JP2016219401A - Recovery method of valuables from lithium ion secondary battery - Google Patents

Recovery method of valuables from lithium ion secondary battery Download PDF

Info

Publication number
JP2016219401A
JP2016219401A JP2016063662A JP2016063662A JP2016219401A JP 2016219401 A JP2016219401 A JP 2016219401A JP 2016063662 A JP2016063662 A JP 2016063662A JP 2016063662 A JP2016063662 A JP 2016063662A JP 2016219401 A JP2016219401 A JP 2016219401A
Authority
JP
Japan
Prior art keywords
current collector
secondary battery
lithium ion
ion secondary
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016063662A
Other languages
Japanese (ja)
Other versions
JP6650806B2 (en
JP2016219401A5 (en
Inventor
智 川上
Satoshi Kawakami
智 川上
亮栄 渡邊
Akishige Watanabe
亮栄 渡邊
善弘 本間
Yoshihiro Honma
善弘 本間
千尋 西川
Chihiro Nishikawa
千尋 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Eco Systems Co Ltd
Original Assignee
Dowa Eco Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Eco Systems Co Ltd filed Critical Dowa Eco Systems Co Ltd
Publication of JP2016219401A publication Critical patent/JP2016219401A/en
Publication of JP2016219401A5 publication Critical patent/JP2016219401A5/ja
Application granted granted Critical
Publication of JP6650806B2 publication Critical patent/JP6650806B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Secondary Cells (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a recovery method of valuables from a lithium ion secondary battery capable of recovering high grade products of at least any metal of a positive electrode collector and a negative electrode collector from a lithium ion secondary battery, with a high recovery rate by a simple process.SOLUTION: A recovery method of valuables from a lithium ion secondary battery includes at least a roasting process for obtaining a roasted material by roasting a lithium ion secondary battery, having an outer container for housing a laminate including a positive electrode collector and a negative electrode collector, at a temperature higher than the melting point of a collector having a lower melting point, out of the positive electrode collector and negative electrode collector, but lower than the melting point of a collector having a higher melting point.SELECTED DRAWING: None

Description

本発明は、製造過程で発生した不良品や使用機器及び電池の寿命などに伴い廃棄されるリチウムイオン二次電池の正極集電体及び負極集電体などから有価物を回収可能なリチウムイオン二次電池からの有価物の回収方法に関する。   The present invention relates to a lithium ion secondary battery capable of recovering valuable materials from a positive electrode current collector and a negative electrode current collector of a lithium ion secondary battery that is discarded due to defective products generated in the manufacturing process, equipment used, and battery life. The present invention relates to a method for recovering valuable materials from secondary batteries.

リチウムイオン二次電池は、従来の鉛蓄電池、ニッカド二次電池などに比較して軽量、高容量、高起電力の二次電池であり、パソコン、電気自動車、携帯機器などの二次電池として使用されている。例えば、前記リチウムイオン二次電池の正極には、コバルトやニッケルなどの有価物が、コバルト酸リチウム(LiCoO)、三元系正極材(LiNiCoMn2(x+y+z))などとして使用されている。 Lithium-ion secondary batteries are lighter, higher-capacity, and higher-electromotive force secondary batteries than conventional lead-acid batteries and nickel-cadmium secondary batteries, and are used as secondary batteries for personal computers, electric vehicles, portable devices, etc. Has been. For example, valuable materials such as cobalt and nickel are included in the positive electrode of the lithium ion secondary battery as lithium cobaltate (LiCoO 2 ), ternary positive electrode material (LiNi x Co y Mn z O 2 (x + y + z) ), and the like. It is used.

前記リチウムイオン二次電池は、今後も使用の拡大が予想されていることから、製造過程で発生した不良品や使用機器及び電池の寿命などに伴い廃棄される前記リチウムイオン二次電池から有価物を回収することが、資源リサイクルの観点から望まれている。前記リチウムイオン二次電池から前記有価物を回収する際には、使用されている種々の金属を分離して回収することが、回収物の価値を高める点から重要である。近年、前記リチウムイオン二次電池の製造コストの低減を主目的とし、特に車載用の前記リチウムイオン二次電池において低コバルト及びニッケル品位の正極材を有する前記リチウムイオン二次電池が開発され、相対的に集電体及び外装容器を構成する金属の金属価値が前記リチウムイオン二次電池全体の価値に占める比率は増加している。前記集電体及び前記外装容器構成物の中では、特に銅を用いている前記集電体の価値が高く、効率的な分離及び回収技術の確立が重要性を増している。   Since the use of the lithium ion secondary battery is expected to continue in the future, defective products generated in the manufacturing process, used equipment, and valuable resources from the lithium ion secondary battery that is discarded with the life of the battery, etc. It is desired from the viewpoint of resource recycling to recover the waste. When recovering the valuable material from the lithium ion secondary battery, it is important to separate and recover various metals used from the viewpoint of increasing the value of the recovered material. In recent years, the lithium ion secondary battery having a positive electrode material of low cobalt and nickel quality has been developed with the main purpose of reducing the manufacturing cost of the lithium ion secondary battery, particularly in the lithium ion secondary battery for in-vehicle use. In particular, the ratio of the metal value of the metal constituting the current collector and the outer container to the total value of the lithium ion secondary battery is increasing. Among the current collector and the outer container composition, the current collector using copper is particularly valuable, and the establishment of an efficient separation and recovery technique is becoming increasingly important.

リチウムイオン二次電池からの有価物の回収方法として、前記リチウムイオン二次電池を焙焼し、得られた焙焼物を破砕した後、破砕物を篩別して、篩上側に主としてケースの破砕物を、篩下側に主として正極の破砕物及び負極の破砕物を回収し、篩下に含まれる正極及び負極の前記破砕物に衝撃力を与えて正極を正極集電体及び正極活物質に、負極を負極集電体及び負極活物質にそれぞれ分離し、結果物を篩別して、篩上側に主として前記正極集電体及び前記負極集電体を含む金属製部材、篩下側に主として前記正極活物質及び前記負極活物質を回収する方法が提案されている(例えば、特許文献1参照)。
また、使用済みリチウム二次電池を焙焼し、次に破砕した後、破砕物を篩分けし、篩下をテーブル選別機によって重量選別し、テーブル尾鉱を磁力選別するリチウム二次電池からのコバルト、銅、リチウムの回収方法が提案されている(例えば、特許文献2参照)。
更に、本願出願人は、前記リチウムイオン二次電池を焙焼した後、焙焼物を打撃により破砕し、破砕物を篩分けして篩下に有価物を回収する方法を提案している(例えば、特許文献3参照)。
As a method for recovering valuable materials from the lithium ion secondary battery, the lithium ion secondary battery is roasted, the obtained roasted material is crushed, the crushed material is sieved, and the crushed material of the case is mainly disposed on the upper side of the sieve. The crushed material of the positive electrode and the crushed material of the negative electrode are mainly collected under the sieve, and the positive electrode and the negative electrode active material are applied to the positive electrode current collector and the positive electrode active material by applying an impact force to the crushed material of the positive electrode and the negative electrode contained under the sieve. Are separated into a negative electrode current collector and a negative electrode active material, and the resulting product is sieved, and a metal member mainly including the positive electrode current collector and the negative electrode current collector is provided on the upper side of the sieve, and the positive electrode active material is mainly provided on the lower side of the screen. And the method of collect | recovering the said negative electrode active material is proposed (for example, refer patent document 1).
In addition, after the used lithium secondary battery is roasted and then crushed, the crushed material is sieved, the sieve is weight-sorted by a table sorter, and the table tailings are magnetically sorted from the lithium secondary battery. A method for recovering cobalt, copper, and lithium has been proposed (see, for example, Patent Document 2).
Further, the applicant of the present application has proposed a method of crushing a roasted product by striking the lithium-ion secondary battery and then sieving the crushed product and collecting valuables under the sieve (for example, And Patent Document 3).

しかしながら、前記特許文献1の方法では、前記正極集電体の融点及び前記負極集電体の融点のいずれよりも低い温度で焙焼するため、篩分け工程によっては前記正極集電体と前記負極集電体を分離できない可能性があった。また、前記特許文献2の方法では、負極集電体由来の金属を、正極活物質由来の金属と十分に分離することができず、それぞれの金属を分離回収することができなかった。前記特許文献3の方法では、篩分けにより前記負極集電体の金属と前記正極集電体の金属とをある程度分離することはできているが、前記負極集電体の前記金属及び前記正極集電体の前記金属のいずれかの回収率及び品位がともに十分ではなかった。   However, in the method of Patent Document 1, since the roasting is performed at a temperature lower than both the melting point of the positive electrode current collector and the melting point of the negative electrode current collector, the positive electrode current collector and the negative electrode are depending on the sieving step. There was a possibility that the current collector could not be separated. In the method of Patent Document 2, the metal derived from the negative electrode current collector could not be sufficiently separated from the metal derived from the positive electrode active material, and each metal could not be separated and recovered. In the method of Patent Document 3, although the metal of the negative electrode current collector and the metal of the positive electrode current collector can be separated to some extent by sieving, the metal of the negative electrode current collector and the positive electrode current collector can be separated. Neither the recovery rate nor the quality of any of the metals in the electrical conductor was sufficient.

