JP2016217549A - Ice-making machinery - Google Patents

Ice-making machinery Download PDF

Info

Publication number
JP2016217549A
JP2016217549A JP2015099251A JP2015099251A JP2016217549A JP 2016217549 A JP2016217549 A JP 2016217549A JP 2015099251 A JP2015099251 A JP 2015099251A JP 2015099251 A JP2015099251 A JP 2015099251A JP 2016217549 A JP2016217549 A JP 2016217549A
Authority
JP
Japan
Prior art keywords
ice making
ice
partition
top plate
making chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015099251A
Other languages
Japanese (ja)
Inventor
誠治 小林
Seiji Kobayashi
誠治 小林
輝道 原
Terumichi Hara
輝道 原
野津 真澄
Masumi Nozu
真澄 野津
門脇 静馬
Shizuma Kadowaki
静馬 門脇
稔 中尾
Minoru Nakao
稔 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Corp
Original Assignee
Hoshizaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Corp filed Critical Hoshizaki Corp
Priority to JP2015099251A priority Critical patent/JP2016217549A/en
Priority to ES16792427T priority patent/ES2877134T3/en
Priority to KR1020177018839A priority patent/KR20180006361A/en
Priority to PCT/JP2016/058191 priority patent/WO2016181702A1/en
Priority to EP16792427.3A priority patent/EP3242097B1/en
Priority to CN201680007923.7A priority patent/CN107429962A/en
Priority to US15/541,256 priority patent/US10274239B2/en
Priority to AU2016261527A priority patent/AU2016261527B2/en
Publication of JP2016217549A publication Critical patent/JP2016217549A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate substantial problems in view of food sanitation management occurred in peeling-off of rusts and dropping from ice-making chambers and their mixing in ice-making water or ice blocks due to contact of applied atmosphere of an ice-making machinery with substance that promotes corrosion at the ice-making chambers under an arrangement that the inner and outer surfaces of the ice-making chambers at a closed cell-type injection type ice-making machinery are applied with molten tin plating surface treatment for preventing occurrence of rusts in view of food sanitation.SOLUTION: Anti-corrosion characteristic of ice-making chambers 12 is remarkably improved by applying electroless nickel-phosphorus coating to surfaces of the ice-making chambers 12.SELECTED DRAWING: Figure 2

Description

この発明は噴射式製氷機に関し、更に詳細には、下方に開放する多数の製氷小室を画成した製氷室を傾動自在な水皿で閉成し、該水皿から製氷水を各製氷小室へ噴射供給する所謂クローズドセルタイプの噴射式製氷機の製氷室に関するものである。   The present invention relates to a jet type ice making machine, and more specifically, an ice making chamber that defines a large number of ice making chambers that open downward is closed with a tiltable water dish, and ice making water is supplied to each ice making chamber from the water dish. The present invention relates to an ice making chamber of a so-called closed cell type spray ice making machine.

多数の氷塊を連続的に製造する噴射式製氷機が、喫茶店やレストラン等の施設その他の厨房で広く使用されている。この噴射式製氷機は、例えば図4に示すように、下向きに開口する多数の製氷小室10が画成された製氷室12を有し、該製氷室12の天板14に冷凍機構16から導出した蒸発管18が密着的に蛇行配置されている。前記冷凍機構16は、管路系を流れる冷媒の圧縮機20、冷媒を凝縮させる凝縮器24、冷媒の膨張弁22、該膨張弁22に接続する前記蒸発管18その他前記凝縮器24の空冷ファン26を備えている。そして前記膨張弁22の開放により蒸発管18に冷媒が供給されて、前記製氷室12を氷点下にまで冷却する。なお、前記圧縮機20の吐出側と前記蒸発管18の冷媒流入口とにバイパス管28が接続され、該バイパス管28に設けたホットガス弁30の開放により、該蒸発管18へホットガスを供給し得るようになっている。   A jet ice maker that continuously produces a large number of ice blocks is widely used in facilities such as coffee shops and restaurants, and other kitchens. For example, as shown in FIG. 4, this jet type ice making machine has an ice making chamber 12 in which a large number of ice making chambers 10 opening downward are defined, and is led out from a freezing mechanism 16 to a top plate 14 of the ice making chamber 12. The evaporated tubes 18 are arranged in a meandering manner in close contact with each other. The refrigeration mechanism 16 includes a refrigerant compressor 20 flowing through a pipeline system, a condenser 24 for condensing refrigerant, an expansion valve 22 for refrigerant, the evaporator pipe 18 connected to the expansion valve 22 and other air cooling fans for the condenser 24. 26. Then, when the expansion valve 22 is opened, a refrigerant is supplied to the evaporation pipe 18 to cool the ice making chamber 12 to below the freezing point. A bypass pipe 28 is connected to the discharge side of the compressor 20 and the refrigerant inlet of the evaporation pipe 18, and hot gas is supplied to the evaporation pipe 18 by opening a hot gas valve 30 provided in the bypass pipe 28. It can be supplied.

噴射式製氷機が製氷運転に入ると、図4に示すように、前記製氷室12の下向きに開放する各製氷小室10へ下方から製氷水Wが噴射供給される。各製氷小室10は氷点下に冷却されているので、噴射供給された製氷水Wの一部は該製氷小室10の内面で瞬時に凍結して次第に成長し、各製氷小室内に氷塊を形成する。また、前記製氷小室10へ供給されたが、該製氷小室内で氷結するに到らなかった製氷水Wは落下して図1に示す製氷水タンク48へ回収され、再び該製氷小室10へ向けて循環的に噴射供給される。   When the spray type ice making machine enters the ice making operation, as shown in FIG. 4, ice making water W is jetted and supplied from below to each ice making chamber 10 that opens downward in the ice making chamber 12. Since each ice making chamber 10 is cooled below the freezing point, a part of the ice making water W sprayed and supplied is instantly frozen on the inner surface of the ice making chamber 10 and gradually grows to form ice blocks in each ice making chamber. Further, the ice making water W that has been supplied to the ice making chamber 10 but did not freeze in the ice making chamber falls and is collected in the ice making water tank 48 shown in FIG. In this way, it is injected in a circulating manner.

