JP2016217547A - Automatic ice making machine - Google Patents

Automatic ice making machine Download PDF

Info

Publication number
JP2016217547A
JP2016217547A JP2015099249A JP2015099249A JP2016217547A JP 2016217547 A JP2016217547 A JP 2016217547A JP 2015099249 A JP2015099249 A JP 2015099249A JP 2015099249 A JP2015099249 A JP 2015099249A JP 2016217547 A JP2016217547 A JP 2016217547A
Authority
JP
Japan
Prior art keywords
ice making
ice
electroless nickel
plating film
phosphorous plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015099249A
Other languages
Japanese (ja)
Other versions
JP6712442B2 (en
Inventor
輝道 原
Terumichi Hara
輝道 原
野津 真澄
Masumi Nozu
真澄 野津
誠治 小林
Seiji Kobayashi
誠治 小林
門脇 静馬
Shizuma Kadowaki
静馬 門脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Corp
Original Assignee
Hoshizaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2015099249A priority Critical patent/JP6712442B2/en
Application filed by Hoshizaki Corp filed Critical Hoshizaki Corp
Priority to CN201680007923.7A priority patent/CN107429962A/en
Priority to EP16792427.3A priority patent/EP3242097B1/en
Priority to AU2016261527A priority patent/AU2016261527B2/en
Priority to ES16792427T priority patent/ES2877134T3/en
Priority to KR1020177018839A priority patent/KR20180006361A/en
Priority to PCT/JP2016/058191 priority patent/WO2016181702A1/en
Priority to US15/541,256 priority patent/US10274239B2/en
Publication of JP2016217547A publication Critical patent/JP2016217547A/en
Application granted granted Critical
Publication of JP6712442B2 publication Critical patent/JP6712442B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemically Coating (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an automatic ice making machine in which corrosion products such as rust are not mixed in ice-making water and ice, by improving anti-corrosion properties of an ice making part, and which has enhanced reliability of food sanitation.SOLUTION: An automatic ice making machine circulates and supplies ice-making water to an ice making part 10 cooled by a cooling pipe, and generates ice of required shapes. In the automatic ice making machine, on the outermost layer of the ice making part 10, an electroless nickel-phosphor plated coating 22 containing 10%-15% of phosphorus components is formed with thickness of 15 μm or greater.SELECTED DRAWING: Figure 1

Description

この発明は、蒸発器により冷却される製氷部に製氷水を供給して氷塊を連続的に製造する自動製氷機に関するものであって、更に詳しくは、前記製氷部の耐腐蝕性を向上し得る被膜に関するものである。   The present invention relates to an automatic ice making machine for continuously producing ice blocks by supplying ice making water to an ice making part cooled by an evaporator, and more specifically, can improve the corrosion resistance of the ice making part. It relates to a coating.

多量の氷塊を連続的に製造する自動製氷機が、喫茶店やレストラン等の施設その他の厨房において好適に使用されている。これらの自動製氷機としては、下向きに開口する多数の製氷小室に製氷水を下方から供給して所要形状の氷を連続的に製造する噴射式自動製氷機や、傾斜させた製氷板の上面に製氷水を流下させて該製氷板に板状氷を製造する流下式自動製氷機等が存在する。   An automatic ice maker that continuously manufactures a large amount of ice blocks is suitably used in facilities such as coffee shops and restaurants and other kitchens. These automatic ice makers include a jet type automatic ice machine that continuously produces ice of the required shape by supplying ice making water from below to a large number of ice making chambers that open downward, and an upper surface of an inclined ice making plate. There is a flow-down type automatic ice making machine or the like that makes ice-making water flow down to produce plate ice on the ice-making plate.

例えば、図2に示すように、噴射式自動製氷機として所謂クローズドセルタイプの製氷機構13を備えたものがある。このクローズドセルタイプの製氷機構13は、下方に開口する多数の製氷小室12が画成された製氷部としての製氷室10を備え、該製氷室10の下方には、傾動可能な水皿40が支軸42に枢支されている。この水皿40の下部には、給水部43から供給される製氷水を貯留する製氷水タンク44が一体的に設けられている。前記製氷室10の上面には、冷凍系46から導出した蒸発器48が蛇行配置され、圧縮機CM、凝縮器CDおよび膨張弁EVからなる前記冷凍系46からの冷媒を該蒸発器48に循環供給することで、該製氷室10を氷点下にまで冷却するようになっている。なお、前記圧縮機CMの吐出側と蒸発器48の吸込側とはバイパス管50で接続され、該バイパス管50にホットガス弁HVが設けられている。   For example, as shown in FIG. 2, there is a jet automatic ice maker equipped with a so-called closed cell type ice making mechanism 13. This closed cell type ice making mechanism 13 includes an ice making chamber 10 as an ice making section in which a large number of ice making chambers 12 opening downward are defined, and a tiltable water dish 40 is provided below the ice making chamber 10. The pivot 42 is pivotally supported. An ice making water tank 44 for storing ice making water supplied from the water supply unit 43 is integrally provided at the lower portion of the water tray 40. An evaporator 48 led out from the refrigeration system 46 is meanderingly disposed on the upper surface of the ice making chamber 10, and the refrigerant from the refrigeration system 46 including the compressor CM, the condenser CD and the expansion valve EV is circulated to the evaporator 48. By supplying, the ice making chamber 10 is cooled to below freezing point. The discharge side of the compressor CM and the suction side of the evaporator 48 are connected by a bypass pipe 50, and a hot gas valve HV is provided in the bypass pipe 50.