特開2014−199774号公報JP 2014-199774 A 特開平8−287967号公報JP-A-8-287967 特開2012−79630号公報JP 2012-79630 A

本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、リチウムイオン二次電池の正極集電体及び負極集電体の少なくともいずれかから高品位の有価物を、高い回収率で回収でき、かつ工程が簡単なリチウムイオン二次電池からの有価物の回収方法を提供することを目的とする。   An object of the present invention is to solve the above-described problems and achieve the following objects. That is, the present invention is a lithium ion secondary battery that can recover a high-quality valuable material from at least one of a positive electrode current collector and a negative electrode current collector of a lithium ion secondary battery at a high recovery rate and has a simple process. The purpose is to provide a method for recovering valuable materials from the market.

前記課題を解決するための手段としては、以下の通りである。即ち、
<1> 正極集電体と、負極集電体とを含む積層体を収容する外装容器を有するリチウムイオン二次電池を、前記正極集電体及び前記負極集電体のうち、低い融点の集電体の融点以上、かつ高い融点の前記集電体の融点未満の温度で焙焼して焙焼物を得る焙焼工程を少なくとも含むことを特徴とするリチウムイオン二次電池からの有価物の回収方法である。
<2> 前記リチウムイオン二次電池又は前記積層体を、前記高い融点の前記集電体の融点以上の融点である酸素遮蔽容器に収容して焙焼する前記<1>に記載のリチウムイオン二次電池からの有価物の回収方法である。
<3> 前記正極集電体及び前記負極集電体のいずれか一方がアルミニウムであり、他方が銅である前記<1>から<2>のいずれかに記載のリチウムイオン二次電池からの有価物の回収方法である。
<4> 前記焙焼工程における焙焼温度が、670℃以上である前記<1>から<3>のいずれかに記載のリチウムイオン二次電池からの有価物の回収方法である。
<5> 前記焙焼工程において、前記リチウムイオン二次電池を焙焼する炉内の雰囲気における酸素分圧を5%以下にして焙焼を行う前記<1>から<4>のいずれかに記載のリチウムイオン二次電池からの有価物の回収方法である。
<6> 前記焙焼工程後に前記外装容器内の集電体が露出するように焙焼物を切断する切断工程を行う前記<1>から<5>のいずれかに記載のリチウムイオン二次電池からの有価物の回収方法である。
Means for solving the problems are as follows. That is,
<1> A lithium ion secondary battery having an outer container that houses a laminate including a positive electrode current collector and a negative electrode current collector is a low melting point collector of the positive electrode current collector and the negative electrode current collector. Recovery of valuable materials from a lithium ion secondary battery, comprising at least a roasting step of obtaining a roasted product by roasting at a temperature not lower than the melting point of the current collector and lower than the melting point of the current collector. Is the method.
<2> The lithium ion secondary battery according to <1>, wherein the lithium ion secondary battery or the stacked body is stored in an oxygen shielding container having a melting point equal to or higher than the melting point of the current collector having a high melting point and roasted. This is a method for recovering valuable materials from the secondary battery.
<3> One of the positive electrode current collector and the negative electrode current collector is aluminum, and the other is copper, and the value from the lithium ion secondary battery according to any one of <1> to <2> This is a method for collecting goods.
<4> The method for recovering a valuable material from a lithium ion secondary battery according to any one of <1> to <3>, wherein a roasting temperature in the roasting step is 670 ° C. or higher.
<5> The method according to any one of <1> to <4>, wherein in the roasting step, roasting is performed with an oxygen partial pressure in an atmosphere in a furnace in which the lithium ion secondary battery is roasted being 5% or less. This is a method for recovering valuable materials from lithium ion secondary batteries.
<6> From the lithium ion secondary battery according to any one of <1> to <5>, wherein a cutting step is performed to cut the roasted product so that the current collector in the outer container is exposed after the roasting step. This is a method for collecting valuables.

本発明によると、従来における前記諸問題を解決することができ、リチウムイオン二次電池の正極集電体及び負極集電体の少なくともいずれかから高品位の有価物を、高い回収率で回収でき、かつ工程が簡単なリチウムイオン二次電池からの有価物の回収方法を提供することができる。   According to the present invention, the conventional problems can be solved, and high-quality valuables can be recovered at a high recovery rate from at least one of a positive electrode current collector and a negative electrode current collector of a lithium ion secondary battery. In addition, it is possible to provide a method for recovering valuable materials from a lithium ion secondary battery that has a simple process.

図1は、実施例1の中間産物を示す写真である。FIG. 1 is a photograph showing the intermediate product of Example 1. 図2は、実施例1の微粒産物を示す写真である。FIG. 2 is a photograph showing the fine product of Example 1. 図3は、比較例1の中間産物を示す写真である。FIG. 3 is a photograph showing the intermediate product of Comparative Example 1.

(リチウムイオン二次電池からの有価物の回収方法)
本発明のリチウムイオン二次電池からの有価物の回収方法は、焙焼工程を少なくとも含み、切断工程、破砕工程、及び分離工程を含むことが好ましく、更に必要に応じてその他の工程を含む。
(Recovery method of valuable materials from lithium ion secondary batteries)
The method for recovering valuable materials from the lithium ion secondary battery of the present invention preferably includes at least a roasting step, preferably includes a cutting step, a crushing step, and a separation step, and further includes other steps as necessary.

<焙焼工程>
前記焙焼工程は、正極集電体と、負極集電体とを含む積層体を収容する外装容器を有するリチウムイオン二次電池を、前記正極集電体及び前記負極集電体のうち、低い融点の集電体の融点以上、かつ高い融点の前記集電体の融点未満の温度で焙焼して焙焼物を得る工程である。
前記焙焼工程においては、前記リチウムイオン二次電池及び前記積層体の少なくともいずれか一方を、前記高い融点の前記集電体の融点以上の融点である酸素遮蔽容器に収容して焙焼することが好ましい。
前記集電体の融点は、前記集電体が単一の金属であれば、その金属の融点であり、前記集電体が合金や複合材料の場合には、例えば、熱重量測定−示差熱分析(TG−DTA)により融点を測定することができる。
<Roasting process>
In the roasting step, a lithium ion secondary battery having an outer container containing a laminate including a positive electrode current collector and a negative electrode current collector is lower than the positive electrode current collector and the negative electrode current collector. It is a step of obtaining a baked product by baking at a temperature not lower than the melting point of the current collector having a melting point and lower than the melting point of the current collector having a higher melting point.
In the roasting step, at least one of the lithium ion secondary battery and the laminated body is housed and roasted in an oxygen shielding container having a melting point equal to or higher than the melting point of the current collector having the high melting point. Is preferred.
The melting point of the current collector is the melting point of the metal if the current collector is a single metal, and when the current collector is an alloy or a composite material, for example, thermogravimetry-differential heat The melting point can be measured by analysis (TG-DTA).

−リチウムイオン二次電池−
前記リチウムイオン二次電池としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、リチウムイオン二次電池の製造過程で発生した不良品のリチウムイオン二次電池、使用機器の不良、使用機器の寿命などにより廃棄されるリチウムイオン二次電池、寿命により廃棄される使用済みのリチウムイオン二次電池などが挙げられる。
-Lithium ion secondary battery-
The lithium ion secondary battery is not particularly limited and may be appropriately selected depending on the purpose. For example, a defective lithium ion secondary battery generated in the process of manufacturing a lithium ion secondary battery, used equipment Examples thereof include a lithium ion secondary battery that is discarded due to a defect, a life of a device used, a used lithium ion secondary battery that is discarded due to a life.

前記リチウムイオン二次電池の形状、構造、大きさ、材質などについては特に制限はなく、目的に応じて適宜選択することができる。
前記リチウムイオン二次電池の形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ラミネート型、円筒型、ボタン型、コイン型、角型、平型などが挙げられる。
前記リチウムイオン二次電池としては、例えば、正極と、負極と、セパレーターと、電解質及び有機溶剤を含有する電解液と、前記正極、前記負極、前記セパレーター及び前記電解液を収容する電池ケースである外装容器とを備えたものが挙げられる。
There is no restriction | limiting in particular about the shape of the said lithium ion secondary battery, a structure, a magnitude | size, a material, etc., According to the objective, it can select suitably.
There is no restriction | limiting in particular as a shape of the said lithium ion secondary battery, According to the objective, it can select suitably, For example, a laminate type, a cylindrical type, a button type, a coin type, a square type, a flat type etc. are mentioned. .
Examples of the lithium ion secondary battery include a positive electrode, a negative electrode, a separator, an electrolytic solution containing an electrolyte and an organic solvent, and a battery case containing the positive electrode, the negative electrode, the separator, and the electrolytic solution. The thing provided with the exterior container is mentioned.

−−正極−−
前記正極としては、正極集電体上に正極材を有していれば、特に制限はなく、目的に応じて適宜選択することができる。
前記正極の形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、平板状、シート状などが挙げられる。
--- Positive electrode-
The positive electrode is not particularly limited as long as it has a positive electrode material on a positive electrode current collector, and can be appropriately selected according to the purpose.
There is no restriction | limiting in particular as a shape of the said positive electrode, According to the objective, it can select suitably, For example, flat form, a sheet form, etc. are mentioned.

−−−正極集電体−−−
前記正極集電体としては、その形状、構造、大きさ、材質などについては特に制限はなく、目的に応じて適宜選択することができる。
前記正極集電体の形状としては、例えば、箔状などが挙げられる。
前記正極集電体の材質としては、例えば、ステンレススチール、ニッケル、アルミニウム、銅、チタン、タンタルなどが挙げられる。これらの中でも、アルミニウムが好ましい。
--- Positive electrode current collector ---
The positive electrode current collector is not particularly limited with respect to its shape, structure, size, material and the like, and can be appropriately selected according to the purpose.
Examples of the shape of the positive electrode current collector include a foil shape.
Examples of the material of the positive electrode current collector include stainless steel, nickel, aluminum, copper, titanium, and tantalum. Among these, aluminum is preferable.

