forcibly exhausted to the outside.

尚、図3(a)は前記電力変換装置20を前面側から見たときの概略構成と、該電力変換装置20における空気の流れ模式的に示している。また図3(b)は前記電力変換装置20を側面側から見たときの概略構成と、該電力変換装置20における空気の流れを模式的に示している。   FIG. 3A schematically shows the configuration of the power conversion device 20 as viewed from the front side, and the air flow in the power conversion device 20 schematically. FIG. 3B schematically shows a schematic configuration when the power conversion device 20 is viewed from the side, and the air flow in the power conversion device 20.

このように構成された前記電力変換装置20によれば前記吸気ファン22による前記筐体21内の空気の吸引作用により、図3(a)(b)に示すように、例えば前記筐体21の前面側から該筐体21の内部に外気(空気)が導入される。そして前記筐体21の内部に導入された空気は、前記第1の空気通流路を介して前記冷却装置11にそれぞれ導かれ、該冷却装置11を介して前記筐体21の背面側奥部に導かれる。具体的には前記冷却装置11に導かれた空気は、前記風洞体14内において前記放熱フィン13に沿って流れた後、前記補助風洞体15を通って前記筐体21の背面側奥部に排出される。その後、前記筐体21の背面側奥部に導かれた空気は、前記吸気ファン22により吸引されて外部に排出される。   According to the power conversion device 20 configured as described above, due to the suction action of the air in the housing 21 by the intake fan 22, as shown in FIGS. Outside air (air) is introduced into the housing 21 from the front side. The air introduced into the housing 21 is guided to the cooling device 11 through the first air flow path, and the back side rear portion of the housing 21 is passed through the cooling device 11. Led to. Specifically, the air guided to the cooling device 11 flows along the heat radiating fins 13 in the wind tunnel body 14, and then passes through the auxiliary wind tunnel body 15 to the back side of the casing 21. Discharged. Thereafter, the air guided to the back side of the casing 21 is sucked by the intake fan 22 and discharged to the outside.

特に前記冷却装置11においては、図2(a)(b)に示すように前記風洞体14の両端の前記開口部14aから該風洞体14に流入した空気は前記複数条の放熱フィン13に沿って該風洞体14の中央部に向かって通流する。そして前記風洞体14を通流する空気は前記冷却装置11の下面側の略中央部に設けられた前記排出口14bから排出された後、前記補助風洞体15を介して前記電力変換器10の背面側に導かれる。尚、図2(a)は前記冷却装置11を前面側から見たときの空気の流れを模式的に示しており、また図2(b)は前記冷却装置11を側面側から見たときの空気の流れを模式的に示している。   In particular, in the cooling device 11, as shown in FIGS. 2 (a) and 2 (b), air flowing into the wind tunnel body 14 from the openings 14 a at both ends of the wind tunnel body 14 travels along the plurality of radiating fins 13. Then, the air flows toward the center of the wind tunnel body 14. Then, the air flowing through the wind tunnel body 14 is discharged from the discharge port 14b provided at a substantially central portion on the lower surface side of the cooling device 11, and then the air of the power converter 10 is passed through the auxiliary wind tunnel body 15. Guided to the back side. 2A schematically shows the air flow when the cooling device 11 is viewed from the front side, and FIG. 2B is the view when the cooling device 11 is viewed from the side surface. The flow of air is shown typically.

従って上述した如く構成された前記冷却装置11によれば、前記放熱フィン13に沿って流れる空気の流路長は該放熱フィン13の伸延する長さの略半分となる。従って前記空気流が前記放熱フィン13が形成した空気の通流路での空気抵抗が減り、該通流路での圧力損失を抑えることができる。この結果、前記放熱フィン13に沿って流れる空気流を、その風量を低減させることなく通流させることが可能となり、該放熱フィン13における冷却効率を維持することが可能となる。   Therefore, according to the cooling device 11 configured as described above, the flow path length of the air flowing along the radiating fins 13 is approximately half of the extending length of the radiating fins 13. Therefore, the air flow reduces the air resistance in the air flow path formed by the radiating fins 13, and the pressure loss in the flow path can be suppressed. As a result, the airflow flowing along the radiating fin 13 can be passed without reducing the air volume, and the cooling efficiency of the radiating fin 13 can be maintained.

従って前記構成の冷却装置11によれば、前記吸気ファン22を大型化して吸引能力を高めたり、或いは前記吸気ファン22の風量を大きくする必要がない。また前記放熱フィン13の形状を工夫して空気抵抗を減らしたり、大型化して放熱面積を拡大する等の対策も不要となる。故に前記冷却装置11の大型化を招来することなしに前記電力変換器10に対する必要な冷却能力を確保することが可能となる。   Therefore, according to the cooling device 11 having the above configuration, it is not necessary to increase the suction capacity by increasing the size of the intake fan 22 or to increase the air volume of the intake fan 22. Also, measures such as reducing the air resistance by devising the shape of the heat dissipating fins 13 or increasing the heat dissipating area by increasing the size become unnecessary. Therefore, it is possible to ensure the necessary cooling capacity for the power converter 10 without causing an increase in the size of the cooling device 11.