前記自動製氷機の製氷運転時には、前記製氷小室12を下方から閉成した前記水皿40から製氷水を各製氷小室12に噴射供給することで、強制冷却されている該製氷小室12内に氷塊が形成される。また、除氷運転時には、前記水皿40を斜め下方に傾動させて前記製氷小室12を開放すると共に、前記ホットガス弁HVを開いて前記圧縮機CMからのホットガスを前記蒸発器48へ供給することで、該製氷小室12と氷塊との氷結を融解させ、該氷塊を自重により下方に位置する貯氷室へ落下させる。   During the ice making operation of the automatic ice making machine, the ice making water is sprayed and supplied from the water tray 40, which has closed the ice making chamber 12 from below, to each ice making chamber 12, so that ice blocks are forcibly cooled in the ice making chamber 12. Is formed. Further, during the deicing operation, the water tray 40 is tilted obliquely downward to open the ice making chamber 12, and the hot gas valve HV is opened to supply hot gas from the compressor CM to the evaporator 48. As a result, the icing between the ice making chamber 12 and the ice block is melted, and the ice block is dropped to the ice storage chamber located below by its own weight.

図3は、噴射式自動製氷機に配設される製氷室10の分解斜視図である。この製氷室10は、下方に開放した箱状の外枠14と、該外枠14の内部に配設されて、前記複数の製氷小室12を画成する格子状の仕切部材30とから基本的に構成されている。また、前記外枠14の上面には、前記蒸発器としての冷却パイプ48が密着的に蛇行配置されている。この製氷室10は、所要の形状に成形された外枠14、仕切部材30および冷却パイプ48等の構成部材を組付けて製作される。すなわち、製氷室10は、金属板を折り曲げて箱状に成形された前記外枠14の内部に、複数の金属板を格子状に組立てた前記仕切部材30を収容すると共に、外枠14の上面に長尺の中空パイプを折り曲げて蛇行状とした前記冷却パイプ48を配置して組立てられる。そして、前記外枠14と仕切部材30とは、カシメ固定やろう付け等の手段により接合され、外枠14と冷却パイプ48とはろう付けにより接合される。なお、前記カシメ固定を行う場合は、前記仕切部材30の上部に突起31を設けると共に、前記外枠の上面にカシメ孔14aを開設し、該カシメ孔14aに挿通して外枠14の上面に突出させた突起31をハンマー等で圧潰することで行う。また、前記仕切部材30を構成する各仕切板30aの側端部に係止片を設けると共に、前記外枠14における前記係止片と対応する位置に該係止片と係合する係合溝を設け、両部材14,30を位置決めするようにしても良い。   FIG. 3 is an exploded perspective view of the ice making chamber 10 disposed in the jet type automatic ice making machine. The ice making chamber 10 is basically composed of a box-shaped outer frame 14 opened downward, and a lattice-shaped partition member 30 disposed inside the outer frame 14 and defining the plurality of ice making chambers 12. It is configured. A cooling pipe 48 as the evaporator is meanderingly disposed on the upper surface of the outer frame 14 in close contact therewith. The ice making chamber 10 is manufactured by assembling components such as the outer frame 14, the partition member 30, and the cooling pipe 48 that are molded into a required shape. That is, the ice making chamber 10 accommodates the partition member 30 in which a plurality of metal plates are assembled in a lattice shape in the outer frame 14 formed into a box shape by bending a metal plate, and the upper surface of the outer frame 14. The cooling pipe 48 having a meandering shape by bending a long hollow pipe is arranged and assembled. The outer frame 14 and the partition member 30 are joined by means such as caulking and brazing, and the outer frame 14 and the cooling pipe 48 are joined by brazing. When the caulking is fixed, a protrusion 31 is provided on the upper part of the partition member 30 and a caulking hole 14a is formed on the upper surface of the outer frame. The caulking hole 14a is inserted into the upper surface of the outer frame 14 This is done by crushing the protruding protrusion 31 with a hammer or the like. Further, an engaging groove is provided at a side end portion of each partition plate 30a constituting the partition member 30, and is engaged with the engaging piece at a position corresponding to the engaging piece in the outer frame 14. And both the members 14 and 30 may be positioned.

前記外枠14、仕切部材30および冷却パイプ48などの製氷室10の構成部材は、素地16(図4参照)として熱伝導率の良い銅等の金属材料が使用され、冷却パイプ48の内部を循環する冷媒との熱交換を良好に行い得るようになっている。この銅等からなる素地16は、熱伝導率に優れるが錆び易いので、図4に拡大して示すように、前記製氷室10の表面には、防錆処理として溶融錫めっき被膜20を形成するのが一般的である。前記融錫めっき被膜20は、溶融させた錫を主成分とする錫浴中に、各構成部材14,30,48が組付けられた製氷室10の全体をそっくり浸すことで、該製氷室10の表面に形成される。なお、このめっき処理は、前記各構成部材14,30,48に対して個別に行う場合もあり、この場合、前記製氷室10は、めっき処理後の各構成部材14,30,48を組付けて組立てられる。前述した表面に溶融錫めっき被膜を施した製氷室を備える自動製氷機は、例えば、特許文献1に開示されている。   The components of the ice making chamber 10 such as the outer frame 14, the partition member 30, and the cooling pipe 48 are made of a metal material such as copper having good thermal conductivity as the substrate 16 (see FIG. 4). Heat exchange with the circulating refrigerant can be performed satisfactorily. The base 16 made of copper or the like is excellent in thermal conductivity but easily rusted. Therefore, as shown in an enlarged view in FIG. 4, a molten tin plating film 20 is formed on the surface of the ice making chamber 10 as a rust prevention treatment. It is common. The molten tin plating film 20 is obtained by immersing the entire ice making chamber 10 in which the constituent members 14, 30, and 48 are assembled in a tin bath containing molten tin as a main component. Formed on the surface. The plating process may be performed individually for each of the component members 14, 30, and 48. In this case, the ice making chamber 10 is assembled with the component members 14, 30, and 48 after the plating process. Assembled. For example, Patent Document 1 discloses an automatic ice making machine including an ice making chamber having a surface on which a molten tin plating film is applied.