−−−正極材−−−
前記正極材としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、希少有価物を含有する正極活物質を少なくとも含み、必要により導電剤と、結着樹脂とを含む正極材などが挙げられる。
前記希少有価物としては、特に制限はなく、目的に応じて適宜選択することができるが、マンガン、コバルト、及びニッケルの少なくともいずれかであることが好ましい。
前記正極活物質としては、例えば、マンガン酸リチウム(LiMn)、コバルト酸リチウム(LiCoO)、コバルトニッケル酸リチウム(LiCo1/2Ni1/2)、LiNiCoMnなどが挙げられる。
前記導電剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、カーボンブラック、グラファイト、カーボンファイバー、金属炭化物などが挙げられる。
前記結着樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、フッ化ビニリデン、四フッ化エチレン、アクリロニトリル、エチレンオキシド等の単独重合体又は共重合体、スチレン−ブタジエンゴムなどが挙げられる。
---- Positive electrode material ---
The positive electrode material is not particularly limited and may be appropriately selected depending on the purpose. For example, the positive electrode material includes at least a positive electrode active material containing a rare valuable material, and optionally includes a conductive agent and a binder resin. Materials.
There is no restriction | limiting in particular as said rare valuable thing, Although it can select suitably according to the objective, It is preferable that it is at least any one of manganese, cobalt, and nickel.
Examples of the positive electrode active material include lithium manganate (LiMn 2 O 4 ), lithium cobaltate (LiCoO 2 ), lithium cobalt nickelate (LiCo 1/2 Ni 1/2 O 2 ), and LiNi x Co y Mn z. O 2 etc. are mentioned.
There is no restriction | limiting in particular as said electrically conductive agent, According to the objective, it can select suitably, For example, carbon black, a graphite, a carbon fiber, a metal carbide etc. are mentioned.
The binder resin is not particularly limited and may be appropriately selected depending on the intended purpose. For example, a homopolymer or copolymer such as vinylidene fluoride, tetrafluoroethylene, acrylonitrile, ethylene oxide, styrene-butadiene, etc. For example, rubber.

−−負極−−
前記負極としては、負極集電体上に負極材を有していれば、特に制限はなく、目的に応じて適宜選択することができる。
前記負極の形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、平板状、シート状などが挙げられる。
-Negative electrode-
The negative electrode is not particularly limited as long as it has a negative electrode material on the negative electrode current collector, and can be appropriately selected according to the purpose.
There is no restriction | limiting in particular as a shape of the said negative electrode, According to the objective, it can select suitably, For example, flat form, a sheet form, etc. are mentioned.

−−−負極集電体−−−
前記負極集電体としては、その形状、構造、大きさ、材質などについては特に制限はなく、目的に応じて適宜選択することができる。
前記負極集電体の形状としては、例えば、箔状などが挙げられる。
前記負極集電体の材質としては、例えば、ステンレススチール、ニッケル、アルミニウム、銅、チタン、タンタルなどが挙げられる。これらの中でも、銅が好ましい。
---- Negative electrode current collector ---
The negative electrode current collector is not particularly limited with respect to its shape, structure, size, material, etc., and can be appropriately selected according to the purpose.
Examples of the shape of the negative electrode current collector include a foil shape.
Examples of the material of the negative electrode current collector include stainless steel, nickel, aluminum, copper, titanium, and tantalum. Among these, copper is preferable.

−−−負極材−−−
前記負極材としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、グラファイト、ハードカーボン等の炭素材、チタネイトなどが挙げられる。
---- Negative electrode material ---
There is no restriction | limiting in particular as said negative electrode material, According to the objective, it can select suitably, For example, carbon materials, such as a graphite and a hard carbon, a titanate etc. are mentioned.

なお、前記正極集電体と、前記負極集電体とは前記積層体の構造を有しており、前記積層体としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、前記積層体を、前記正極集電体及び前記負極集電体のうち融点の高い方が外側となるように筒状に巻いたものなどが挙げられる。   The positive electrode current collector and the negative electrode current collector have the structure of the laminate, and the laminate is not particularly limited and can be appropriately selected according to the purpose. For example, the laminate may be wound in a cylindrical shape such that the higher one of the positive electrode current collector and the negative electrode current collector is on the outside.

−外装容器−
前記外装容器には開口部を設けることが好ましい。前記開口部の開口面積は、前記開口部が設けられている前記外装容器の表面積に対して12.5%以下となるように設けることが好ましい。前記開口部の開口面積は、前記開口部が設けられている前記外装容器の表面積に対して6.3%以下であることがより好ましい。前記開口部の開口面積が前記外装容器の表面積に対して12.5%を超えると、前記集電体の大部分が焙焼によって酸化しやすくなってしまう。
前記開口部は、その形状、大きさ、形成箇所などについては特に制限はなく、目的に応じて適宜選択することができる。
前記開口部の開口の形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、単一の開口である形状や、複数の開口からなる形状などが挙げられる。
前記開口部の大きさとしては、前記外装容器の前記表面積に対して12.5%以下であれば、特に制限はなく、目的に応じて適宜選択することができる。
前記開口部の形成箇所としては、前記外装容器の表面であれば、特に制限はなく、目的に応じて適宜選択することができる。
-Exterior container-
The exterior container is preferably provided with an opening. The opening area of the opening is preferably 12.5% or less with respect to the surface area of the exterior container provided with the opening. As for the opening area of the said opening part, it is more preferable that it is 6.3% or less with respect to the surface area of the said exterior container in which the said opening part is provided. If the opening area of the opening exceeds 12.5% with respect to the surface area of the exterior container, most of the current collector is easily oxidized by roasting.
There is no restriction | limiting in particular about the shape, a magnitude | size, a formation location, etc., and the said opening part can be suitably selected according to the objective.
There is no restriction | limiting in particular as an opening shape of the said opening part, According to the objective, it can select suitably, For example, the shape which is a single opening, the shape which consists of several opening, etc. are mentioned.
The size of the opening is not particularly limited as long as it is 12.5% or less with respect to the surface area of the exterior container, and can be appropriately selected according to the purpose.
There is no restriction | limiting in particular as a formation location of the said opening part if it is the surface of the said exterior container, According to the objective, it can select suitably.

−酸素遮蔽容器−
前記酸素遮蔽容器は、前記酸素遮蔽容器の内部ガス圧力を制御するために、上述の外装容器と同様に開口部を設けてもよい。前記開口部の面積を前記酸素遮蔽容器の表面積で除した値である開口率は、12.5%以下が好ましく、6.3%以下がより好ましい。前記開口率が12.5%を超えると、前記集電体の大部分が焙焼によって酸化しやすくなってしまう。
前記酸素遮蔽容器の開口部は、その形状、大きさ、形成箇所などについては特に制限はなく、目的に応じて適宜選択することができ、前記外装容器と同様である。
前記酸素分圧としては、前記酸素遮蔽容器に収容された前記リチウムイオン二次電池、及び前記積層体を焙焼する際に、前記酸素分圧が0%〜5%であることが好ましい。また、前記開口部は、焙焼するまでの間、塞がれていることが好ましい。前記開口部を塞ぐ部材については、特に制限はなく、目的に応じて適宜選択することができる。
-Oxygen shielding container-
In order to control the internal gas pressure of the oxygen shielding container, the oxygen shielding container may be provided with an opening similarly to the above-described outer container. The opening ratio, which is a value obtained by dividing the area of the opening by the surface area of the oxygen shielding container, is preferably 12.5% or less, more preferably 6.3% or less. When the aperture ratio exceeds 12.5%, most of the current collector is easily oxidized by roasting.
There is no restriction | limiting in particular about the opening part of the said oxygen shielding container, and a shape, a magnitude | size, a formation location, etc. can be suitably selected according to the objective, It is the same as that of the said exterior container.
The oxygen partial pressure is preferably 0% to 5% when the lithium ion secondary battery housed in the oxygen shielding container and the laminate are roasted. Moreover, it is preferable that the said opening part is plugged until it roasts. There is no restriction | limiting in particular about the member which plugs the said opening part, According to the objective, it can select suitably.

前記酸素遮蔽容器の大きさとしては、特に制限はなく、前記リチウムイオン二次電池、及び前記積層体の大きさに応じて適宜選択することができる。   There is no restriction | limiting in particular as a magnitude | size of the said oxygen shielding container, According to the magnitude | size of the said lithium ion secondary battery and the said laminated body, it can select suitably.

前記酸素遮蔽容器の材質としては、前記正極集電体及び前記負極集電体のうち、前記高い融点の前記集電体の融点以上の融点である材質であれば、特に制限はなく、目的に応じて適宜選択することができ、例えば、前記正極集電体がアルミニウムであり、前記負極集電体が銅である場合は、前記アルミニウムの融点である660.32℃よりも高い融点を有する鉄、ステンレス鋼などが挙げられる。   The material of the oxygen shielding container is not particularly limited as long as it is a material having a melting point equal to or higher than the melting point of the current collector having the high melting point among the positive electrode current collector and the negative electrode current collector. For example, when the positive electrode current collector is aluminum and the negative electrode current collector is copper, iron having a melting point higher than 660.32 ° C. that is the melting point of the aluminum. And stainless steel.