特開2009−30816号公報JP 2009-30816 A

前記製氷室12は、図3で後述するように、矩形状の天板14および該天板14の四方を囲む側板からなる製氷枠体と、該製氷枠体の内部に位置して前記多数の製氷小室10を格子状に画成する仕切体とから構成される。この場合に、前記製氷枠体と仕切板との組付けは、該仕切体の必要個所に突設した突起を前記天板14に対応的に穿設した孔部へ挿入した後、該突起の頭部を潰すカシメ結合により行っている。しかしカシメ結合は、前記孔部へ挿入した複数の突部だけで行うものである。このため、各製氷小室10内で氷塊が成長する際の大きな膨張圧力が製氷運転の都度加わるので、経時的に製氷枠体と仕切体との結合が緩くなってグラツいてしまう欠点がある。この場合は、製氷室12に施されている各種表面処理を劣化させたり剥落させたりして、耐久性を低下させる弊害がある。   As will be described later with reference to FIG. 3, the ice making chamber 12 includes an ice making frame body including a rectangular top plate 14 and side plates surrounding the four sides of the top plate 14, and a plurality of the ice making chambers 12 positioned inside the ice making frame body. The ice making chamber 10 is composed of a partition that defines a lattice shape. In this case, the ice making frame body and the partition plate are assembled by inserting a protrusion projecting from a required portion of the partition body into a hole corresponding to the top plate 14 and then inserting the protrusion. This is done by caulking to crush the head. However, caulking is performed only with a plurality of protrusions inserted into the hole. For this reason, since a large expansion pressure at the time of ice making operation is applied during ice making operation in each ice making chamber 10, there is a disadvantage that the connection between the ice making frame and the partitioning body becomes loose over time and becomes glazed. In this case, various surface treatments applied to the ice making chamber 12 are deteriorated or peeled off, and there is an adverse effect of reducing durability.

これを改善するために、前記天板14に穿設した孔部と前記仕切板の突部との嵌合部とを、はんだ付けまたはろう付けで接合することが行われている。しかし、前記製氷枠体および仕切体は、良好な熱伝導体である銅を一般的な材質としているため、前記ろう付け時の高温に曝されると銅が軟化して変形する欠点がある。このような軟化による強度低下を回避するために、低融点型のろう材を使用することが考えられるが、このろう材は一般に使用されるろう材よりも高価でコストアップになってしまう。   In order to improve this, a hole formed in the top plate 14 and a fitting portion between the projection of the partition plate are joined by soldering or brazing. However, since the ice making frame body and the partition body are made of copper, which is a good heat conductor, as a general material, there is a drawback that the copper is softened and deformed when exposed to a high temperature during brazing. In order to avoid such strength reduction due to softening, it is conceivable to use a low melting point brazing material, but this brazing material is more expensive and costly than a brazing material that is generally used.

また、前記製氷室12には製氷水が循環的に噴射供給されて、各製氷小室10の内部に氷塊が形成されるので、食品衛生の観点から一般に溶融錫めっきの表面処理が採用されている。この錫めっきによる被膜は比較的錆にくいものであるが、製氷機の使用雰囲気に酸化性物質等の腐蝕を促進させる物質が含まれていると、経時的に前記製氷枠体や仕切体にサビ等による腐蝕生成物を生じてしまうことがある。このような腐蝕生成物は前記めっき被膜から?落し易く、これが製氷水や生成後の氷塊中に混入すると、食品衛生管理上問題になる虞がある。   In addition, since ice making water is circulated and supplied to the ice making chambers 12 and ice blocks are formed inside each ice making chamber 10, a surface treatment of molten tin plating is generally adopted from the viewpoint of food hygiene. . Although this tin-plated film is relatively resistant to rusting, if the atmosphere used in the ice making machine contains a substance that promotes corrosion, such as an oxidizing substance, the ice making frame and the partitioning body may become rusted over time. Corrosion products may be produced due to the above. Such a corrosion product is easily removed from the plating film, and if it is mixed into ice-making water or the ice block after generation, there is a possibility that it may become a problem in food hygiene management.

そこで本発明は、製氷室を下方から水皿で閉成した状態で、該製氷室の各製氷小室へ製氷水を噴射供給する所謂クローズドセルタイプの噴射式製氷機において、製氷室を構成する製氷枠体と仕切体とに無電解ニッケル−リン被膜を施すことで、従来の錫めっきによる表面処理に比べて耐腐蝕性を向上させることを目的とする。   In view of this, the present invention provides a so-called closed cell type ice making machine that supplies ice making water to each ice making chamber in a state where the ice making room is closed with a water dish from below, and the ice making unit constituting the ice making room is provided. It aims at improving corrosion resistance compared with the surface treatment by the conventional tin plating by giving an electroless nickel phosphorus coating to a frame and a partition.

前記課題を解決し、所期の目的を達成するため請求項1に記載の発明は、複数の横方向仕切板と縦方向仕切板とを格子状に組付けてなる仕切体を、天板と側板とからなる製氷枠体に配設して、下方に開放する製氷小室を複数画成した製氷室と、前記製氷枠体の天板に配設され、冷凍機構から供給される冷媒を循環させることで前記製氷室を冷却する蒸発管と、前記製氷室を下方から開閉自在に閉成して、前記複数の製氷小室へ対応的に製氷水を供給する水皿とを備え、前記仕切体と製氷枠体とからなる前記製氷室に無電解ニッケル−リン被膜を施したことを要旨とする。
請求項1に係る発明によれば、クローズドセルタイプの噴射式製氷機が稼働する現場の使用雰囲気に腐蝕を促進させる酸化性物質が存在していても、製氷室がサビたりして腐蝕生成物を生じさせる虞が低減される。
In order to solve the above-mentioned problems and achieve the intended object, the invention according to claim 1 is characterized in that a partition body formed by assembling a plurality of lateral partition plates and longitudinal partition plates in a lattice shape, An ice making chamber having a plurality of ice making chambers that open downward and an ice making chamber that is arranged on a top plate of the ice making frame and circulating a refrigerant supplied from a refrigeration mechanism. An evaporation pipe for cooling the ice making chamber, and a water tray for closing the ice making chamber so as to be openable and closable from below and supplying ice making water correspondingly to the plurality of ice making chambers, The gist is that an electroless nickel-phosphorus coating is applied to the ice making chamber composed of an ice making frame.
According to the first aspect of the present invention, even if an oxidizing substance that promotes corrosion is present in the use atmosphere at the site where the closed cell type injection type ice making machine is operating, the ice making chamber is rusted and the corrosion product. Is less likely to occur.

請求項2に係る発明では、前記仕切体が前記製氷枠体の天板に接合される部位は直線で構成されると共に、前記仕切体と前記天板との接合は軟ろうまたは硬ろうによるろう付けにより行われることを要旨とする。
請求項2に係る発明によれば、仕切体および製氷枠体の天板にカシメ結合のための加工を施す必要がないため、製造工程数を減らすことができる。
In the invention which concerns on Claim 2, while the part where the said partition is joined to the top plate of the said ice making frame is comprised by a straight line, the joining of the said partition and the said top plate will be based on a soft solder or a hard solder The gist is that it is done by attaching.
According to the invention which concerns on Claim 2, since it is not necessary to perform the process for crimping | bonding to the top plate of a partition and an ice-making frame, the number of manufacturing processes can be reduced.