特開2005−30702号公報Japanese Patent Laying-Open No. 2005-30702

前記溶融錫めっき被膜は、銅等からなる素地に較べると錆び難いが、使用雰囲気に酸化性物質等が含まれている場合、経時的に錆等の腐蝕生成物を生じることがある。この腐蝕生成物はめっき被膜から剥がれ易いため、該腐蝕生成物が氷塊に混入する等の問題が指摘される。また、前記溶融錫めっき被膜は、次亜塩素ナトリウムや電解酸性水等の殺菌剤に対する耐性が低いので、前記被膜を形成した製氷室をこれらの薬剤で殺菌処理するのには適さない。   The molten tin-plated film is less susceptible to rusting than a base made of copper or the like, but when an oxidizing substance or the like is included in the use atmosphere, corrosion products such as rust may be generated over time. Since this corrosion product is easily peeled off from the plating film, there are problems such as the corrosion product being mixed into ice blocks. In addition, since the molten tin plating film has low resistance to sterilizing agents such as sodium hypochlorite and electrolytic acid water, it is not suitable for sterilizing the ice making chamber in which the film is formed with these chemicals.

本発明は、従来技術に係る自動製氷機に内在する前記諸問題に鑑み、これらを好適に解決するべく提案されたものであって、製氷部の耐腐蝕性を向上させた自動製氷機を提供することを目的とする。   The present invention has been proposed in order to solve these problems inherently in the automatic ice making machine according to the prior art, and provides an automatic ice making machine that improves the corrosion resistance of the ice making part. The purpose is to do.

前記課題を克服し、所期の目的を達成するため、請求項1に係る発明は、蒸発器により冷却される製氷部に製氷水を循環供給して所要形状の氷を生成する自動製氷機において、前記製氷部の最外層に、10%〜15%のリン成分を含有した無電解ニッケル−リンめっき被膜が15μm以上の厚みで形成されていることを要旨とする。   In order to overcome the above-mentioned problems and achieve the intended object, the invention according to claim 1 is an automatic ice maker that circulates and supplies ice-making water to an ice-making part cooled by an evaporator to generate ice of a required shape. The gist is that an electroless nickel-phosphorous plating film containing 10% to 15% of a phosphorus component is formed in a thickness of 15 μm or more on the outermost layer of the ice making part.

請求項1に係る発明によれば、製氷部の最外層に形成された無電解ニッケル−リンめっき被膜により、該製氷部の耐腐蝕性を向上し得る。このため、従来の製氷部では腐蝕が進行してしまう使用雰囲気の下であっても、腐蝕の発生が抑えられるので氷の製造を行うことができる。また、殺菌剤に対する耐腐蝕性も高いので、殺菌剤を使用したメンテナンスにより製氷部を衛生に保つことが可能となる。   According to the first aspect of the present invention, the corrosion resistance of the ice making part can be improved by the electroless nickel-phosphorous plating film formed on the outermost layer of the ice making part. For this reason, since it is possible to suppress the occurrence of corrosion even under a use atmosphere in which corrosion proceeds in the conventional ice making unit, it is possible to manufacture ice. Moreover, since the corrosion resistance with respect to a disinfectant is also high, it becomes possible to keep an ice-making part hygienic by the maintenance using a disinfectant.

請求項2に係る発明は、前記無電解ニッケル−リンめっき被膜は、前記製氷部の素地の外表面に直接形成されていることを要旨とする。
請求項2に係る発明によれば、製氷部の最外層に形成された無電解ニッケル−リンめっき被膜により、該製氷部の耐腐蝕性が向上するので、素地の腐蝕を防ぐ目的で該素地に多層の被膜を施す必要がなく、製造効率を高めることができる。
The gist of the invention according to claim 2 is that the electroless nickel-phosphorous plating film is directly formed on the outer surface of the base of the ice making part.
According to the second aspect of the invention, the electroless nickel-phosphorus plating film formed on the outermost layer of the ice making part improves the corrosion resistance of the ice making part. There is no need to apply a multi-layer coating, and the production efficiency can be increased.

本発明に係る自動製氷機によれば、製氷部の耐腐蝕性が向上するため、錆等の腐蝕生成物が製氷水や氷に混入することがなく、食品衛生の信頼性を高め得る。   According to the automatic ice making machine of the present invention, since the corrosion resistance of the ice making part is improved, corrosion products such as rust are not mixed into ice making water or ice, and the reliability of food hygiene can be improved.

実施例に係る製氷室の表層部を拡大した断面図であって、(a)は、素地の外表面に無電解ニッケル−リンめっき被膜を施したものであり、(b)は、(a)の無電解ニッケル−リンめっき被膜の下に下地層を設けたものであり、(c)は、(b)の素地と下地層との間に調整層を設けたものである。It is sectional drawing to which the surface layer part of the ice making room which concerns on an Example was expanded, (a) is what gave the electroless nickel-phosphorus plating film to the outer surface of a base material, (b) is (a) A base layer is provided under the electroless nickel-phosphorous plating film, and (c) is an adjustment layer provided between the substrate (b) and the base layer. 噴射式自動製氷機の概略構成図である。It is a schematic block diagram of a jet type automatic ice making machine. 従来技術に係る製氷室の分解斜視図である。It is a disassembled perspective view of the ice making chamber which concerns on a prior art. 図3に示す製氷室の表層部を拡大した断面図である。It is sectional drawing to which the surface layer part of the ice making chamber shown in FIG. 3 was expanded.

次に、本発明に係る自動製氷機の好適な実施例について、添付図面を参照しながら説明する。実施例では、製氷部として所謂クローズドセルタイプの噴射式自動製氷機で用いられる製氷室について説明する。前記製氷部としては、水皿を介さずに製氷水を噴射供給する所謂オープンセルタイプの噴射式自動製氷機の製氷室や、製氷面に製氷水を流下する流下式自動製氷機の製氷板などであってもよい。なお、実施例で説明する製氷室は、図3で説明した従来の製氷室と基本的な構成は共通するため、既出の部材については、同じ参照符号を使用してある。   Next, a preferred embodiment of an automatic ice making machine according to the present invention will be described with reference to the accompanying drawings. In the embodiment, an ice making chamber used in a so-called closed cell type automatic ice making machine as an ice making unit will be described. As the ice making unit, an ice making chamber of a so-called open cell type automatic ice making machine that supplies ice making water without going through a water tray, an ice making plate of a flow down type automatic ice making machine that flows ice making water down to the ice making surface, etc. It may be. The ice making chamber described in the embodiment has the same basic configuration as that of the conventional ice making chamber described with reference to FIG. 3, and therefore, the same reference numerals are used for the members already described.