前記酸素遮蔽容器は、例えば、前記リチウムイオン二次電池の前記外装容器であってもよく、前記積層体を、前記正極集電体及び前記負極集電体のうち融点の高いほうが外側となるように筒状に巻いた状態の、前記融点の高いほうの前記集電体を前記酸素遮蔽容器として代用してもよい。前記リチウムイオン二次電池の前記外装容器が、前記高い融点の前記集電体の融点以上の融点である材質であれば、前記リチウムイオン二次電池の安全上から、前記外装容器が封止された前記開口部を有する構造であるため、前記リチウムイオン二次電池の前記外装容器自体を前記酸素遮蔽容器とすることが好ましい。   The oxygen shielding container may be, for example, the outer container of the lithium ion secondary battery, and the stacked body is arranged such that the higher the melting point of the positive electrode current collector and the negative electrode current collector is on the outer side. The current collector having a higher melting point in a state of being wound in a cylindrical shape may be used as the oxygen shielding container. If the outer container of the lithium ion secondary battery is made of a material having a melting point equal to or higher than the melting point of the current collector having the high melting point, the outer container is sealed for safety of the lithium ion secondary battery. Since the structure has the opening, it is preferable that the outer container itself of the lithium ion secondary battery is the oxygen shielding container.

−焙焼−
前記焙焼は、前記正極集電体及び前記負極集電体のうち、前記低い融点の前記集電体の融点以上、かつ前記高い融点の前記集電体の融点未満の温度であれば、特に制限はなく、目的に応じて適宜選択することができるが、670℃以上が好ましく、670℃以上1,100℃以下がより好ましく、700℃以上900℃以下が特に好ましい。前記焙焼温度が、670℃未満であると、前記低い融点の前記集電体の脆性化が十分に生じないことがあり、1,100℃を超えると、前記低い融点の前記集電体及び前記高い融点の前記集電体のいずれもが脆性化し、破砕及び分級による前記集電体の分離効率が低下する。
前記焙焼温度で前記焙焼を行うことにより、例えば、前記正極集電体がアルミニウムであり、前記負極集電体が銅である前記積層体において、アルミニウム箔からなる前記正極集電体が溶融して脆性化し、後述する破砕工程において細粒化しやすくなる。一方、前記銅からなる前記負極集電体は、前記銅の融点未満の温度で焙焼されるため、溶融することがなく、後述する分離工程において、高度に選別できるようになる。また、前記積層体及び前記リチウムイオン二次電池のいずれかを前記酸素遮蔽容器に収容して焙焼したときは、前記アルミニウム箔からなる前記正極集電体が溶融して脆性化し、後述する破砕工程において細粒化しやすくなり、一方、前記銅からなる前記負極集電体は、酸素分圧が低い状態で焙焼されるため、酸化による脆性化が生じない。このため、前記破砕工程における破砕により、前記正極集電体は細かく破砕され、前記負極集電体は、破砕後も粗粒として存在し、後述する分離工程において、より効果的かつ高度に選別できるようになる。
前記焙焼温度とは、焙焼時の前記リチウムイオン二次電池及び前記酸素遮蔽容器のうちいずれかの温度のことをいう。前記焙焼温度は、焙焼中の前記リチウムイオン二次電池及び前記酸素遮蔽容器のうちいずれかに、カップル、サーミスタなどの温度計を差し込むことにより、測定することができる。
-Roasting-
The roasting is particularly performed if the temperature is equal to or higher than the melting point of the current collector having the low melting point and less than the melting point of the current collector having the high melting point among the positive electrode current collector and the negative electrode current collector. Although there is no restriction | limiting, Although it can select suitably according to the objective, 670 degreeC or more is preferable, 670 degreeC or more and 1,100 degrees C or less are more preferable, 700 degreeC or more and 900 degrees C or less are especially preferable. When the roasting temperature is less than 670 ° C., the current collector with the low melting point may not be sufficiently brittle, and when it exceeds 1,100 ° C., the current collector with the low melting point and Any of the high melting point current collectors becomes brittle and the current collector separation efficiency by crushing and classification decreases.
By performing the baking at the roasting temperature, for example, in the laminate in which the positive electrode current collector is aluminum and the negative electrode current collector is copper, the positive electrode current collector made of aluminum foil is melted. It becomes brittle and becomes easy to be finely divided in the crushing step described later. On the other hand, since the negative electrode current collector made of copper is roasted at a temperature lower than the melting point of the copper, it does not melt and can be highly selected in the separation step described later. Further, when either the laminate or the lithium ion secondary battery is accommodated in the oxygen shielding container and baked, the positive electrode current collector made of the aluminum foil is melted and becomes brittle, and will be described later. On the other hand, since the negative electrode current collector made of copper is roasted in a state where the oxygen partial pressure is low, it is not brittle due to oxidation. For this reason, the positive electrode current collector is finely crushed by crushing in the crushing step, and the negative electrode current collector is present as coarse particles even after crushing, and can be more effectively and highly sorted in the separation step described later. It becomes like this.
The roasting temperature refers to any temperature of the lithium ion secondary battery and the oxygen shielding container at the time of roasting. The roasting temperature can be measured by inserting a thermometer such as a couple or a thermistor into one of the lithium ion secondary battery and the oxygen shielding container being roasted.

前記焙焼時間としては、特に制限はなく、目的に応じて適宜選択することができるが、1分間以上5時間以下が好ましく、1分間以上2時間以下がより好ましく、1分間以上1時間以下が特に好ましい。前記焙焼時間は前記低い融点の前記集電体が所望の温度まで到達する焙焼時間であればよく、保持時間は短くてもよい。前記焙焼時間が、前記特に好ましい範囲内であると、焙焼にかかるコストの点で有利である。   There is no restriction | limiting in particular as said roasting time, Although it can select suitably according to the objective, 1 minute or more and 5 hours or less are preferable, 1 minute or more and 2 hours or less are more preferable, and 1 minute or more and 1 hour or less are preferable. Particularly preferred. The roasting time may be a roasting time for the current collector having the low melting point to reach a desired temperature, and the holding time may be short. When the roasting time is within the particularly preferable range, it is advantageous in terms of cost for roasting.

前記焙焼の方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、焙焼炉を用いて行うことが挙げられる。
前記焙焼炉としては、例えば、ロータリーキルン、流動床炉、トンネル炉、マッフル等のバッチ式炉、キュポラ、ストーカー炉などが挙げられる。
There is no restriction | limiting in particular as said roasting method, According to the objective, it can select suitably, For example, performing using a roasting furnace is mentioned.
Examples of the roasting furnace include a rotary kiln, a fluidized bed furnace, a tunnel furnace, a batch furnace such as a muffle, a cupola, and a stalker furnace.

前記焙焼に用いる雰囲気としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、大気雰囲気、酸化雰囲気、不活性雰囲気、還元性雰囲気、低酸素雰囲気などが挙げられる。
前記大気雰囲気(空気雰囲気)とは、酸素が21体積%、窒素が78体積%の大気(空気)を用いた雰囲気を意味する。
前記酸化雰囲気とは、窒素又はアルゴン等の不活性雰囲気中に酸素を1質量%以上21質量%以下含む雰囲気を意味し、酸素を1質量%以上5質量%以下含む雰囲気が好ましい。
前記不活性雰囲気とは、窒素又はアルゴンからなる雰囲気を意味する。
前記還元性雰囲気とは、例えば、窒素又はアルゴン等の不活性雰囲気中にCO、H、HS、SOなどを含む雰囲気を意味する。
前記低酸素雰囲気とは、酸素分圧が5%以下である雰囲気を意味する。
これらの中でも、前記低酸素雰囲気が、前記正極集電体由来の金属及び前記負極集電体由来の金属を高品位かつ高い回収率で回収できる点から好ましい。
There is no restriction | limiting in particular as atmosphere used for the said baking, According to the objective, it can select suitably, For example, an air atmosphere, an oxidizing atmosphere, an inert atmosphere, a reducing atmosphere, a low oxygen atmosphere etc. are mentioned.
The air atmosphere (air atmosphere) means an atmosphere using air (air) in which oxygen is 21% by volume and nitrogen is 78% by volume.
The oxidizing atmosphere means an atmosphere containing 1% by mass to 21% by mass of oxygen in an inert atmosphere such as nitrogen or argon, and an atmosphere containing 1% by mass to 5% by mass of oxygen is preferable.
The inert atmosphere means an atmosphere made of nitrogen or argon.
The reducing atmosphere means an atmosphere containing CO, H 2 , H 2 S, SO 2 and the like in an inert atmosphere such as nitrogen or argon.
The low oxygen atmosphere means an atmosphere having an oxygen partial pressure of 5% or less.
Among these, the low oxygen atmosphere is preferable from the viewpoint that the metal derived from the positive electrode current collector and the metal derived from the negative electrode current collector can be recovered with high quality and a high recovery rate.