特に前記電力変換器1,10が直方体形状を有し、前記冷却装置5,11における放熱フィン6,13が前記電力変換器1,10の長手方向に沿って設けられるような場合、従来の電力変換装置3においては前記放熱フィン6が延在する方向が前記筐体2の前後方向となる向きに前記電力変換器1が設けられる。この点、この実施形態においては前記放熱フィン13の長さが前記電力変換器1における前記放熱フィン6と同じであっても、該放熱フィン13が延在する方向が前記筐体21の幅方向となる向きに前記電力変換器10が設けられる。   In particular, when the power converters 1 and 10 have a rectangular parallelepiped shape and the radiating fins 6 and 13 in the cooling devices 5 and 11 are provided along the longitudinal direction of the power converters 1 and 10, the conventional power In the conversion device 3, the power converter 1 is provided in such a direction that the direction in which the radiating fins 6 extend is the front-rear direction of the housing 2. In this respect, in this embodiment, even if the length of the radiating fin 13 is the same as that of the radiating fin 6 in the power converter 1, the direction in which the radiating fin 13 extends is the width direction of the casing 21. The power converter 10 is provided in such a direction.

従って前記放熱フィン13に沿って流れる空気の流路長を、実質的に従来の冷却装置5において前記放熱フィン6に沿って流れる空気の流路長の半分にすることができる。この結果、本発明によれば前記放熱フィン13に沿って形成される流路の流路長に依存する空気摩擦損失を低減し、該放熱フィン13の放熱性能を十分に引き出すことができる等の実用上多大なる効果が奏せられる。   Therefore, the flow path length of the air flowing along the heat radiating fins 13 can be substantially half the flow path length of the air flowing along the heat radiating fins 6 in the conventional cooling device 5. As a result, according to the present invention, the air friction loss depending on the flow path length of the flow path formed along the heat radiating fins 13 can be reduced, and the heat radiating performance of the heat radiating fins 13 can be sufficiently extracted. A great effect can be achieved in practical use.

尚、本発明は上述した実施形態に限定されるものではない。例えば矩形状の平板体からなる前記受熱体12の大きさは前記電力変換器10の大きさ、具体的には前記電力変換器10の平面的な大きさに適合した形状・大きさものであれば十分である。また前記放熱フィン13については前記受熱体12の全面に亘って設けるようにすれば良く、その高さについても前記電力変換器10から発せられる熱量に応じて定めれば十分である。更には実施形態においては、前記電力変換器10の下面側に前記冷却装置11を一体に設けた例について示したが、前記電力変換器10の上面側に設けることも勿論可能である。   The present invention is not limited to the embodiment described above. For example, the size of the heat receiving body 12 formed of a rectangular flat plate is a shape and size suitable for the size of the power converter 10, specifically, the planar size of the power converter 10. It is enough. The heat dissipating fins 13 may be provided over the entire surface of the heat receiving body 12, and the height of the heat dissipating fins 13 may be determined according to the amount of heat generated from the power converter 10. Furthermore, in the embodiment, the example in which the cooling device 11 is integrally provided on the lower surface side of the power converter 10 has been described. However, it is of course possible to provide the cooling device 11 on the upper surface side of the power converter 10.

また前記風洞体14に設ける排出口14bの位置については、例えば前記電力変換器10における発熱体のレイアウト位置によって変化する前記受熱体12の温度分布を考慮した上で設定するようにしても良い。その他、本発明はその要旨を逸脱しない範囲で種々変形して実施することができる。   Further, the position of the discharge port 14b provided in the wind tunnel body 14 may be set in consideration of the temperature distribution of the heat receiving body 12 which varies depending on the layout position of the heating element in the power converter 10, for example. In addition, the present invention can be variously modified and implemented without departing from the scope of the invention.