(自動製氷機について)
実施例に係る自動製氷機は、図3で説明した従来の製氷室10と同様に、蒸発器としての冷却パイプ48により冷却される製氷室(製氷部)10に製氷水を循環供給して所要形状の氷を生成する。また、前記製氷室10は、下方に開放した箱状の外枠14と、該外枠14の内部に配設されて、複数の製氷小室を画成する格子状の仕切部材30とから基本的に構成され、外枠14の上面に冷却パイプ48が密着的に蛇行配置されている。
(About automatic ice maker)
The automatic ice making machine according to the embodiment is required to circulate and supply ice making water to an ice making room (ice making part) 10 cooled by a cooling pipe 48 as an evaporator, like the conventional ice making room 10 described in FIG. Produces ice of shape. The ice making chamber 10 is basically composed of a box-shaped outer frame 14 opened downward, and a lattice-shaped partition member 30 disposed inside the outer frame 14 and defining a plurality of ice making chambers. The cooling pipe 48 is closely arranged in a meandering manner on the upper surface of the outer frame 14.

(製氷室10について)
前記製氷室10を構成する箱状の外枠14、格子状の仕切部材30および冷却パイプ48は、図1に示すように、銅等の熱伝導性に優れた金属や合金等を材質としており、その素地16の最外層に無電解ニッケル−リンめっき被膜22が形成されている。ここで、製氷室10の最外層とは、該製氷室10における外部に露出する面に形成された層である。なお、製氷室10の露出面の一部に無電解ニッケル−リンめっき被膜22を形成しない領域があってもよい。図1(a)に示すように、前記無電解ニッケル−リンめっき被膜22は、前記素地16の外表面に接触して設けられていてもよく、図1(b)に示すように、無電解ニッケル−リンめっき被膜22の下地として、該被膜22の下層にニッケルやパラジウム等のめっき被膜からなる下地層24を設けてもよい。また、図1(c)に示すように、前記素地16の表面を整えるために、該素地16の表面に銅等のめっき被膜からなる調整層26を設けてもよい。なお前記素地16が、後述する無電解ニッケル−リンめっき処理でのニッケルの析出を阻害する錫や鉛などの元素を含んでいる場合には、該素地16の表面に前記下地層24を施すのが好ましい。すなわち、前記下地層24および調整層26は、前記素地16の表面状態や無電解ニッケル−リンめっき被膜22を施す下地の表面状態などに応じて適宜実施される。なお、前記下地層24および調整層26は、前記製氷室10の外面に露出しないので、表面状態を変更し得るものであればよい。例えば、下地層24および調整層26の厚さは、1μm程度であってもよい。
(About ice making room 10)
As shown in FIG. 1, the box-shaped outer frame 14, the lattice-shaped partition member 30, and the cooling pipe 48 constituting the ice making chamber 10 are made of metal or alloy having excellent thermal conductivity such as copper. The electroless nickel-phosphorous plating film 22 is formed on the outermost layer of the substrate 16. Here, the outermost layer of the ice making chamber 10 is a layer formed on a surface exposed to the outside in the ice making chamber 10. There may be a region where the electroless nickel-phosphorous plating film 22 is not formed on a part of the exposed surface of the ice making chamber 10. As shown in FIG. 1A, the electroless nickel-phosphorous plating film 22 may be provided in contact with the outer surface of the substrate 16, and as shown in FIG. As a base of the nickel-phosphorous plating film 22, a base layer 24 made of a plating film such as nickel or palladium may be provided below the coating 22. Further, as shown in FIG. 1 (c), an adjustment layer 26 made of a plating film such as copper may be provided on the surface of the substrate 16 in order to prepare the surface of the substrate 16. If the substrate 16 contains an element such as tin or lead that inhibits the precipitation of nickel in the electroless nickel-phosphorous plating process described later, the base layer 24 is applied to the surface of the substrate 16. Is preferred. That is, the base layer 24 and the adjustment layer 26 are appropriately implemented according to the surface state of the substrate 16 or the surface state of the base on which the electroless nickel-phosphorous plating film 22 is applied. The underlayer 24 and the adjustment layer 26 are not exposed to the outer surface of the ice making chamber 10 and may be any one that can change the surface state. For example, the thickness of the foundation layer 24 and the adjustment layer 26 may be about 1 μm.

(無電解ニッケル−リンめっき被膜22について)
前記製氷室10の最外層に形成された無電解ニッケル−リンめっき被膜22は、10%〜15%(質量パーセント濃度、以下同様)のリン成分を含有している所謂高リンタイプである。また、図1(a)〜(c)に示すように、前記無電解ニッケル−リンめっき被膜22は、その膜厚tが15μm以上の厚みとなるよう形成されている。なお、無電解ニッケル−リンめっき被膜22の膜厚を15μm以上とすることで、前記素地16または前記下地層24や調整層26に達するピンホールの発生を抑えることが、後述する耐腐蝕性確認試験により確認されている。
(About electroless nickel-phosphorus plating film 22)
The electroless nickel-phosphorus plating film 22 formed on the outermost layer of the ice making chamber 10 is a so-called high phosphorus type containing a phosphorus component of 10% to 15% (mass percent concentration, the same applies hereinafter). Further, as shown in FIGS. 1A to 1C, the electroless nickel-phosphorus plating film 22 is formed so that the film thickness t is 15 μm or more. It should be noted that, by setting the film thickness of the electroless nickel-phosphorous plating film 22 to 15 μm or more, it is possible to suppress the occurrence of pinholes reaching the substrate 16 or the base layer 24 or the adjustment layer 26. Confirmed by testing.