<切断工程>
前記焙焼工程の後には、正極集電体や負極集電体から高品位の有価物を、高効率で分離回収する観点から切断工程を行うことが好ましい。
前記切断工程とは、前記外装容器内の集電体が露出するよう焙焼物を切断することを行う。言い換えれば、外装容器の筐体が切断されて、集電体が剥き出しになるような状態であればよく、集電体まで切断されても構わない。これより、その後の回収工程での有価物の回収効率が高まる。
前記切断としては、例えば、回転する刃や砥石を用いる方法、二軸破砕機(刃渡りの長い)等のせん断力を用いた破砕機による切断、刃や砥石が切断部を往復することによる切断、シャーリング等の刃を切断対象物に押し付けて切断する方法、酸素、アルゴン、水素、窒素、エアー等のガスを用いる切断、高速の液体を切断部に噴霧することによるジェット切断、プラズマを用いる切断などが挙げられる。
<Cutting process>
After the roasting step, it is preferable to perform a cutting step from the viewpoint of separating and recovering high-quality valuables from the positive electrode current collector and the negative electrode current collector with high efficiency.
In the cutting step, the roasted product is cut so that the current collector in the outer container is exposed. In other words, it is sufficient that the casing of the outer container is cut and the current collector is exposed, and even the current collector may be cut. Thus, the recovery efficiency of valuable materials in the subsequent recovery process is increased.
As the cutting, for example, a method using a rotating blade or a grindstone, a cutting by a crusher using a shearing force such as a biaxial crusher (long blade span), a cutting by a blade or a grindstone reciprocating a cutting part, A method of cutting by pressing a blade such as shearing against an object to be cut, cutting using a gas such as oxygen, argon, hydrogen, nitrogen, air, etc., jet cutting by spraying a high-speed liquid on the cutting part, cutting using plasma, etc. Is mentioned.

<破砕工程>
前記破砕工程としては、前記焙焼物を破砕して、破砕物を得る工程である。前記焙焼物を衝撃により破砕して前記破砕物を得ることが好ましく、前記焙焼物に前記衝撃を与える前に、切断機により、前記焙焼物を切断する予備破砕しておくことがより好ましい。
<Crushing process>
The crushing step is a step of crushing the roasted product to obtain a crushed product. The baked product is preferably crushed by impact to obtain the crushed product. More preferably, the baked product is preliminarily crushed by a cutting machine before the impact is applied to the roasted product.

−破砕−
前記破砕としては、特に制限はなく、目的に応じて適宜選択することができる。
前記衝撃により破砕を行う方法としては、回転する打撃板により投げつけ、衝突板に叩きつけて前記衝撃を与える方法や、回転する打撃子(ビーター)により前記焙焼物を叩く方法が挙げられ、例えば、ハンマークラッシャーなどにより行うことができる。また、セラミックなどのボールにより前記焙焼物を叩く方法が挙げられ、ボールミルなどにより行うことができる。また、圧縮による破砕を行う刃幅、刃渡りの短い二軸粉砕機で破砕することにより行うことができる。
前記衝撃により、前記破砕物を得ることにより、前記低い融点の前記集電体の破砕を促進し、一方、形態が著しく変化していない前記高い融点の前記集電体が、箔状などの形態で存在する。そのため、前記破砕工程において、前記高い融点の前記集電体は、切断されるにとどまり、前記高い融点の前記集電体の細粒化は、前記低い融点の前記集電体と比較し進行しにくいため、後述する分離工程において前記低い融点の前記集電体と前記高い融点の前記集電体とが効率的に分離できる状態の前記破砕物を得ることができる。更に、前記酸素遮蔽容器が前記リチウムイオン二次電池の前記外装容器である場合、前記切断機により予め前記外装容器に亀裂を生じさせた後に前記衝撃による破砕をすることで、前記亀裂付近での優先的な破砕を促進し、結果として、前記外装容器の内部の負極活物質が前記外装容器から分離しやすくなる。
ここで、前記負極活物質とは、グラファイトなどの炭素材料のことをいう。
-Fracture-
There is no restriction | limiting in particular as said crushing, According to the objective, it can select suitably.
Examples of the method of crushing by impact include a method of throwing with a rotating striking plate and hitting it against a collision plate to give the impact, and a method of striking the roasted product with a rotating striking member (beater). It can be performed by a crusher or the like. Further, there is a method of hitting the roasted material with a ball of ceramic or the like, which can be performed by a ball mill or the like. Moreover, it can carry out by crushing with the twin-screw crusher with the short blade width and the blade span which crush by compression.
By obtaining the crushed material by the impact, the crushing of the current collector having the low melting point is promoted, while the current collector having the high melting point whose shape is not significantly changed is in the form of a foil or the like. Exists. Therefore, in the crushing step, the high melting point current collector is only cut, and the high melting point current collector is finer than the low melting point current collector. Therefore, it is possible to obtain the crushed material in a state in which the current collector having the low melting point and the current collector having the high melting point can be efficiently separated in the separation step described later. Further, in the case where the oxygen shielding container is the outer container of the lithium ion secondary battery, a crack is generated in the outer container in advance by the cutting machine, and then crushing by the impact is performed in the vicinity of the crack. Preferential crushing is promoted, and as a result, the negative electrode active material inside the outer container is easily separated from the outer container.
Here, the negative electrode active material refers to a carbon material such as graphite.

前記破砕時間としては、特に制限はなく、目的に応じて適宜選択することができるが、リチウムイオン二次電池1kgあたりの処理時間は1秒間以上30分間以下が好ましく、2秒間以上10分間以下がより好ましく、3秒間以上5分間以下が特に好ましい。前記破砕時間が、1秒未満であると、破砕されないことがあり、30分間を超えると、過剰に破砕されることがある。   The crushing time is not particularly limited and may be appropriately selected depending on the purpose. The treatment time per kg of the lithium ion secondary battery is preferably 1 second to 30 minutes, and preferably 2 seconds to 10 minutes. More preferred is 3 seconds or more and 5 minutes or less. If the crushing time is less than 1 second, it may not be crushed, and if it exceeds 30 minutes, it may be crushed excessively.

<分離工程>
前記分離工程としては、前記破砕物を篩分けして篩上と篩下に選別して、それぞれにおいて回収物を得る工程である。
前記分離工程は、例えば、前記破砕物を多段による前記篩分けすることにより、複数の前記篩分けを同時に行うことができる工程を含むものが好ましく、更に、それぞれに篩分けられた分離物に対して、磁力選別をする工程を含むものがより好ましい。
ここで、2段の篩分けのときに、1段目の篩の篩上に分離されるものを粗粒産物、2段目の篩上に分離されるものを中間産物、2段目の篩下に分離されるものを微粒産物という。
<Separation process>
The separation step is a step of sieving the crushed material and selecting it on a sieve and under a sieve to obtain a recovered product.
The separation step preferably includes, for example, a step in which a plurality of the sieving can be performed simultaneously by sieving the crushed material in multiple stages. More preferably, it includes a step of magnetic separation.
Here, in the second stage sieving, what is separated on the first stage sieve is coarse product, what is separated on the second stage sieve is intermediate product, second stage sieve What is separated below is called fine product.

−篩分け−
前記篩分けとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、振動篩、多段式振動篩、サイクロン、JIS Z8801の標準篩などを用いて行うことができる。
前記篩の篩目の目開きとしては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、前記2段の前記篩分けのときは、1段目の篩目開きは20mm以上200mm以下が好ましく、2段目の篩目開きは、0.025mm以上10mm以下が好ましい。
前記1段目の篩目開きが200mmを超えた場合、例えば、前記破砕物に前記酸素遮蔽容器を含むときに、前記中間産物中へ前記酸素遮蔽容器由来の金属の混入が増加し、前記高い融点の前記集電体由来の金属との分離成績が低下する場合がある。前記1段目の篩目開きが20mm未満の場合、前記粗粒産物中への前記融点の高いほうの前記集電体由来の金属の混入が増加し、前記酸素遮蔽容器との分離成績が低下する場合がある。前記2段目の篩目開きが10mmを超えた場合、前記高い融点の前記集電体由来の金属の前記微粒産物中への混入が増加し、前記低い融点の前記集電体及び活物質との分離成績が低下する。一方、前記2段目の篩目開きが0.025mm未満の場合、前記低い融点の前記集電体由来の金属及び活物質の前記中間産物中への混入が増加し、前記中間産物中の前記高い融点の前記集電体由来の金属の品位が低下する場合がある。
-Sieving-
There is no restriction | limiting in particular as said sieving, According to the objective, it can select suitably, For example, it can carry out using a vibration sieve, a multistage vibration sieve, a cyclone, the standard sieve of JISZ8801, etc.
The mesh opening of the sieve is not particularly limited and can be appropriately selected according to the purpose. For example, when the two-stage sieving is performed, the first-stage sieve opening is 20 mm. The opening size of the second stage is preferably 0.025 mm or more and 10 mm or less.
When the first stage sieve opening exceeds 200 mm, for example, when the crushed material includes the oxygen shielding container, the intermediate product has increased mixing of metal from the oxygen shielding container, and the high In some cases, the separation performance of the metal from the current collector having a melting point is lowered. When the first stage sieve opening is less than 20 mm, the metal from the current collector having the higher melting point increases in the coarse product, and the separation performance from the oxygen shielding container decreases. There is a case. When the mesh opening of the second stage exceeds 10 mm, the mixing of the metal from the current collector with the high melting point into the fine product increases, and the current collector and the active material with the low melting point The separation performance of is reduced. On the other hand, if the second stage sieve opening is less than 0.025 mm, the mixing of the metal and the active material derived from the current collector having a low melting point into the intermediate product increases, and the intermediate product in the intermediate product increases. The quality of the metal derived from the current collector having a high melting point may be lowered.

前記篩分けにより、前記粗粒産物として不純物の少ない前記酸素遮蔽容器を、前記中間産物として不純物の少ない前記融点の高いほうの前記集電体の前記金属を回収することができる。   By the sieving, the oxygen shielding container with less impurities as the coarse product and the metal of the current collector with the higher melting point with less impurities as the intermediate product can be recovered.