10 電力変換器
11 冷却装置
12 受熱体
13 放熱フィン
14 風洞体
14a 開口部
14b 排出口
15 補助風洞体
20 電力変換装置
21 筐体
22 吸気ファン
DESCRIPTION OF SYMBOLS 10 Power converter 11 Cooling device 12 Heat receiving body 13 Radiation fin 14 Wind tunnel body 14a Opening part 14b Outlet 15 Auxiliary wind tunnel body 20 Power converter 21 Case 22 Intake fan

Claims (8)

一面を発熱体の搭載面として該発熱体が発する熱を受熱する矩形平板状の受熱体と、
この受熱体の他面に該受熱体の一側辺と平行に突設された複数条の放熱フィンと、
前記複数条の放熱フィンの両端部にそれぞれ対向する開口部を有し、前記放熱フィンを覆って設けられて前記開口部から流入する空気の通流路を形成した風洞体と、
前記空気の通流路の略中央に位置して前記風洞体に開口されて前記通流路を通流する空気を排出する排出口と
を具備したことを特徴とする冷却装置。
A rectangular plate-shaped heat receiving body that receives heat generated by the heating element with one surface as a mounting surface of the heating element;
A plurality of radiating fins projecting on the other surface of the heat receiving body in parallel with one side of the heat receiving body;
A wind tunnel body having openings facing the both ends of the plurality of radiating fins, and covering the radiating fins to form a flow path for air flowing in from the openings;
A cooling apparatus, comprising: a discharge port that is positioned substantially in the center of the air flow path and is open to the wind tunnel body and discharges air that flows through the flow path.
請求項1に記載の冷却装置において、
更に前記排出口に連通して設けられて、該排出口から排出される空気を前記放熱フィンの延在方向と直交する向きに変位させて導く補助風洞体を備えることを特徴とする冷却装置。
The cooling device according to claim 1, wherein
The cooling device further includes an auxiliary wind tunnel body that is provided in communication with the discharge port and that guides the air discharged from the discharge port by displacing the air in a direction orthogonal to the extending direction of the radiation fins.
前記放熱フィンは、前記受熱体と一体に形成されたプレートフィンである請求項1または2に記載の冷却装置。   The cooling device according to claim 1, wherein the radiating fin is a plate fin formed integrally with the heat receiving body. 前記排出口は、前記受熱体の他面に対峙する部位に前記複数の放熱フィンの並び方向の幅に亘って設けられるものである請求項1または2に記載の冷却装置。   The cooling device according to claim 1 or 2, wherein the discharge port is provided at a portion facing the other surface of the heat receiving body over a width in a direction in which the plurality of radiation fins are arranged. 前記発熱体は、電力変換器における電力変換素子であって、
前記風洞体によって形成された通流路に流れる空気は、吸気ファンにより強制的に吸引されるものである請求項1〜4のいずれかに記載の冷却装置。
The heating element is a power conversion element in a power converter,
The cooling device according to any one of claims 1 to 4, wherein the air flowing through the flow path formed by the wind tunnel body is forcibly sucked by an intake fan.
電力変換器を搭載した請求項1〜4のいずれかに記載の冷却装置を複数台、上下方向に積み重ねて箱型の筐体内に収納して構成される電力変換装置であって、
前記筐体は、該筐体の幅方向の両側面に前記風洞体の開口部を対峙させて前記複数台の冷却装置をそれぞれ収納する構造を有し、
前記筐体の前面部に設けた吸気口と前記各冷却装置の前記開口部との間に形成した第1の空気通流路と、
前記筐体の上部に設けられた排気口と前記複数の冷却装置の前記各排出口との間に形成した第2の空気通流路とを具備したことを特徴とする電力変換装置。
A plurality of the cooling devices according to any one of claims 1 to 4 equipped with a power converter, wherein the power converter is configured by stacking vertically and storing in a box-shaped housing,
The housing has a structure in which the plurality of cooling devices are respectively stored by facing the openings of the wind tunnel body on both side surfaces in the width direction of the housing,
A first air passage formed between an air inlet provided in the front surface of the housing and the opening of each cooling device;
A power conversion device comprising: a second air passage formed between an exhaust port provided in an upper portion of the housing and the respective discharge ports of the plurality of cooling devices.
前記第2の空気通流路は、前記筐体内に積み重ねて収納された前記複数台の冷却装置の後側に位置する前記筐体の背面側奥部に形成されるものである請求項6に記載の電力変換装置。   The said 2nd air flow path is formed in the back side back part of the said housing located in the back side of the said several cooling device stacked and accommodated in the said housing | casing. The power converter described. 前記排気口には、前記筐体内の空気を外部に排出する吸気ファンが設けられる請求項6に記載の電力変換装置。   The power converter according to claim 6, wherein the exhaust port is provided with an intake fan that exhausts the air in the housing to the outside.
JP2015244682A 2015-12-15 2015-12-15 Cooling device and power conversion device Active JP6728667B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015244682A JP6728667B2 (en) 2015-12-15 2015-12-15 Cooling device and power conversion device
CN201610993607.3A CN106888566B (en) 2015-12-15 2016-11-09 Cooling device and power inverter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015244682A JP6728667B2 (en) 2015-12-15 2015-12-15 Cooling device and power conversion device

Publications (2)

Publication Number Publication Date
JP2017112190A true JP2017112190A (en) 2017-06-22
JP6728667B2 JP6728667B2 (en) 2020-07-22

Family

ID=59079532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015244682A Active JP6728667B2 (en) 2015-12-15 2015-12-15 Cooling device and power conversion device