(無電解ニッケル−リンめっき処理について)
ここで、前記無電解ニッケル−リンめっき被膜22を形成する無電解ニッケル−リンめっき処理について説明する。無電解ニッケル−リンめっき処理は、硫酸ニッケルなどのニッケルを含む金属塩と、次亜リン酸ナトリウムなどの還元剤とを主成分とするニッケル−リンめっき溶液の貯留槽へ、前記製氷室10をそっくり浸漬させる所謂どぶ漬けで行われる。前記ニッケル−リンめっき溶液は、形成される無電解ニッケル−リンめっき被膜22におけるリン成分の濃度が、10%〜15%となるよう調整される。また、前記ニッケル−リンめっき溶液には、所要の触媒が添加されることもある。なお、前記素地16と無電解ニッケル−リンめっき被膜22との間に前記調整層26や前記下地層24を設ける場合には、これらの表面処理を施した後で無電解ニッケル−リンめっき処理を行う。前記貯留槽に浸漬された製氷室10の最外層には、前記金属塩由来のニッケル陽イオンが還元されて析出することでニッケル合金からなる前記無電解ニッケル−リンめっき被膜22が形成される。前述の如く、無電解ニッケル−リンめっき処理は、無電解ニッケル−リンめっき被膜22の膜厚が15μm以上となるまで行う。なお、無電解ニッケル−リンめっき処理は、前記外枠14、仕切部材30および冷却パイプ48等の構成部材に対して個別に行い、該めっき処理後の各構成部材14,30,48を組付けるようにしてもよい。
(About electroless nickel-phosphorus plating)
Here, the electroless nickel-phosphorous plating process for forming the electroless nickel-phosphorous plating film 22 will be described. In the electroless nickel-phosphorus plating treatment, the ice making chamber 10 is placed in a storage tank of a nickel-phosphorous plating solution mainly composed of a metal salt containing nickel such as nickel sulfate and a reducing agent such as sodium hypophosphite. It is carried out by so-called soaking. The nickel-phosphorous plating solution is adjusted so that the concentration of the phosphorus component in the formed electroless nickel-phosphorous plating film 22 is 10% to 15%. In addition, a required catalyst may be added to the nickel-phosphorous plating solution. When the adjustment layer 26 and the base layer 24 are provided between the substrate 16 and the electroless nickel-phosphorous plating film 22, electroless nickel-phosphorous plating is performed after the surface treatment. Do. In the outermost layer of the ice making chamber 10 immersed in the storage tank, the electroless nickel-phosphorous plating film 22 made of a nickel alloy is formed by reducing and precipitating nickel cations derived from the metal salt. As described above, the electroless nickel-phosphorous plating treatment is performed until the film thickness of the electroless nickel-phosphorous plating film 22 becomes 15 μm or more. In addition, the electroless nickel-phosphorus plating process is performed individually on the constituent members such as the outer frame 14, the partition member 30, and the cooling pipe 48, and the constituent members 14, 30, 48 after the plating process are assembled. You may do it.

〔実施例の作用〕
次に、実施例に係る自動製氷機の作用について説明する。前記製氷室10の最外層に形成された前記無電解ニッケル−リンめっき被膜22は、合金であるため、大抵の有機溶剤には全く浸食されず、有機酸、塩類、アルカリ類に対しても良好な耐腐蝕性を示し、非常に錆びにくいといった利点がある。更に、前記無電解ニッケル−リンめっき被膜22は、その膜厚を15μm以上としたことで、前記素地16または前記下地層24や調整層26に達するピンホールの発生が抑えられ、前述の良好な耐腐蝕性を充分に発揮し得る。また、前記無電解ニッケル−リンめっき被膜22の含有するリン成分の濃度を10%〜15%としたことで、リン成分の濃度を10%以下とした場合に較べて耐腐蝕性に優れている。なお、耐腐蝕性については、後述する耐腐蝕性確認試験により確認されている。なお、前記製氷室10の最外層に施されるめっき被膜は、その膜厚を10μm以下とするのが一般的である。これは、被膜の形成には時間を要するという製造上の理由や、膜厚を大きくすることで熱伝導率が低下したりめっき被膜が剥がれ易くなったりする等の理由に由来する。
(Effects of Example)
Next, the operation of the automatic ice maker according to the embodiment will be described. Since the electroless nickel-phosphorous plating film 22 formed on the outermost layer of the ice making chamber 10 is an alloy, it is not eroded at all by most organic solvents and is good for organic acids, salts and alkalis. It has the advantage of exhibiting excellent corrosion resistance and being extremely resistant to rust. Furthermore, the electroless nickel-phosphorous plating film 22 has a film thickness of 15 μm or more, so that the occurrence of pinholes reaching the substrate 16 or the base layer 24 or the adjustment layer 26 can be suppressed, and the above-described good It can fully exhibit corrosion resistance. Moreover, the concentration of the phosphorus component contained in the electroless nickel-phosphorous plating film 22 is 10% to 15%, so that the corrosion resistance is excellent as compared with the case where the concentration of the phosphorus component is 10% or less. . In addition, about corrosion resistance, it confirmed by the corrosion resistance confirmation test mentioned later. The plating film applied to the outermost layer of the ice making chamber 10 generally has a film thickness of 10 μm or less. This is due to the reason that it takes time to form the coating, and the reason that the thermal conductivity is lowered and the plating coating is easily peeled off by increasing the film thickness.