なお、前記粗粒産物、前記中間産物、前記微粒産物を再度、前記篩分けしてもよい。この再度の前記篩分けにより、各産物の不純物品位を更に低減することができる。
また、前記篩分け時に、前記2段目の篩上に解砕促進物、例えば、ステンレス球やアルミナボールをのせて篩うことにより、前記2段目篩上に残留した少量の前記低い融点の前記集電体を解砕し微粒化させることで、前記中間産物中における前記高い融点の前記集電体の金属の品位を更に向上させることができる。
The coarse product, the intermediate product, and the fine product may be sieved again. By this second screening, the impurity quality of each product can be further reduced.
Further, at the time of the sieving, a small amount of the low melting point remaining on the second stage sieve is obtained by placing a pulverization accelerator on the second stage sieve, for example, stainless steel balls or alumina balls. By crushing and atomizing the current collector, the quality of the metal of the current collector having the high melting point in the intermediate product can be further improved.

<その他の工程>
前記その他の工程としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、有価物の回収工程などが挙げられる。
<Other processes>
There is no restriction | limiting in particular as said other process, According to the objective, it can select suitably, For example, the collection process etc. of a valuable material are mentioned.

以下、本発明の実施例について説明するが、本発明は下記実施例に何ら限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited to the following examples.

(実施例1)
リチウムイオン二次電池として、開口率1.2%の開口部を有する外装容器を備えた使用済みのリチウムイオン二次電池を用いた。前記リチウムイオン二次電池は、前記正極集電体がアルミニウム(融点660℃)であり、前記負極集電体が銅(融点1,085℃)である。
前記リチウムイオン二次電池の金属含有量は、高周波誘導結合プラズマ発光分光分析装置(iCaP6300、サーモフィッシャーサイエンティフィック社製)により、リチウムイオン二次電池を構成する金属材料及び活物質の質量を100質量%とした場合、それぞれ、銅が7.8質量%、鉄が35.0質量%、アルミニウムが4.3質量%、マンガンが13.8質量%、コバルトが2.1質量%、ニッケルが1.9質量%、残量は33.4質量%で殆どがカーボンであった。
Example 1
As the lithium ion secondary battery, a used lithium ion secondary battery provided with an exterior container having an opening with an opening ratio of 1.2% was used. In the lithium ion secondary battery, the positive electrode current collector is aluminum (melting point 660 ° C.), and the negative electrode current collector is copper (melting point 1,085 ° C.).
The metal content of the lithium ion secondary battery is determined by using the high frequency inductively coupled plasma emission spectrometer (iCaP6300, manufactured by Thermo Fisher Scientific Co., Ltd.) as the mass of the metal material and active material constituting the lithium ion secondary battery. In the case of mass%, copper is 7.8 mass%, iron is 35.0 mass%, aluminum is 4.3 mass%, manganese is 13.8 mass%, cobalt is 2.1 mass%, and nickel is 1.9% by mass, the remaining amount was 33.4% by mass, and most were carbon.

−焙焼工程−
マッフル炉(FJ−41、ヤマト科学株式会社製)に前記リチウムイオン二次電池を入れ、焙焼温度を800℃とし、昇温速度13.3℃/分間、空気通気量5L/分間で800℃まで昇温した。温度が800℃に到達後、800℃で2時間焙焼し、焙焼物を得た。また、炉内雰囲気は大気雰囲気とした。
-Roasting process-
The lithium ion secondary battery is placed in a muffle furnace (FJ-41, manufactured by Yamato Scientific Co., Ltd.), the roasting temperature is 800 ° C., the heating rate is 13.3 ° C./min, and the air flow rate is 800 ° C. at 5 L / min. The temperature was raised to. After the temperature reached 800 ° C., it was baked at 800 ° C. for 2 hours to obtain a baked product. The atmosphere in the furnace was an air atmosphere.

−破砕工程−
前記焙焼工程により得られた前記焙焼物をインパクトクラッシャー(KAP-40W HDブレーカー、株式会社アーステクニカ製)を用い、50Hz(ロータ周速25m/s)で破砕した。次に、目開き100mmの篩による篩分けを行い、篩上物を再度前記破砕に供した。この工程を3度繰返し、破砕物を得た。
-Shredding process-
The roasted product obtained by the roasting step was crushed at 50 Hz (rotor peripheral speed 25 m / s) using an impact crusher (KAP-40W HD breaker, manufactured by Earth Technica Co., Ltd.). Next, sieving with a sieve having an opening of 100 mm was performed, and the material on the sieve was again subjected to the crushing. This process was repeated three times to obtain a crushed material.

−分離工程−
前記破砕工程により得られた前記破砕物を、篩目の目開きがそれぞれ、100mm、及び4.75mmの篩を2段に重ねて用い篩分けした。なお、前記1段目の篩下については磁選を行い、前記1段目の篩下に含まれる前記外装容器由来の鉄を除いて中間産物を得た。前記2段目篩下として微粒産物を得た。
-Separation process-
The crushed material obtained by the crushing step was sieved using sieves with mesh openings of 100 mm and 4.75 mm, respectively, in two stages. In addition, about the said 1st stage under sieve, magnetic separation was performed and the intermediate product was obtained except the iron derived from the said exterior container contained in the said 1st stage under sieve. A fine product was obtained as the second stage sieve.

<評価>
篩分け後の100mmの篩の篩上、4.75mmの篩の篩上、篩下(4.75mmの篩の篩下)をそれぞれ採取し、質量を測定した後、王水に加熱溶解させ、高周波誘導結合プラズマ発光分光分析装置(iCaP6300、サーモフィッシャーサイエンティフィック社製)により分析を行い、以下のようにして各種金属の各粒度産物中の品位及び回収率を求めた。
・品位(%)=溶解液中濃度×溶解液量÷溶解試料量×100
・回収率(%)=(各産物中品位×各産物回収量)÷Σ(各産物中品位×各産物回収量)×100
<Evaluation>
After sieving, 100 mm sieve top, 4.75 mm sieve top, and under sieve (4.75 mm sieve bottom) were collected and measured for mass, then dissolved in aqua regia, heated, Analysis was performed with a high-frequency inductively coupled plasma emission spectrometer (iCaP6300, manufactured by Thermo Fisher Scientific Co., Ltd.), and the quality and recovery rate in each particle size product of various metals were determined as follows.
・ Quality (%) = Concentration in dissolved solution × Amount of dissolved solution ÷ Amount of dissolved sample × 100
・ Recovery rate (%) = (quality of each product x amount of each product recovered) ÷ Σ (quality of each product x amount of each product recovered) x 100

篩分けの結果を表1−1に示した。回収した銅の品位及び銅の回収率を表2に示した。また、図1に、実施例1の中間産物を示す写真を示した。更に、図2に、実施例1の微粒産物を示す写真を示した。   The results of sieving are shown in Table 1-1. The quality of the recovered copper and the copper recovery rate are shown in Table 2. Moreover, the photograph which shows the intermediate product of Example 1 was shown in FIG. Furthermore, the photograph which shows the fine grain product of Example 1 is shown in FIG.

(実施例2)
実施例1において、リチウムイオン二次電池の外装容器の開口率を6.3%とした以外は、実施例1と同様にして、焙焼工程、粉砕工程、及び篩選別工程を行い、選別後に質量の測定を行い、回収された各種金属の含有割合を求めた。篩分けの結果を表1−1に示した。回収した銅の品位及び銅の回収率を表2に示した。
(Example 2)
In Example 1, a roasting step, a pulverization step, and a sieve selection step were performed in the same manner as in Example 1 except that the opening ratio of the outer container of the lithium ion secondary battery was set to 6.3%. The mass was measured, and the contents of various metals recovered were determined. The results of sieving are shown in Table 1-1. The quality of the recovered copper and the copper recovery rate are shown in Table 2.

(実施例3)
実施例1において、リチウムイオン二次電池の外装容器の開口率を12.5%とした以外は、実施例1と同様にして、焙焼工程、粉砕工程、及び篩選別工程を行い、選別後に質量の測定を行い、回収された各種金属の含有割合を求めた。篩分けの結果を表1−1に示した。回収した銅の品位及び銅の回収率を表2に示した。
Example 3
In Example 1, a roasting step, a pulverizing step, and a sieve sorting step were performed in the same manner as in Example 1 except that the opening ratio of the outer container of the lithium ion secondary battery was set to 12.5%. The mass was measured, and the contents of various metals recovered were determined. The results of sieving are shown in Table 1-1. The quality of the recovered copper and the copper recovery rate are shown in Table 2.

(実施例4)
実施例1において、リチウムイオン二次電池の外装容器の開口率を25.0%とした以外は、実施例1と同様にして、焙焼工程、粉砕工程、及び篩選別工程を行い、選別後に質量の測定を行い、回収された各種金属の含有割合を求めた。篩分けの結果を表1−1に示した。回収した銅の品位及び銅の回収率を表2に示した。
Example 4
In Example 1, a roasting step, a pulverization step, and a sieve selection step were performed in the same manner as in Example 1 except that the opening ratio of the outer container of the lithium ion secondary battery was 25.0%. The mass was measured, and the contents of various metals recovered were determined. The results of sieving are shown in Table 1-1. The quality of the recovered copper and the copper recovery rate are shown in Table 2.