請求項3に係る発明では、前記硬ろうによる前記仕切体と前記天板との接合は、加熱炉で炉中ろう付けにより達成されることを要旨とする。
請求項3に係る発明によれば、仕切体と製氷枠体の天板とを炉中加熱により全体加熱を達成することができ、局所的な加熱による熱歪みを生ずることがない。このため、後工程としての歪み修正作業も不要になる。
The gist of the invention according to claim 3 is that the joining of the partition body and the top plate by the hard solder is achieved by brazing in a furnace in a heating furnace.
According to the invention which concerns on Claim 3, whole heating can be achieved by heating in a furnace with a partition and the top plate of an ice-making frame, and the thermal distortion by local heating does not arise. For this reason, the distortion correction work as a post-process becomes unnecessary.

本発明に係るクローズドセルタイプの噴射式製氷機によれば、表面処理を施した製氷室の耐腐蝕性を格段と向上させることができ、従って長期に亘り使用しても、製氷水や氷塊中にサビ等の腐蝕生成物が混入する虞がない。   According to the closed cell type jet ice making machine according to the present invention, the corrosion resistance of the ice making chamber subjected to the surface treatment can be remarkably improved. Therefore, even if it is used for a long time, There is no possibility that corrosion products such as rust will be mixed in.

本発明に係る製氷室を採用したクローズドセルタイプの噴射式製氷機を示す一部切欠側面図である。It is a partially cutaway side view showing a closed cell type jet ice making machine employing an ice making chamber according to the present invention. 本発明に係る製氷室の斜視図であって、蒸発器を上部に配設した製氷枠体と、格子状の仕切体とに分解した状態を示している。It is a perspective view of the ice making room which concerns on this invention, Comprising: The state which decomposed | disassembled into the ice making frame body which arrange | positioned the evaporator in the upper part, and the grid | lattice-like partition is shown. 図2に示す仕切体を、縦方向仕切体と横方向仕切体とに分解した状態で示す斜視図である。It is a perspective view which shows the partition shown in FIG. 2 in the state decomposed | disassembled into the vertical direction partition and the horizontal direction partition. 噴射式製氷機における製氷室の基本構造と、該製氷室に設けた蒸発管に連通する冷凍機構とを示す概略図である。It is the schematic which shows the basic structure of the ice making chamber in a jet type ice making machine, and the freezing mechanism connected to the evaporation pipe provided in this ice making chamber.

次に、本発明に係る噴射式製氷機について、添付図面を参照して説明する。ここで本発明の噴射式製氷機は、図1に示すように、水皿で製氷室を下方から閉成する所謂クローズドセルタイプのものである。すなわち、図1に示す製氷機筐体32の内部上方に製氷ユニット34が配設されると共に、内部下方には該製氷ユニット34で製造されて落下放出される多数の氷塊を貯留する貯氷室(図示せず)が配設されている。前記製氷ユニット34は、前記筐体32に水平に配設した梁材36の下方に前記製氷室12が固定され、前記多数の製氷小室10を直下に開放させている。また、図1において前記梁材36の左側に垂下させたブラケット38に支軸40が水平に挿通され、該支軸は前記水皿42を斜め下方へ傾動自在に支持して、常には前記製氷室12における各製氷小室10を下方から閉成している。すなわち前記水皿42は、前記製氷室12を下方から閉成する水皿本体46と、該水皿本体46の下部に一体的に設けた製氷水タンク48とから構成されている。そして水皿本体46の上面には、各製氷小室10に対応する噴射孔44が穿設されている。   Next, an injection type ice making machine according to the present invention will be described with reference to the accompanying drawings. Here, as shown in FIG. 1, the jet type ice making machine of the present invention is of a so-called closed cell type in which an ice making chamber is closed from below by a water dish. That is, an ice making unit 34 is disposed in the upper part of the ice making machine casing 32 shown in FIG. 1, and an ice storage chamber for storing a large number of ice blocks manufactured and dropped by the ice making unit 34 (lower in the interior) ( (Not shown) is provided. In the ice making unit 34, the ice making chamber 12 is fixed below a beam member 36 disposed horizontally in the housing 32, and the large number of ice making chambers 10 are opened directly below. Further, in FIG. 1, a support shaft 40 is horizontally inserted into a bracket 38 suspended to the left side of the beam member 36, and the support shaft supports the water dish 42 so as to be tilted downward in a slanting direction. Each ice making chamber 10 in the chamber 12 is closed from below. That is, the water tray 42 includes a water tray main body 46 that closes the ice making chamber 12 from below, and an ice making water tank 48 that is integrally provided at a lower portion of the water tray main body 46. An injection hole 44 corresponding to each ice making chamber 10 is formed in the upper surface of the water tray main body 46.

製氷運転時に前記水皿42は、図1に示すアクチュエータ50により水平位置に保持されて、前記製氷室12を下方から開閉自在に閉成している。また、前記タンク48中の製氷水は図示のポンプ52により圧送されて、前記水皿42における前記噴射孔44から各対応の製氷小室10へ噴射供給され、該製氷小室10で氷塊を徐々に成長させる。製氷完了を検知すると前記アクチュエータ50が反転動作して、前記水皿42を製氷室12から強制的に傾動させ、該製氷室12を開放する。また図4に示すホットガス弁30が開放して、圧縮機20からの熱い気化冷媒(ホットガス)を前記蒸発管18に供給して、前記製氷室12を加温する。そして各製氷小室10に形成された氷塊は、所要のタイミングで落下して前記貯氷室(図示せず)で貯留される。   During the ice making operation, the water tray 42 is held in a horizontal position by the actuator 50 shown in FIG. 1, and closes the ice making chamber 12 from below. The ice making water in the tank 48 is pumped by a pump 52 shown in the figure, and is sprayed and supplied to the corresponding ice making chambers 10 from the injection holes 44 in the water dish 42, and ice blocks gradually grow in the ice making chambers 10. Let When the completion of ice making is detected, the actuator 50 reverses to forcibly tilt the water tray 42 from the ice making chamber 12 and open the ice making chamber 12. Also, the hot gas valve 30 shown in FIG. 4 is opened, and hot vaporized refrigerant (hot gas) from the compressor 20 is supplied to the evaporation pipe 18 to heat the ice making chamber 12. The ice blocks formed in each ice making chamber 10 fall at a required timing and are stored in the ice storage chamber (not shown).