実施例に係る製氷室10は、前述の如く優れた耐腐蝕性を有するので、図3で説明した従来の製氷室10では腐蝕が進行する環境であっても自動製氷機を設置して製氷を行うことができる。また、前記無電解ニッケル−リンめっき被膜22は、前述の如く優れた耐腐蝕性を発揮するので次亜塩素酸ナトリウムや電解酸性水等の殺菌剤により腐蝕され難い。このため、前記殺菌剤を使用した殺菌処理などのメンテナンスを行うことができ、製氷室10をより衛生に保つことができる。また、前記製氷室10は、前記無電解ニッケル−リンめっき被膜22により耐腐蝕性が高められるので、該素地16の腐蝕を防ぐ目的で無電解ニッケル−リンめっき被膜22の下層に施される被膜を省略することもできる。このため、図1(a)に示す如く、前記無電解ニッケル−リンめっき被膜22を前記素地16の外表面に直接形成しても、腐蝕の発生を効果的に抑制できる。すなわち、素地16の外表面に接触して無電解ニッケル−リンめっき被膜22を形成した場合には、製氷室10の表面処理に要する手間を削減することができ、製造効率を高める効果も期待できる。なお、図1(b)および図1(c)に示すように、多層の被膜を施した場合には、腐蝕防止の確実性が高められる。   Since the ice making chamber 10 according to the embodiment has excellent corrosion resistance as described above, the conventional ice making chamber 10 described with reference to FIG. 3 installs an automatic ice making machine to produce ice. It can be carried out. In addition, the electroless nickel-phosphorous plating film 22 exhibits excellent corrosion resistance as described above, and thus is hardly corroded by a bactericide such as sodium hypochlorite or electrolytic acid water. For this reason, maintenance such as sterilization treatment using the sterilizing agent can be performed, and the ice making chamber 10 can be kept more hygienic. In addition, since the ice making chamber 10 is enhanced in corrosion resistance by the electroless nickel-phosphorous plating film 22, the film applied to the lower layer of the electroless nickel-phosphorous plating film 22 for the purpose of preventing the corrosion of the substrate 16. Can be omitted. For this reason, even if the electroless nickel-phosphorous plating film 22 is directly formed on the outer surface of the substrate 16 as shown in FIG. 1A, the occurrence of corrosion can be effectively suppressed. That is, when the electroless nickel-phosphorous plating film 22 is formed in contact with the outer surface of the substrate 16, it is possible to reduce the labor required for the surface treatment of the ice making chamber 10 and to expect the effect of increasing the manufacturing efficiency. . In addition, as shown in FIG.1 (b) and FIG.1 (c), when a multilayer film is given, the certainty of corrosion prevention is improved.

〔実験例〕
実施例の製氷室10に関して耐腐蝕性確認試験を行い、耐腐蝕性を確認した。また、比較例として、リン成分の含有濃度を8%とした比較例1、無電解ニッケル−リンめっき被膜22の膜厚を15μmより薄くした比較例2および比較例3、前記無電解ニッケル−リンめっき被膜22に変えて溶融錫めっきを施した比較例4および比較例5についても、耐腐蝕性確認試験を行った。実験例1〜6および比較例1〜3では、実施例の如く無電解ニッケル−リンめっき被膜22を施した試験片に対して試験を行っている。但し、比較例1における無電解ニッケル−リンめっき被膜22のリン成分含有濃度、比較例2および比較例3における無電解ニッケル−リンめっき被膜22の膜厚については、実施例とは変えてある。また、比較例4および比較例5では、図3で説明した従来の製氷室10の如く溶融錫めっきを施した試験片に対して試験を行っている。なお、各実験例および比較例の諸条件は表1に記載されている。実験例1、実験例2、比較例1、比較例2および比較例3に対しては、後述する試験Aを行い、実験例3、実験例4および比較例4に対しては、後述する試験Bを行い、実験例5、実験例6および比較例5に対しては、後述する試験Cを行った。
[Experimental example]
A corrosion resistance confirmation test was performed on the ice making chamber 10 of the example to confirm the corrosion resistance. Further, as Comparative Examples, Comparative Example 1 in which the content concentration of the phosphorus component was 8%, Comparative Example 2 and Comparative Example 3 in which the film thickness of the electroless nickel-phosphorous plating film 22 was made thinner than 15 μm, the electroless nickel-phosphorus Corrosion resistance confirmation tests were also performed on Comparative Example 4 and Comparative Example 5 in which hot-plating was performed instead of the plating film 22. In Experimental Examples 1 to 6 and Comparative Examples 1 to 3, a test was performed on a test piece provided with the electroless nickel-phosphorous plating film 22 as in the example. However, the phosphorus component-containing concentration of the electroless nickel-phosphorous plating film 22 in Comparative Example 1 and the film thickness of the electroless nickel-phosphorous plating film 22 in Comparative Examples 2 and 3 are different from those in the examples. Further, in Comparative Example 4 and Comparative Example 5, the test is performed on the test piece on which the molten tin plating is performed like the conventional ice making chamber 10 described in FIG. The conditions of each experimental example and comparative example are listed in Table 1. Test Example 1, Experimental Example 2, Comparative Example 1, Comparative Example 2 and Comparative Example 3 are performed with test A described later, and Experimental Example 3, Experimental Example 4 and Comparative Example 4 are described with test described later. B was performed, and Test C, which will be described later, was performed on Experimental Example 5, Experimental Example 6, and Comparative Example 5.

前記試験Aでは、5%の塩化ナトリウム(NaCl)水溶液および0.5%の塩化水素(HCl)水溶液を混合して試験液を作成し、該試験液を35℃の試験槽に噴霧して前記試験片を試験液に168時間に亘って暴露させている。前記試験Bでは、前記試験片を1500時間に亘って10ppmの次亜塩素酸ナトリウム(NaClO)水溶液に浸漬させた。前記試験Cでは、前記試験片を1500時間に亘って5ppmの硫化水素ガス雰囲気下に暴露させている。耐腐蝕性確認試験では、試験片に腐蝕が発生しているか否かを主に目視により確認した。その結果を表1に示す。なお、表1の試験結果では、腐蝕の発生が確認された場合には「×」と評価し、腐蝕の発生が確認されなかった場合には「○」と評価してある。   In the test A, a 5% sodium chloride (NaCl) aqueous solution and a 0.5% hydrogen chloride (HCl) aqueous solution are mixed to prepare a test solution, and the test solution is sprayed on a 35 ° C. test tank and the test solution is sprayed. The specimen is exposed to the test solution for 168 hours. In the test B, the test piece was immersed in a 10 ppm sodium hypochlorite (NaClO) aqueous solution for 1500 hours. In the test C, the test piece was exposed to a hydrogen sulfide gas atmosphere of 5 ppm for 1500 hours. In the corrosion resistance confirmation test, whether or not corrosion occurred on the test piece was mainly confirmed visually. The results are shown in Table 1. In the test results shown in Table 1, when the occurrence of corrosion was confirmed, it was evaluated as “x”, and when the occurrence of corrosion was not confirmed, it was evaluated as “◯”.