(実施例5)
実施例1において、リチウムイオン二次電池の外装容器の開口率を40.0%とした以外は、実施例1と同様にして、焙焼工程、粉砕工程、及び篩選別工程を行い、選別後に質量の測定を行い、回収された各種金属の含有割合を求めた。篩分けの結果を表1−1に示した。回収した銅の品位及び銅の回収率を表2に示した。
(Example 5)
In Example 1, the roasting step, the pulverization step, and the sieve selection step were performed in the same manner as in Example 1 except that the opening ratio of the outer container of the lithium ion secondary battery was set to 40.0%. The mass was measured, and the contents of various metals recovered were determined. The results of sieving are shown in Table 1-1. The quality of the recovered copper and the copper recovery rate are shown in Table 2.

(実施例6)
実施例1において、焙焼工程後にリチウムイオン二次電池の筐体をディスクグラインダー(GWS6−100、BOSCH社製)により切断し(切断工程)、開口率が12.5%となる開口を作製した後で粉砕工程に供した以外は、実施例1と同様にして、焙焼工程、粉砕工程、及び篩選別工程を行い、選別後に質量の測定を行い、回収された各種金属の含有割合を求めた。篩分けの結果を表1−1に示した。回収した銅の品位及び銅の回収率を表2に示した。
(Example 6)
In Example 1, the casing of the lithium ion secondary battery was cut by a disk grinder (GWS6-100, manufactured by BOSCH) after the roasting step (cutting step), and an opening with an opening ratio of 12.5% was produced. Except for the subsequent pulverization step, the roasting step, the pulverization step, and the sieve selection step are performed in the same manner as in Example 1, the mass is measured after the selection, and the content ratios of various metals recovered are obtained. It was. The results of sieving are shown in Table 1-1. The quality of the recovered copper and the copper recovery rate are shown in Table 2.

(実施例7)
実施例2において、焙焼工程後にリチウムイオン二次電池の筐体をディスクグラインダー(GWS6−100、BOSCH社製)により切断し(切断工程)、開口率が12.5%となる開口を作製した後で粉砕工程に供した以外は、実施例2と同様にして、焙焼工程、粉砕工程、及び篩選別工程を行い、焙焼工程、粉砕工程、及び篩選別工程を行い、選別後に質量の測定を行い、回収された各種金属の含有割合を求めた。篩分けの結果を表1−1に示した。回収した銅の品位及び銅の回収率を表2に示した。
(Example 7)
In Example 2, the casing of the lithium ion secondary battery was cut by a disk grinder (GWS6-100, manufactured by BOSCH) after the roasting step (cutting step), and an opening with an opening ratio of 12.5% was produced. The roasting step, the pulverization step, and the sieve selection step are performed in the same manner as in Example 2 except that the calcination step is performed later. Measurements were made to determine the contents of various metals recovered. The results of sieving are shown in Table 1-1. The quality of the recovered copper and the copper recovery rate are shown in Table 2.

(実施例8)
実施例1から7で用いたリチウムイオン二次電池と同様な電池を1個、外装容器を外した集電体のみの状態で酸素遮蔽容器に装填し、この酸素遮蔽容器の表面積に対して開口率1.0%の開口部を有する前記酸素遮蔽容器を用いた。前記酸素遮蔽容器はステンレス(SUS304、融点1,400℃以上)製である。これ以外は、実施例6と同様にして、焙焼工程、粉砕工程、及び篩選別工程を行い、選別後に質量の測定を行い、回収された各種金属の含有割合を求めた。篩分けの結果を表1−1に示した。回収した銅の品位及び銅の回収率を表2に示した。
(Example 8)
One battery similar to the lithium ion secondary battery used in Examples 1 to 7 was loaded into the oxygen shielding container with only the current collector from which the outer container was removed, and the surface of the oxygen shielding container was opened. The oxygen shielding container having an opening with a rate of 1.0% was used. The oxygen shielding container is made of stainless steel (SUS304, melting point 1,400 ° C. or higher). Except this, it carried out similarly to Example 6, performed the baking process, the grinding | pulverization process, and the sieve selection process, measured the mass after selection, and calculated | required the content rate of various collect | recovered metals. The results of sieving are shown in Table 1-1. The quality of the recovered copper and the copper recovery rate are shown in Table 2.

(実施例9)
実施例1での焙焼工程において、マッフル炉の炉内雰囲気を大気雰囲気から酸素分圧5%とした以外は、実施例1と同様にして、焙焼工程、粉砕工程、及び篩選別工程を行い、選別後に質量の測定を行い、回収された各種金属の含有割合を求めた。篩分けの結果を表1−1に示した。回収した銅の品位及び銅の回収率を表2に示した。
Example 9
In the roasting step in Example 1, the roasting step, the pulverization step, and the sieve selection step were performed in the same manner as in Example 1 except that the atmosphere in the muffle furnace was changed from an atmospheric atmosphere to an oxygen partial pressure of 5%. The mass was measured after selection, and the content ratios of various metals recovered were determined. The results of sieving are shown in Table 1-1. The quality of the recovered copper and the copper recovery rate are shown in Table 2.

(比較例1)
実施例1において、前記焙焼工程の焙焼温度を800℃から、アルミニウムからなる正極集電体の融点より低い、500℃に変更した以外は、実施例1と同様にして、焙焼工程、粉砕工程、及び篩選別工程を行い、選別後に質量の測定を行い、回収された各種金属の含有割合を求めた。篩分けの結果を表1−2に示した。回収した銅の品位及び銅の回収率を表2に示した。図3に、比較例1の中間産物を示す写真を示した。
(Comparative Example 1)
In Example 1, the roasting temperature in the roasting step was changed from 800 ° C. to 500 ° C., which is lower than the melting point of the positive electrode current collector made of aluminum. The grinding | pulverization process and the sieve selection process were performed, the mass was measured after the selection, and the content rate of the various metals collect | recovered was calculated | required. The results of sieving are shown in Table 1-2. The quality of the recovered copper and the copper recovery rate are shown in Table 2. FIG. 3 shows a photograph showing the intermediate product of Comparative Example 1.

(比較例2)
実施例1において、リチウムイオン二次電池から前記集電体を取り出し、前記集電体だけを焙焼した(開口率100%に相当)以外は、実施例1と同様にして、焙焼工程、粉砕工程、及び篩選別工程を行い、選別後に質量の測定を行い、回収された各種金属の含有割合を求めた。篩分けの結果を表1−2に示した。回収した銅の品位及び銅の回収率を表2に示した。
(Comparative Example 2)
In Example 1, the current collector was taken out from the lithium ion secondary battery, and only the current collector was roasted (corresponding to an opening ratio of 100%). The grinding | pulverization process and the sieve selection process were performed, the mass was measured after the selection, and the content rate of the various metals collect | recovered was calculated | required. The results of sieving are shown in Table 1-2. The quality of the recovered copper and the copper recovery rate are shown in Table 2.

表2の結果から、従来技術においては、回収した銅の品位が30%程度であったのに対して、実施例1〜9は、優れた銅回収率、及び90%以上の優れた銅品位を示した。
実施例1は、図1及び図2に示すように、前記中間産物に銅を、前記微粒産物にアルミニウムを分離することができた。
前記焙焼工程の後には、正極集電体や負極集電体から高品位の有価物を、高効率で分離回収する観点から切断工程を行うことが好ましい。
前記切断工程とは、前記外装容器内の集電体が露出するよう焙焼物を切断することを行う。言い換えれば、外装容器の筐体が切断されて、集電体が剥き出しになるような状態であればよく、集電体まで切断されても構わない。これより、その後の回収工程での有価物の回収効率が高まる。また、比較例2では、銅及びアルミニウムのほとんどが前記微粒産物となってしまい、分離することができなかった。
From the results of Table 2, in the prior art, the quality of the recovered copper was about 30%, whereas Examples 1 to 9 had an excellent copper recovery rate and an excellent copper quality of 90% or more. showed that.
In Example 1, as shown in FIGS. 1 and 2, copper could be separated into the intermediate product and aluminum into the fine product.
After the roasting step, it is preferable to perform a cutting step from the viewpoint of separating and recovering high-quality valuables from the positive electrode current collector and the negative electrode current collector with high efficiency.
In the cutting step, the roasted product is cut so that the current collector in the outer container is exposed. In other words, it is sufficient that the casing of the outer container is cut and the current collector is exposed, and even the current collector may be cut. Thus, the recovery efficiency of valuable materials in the subsequent recovery process is increased. Moreover, in Comparative Example 2, most of copper and aluminum became the fine particle product and could not be separated.

本発明のリチウムイオン二次電池からの有価物の回収方法は、リチウムイオン二次電池から前記集電体や前記外装容器等の有価物を高い回収率で回収でき、かつ工程が簡単であることから、リチウムイオン二次電池からの有価物の回収に好適に用いることができる。   The method for recovering valuable materials from the lithium ion secondary battery according to the present invention is capable of recovering valuable materials such as the current collector and the outer container from the lithium ion secondary battery at a high recovery rate and has a simple process. Therefore, it can be suitably used for recovering valuable materials from lithium ion secondary batteries.