図2は、本発明が適用される製氷室12の斜視図であって、該製氷室12の外部を構成する製氷枠体54と、該製氷枠体54の内部に配設される格子状の仕切体56とに分解して示してある。前記製氷枠体54は、矩形状の天板14と、該天板14の四方に延設した側板58とからなり、各側板58を該天板の各辺に沿って同一方向へ折り曲げることで矩形箱体を構成している。なお、前記天板14には、冷凍機構16から導出した前記蒸発管18が蛇行状に配設されている。   FIG. 2 is a perspective view of the ice making chamber 12 to which the present invention is applied, and an ice making frame 54 constituting the outside of the ice making chamber 12 and a lattice-like structure disposed inside the ice making frame 54. It is disassembled and shown as a partition 56. The ice making frame 54 includes a rectangular top plate 14 and side plates 58 extending in four directions of the top plate 14, and each side plate 58 is bent in the same direction along each side of the top plate. A rectangular box is formed. The top plate 14 is provided with the evaporating pipe 18 led out from the refrigeration mechanism 16 in a meandering manner.

前記仕切体56は、例えば図3に示すように、複数の横方向仕切板60と縦方向仕切板62とを組合せ、内部を格子状に仕切ることで前記複数の製氷小室10が画成される。すなわち、横方向仕切板60の下端縁に所定間隔でスリット60aを形成すると共に、縦方向仕切板62の上端縁にも所定間隔でスリット62aを形成し、夫々の横方向仕切板60のスリット60aを対応する縦方向仕切板62のスリット62aに嵌挿させることで、図2に示す格子状の仕切体56が得られる。ここで横方向仕切板60および縦方向仕切板62の何れも、後述する製氷枠体54における天板14の裏面に当接する部位が直線で構成されていて、カシメ接合用の突起は有していない。なお、前記製氷枠体54および格子状の仕切体56は、何れも熱伝導率の良好な銅を使用するのが好ましい。但し、熱伝導率が良いものであれば、他の金属乃至合金材料であってもよい。また、前記製氷枠体54、縦横の仕切板からなる仕切体56および前記蒸発管18、その他温度センサ取付け用のブラケット(図示せず)等の部品は、これらを組立てるに先立ち脱脂洗浄を行って脂成分を完全に除去しておく。   For example, as shown in FIG. 3, the plurality of ice making chambers 10 are defined in the partition 56 by combining a plurality of horizontal partition plates 60 and vertical partition plates 62 and partitioning the interior in a lattice pattern. . That is, the slits 60a are formed at the lower end edge of the horizontal partition plate 60 at predetermined intervals, and the slits 62a are also formed at the upper end edge of the vertical partition plate 62 at predetermined intervals, so that the slit 60a of each horizontal partition plate 60 is formed. Is inserted into the slit 62a of the corresponding vertical partition 62 to obtain a grid-like partition 56 shown in FIG. Here, in both the horizontal partition plate 60 and the vertical partition plate 62, a portion of the ice-making frame body 54, which will be described later, abuts against the back surface of the top plate 14 is formed of a straight line, and has a caulking joint projection. Absent. The ice making frame 54 and the grid-like partition 56 are preferably made of copper having good thermal conductivity. However, other metal or alloy materials may be used as long as the thermal conductivity is good. In addition, the ice making frame 54, the partition 56 formed of vertical and horizontal partition plates, the evaporation pipe 18, and other parts such as a bracket (not shown) for attaching the temperature sensor are subjected to degreasing and cleaning prior to assembling them. Remove the fat components completely.

前記格子状の仕切体56を、前記箱状をなす製氷枠体54の内部に配設して両者を接合することで、前記製氷室12が得られる。この製氷枠体54と仕切体56との接合は、所謂ろう付けにより行う。ここで2つの金属を接合する手段としては、錫と鉛とを主成分とする合金の「はんだ」を接合剤として用いる「はんだ付け」と、母材よりも融点の低い各種合金の「ろう材」を接合剤として用いる「ろう付け」とがある。「はんだ付け」および「ろう付け」の何れも学術的には溶接の一種で、融点が450℃以下の接合剤(軟ろう)を用いる場合を「はんだ付け」と称し、融点が450℃以上の接合剤(硬ろう)を用いる場合を「ろう付け」と称する旨の解説がある。そこで本発明では、軟ろうを使用する場合も、硬ろうを使用する場合も、所謂「ろう付け」と表記することにする。   The ice making chamber 12 is obtained by disposing the lattice-like partition 56 inside the box-shaped ice making frame 54 and joining them together. The ice making frame 54 and the partition 56 are joined by so-called brazing. Here, as means for joining two metals, “soldering” using an alloy “solder” mainly composed of tin and lead as a bonding agent, and “brazing material” of various alloys having a melting point lower than that of the base material. And "brazing" using as a bonding agent. Both “soldering” and “brazing” are academically a type of welding, and the case where a bonding agent (soft solder) with a melting point of 450 ° C. or lower is used is called “soldering”, and the melting point is 450 ° C. or higher. There is a comment that the case of using a bonding agent (hard brazing) is called “brazing”. Therefore, in the present invention, both the case of using a soft solder and the case of using a hard solder will be referred to as so-called “brazing”.

前記「はんだ」や「ろう材」には、棒状のもの以外にシート状、箔状、線状その他ペースト状の形態があるので、使用に際して適宜の形態のものが選択される。接合作業に際しては、例えば図2に示す仕切体56において、前記縦方向仕切板62の上面に棒状のろう材(図示せず)を配置した後、上方から前記箱状の製氷枠体54を被せることで、前記棒状のろう材を該製氷枠体54における天板14の裏面と該縦方向仕切板62との間に密着的に介在させる。次いで、前記製氷枠体54と仕切体56とからなる前記製氷室12を、所定の温度域まで加熱した加熱炉に配置して、所定時間の炉中ろう付けを行う。このように加熱炉で炉中加熱を行うと、各部材は全体加熱されるために、熱歪みを生ずることがない。従って、熱歪みを除去するための修正作業を必要としなくなる。   Since the “solder” and “brazing material” include sheet-like, foil-like, linear and other paste-like forms in addition to rod-like ones, those having an appropriate form are selected for use. In the joining operation, for example, in the partition 56 shown in FIG. 2, after placing a rod-shaped brazing material (not shown) on the upper surface of the vertical partition plate 62, the box-shaped ice making frame 54 is covered from above. Thus, the rod-like brazing material is closely interposed between the back surface of the top plate 14 in the ice making frame 54 and the vertical partition plate 62. Next, the ice making chamber 12 composed of the ice making frame 54 and the partition 56 is placed in a heating furnace heated to a predetermined temperature range, and brazing in the furnace for a predetermined time is performed. When the furnace is heated in the furnace in this manner, each member is heated as a whole, so that thermal distortion does not occur. Therefore, the correction work for removing the thermal distortion is not required.