Figure 2016217547
Figure 2016217547

試験Aでは、無電解ニッケル−リンめっき被膜22の膜厚を10.4μmおよび10.8μmとした比較例2および比較例3では、腐蝕が見られたが、無電解ニッケル−リンめっき被膜22の膜厚を27.0および27.1とした実験例1および実験例2では、腐蝕が確認されなかった。これは、実験例1および実験例2と比べて被膜の厚みが薄い比較例1および比較例2では、被膜のピンホールを介して露出した素地16が酸化されたのに対し、被膜を厚くした実験例1および実験例2では、素地16に達するピンホールが存在しないためだと考えられる。試験Bおよび試験Cにおいても、無電解ニッケル−リンめっき被膜22の厚みを夫々15.2μm、21.0μm、15.1μmおよび21.5μmとした実験例3、実験例4、実験例5および実験例6では腐蝕が発生しなかった。このことから、被膜22の厚みを15μm以上とすることで、充分な耐腐蝕性を発揮し得ることが確認された。   In Test A, corrosion was observed in Comparative Example 2 and Comparative Example 3 in which the film thickness of the electroless nickel-phosphorous plating film 22 was 10.4 μm and 10.8 μm. In Experimental Example 1 and Experimental Example 2 in which the film thicknesses were 27.0 and 27.1, corrosion was not confirmed. This is because, in Comparative Examples 1 and 2 where the thickness of the coating is thinner than in Experimental Examples 1 and 2, the substrate 16 exposed through the pinholes of the coating was oxidized, whereas the coating was thickened. In Experimental Example 1 and Experimental Example 2, it is considered that there is no pinhole reaching the substrate 16. In Test B and Test C as well, Experimental Example 3, Experimental Example 4, Experimental Example 5 and Experimental where the thickness of electroless nickel-phosphorous plating film 22 was 15.2 μm, 21.0 μm, 15.1 μm and 21.5 μm, respectively. In Example 6, no corrosion occurred. From this, it was confirmed that sufficient corrosion resistance can be exhibited by setting the thickness of the coating film 22 to 15 μm or more.

無電解ニッケル−リンめっき被膜22におけるリン成分の含有量を8%(所謂中リンタイプ)とした比較例1では、膜厚が15μm以上であるが、該被膜に腐蝕が確認された。これに対し、無電解ニッケル−リンめっき被膜22のリン成分の含有量を10%〜15%(所謂高リンタイプ)とした実験例1〜6では、腐蝕が確認されなかった。従って、無電解ニッケル−リンめっき被膜22のリン成分の含有量を10%〜15%とすることで、充分な耐腐蝕性を発揮し得ることが確認できる。   In Comparative Example 1 in which the content of the phosphorus component in the electroless nickel-phosphorous plating film 22 was 8% (so-called medium phosphorus type), the film thickness was 15 μm or more, but corrosion was confirmed in the film. On the other hand, corrosion was not confirmed in Experimental Examples 1 to 6 in which the content of the phosphorus component of the electroless nickel-phosphorous plating film 22 was 10% to 15% (so-called high phosphorus type). Therefore, it can be confirmed that sufficient corrosion resistance can be exhibited by setting the content of the phosphorus component of the electroless nickel-phosphorous plating film 22 to 10% to 15%.

また、溶融錫めっき被膜の厚さを夫々21.8μmおよび21.3μmとした比較例4および比較例5では、何れも被膜に腐蝕が確認された。これに対し、無電解ニッケル−リンめっき被膜22の厚さを夫々15.2μmおよび15.1μmとした実験例3および実験例5では、何れも被膜に腐蝕は確認されなかった。このことから、無電解ニッケル−リンめっき被膜22は、溶融錫めっき被膜に比べて高い耐腐蝕性を発揮することが確認できる。   Further, in Comparative Example 4 and Comparative Example 5 in which the thicknesses of the molten tin plating film were 21.8 μm and 21.3 μm, respectively, corrosion was confirmed on the film. On the other hand, no corrosion was observed on the coating in Experimental Examples 3 and 5 in which the thickness of the electroless nickel-phosphorous plating film 22 was 15.2 μm and 15.1 μm, respectively. From this, it can be confirmed that the electroless nickel-phosphorous plating film 22 exhibits higher corrosion resistance than the molten tin plating film.