Claims (6)

正極集電体と、負極集電体とを含む積層体を収容する外装容器を有するリチウムイオン二次電池を、前記正極集電体及び前記負極集電体のうち、低い融点の集電体の融点以上、かつ高い融点の前記集電体の融点未満の温度で焙焼して焙焼物を得る焙焼工程を少なくとも含むことを特徴とするリチウムイオン二次電池からの有価物の回収方法。   A lithium ion secondary battery having an outer container that houses a laminate including a positive electrode current collector and a negative electrode current collector is a low melting point current collector of the positive electrode current collector and the negative electrode current collector. A method for recovering valuable materials from a lithium ion secondary battery, comprising at least a roasting step of obtaining a roasted product by roasting at a temperature higher than the melting point and lower than the melting point of the current collector having a high melting point. 前記リチウムイオン二次電池又は前記積層体を、前記高い融点の前記集電体の融点以上の融点である酸素遮蔽容器に収容して焙焼する請求項1に記載のリチウムイオン二次電池からの有価物の回収方法。   The lithium ion secondary battery or the laminate is accommodated in an oxygen shielding container having a melting point equal to or higher than the melting point of the current collector having the high melting point and roasted from the lithium ion secondary battery according to claim 1. Collection method of valuable materials. 前記正極集電体及び前記負極集電体のいずれか一方がアルミニウムであり、他方が銅である請求項1から2のいずれかに記載のリチウムイオン二次電池からの有価物の回収方法。   3. The method for recovering a valuable material from a lithium ion secondary battery according to claim 1, wherein one of the positive electrode current collector and the negative electrode current collector is aluminum and the other is copper. 前記焙焼工程における焙焼温度が、670℃以上である請求項1から3のいずれかに記載のリチウムイオン二次電池からの有価物の回収方法。   The method for recovering valuable materials from a lithium ion secondary battery according to any one of claims 1 to 3, wherein a roasting temperature in the roasting step is 670 ° C or higher. 前記焙焼工程において、前記リチウムイオン二次電池を焙焼する炉内の雰囲気における酸素分圧を5%以下にして焙焼を行う請求項1から4のいずれかに記載のリチウムイオン二次電池からの有価物の回収方法。   The lithium ion secondary battery according to any one of claims 1 to 4, wherein in the roasting step, the lithium ion secondary battery is roasted with an oxygen partial pressure in an atmosphere in a furnace for baking the lithium ion secondary battery being 5% or less. Method of recovering valuables from 前記焙焼工程後に前記外装容器内の集電体が露出するように焙焼物を切断する切断工程を行う請求項1から5のいずれかに記載のリチウムイオン二次電池からの有価物の回収方法。   The method for recovering valuable materials from a lithium ion secondary battery according to any one of claims 1 to 5, wherein a cutting step of cutting the roasted material is performed so that the current collector in the outer container is exposed after the roasting step. .
JP2016063662A 2015-05-15 2016-03-28 Method of recovering valuable resources from lithium ion secondary batteries Active JP6650806B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015100315 2015-05-15
JP2015100315 2015-05-15

Publications (3)

Publication Number Publication Date
JP2016219401A true JP2016219401A (en) 2016-12-22
JP2016219401A5 JP2016219401A5 (en) 2017-02-02
JP6650806B2 JP6650806B2 (en) 2020-02-19

Family

ID=57579148

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016063662A Active JP6650806B2 (en) 2015-05-15 2016-03-28 Method of recovering valuable resources from lithium ion secondary batteries
JP2016063671A Active JP6692196B2 (en) 2015-05-15 2016-03-28 How to recover valuables from lithium-ion secondary batteries

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2016063671A Active JP6692196B2 (en) 2015-05-15 2016-03-28 How to recover valuables from lithium-ion secondary batteries

Country Status (1)

Country Link
JP (2) JP6650806B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018170223A (en) * 2017-03-30 2018-11-01 Jx金属株式会社 Processing method of lithium ion battery scrap
CN113381059A (en) * 2021-06-09 2021-09-10 江苏天楹环保能源成套设备有限公司 Device and method for recovering metals in waste ternary lithium batteries based on plasmas
CN114845820A (en) * 2020-03-31 2022-08-02 捷客斯金属株式会社 Method for heat treatment of battery waste and method for recovering lithium
EP4178006A4 (en) * 2021-03-30 2023-10-25 JX Nippon Mining & Metals Corporation Method for treating battery waste

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3090225C (en) * 2018-01-31 2023-10-24 Jx Nippon Mining & Metals Corporation Processing method for electronic/electric device component waste
JP6676124B1 (en) * 2018-10-11 2020-04-08 Dowaエコシステム株式会社 Method of recovering valuable resources from lithium ion secondary batteries
JP6748274B2 (en) * 2018-10-11 2020-08-26 Dowaエコシステム株式会社 How to recover valuables from lithium-ion secondary batteries
JP7341830B2 (en) * 2019-09-30 2023-09-11 Dowaメタルマイン株式会社 Manganese leaching method and metal recovery method from lithium ion secondary batteries
US11482737B2 (en) 2020-01-03 2022-10-25 Dowa Eco-System Co., Ltd. Method for recovering valuable material from lithium ion secondary battery
WO2022209421A1 (en) * 2021-03-30 2022-10-06 Jx金属株式会社 Method for treating battery waste

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1074539A (en) * 1996-09-02 1998-03-17 Nikko Kinzoku Kk Method for recovering reusable material from used lithium battery
JP2009054595A (en) * 2008-10-29 2009-03-12 Mitsubishi Heavy Ind Ltd Inside crushing device for used secondary battery, and disposing method for used secondary battery
JP2013080595A (en) * 2011-10-03 2013-05-02 Dowa Eco-System Co Ltd Method for recovering valuable from lithium ion secondary battery
JP2015170480A (en) * 2014-03-07 2015-09-28 松田産業株式会社 Valuable material recovery method from lithium ion secondary battery
JP2015170430A (en) * 2014-03-06 2015-09-28 株式会社シンコーフレックス Method of recovering valuable metal from lithium ion secondary battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4892842B2 (en) * 2005-03-02 2012-03-07 トヨタ自動車株式会社 Lithium secondary battery
JP2013109841A (en) * 2011-11-17 2013-06-06 Dowa Eco-System Co Ltd Method for removing organic solvent from lithium ion secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1074539A (en) * 1996-09-02 1998-03-17 Nikko Kinzoku Kk Method for recovering reusable material from used lithium battery
JP2009054595A (en) * 2008-10-29 2009-03-12 Mitsubishi Heavy Ind Ltd Inside crushing device for used secondary battery, and disposing method for used secondary battery
JP2013080595A (en) * 2011-10-03 2013-05-02 Dowa Eco-System Co Ltd Method for recovering valuable from lithium ion secondary battery
JP2015170430A (en) * 2014-03-06 2015-09-28 株式会社シンコーフレックス Method of recovering valuable metal from lithium ion secondary battery
JP2015170480A (en) * 2014-03-07 2015-09-28 松田産業株式会社 Valuable material recovery method from lithium ion secondary battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018170223A (en) * 2017-03-30 2018-11-01 Jx金属株式会社 Processing method of lithium ion battery scrap
CN114845820A (en) * 2020-03-31 2022-08-02 捷客斯金属株式会社 Method for heat treatment of battery waste and method for recovering lithium
EP4178006A4 (en) * 2021-03-30 2023-10-25 JX Nippon Mining & Metals Corporation Method for treating battery waste
CN113381059A (en) * 2021-06-09 2021-09-10 江苏天楹环保能源成套设备有限公司 Device and method for recovering metals in waste ternary lithium batteries based on plasmas
CN113381059B (en) * 2021-06-09 2024-02-06 江苏天楹环保能源成套设备有限公司 Metal recovery device and method in waste ternary lithium battery based on plasma

Also Published As

Publication number Publication date
JP6650806B2 (en) 2020-02-19
JP6692196B2 (en) 2020-05-13
JP2016219402A (en) 2016-12-22

Similar Documents

Publication Publication Date Title
JP6650806B2 (en) Method of recovering valuable resources from lithium ion secondary batteries
JP6748274B2 (en) How to recover valuables from lithium-ion secondary batteries
JP5651462B2 (en) Method of recovering valuable material from lithium ion secondary battery and recovered material containing valuable material
JP6198027B1 (en) How to recover valuable materials from used lithium ion batteries
WO2013051305A1 (en) Method for recovering valuable materials from lithium ion secondary cells
JP6840512B2 (en) How to recover valuables from lithium-ion secondary batteries
JP2012079630A (en) Recovery method of valuables from lithium ion secondary battery and recovered material having valuables
JP5657730B2 (en) Method for recovering valuable materials from lithium-ion batteries
US11482737B2 (en) Method for recovering valuable material from lithium ion secondary battery
JP6888130B1 (en) Valuables sorting method
JP6676124B1 (en) Method of recovering valuable resources from lithium ion secondary batteries
KR20220148201A (en) Valuable metal concentration method included in lithium ion secondary battery
JP6100991B2 (en) Method for recovering valuable material from positive electrode of lithium ion secondary battery
JP2019153561A (en) Method for processing lithium ion battery waste
EP3836288B1 (en) Method for recovering valuable material from lithium ion secondary battery
US20210210807A1 (en) Method for recovering valuable material from lithium ion secondary battery
EP3832781A1 (en) Method for recovering valuable material from lithium ion secondary battery
EP4350841A1 (en) Sorting method for valuable materials
WO2023243385A1 (en) Recycled positive electrode material, method for producing same, method for using recycled positive electrode material, recycled positive electrode, and lithium ion secondary battery
JP2023183355A (en) Recycled cathode material and manufacturing method thereof, method of using recycled cathode material, recycled cathode, and lithium ion secondary battery

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161109

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20191217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200121

R150 Certificate of patent or registration of utility model

Ref document number: 6650806

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250