なお、前述した棒状のろう材に代えて、ペースト状のろう材を使用し、これを前記天板14の裏面に塗布してから前記仕切体56を配置するようにしてもよい。この場合、ペースト状のろう材を前記天板14の裏面に全面的に塗ってもよいが、前記仕切体56における縦横の各仕切板60,62が当接する部位だけに塗ることで使用量の節約を図ってもよい。また、前述した炉中ろう付けに際し、前記天板14に前記蒸発管18を載置したり、温度センサ取付け用ブラケットのような他のろう付け接合を必要とする部品を付帯させたりして、同時に加熱炉によるろう付け接合を行ってもよい。なお、前記製氷枠体54や仕切体56の材料として銅を選択した場合、前記硬ろうを使用するろう付けでは炉内が高温に曝されるため、前記銅が焼き鈍されて硬度が低下する弊害がある。このため銅をろう付けする際は、可能な限り低いろう付け温度で実施することが好ましい。例えば、銅、リン、銀の3元共晶(共融混合物)や、銅、ニッケル、リン、錫の4元共晶により低融点化したろう材を使用する。これにより、ろう付け温度の最高到達温度を下げると共に、炉中での高温曝露時間が短くなるので、前記製氷枠体54および仕切体56の材料である銅の軟化を最小限に抑えることが可能である。   Instead of the rod-like brazing material described above, a paste-like brazing material may be used and applied to the back surface of the top plate 14 before the partition 56 is disposed. In this case, a paste-like brazing material may be applied to the entire back surface of the top plate 14, but the amount of use can be reduced by applying only to the portion where the vertical and horizontal partition plates 60 and 62 abut on the partition 56. You may save money. Further, when brazing in the furnace described above, the evaporator tube 18 is placed on the top plate 14, or other parts that require brazing joining such as a temperature sensor mounting bracket are attached, At the same time, brazing with a heating furnace may be performed. When copper is selected as the material for the ice making frame 54 and the partition 56, the interior of the furnace is exposed to a high temperature in brazing using the hard solder, so that the copper is annealed and the hardness decreases. There are harmful effects. For this reason, when brazing copper, it is preferable to carry out at the lowest possible brazing temperature. For example, a brazing material whose melting point is lowered by a quaternary eutectic (eutectic mixture) of copper, phosphorus and silver or a quaternary eutectic of copper, nickel, phosphorus and tin is used. As a result, the maximum temperature of the brazing temperature is lowered and the high-temperature exposure time in the furnace is shortened, so that the softening of copper, which is the material of the ice making frame 54 and the partition 56, can be minimized. It is.

また、前記製氷枠体54および仕切体56の材料として、耐熱性を有しかつ熱良導体としての特性を損なうことのない銅合金を使用して、両部材54,56の接触部位全周をろう付け接合してもよい。ここで耐熱性を有する銅合金とは、或る種の元素が成分中に添加されていて、高温で炉中加熱した際に前記元素が析出することで、該銅合金の軟化を防止する特性を有するものを云う。   Further, as the material for the ice making frame 54 and the partition 56, a copper alloy having heat resistance and not impairing the characteristics as a good thermal conductor is used, and the entire contact portion of both the members 54 and 56 is brazed. You may join. Here, the copper alloy having heat resistance is a characteristic in which a certain element is added to the component, and the element is precipitated when heated in a furnace at a high temperature to prevent softening of the copper alloy. It has what has.

前記製氷枠体54と仕切体56との接合が終わって得られた前記製氷室12は、その表面にろう付け時に生じたフラックスの残渣が付着している。殊に前記軟ろうを使用したはんだ付けの場合、接合特性を向上させるために大量のフラックスを使用するのが普通である。そこで、フラックスの残渣を洗浄剤や水等で洗い流したり、サンドブラスト等の手段で物理的に削り落としたりして製氷室表面の清浄化を行う。但し、前記硬ろうを使用したろう付けの場合、炉中を還元雰囲気に保つ還元炉を前記加熱炉として使用すれば、前記洗浄工程は省略できる。ここで還元炉は、水素ガスや変性ガスを炉内雰囲気とするもので、フラックスを使用することなく前記ろう付けが出来、従ってフラックス残渣を生ずることがない。   In the ice making chamber 12 obtained after the joining of the ice making frame 54 and the partition 56 is finished, the residue of the flux generated at the time of brazing adheres to the surface. Particularly in the case of soldering using the soft solder, it is common to use a large amount of flux in order to improve the joining characteristics. Therefore, the surface of the ice making chamber is cleaned by washing away the flux residue with a cleaning agent or water, or by physically scraping it off by means such as sandblasting. However, in the case of brazing using the hard solder, the cleaning step can be omitted if a reducing furnace that keeps the inside of the furnace in a reducing atmosphere is used as the heating furnace. Here, the reduction furnace uses hydrogen gas or modified gas as the atmosphere in the furnace, so that the brazing can be performed without using a flux, and thus no flux residue is produced.

次に、前記表面洗浄処理を終えた前記製氷室12の表面(前記製氷枠体54および仕切体56の内外表面の全て)に無電解ニッケル−リンめっき被膜が施される。すなわち製氷室12の最外層に無電解によるニッケル−リンめっきの被膜を施すもので、この場合のリン濃度は10%以上(高リンタイプ)であり、膜厚は15μm以上とするのが好ましい。すなわち前記ニッケル−リンめっきの被膜は、前記製氷室12の耐腐蝕性を高めるためのものであって、耐腐蝕性確認試験を行った結果として15μm以上が良いことが判っている。なお、前記被膜が15μmよりも小さいと、素地に達するピンホールを生ずることがあり、前記無電解ニッケル−リンめっきを施しても高い耐腐蝕性は得られない。なお、耐腐蝕性試験は5%NaCl+0.5%HCl水溶液を試験液とし、該試験液を試験槽温度35℃で試験片に噴霧し、該試験液をろう付けに必要な高温に曝露する腐蝕促進試験によった。   Next, an electroless nickel-phosphorous plating film is applied to the surface of the ice making chamber 12 (all the inner and outer surfaces of the ice making frame 54 and the partition 56) after the surface cleaning process. That is, an electroless nickel-phosphorus plating film is applied to the outermost layer of the ice making chamber 12, and in this case, the phosphorus concentration is 10% or more (high phosphorus type), and the film thickness is preferably 15 μm or more. That is, the nickel-phosphorus plating film is for enhancing the corrosion resistance of the ice making chamber 12, and as a result of performing a corrosion resistance confirmation test, it is known that the thickness is 15 μm or more. In addition, when the said film is smaller than 15 micrometers, the pinhole which reaches a base may be produced, and even if it performs the said electroless nickel-phosphorus plating, high corrosion resistance is not acquired. In the corrosion resistance test, 5% NaCl + 0.5% HCl aqueous solution is used as a test solution, and the test solution is sprayed onto a test piece at a test bath temperature of 35 ° C., and the test solution is exposed to a high temperature necessary for brazing. According to accelerated test.