〔変更例〕
本発明に係る発明は実施例の構成に限定されるものでなく、例えば以下のように変更することが可能である。
(1) 素地と無電解ニッケル−リンめっき被膜との間の層構成は、実施例に限定されない。すなわち、実施例とは異なる下地層や調整層が設けられていたり、別の層が設けられていてもよい。
(2) 製氷部としては、噴射式自動製氷機に用いられる製氷室、流下式自動製氷機に用いられる製氷板だけでなく、例えば、オーガ式自動製氷機に用いられ、外周面に冷却パイプが巻回されると共に内周面に氷が生成される冷凍ケーシング等であってもよい。また、製氷部としての製氷室の構成についても、実施例に限定されない。例えば、冷却パイプが蛇行配置された製氷基板の下面に、製氷小室が形成された枠体が設けられたタイプ等であってもよい。また、自動製氷機は、実施例の如く独立したタイプだけではなく、冷蔵庫や冷凍庫に内蔵されたものでもよい。すなわち、本発明に係る自動製氷機としては、家庭用冷蔵庫の冷凍室に画成された製氷用空間に設けたものでもよく、この場合の製氷部としては、前記製氷用空間に配設され、冷凍系に接続する蒸発器により冷却されて氷を作る製氷皿等であってもよい。
(3) 無電解ニッケル−リンめっき被膜は、少なくとも製氷部の最外層において少なくとも氷が生成される範囲に形成されていればよい。
[Example of change]
The invention according to the present invention is not limited to the configuration of the embodiment, and can be modified as follows, for example.
(1) The layer configuration between the substrate and the electroless nickel-phosphorous plating film is not limited to the examples. That is, an underlayer or an adjustment layer different from that in the embodiment may be provided, or another layer may be provided.
(2) The ice making section includes not only ice making rooms used for jet type automatic ice making machines, ice making plates used for flow-down type automatic ice making machines, but also, for example, auger type automatic ice making machines, with cooling pipes on the outer peripheral surface. It may be a refrigerated casing or the like that is wound and generates ice on the inner peripheral surface. Further, the configuration of the ice making chamber as the ice making unit is not limited to the embodiment. For example, a type in which a frame body in which an ice making chamber is formed is provided on the lower surface of an ice making substrate on which cooling pipes are meandered may be used. Further, the automatic ice making machine is not limited to an independent type as in the embodiment, but may be one built in a refrigerator or a freezer. That is, the automatic ice making machine according to the present invention may be provided in an ice making space defined in a freezer compartment of a home refrigerator, and in this case, the ice making part is disposed in the ice making space, An ice tray or the like that is cooled by an evaporator connected to a refrigeration system to produce ice may be used.
(3) The electroless nickel-phosphorus plating film should just be formed in the range in which at least ice is produced | generated in the outermost layer of an ice making part.

10 製氷室(製氷部),16 素地,22 無電解ニッケル−リンめっき被膜,
48 冷却パイプ(蒸発器)
10 ice making chamber (ice making part), 16 substrate, 22 electroless nickel-phosphorus plating film,
48 Cooling pipe (evaporator)

Claims (2)

蒸発器(48)により冷却される製氷部に製氷水を循環供給して所要形状の氷を生成する自動製氷機において、
前記製氷部(10)の最外層に、10%〜15%のリン成分を含有した無電解ニッケル−リンめっき被膜(22)が15μm以上の厚みで形成されている
ことを特徴とする自動製氷機。
In an automatic ice making machine that circulates and supplies ice making water to an ice making part cooled by an evaporator (48) to generate ice of a required shape,
An automatic ice making machine characterized in that an electroless nickel-phosphorous plating film (22) containing 10% to 15% phosphorus component is formed on the outermost layer of the ice making part (10) with a thickness of 15 μm or more. .
前記無電解ニッケル−リンめっき被膜(22)は、前記製氷部(10)の素地(16)の外表面に直接形成されている請求項1記載の自動製氷機。   The automatic ice maker according to claim 1, wherein the electroless nickel-phosphorous plating film (22) is directly formed on the outer surface of the base (16) of the ice making part (10).
JP2015099249A 2015-05-14 2015-05-14 Automatic ice machine Active JP6712442B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2015099249A JP6712442B2 (en) 2015-05-14 2015-05-14 Automatic ice machine
EP16792427.3A EP3242097B1 (en) 2015-05-14 2016-03-15 Automatic ice maker
AU2016261527A AU2016261527B2 (en) 2015-05-14 2016-03-15 Automatic ice maker
ES16792427T ES2877134T3 (en) 2015-05-14 2016-03-15 Automatic Ice Making Machine
CN201680007923.7A CN107429962A (en) 2015-05-14 2016-03-15 Automatic Ice Maker
KR1020177018839A KR20180006361A (en) 2015-05-14 2016-03-15 Automatic ice maker
PCT/JP2016/058191 WO2016181702A1 (en) 2015-05-14 2016-03-15 Automatic ice maker
US15/541,256 US10274239B2 (en) 2015-05-14 2016-03-15 Automatic ice maker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015099249A JP6712442B2 (en) 2015-05-14 2015-05-14 Automatic ice machine

Publications (2)

Publication Number Publication Date
JP2016217547A true JP2016217547A (en) 2016-12-22
JP6712442B2 JP6712442B2 (en) 2020-06-24

Family

ID=57580618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015099249A Active JP6712442B2 (en) 2015-05-14 2015-05-14 Automatic ice machine

Country Status (1)

Country Link
JP (1) JP6712442B2 (en)

Also Published As

Publication number Publication date
JP6712442B2 (en) 2020-06-24

Similar Documents

Publication Publication Date Title
WO2016181702A1 (en) Automatic ice maker
JPH10160305A (en) Ice machine
US9915460B2 (en) Ice tray for ice-making device and method of making ice
JP2016217547A (en) Automatic ice making machine
JP2018028422A (en) Automatic ice-making machine
JP6793467B2 (en) Aluminum alloy parts and LNG vaporizer
JP2016217549A (en) Ice-making machinery
JP2008281334A (en) Refrigerator
EP2697580B1 (en) Evaporation apparatus for a refrigerator
KR102392190B1 (en) Spherical or Polyhedral Ice Maker, Beverage Supplying Apparatus and Refrigerator Having the Ice Maker
JP5792434B2 (en) Surface treatment copper pipe and heat pump water heater
JP2005090814A (en) Injection type ice-making machine
JP2005300023A (en) Ice-making compartment and manufacturing method thereof
JPS6230887A (en) Composite aluminum material
JP2016089269A (en) Multi-walled pipe and method of manufacture thereof
JP4502897B2 (en) refrigerator
JP2005037060A (en) Ice-making device
KR20130033045A (en) Ice maker
CN1325871C (en) Device for preventing heat exchanger from corrosion of freezer and air conditioner
KR101381163B1 (en) Harm the human body with enhanced corrosion resistance and auger-type icemachine
JP7432305B2 (en) Surface treated base materials for brazing and heat exchangers
JP3203038B2 (en) Downstream ice machine
JP2005226887A (en) Ice maker
JPH08210672A (en) Ice heat storage device
WO2010009776A1 (en) Chiller having water line

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190514

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200601

R150 Certificate of patent or registration of utility model

Ref document number: 6712442

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150