Country Status (2)

Country Link
JP (1) JP6728667B2 (en)
CN (1) CN106888566B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113267312A (en) * 2021-07-19 2021-08-17 中国空气动力研究与发展中心超高速空气动力研究所 Test model for high-temperature wind tunnel
JP2023081368A (en) * 2021-11-30 2023-06-09 台達電子工業股▲ふん▼有限公司 Cooling device
JP7472248B2 (en) 2021-11-30 2024-04-22 台達電子工業股▲ふん▼有限公司 Cooling system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005110428A (en) * 2003-09-30 2005-04-21 Toshiba Elevator Co Ltd Cooling device for power conversion elements
JP2005321287A (en) * 2004-05-07 2005-11-17 Sony Corp Cooling device, electronic apparatus, heat sink, and radiation fin
JP2012186352A (en) * 2011-03-07 2012-09-27 Fuji Electric Co Ltd Cooling structure of semiconductor power conversion device
JP2013093364A (en) * 2011-10-24 2013-05-16 Fuji Electric Co Ltd Forced air cooling heat sink
JP2014204453A (en) * 2013-04-01 2014-10-27 富士電機株式会社 Cooling fin and power conversion device provided with cooling fin

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000292048A (en) * 1999-04-02 2000-10-20 Matsushita Refrig Co Ltd Heat conveying circuit
JP2003188566A (en) * 2001-12-17 2003-07-04 Matsushita Electric Ind Co Ltd Cooling module
JP4093479B2 (en) * 2003-10-17 2008-06-04 オリジン電気株式会社 Power supply
CN100529413C (en) * 2006-11-17 2009-08-19 富准精密工业(深圳)有限公司 Centrifugal fan, heat radiation device possessing the centrifugal fan and electronic device using the heat radiation device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005110428A (en) * 2003-09-30 2005-04-21 Toshiba Elevator Co Ltd Cooling device for power conversion elements
JP2005321287A (en) * 2004-05-07 2005-11-17 Sony Corp Cooling device, electronic apparatus, heat sink, and radiation fin
JP2012186352A (en) * 2011-03-07 2012-09-27 Fuji Electric Co Ltd Cooling structure of semiconductor power conversion device
JP2013093364A (en) * 2011-10-24 2013-05-16 Fuji Electric Co Ltd Forced air cooling heat sink
JP2014204453A (en) * 2013-04-01 2014-10-27 富士電機株式会社 Cooling fin and power conversion device provided with cooling fin

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113267312A (en) * 2021-07-19 2021-08-17 中国空气动力研究与发展中心超高速空气动力研究所 Test model for high-temperature wind tunnel
CN113267312B (en) * 2021-07-19 2021-09-28 中国空气动力研究与发展中心超高速空气动力研究所 Test model for high-temperature wind tunnel
JP2023081368A (en) * 2021-11-30 2023-06-09 台達電子工業股▲ふん▼有限公司 Cooling device
JP7472248B2 (en) 2021-11-30 2024-04-22 台達電子工業股▲ふん▼有限公司 Cooling system

Also Published As

Publication number Publication date
CN106888566A (en) 2017-06-23
JP6728667B2 (en) 2020-07-22
CN106888566B (en) 2019-04-23

Similar Documents

Publication Publication Date Title
JP5409933B2 (en) Panel for electrical equipment
JP6261975B2 (en) Heating element storage device
JP6215857B2 (en) Air-cooled laser apparatus provided with an L-shaped heat conducting member having a radiation fin
US9413045B2 (en) Battery pack
TWI437951B (en) Heat dispensing module
US8462504B2 (en) Air-cooled heat exchanger and electronic device with same
WO2006054332A1 (en) Communication device and frame structure
JP5827513B2 (en) Switching power supply
JP2007074865A (en) Power converter
US20220302757A1 (en) Wireless charging device
JP5549480B2 (en) Transformer cooling system
CN212970536U (en) Converter module and converter cabinet
JP6728667B2 (en) Cooling device and power conversion device
TW201328570A (en) Thermal module
WO2019150577A1 (en) Outdoor unit and air conditioner
KR200426534Y1 (en) The Cooling Structure for The Devices in Welding Power Sources
WO2017187898A1 (en) Heat sink and housing
JP2019054224A (en) Liquid-cooled type cooling device
JP6296303B2 (en) Semiconductor power converter
KR100844801B1 (en) Welding apparatus with flexible cooling pipe
JP2015118783A (en) Cooling device
JP5323102B2 (en) Cooling device for electronic components
JP4985390B2 (en) Heat dissipation device for electronic equipment
JP2019121695A (en) Equipment unit and assembly unit
JP2005294802A (en) Heat dissipation module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200615

R150 Certificate of patent or registration of utility model

Ref document number: 6728667

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250