無電解ニッケル−リンめっきの被膜処理は、ニッケル−リンめっき溶液の貯留槽へ前記製氷室12をそっくり浸漬させる所謂どぶ漬けで行われる。このとき、最外層となる無電解ニッケル−リンめっきの下地処理として、前記製氷室12の素地となる表面にニッケルやパラジウム等のめっきを施した後、その上に前記無電解ニッケル−リンめっきを施す2層処理としてもよい。更に、前記製氷室12の表面に銅めっきを施した上にニッケルめっきを施し、次いで該ニッケルめっきの上に前記無電解ニッケル−リンめっきを施す3層処理としてもよい。殊に、前記軟ろうによるはんだ付けの場合は、錫や鉛の如く後工程での無電解めっきの析出を阻害する(所謂「触媒毒」)ので、前記2層または3層の如く製氷室12の素地にニッケルめっきや銅めっきを施しておく必要性が高い。   The electroless nickel-phosphorus plating film treatment is performed by so-called soaking in which the ice making chamber 12 is completely immersed in a nickel-phosphorus plating solution storage tank. At this time, as a base treatment for the electroless nickel-phosphorous plating that is the outermost layer, after plating the surface of the ice making chamber 12 with nickel, palladium, or the like, the electroless nickel-phosphorous plating is formed thereon. It may be a two-layer treatment. Further, the surface of the ice making chamber 12 may be subjected to copper plating, nickel plating, and then the electroless nickel-phosphorus plating on the nickel plating. In particular, in the case of soldering with the soft solder, since precipitation of electroless plating such as tin and lead is hindered (so-called “catalytic poison”), the ice making chamber 12 has two layers or three layers. It is highly necessary to apply nickel plating or copper plating to the substrate.

ところで、図2および図3に示す製氷室12は、矩形状の天板14と4枚の側板58とから構成した矩形箱体の内部に、縦横の仕切板60,62を格子状に組合せた仕切体56を収容したものである。しかし、特開平7−260301号公報の図2や図8に示すように、格子状仕切体の最も外側に位置する縦および横の仕切板が、製氷室の側板として機能するものも存在する。この場合は、格子状仕切板の上に天板を被せるだけで矩形箱体の製氷室が構成されるものである。
従って本発明の実施例では、格子状仕切体56と側板58とは別体として分けられているが、本発明は、格子状仕切体56の一番外側に位置する縦および横の仕切板60,62をもって、前記側板とする扱いにしてもよい。また、製氷室を構成する矩形箱体は、天板と側板とを一体成形したものでも良いし、実施例に示すよう天板と側板とが別体として構成されるものであっても良い。
By the way, the ice making chamber 12 shown in FIG. 2 and FIG. 3 combines vertical and horizontal partition plates 60 and 62 in a lattice shape inside a rectangular box composed of a rectangular top plate 14 and four side plates 58. The partition 56 is accommodated. However, as shown in FIG. 2 and FIG. 8 of Japanese Patent Laid-Open No. 7-260301, there are some in which the vertical and horizontal partition plates located on the outermost side of the lattice partition function as the side plates of the ice making chamber. In this case, a rectangular box-shaped ice making chamber is configured simply by covering the grid-like partition plate with a top plate.
Therefore, in the embodiment of the present invention, the grid-like partition 56 and the side plate 58 are separated as separate bodies. However, the present invention is directed to the vertical and horizontal partition plates 60 positioned on the outermost side of the grid-like partition 56. , 62 may be handled as the side plate. Further, the rectangular box constituting the ice making chamber may be formed by integrally forming the top plate and the side plate, or the top plate and the side plate may be configured separately as shown in the embodiment.

本願の発明によれば、以下の有利な効果が得られる。
・無電解ニッケル−めっきの実量が充分発揮できる仕様で製氷室の表面処理を施すことで、従来の錫めっきでは腐蝕してしまう環境においても、腐蝕を生ずることなく稼働させることができる。
・従来の錫めっきでは腐蝕や劣化が起きてしまい使用が困難であった殺菌剤(次亜塩素酸ナトリウム、電解酸性水等)等の薬剤を使用してのメンテナンスが可能となり、装置をより衛生に保つことができる。
・熟練した作業者でなくても、接合剤の供給装置や加熱炉等における設定値を遵守することで、安定した品質の製氷室を量産することが可能となる。
・全ての部品を一度に接合出来るので仕掛部品がなくなり、効率的な生産が可能になって作業工程が削減できる。
・ろう付けを点付けで接合する場合には、局部加熱となるために製氷室本体に熱歪みを生じていた。しかし加熱炉による全体加熱により、熱歪みが解消した。そのため歪み修正が不要となった。
・本体と仕切板は接触面全体を接合するので、筐体接合が向上し、表面処理の耐久性アップに寄与する。
・仕切板のカシメ突起部がなくなることで、材料の歩留まり性が向上する。
・カシメ部に関する加工(突起・カシメ穴)がなくなり、加工時間の短縮につながる。
・はんだ付けの場合、溶融温度はろう材よりも極めて低いため(例えば、りん銅ろうのろう付け温度は650〜900℃、はんだは200〜300℃)、銅の組織粗大化等の変化に対しても有利になる。
・ろう付けの場合、はんだ付けよりも材料強度が大きいので接合部位の強度がアップする。特に製氷小室は、仕切板を組合せている影響で強度に異方性があったが、ろう材で全て接合するので異方性がなくなる。
・ろう付けの場合、還元炉を使用し、フラックスレスとすることで後洗浄が不要となり、洗浄水、薬剤その他手間を大幅に削減することができ、低コスト化が図れる。
・ろう付けの場合、フラックスレスで接合を行った時に、洗浄後に残ってしまったフラックス残渣による表面処理不具合(めっきはじき、密着不良)の心配がなくなり、品質が安定化する。
・耐熱性を有する銅を使用の場合、高温でろう付けしても材料の強度低下がないため、ろう付け温度の高い、安価なろう材を使用しても製氷室の強度は保たれる。安価なろう材を使用することでコストを安く抑えることができる。
According to the present invention, the following advantageous effects can be obtained.
-By performing the surface treatment of the ice making chamber with specifications that allow the actual amount of electroless nickel-plating to be sufficiently exerted, it can be operated without causing corrosion even in an environment where conventional tin plating corrodes.
・ Maintenance using chemicals such as disinfectants (sodium hypochlorite, electrolytic acid water, etc.) that were difficult to use due to corrosion and deterioration caused by conventional tin plating is possible. Can be kept in.
-Even if it is not a skilled worker, it becomes possible to mass-produce the ice-making room of the stable quality by observing the setting value in a joining agent supply apparatus, a heating furnace, etc.
-Since all parts can be joined at once, there are no work-in-progress parts, enabling efficient production and reducing work processes.
・ When joining by brazing, the ice making chamber itself was thermally distorted due to local heating. However, the heat distortion was eliminated by the whole heating in the heating furnace. This eliminates the need for distortion correction.
-Since the main body and the partition plate join the entire contact surface, the case joining is improved and the surface treatment durability is improved.
-The yield of the material is improved by eliminating the caulking protrusions of the partition plate.
・ Processing (protrusions and caulking holes) related to the caulking part is eliminated, leading to a reduction in processing time.
In the case of soldering, the melting temperature is extremely lower than that of the brazing material (for example, the brazing temperature of phosphor copper brazing is 650 to 900 ° C. and the solder is 200 to 300 ° C.), so that it is resistant to changes such as copper coarsening It will be advantageous.
・ In the case of brazing, the strength of the joint is increased because the material strength is higher than that of soldering. In particular, the ice making chamber has anisotropy in strength due to the effect of combining the partition plates, but the anisotropy disappears because all the brazing materials are joined.
-In the case of brazing, post-cleaning is unnecessary by using a reduction furnace and making it flux-free, so that cleaning water, chemicals and other labor can be greatly reduced, and cost can be reduced.
-In the case of brazing, there is no need to worry about surface treatment defects (plating repellency, poor adhesion) due to flux residue remaining after cleaning when joining without flux, and quality is stabilized.
-When copper having heat resistance is used, the strength of the ice making chamber is maintained even when a brazing material having a high brazing temperature and an inexpensive brazing material is used because there is no reduction in the strength of the material even when brazing at a high temperature. The cost can be reduced by using an inexpensive brazing material.

10 製氷小室,12 製氷室,14 天板,16 冷凍機構,18 蒸発管,
42 水皿,54 製氷枠体,56 仕切体,58 側板,60 横方向仕切板,
62 縦方向仕切板
10 ice making chamber, 12 ice making chamber, 14 top plate, 16 refrigeration mechanism, 18 evaporation tube,
42 water tray, 54 ice making frame, 56 partition, 58 side plate, 60 lateral partition plate,
62 Vertical divider

前記製氷室12は、図3で後述するように、矩形状の天板14および該天板14の四方を囲む側板からなる製氷枠体と、該製氷枠体の内部に位置して前記多数の製氷小室10を格子状に画成する仕切体とから構成される。この場合に、前記製氷枠体と仕切板との組付けは、該仕切体の必要個所に突設した突起を前記天板14に対応的に穿設した孔部へ挿入した後、該突起の頭部を潰すカシメ結合により行っている。しかしカシメ結合は、前記孔部へ挿入した複数の突だけで行うものである。このため、各製氷小室10内で氷塊が成長する際の大きな膨張圧力が製氷運転の都度加わるので、経時的に製氷枠体と仕切体との結合が緩くなってグラツいてしまう欠点がある。この場合は、製氷室12に施されている各種表面処理を劣化させたり剥落させたりして、耐久性を低下させる弊害がある。 As will be described later with reference to FIG. 3, the ice making chamber 12 includes an ice making frame body including a rectangular top plate 14 and side plates surrounding the four sides of the top plate 14, and a plurality of the ice making chambers 12 positioned inside the ice making frame body. The ice making chamber 10 is composed of a partition that defines a lattice shape. In this case, the ice making frame body and the partition plate are assembled by inserting a protrusion projecting from a required portion of the partition body into a hole corresponding to the top plate 14 and then inserting the protrusion. This is done by caulking to crush the head. However caulking is made in only a plurality of impact force inserted into the hole. For this reason, since a large expansion pressure at the time of ice making operation is applied during ice making operation in each ice making chamber 10, there is a disadvantage that the connection between the ice making frame and the partitioning body becomes loose over time and becomes glazed. In this case, various surface treatments applied to the ice making chamber 12 are deteriorated or peeled off, and there is an adverse effect of reducing durability.

これを改善するために、前記天板14に穿設した孔部と前記仕切板の突との嵌合部とを、はんだ付けまたはろう付けで接合することが行われている。しかし、前記製氷枠体および仕切体は、良好な熱伝導体である銅を一般的な材質としているため、前記ろう付け時の高温に曝されると銅が軟化して変形する欠点がある。このような軟化による強度低下を回避するために、低融点型のろう材を使用することが考えられるが、このろう材は一般に使用されるろう材よりも高価でコストアップになってしまう。 To improve this, a collision force Metropolitan of the fitting portion of the partition plate hole bored in the top plate 14, has been performed to be joined by soldering or brazing. However, since the ice making frame body and the partition body are made of copper, which is a good heat conductor, as a general material, there is a drawback that the copper is softened and deformed when exposed to a high temperature during brazing. In order to avoid such strength reduction due to softening, it is conceivable to use a low melting point brazing material, but this brazing material is more expensive and costly than a brazing material that is generally used.

また、前記製氷室12には製氷水が循環的に噴射供給されて、各製氷小室10の内部に氷塊が形成されるので、食品衛生の観点から一般に溶融錫めっきの表面処理が採用されている。この溶融錫めっきによる被膜は比較的錆にくいものであるが、製氷機の使用雰囲気に酸化性物質等の腐蝕を促進させる物質が含まれていると、経時的に前記製氷枠体や仕切体にサビ等による腐蝕生成物を生じてしまうことがある。このような腐蝕生成物は前記溶融錫めっき被膜から落し易く、これが製氷水や生成後の氷塊中に混入すると、食品衛生管理上問題になる虞がある。 In addition, since ice making water is circulated and supplied to the ice making chambers 12 and ice blocks are formed inside each ice making chamber 10, a surface treatment of molten tin plating is generally adopted from the viewpoint of food hygiene. . Although the coating film by hot dip tin plating is relatively hard to rust, if the atmosphere used in the ice making machine contains a substance that promotes corrosion, such as an oxidizing substance, the ice making frame and the partitioning body over time. Corrosion products such as rust may be generated. Such corrosion products easily peeled off from the molten tin plating film, when it is mixed into the ice mass after the ice-making water and generation, there is a fear that the food sanitation management problems.

前記課題を解決し、所期の目的を達成するため請求項1に記載の発明は、複数の横方向仕切板と縦方向仕切板とを格子状に組付けてなる仕切体を、天板と側板とからなる製氷枠体に配設して、下方に開放する製氷小室を複数画成した製氷室と、前記製氷枠体の天板に配設され、冷凍機構から供給される冷媒を循環させることで前記製氷室を冷却する蒸発管と、前記製氷室を下方から開閉自在に閉成して、前記複数の製氷小室へ対応的に製氷水を供給する水皿とを備え、前記仕切体と製氷枠体とからなる前記製氷室に無電解ニッケル−リンめっき被膜を施したことを要旨とする。
請求項1に係る発明によれば、クローズドセルタイプの噴射式製氷機が稼働する現場の使用雰囲気に腐蝕を促進させる酸化性物質が存在していても、製氷室がサビたりして腐蝕生成物を生じさせる虞が低減される。
In order to solve the above-mentioned problems and achieve the intended object, the invention according to claim 1 is characterized in that a partition body formed by assembling a plurality of lateral partition plates and longitudinal partition plates in a lattice shape, An ice making chamber having a plurality of ice making chambers that open downward and an ice making chamber that is arranged on a top plate of the ice making frame and circulating a refrigerant supplied from a refrigeration mechanism. An evaporation pipe for cooling the ice making chamber, and a water tray for closing the ice making chamber so as to be openable and closable from below and supplying ice making water correspondingly to the plurality of ice making chambers, The gist is that an electroless nickel-phosphorous plating film is applied to the ice making chamber composed of the ice making frame.
According to the first aspect of the present invention, even if an oxidizing substance that promotes corrosion is present in the use atmosphere at the site where the closed cell type injection type ice making machine is operating, the ice making chamber is rusted and the corrosion product. Is less likely to occur.

Claims (3)

複数の横方向仕切板(60)と縦方向仕切板(62)とを格子状に組付けてなる仕切体(56)を、天板(14)と側板(58)とからなる製氷枠体(54)に配設して、下方に開放する製氷小室(10)を複数画成した製氷室(12)と、
前記製氷枠体(54)の天板(14)に配設され、冷凍機構(16)から供給される冷媒を循環させることで前記製氷室(12)を冷却する蒸発管(18)と、
前記製氷室(12)を下方から開閉自在に閉成して、前記複数の製氷小室(10)へ対応的に製氷水を供給する水皿(42)とを備え、
前記仕切体(56)と製氷枠体(54)とからなる前記製氷室(12)に無電解ニッケル−リン被膜を施した
ことを特徴とする製氷機。
A partition body (56) formed by assembling a plurality of horizontal partition plates (60) and vertical partition plates (62) in a lattice form, an ice making frame body (top plate (14) and side plates (58)) ( 54), an ice making chamber (12) that defines a plurality of ice making chambers (10) that open downward, and
An evaporation pipe (18) disposed on the top plate (14) of the ice making frame (54), for cooling the ice making chamber (12) by circulating a refrigerant supplied from a refrigeration mechanism (16);
A water tray (42) for closing the ice making chamber (12) so as to be openable and closable from below, and supplying ice making water correspondingly to the plurality of ice making small chambers (10),
An ice making machine, wherein an electroless nickel-phosphorus coating is applied to the ice making chamber (12) comprising the partition (56) and the ice making frame (54).
前記仕切体(56)が前記製氷枠体(54)の天板(14)に接合される部位は直線で構成されると共に、前記仕切体(56)と前記天板(14)との接合は軟ろうまたは硬ろうによるろう付けにより行われる請求項1記載の製氷機。   The part where the partition body (56) is joined to the top plate (14) of the ice making frame (54) is constituted by a straight line, and the joining of the partition body (56) and the top plate (14) is The ice making machine according to claim 1, which is performed by brazing with soft or hard solder. 前記硬ろうによる前記仕切体(56)と前記天板(14)との接合は、加熱炉で炉中ろう付けにより達成される請求項2記載の製氷機。   The ice making machine according to claim 2, wherein the joining of the partition body (56) and the top plate (14) by the hard solder is achieved by brazing in a furnace in a furnace.
JP2015099251A 2015-05-14 2015-05-14 Ice-making machinery Pending JP2016217549A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2015099251A JP2016217549A (en) 2015-05-14 2015-05-14 Ice-making machinery
ES16792427T ES2877134T3 (en) 2015-05-14 2016-03-15 Automatic Ice Making Machine
KR1020177018839A KR20180006361A (en) 2015-05-14 2016-03-15 Automatic ice maker
PCT/JP2016/058191 WO2016181702A1 (en) 2015-05-14 2016-03-15 Automatic ice maker
EP16792427.3A EP3242097B1 (en) 2015-05-14 2016-03-15 Automatic ice maker
CN201680007923.7A CN107429962A (en) 2015-05-14 2016-03-15 Automatic Ice Maker
US15/541,256 US10274239B2 (en) 2015-05-14 2016-03-15 Automatic ice maker
AU2016261527A AU2016261527B2 (en) 2015-05-14 2016-03-15 Automatic ice maker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015099251A JP2016217549A (en) 2015-05-14 2015-05-14 Ice-making machinery

Publications (1)

Publication Number Publication Date
JP2016217549A true JP2016217549A (en) 2016-12-22

Family

ID=57580735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015099251A Pending JP2016217549A (en) 2015-05-14 2015-05-14 Ice-making machinery

Country Status (1)

Country Link
JP (1) JP2016217549A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10663203B2 (en) 2017-03-01 2020-05-26 Fuji Electric Co., Ltd. Ice making device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10663203B2 (en) 2017-03-01 2020-05-26 Fuji Electric Co., Ltd. Ice making device

Similar Documents

Publication Publication Date Title
WO2016181702A1 (en) Automatic ice maker
US11054180B2 (en) Sanitary evaporator assembly
EP1584398A1 (en) Two tier brazing process for joining copper tubes to manifolds
KR0139548B1 (en) Method pof manufacturing heat exchanger
US2064141A (en) Method of making refrigerating apparatus
US2514469A (en) Method of fabricating heat exchangers
JP2016217549A (en) Ice-making machinery
JP2018028422A (en) Automatic ice-making machine
JP6838864B2 (en) Aluminum alloy LNG vaporizer member and LNG vaporizer
JP5101812B2 (en) High corrosion resistance tube for heat exchanger, heat exchanger and method for producing the same
JPWO2010090288A1 (en) Refrigeration cycle container and refrigeration cycle equipment
KR20130001972A (en) Soak protrusion of ice making unit and ice making device comprising the same
JP6712442B2 (en) Automatic ice machine
CN102962537A (en) Aluminium and stainless steel vacuum brazing technology
JP6826034B2 (en) Corrosion-resistant heat exchanger base material and method for manufacturing such base material
JP2005300023A (en) Ice-making compartment and manufacturing method thereof
JP4554389B2 (en) HEAT EXCHANGER TUBE, ITS MANUFACTURING METHOD, AND HEAT EXCHANGER
JP4777119B2 (en) Method for producing aluminum heat exchanger
JP4419240B2 (en) Hot-dip galvanizing roll
US2067208A (en) Refrigerating apparatus
JP2016089269A (en) Multi-walled pipe and method of manufacture thereof
KR101266445B1 (en) Soak protrusion of ice making unit
CN101585134A (en) Manufacturing method of radiating module
JP2005037060A (en) Ice-making device
JP2017155308A (en) Aluminum alloy-made brazing fin material for heat exchanger and aluminum alloy-made heat exchanger using the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160324

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190514

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191203