JP2018028422A - Automatic ice-making machine - Google Patents

Automatic ice-making machine Download PDF

Info

Publication number
JP2018028422A
JP2018028422A JP2016161536A JP2016161536A JP2018028422A JP 2018028422 A JP2018028422 A JP 2018028422A JP 2016161536 A JP2016161536 A JP 2016161536A JP 2016161536 A JP2016161536 A JP 2016161536A JP 2018028422 A JP2018028422 A JP 2018028422A
Authority
JP
Japan
Prior art keywords
ice making
ice
chamber
frame
cooling plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016161536A
Other languages
Japanese (ja)
Inventor
輝道 原
Terumichi Hara
輝道 原
野津 真澄
Masumi Nozu
真澄 野津
誠治 小林
Seiji Kobayashi
誠治 小林
門脇 静馬
Shizuma Kadowaki
静馬 門脇
野津 慎次
Shinji Nozu
慎次 野津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Corp
Original Assignee
Hoshizaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Corp filed Critical Hoshizaki Corp
Priority to JP2016161536A priority Critical patent/JP2018028422A/en
Publication of JP2018028422A publication Critical patent/JP2018028422A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ice-making machine, which is made reluctant to receive the influences of a local distortion due to a soldering by a torch and torch uneven heat by caulking means to crush and joint the caulked portion, and a mechanical stress, so that ice can drop smoothly from an ice making chamber at the time of an ice removing run.SOLUTION: In an ice-making part of an automatic ice-making machine, the ice-making part composed of a cooling plate 14 and an ice-making frame 13 is subjected to an electroless nickel-phosphorous plating coat, and the surface roughness Ra of the electroless nickel-phosphorous plating coat is made to have an arithmetic average roughness Ra (arithmetic mean roughness) at or less than 0.4 μm so that an ice making chamber has the cooling part 14 and the ice-making frame 13 hard-soldered in a heating furnace.SELECTED DRAWING: Figure 1

Description

この発明は自動製氷機に関し、更に詳しくは、蒸発管を配設した冷却板に製氷枠を設けて内部に製氷室を画成した自動製氷機において、前記製氷室に施した耐腐蝕用被膜の表面粗さの程度に起因して、除氷運転時に該製氷室から氷が円滑に脱落しない現象が有り得るので、これを有効に防止し得るようにした技術に関するものである。   The present invention relates to an automatic ice making machine, and more specifically, in an automatic ice making machine in which an ice making frame is provided on a cooling plate provided with an evaporation tube to define an ice making chamber, a corrosion-resistant coating applied to the ice making chamber. The present invention relates to a technique capable of effectively preventing the phenomenon that ice does not smoothly fall out of the ice making chamber during the deicing operation due to the degree of surface roughness.

多数の氷塊や板氷を製造する自動製氷機が、喫茶店やレストラン等の厨房その他魚河岸や漁業船舶等の施設で広く使用されている。この自動製氷機には、製氷部に採用される製氷原理に応じて、各種の製氷機構が実用化されている。例えば、サイコロ状の氷塊を製造するには、内部を多数の製氷小室(セル)に仕切った製氷室を下向きに設け、この製氷室の下方を開閉自在な水皿で閉成し、該水皿から各製氷小室へ製氷水を噴射供給して氷塊を成長させるクローズドセル式製氷機が広く普及している。また、製氷室の構造は前述したクローズドセル式と同じであるが、該製氷室を閉じる前記水皿を有さず、製氷水を夫々の製氷小室へ直接噴射して氷塊を製造するオープンセル式製氷機も使用されている。   Automatic ice makers that produce a large number of ice blocks and plate ice are widely used in kitchens such as coffee shops and restaurants, and other facilities such as fish banks and fishing vessels. In this automatic ice making machine, various ice making mechanisms have been put into practical use according to the ice making principle employed in the ice making section. For example, in order to manufacture a dice-shaped ice block, an ice making chamber with its interior partitioned into a large number of ice making chambers (cells) is provided facing downward, and the lower portion of the ice making chamber is closed with a water tray that can be opened and closed. Closed-cell ice makers that grow ice blocks by spraying ice making water into each ice making chamber are widely used. The structure of the ice making chamber is the same as the closed cell type described above, but does not have the water dish that closes the ice making chamber, and an open cell type that directly injects ice making water into each ice making chamber to produce ice blocks. Ice machines are also used.

更に、内部を製氷小室で区切らない矩形箱体を製氷室とし、下向きに開放させた該矩形箱体に下方から製氷水を供給することで、該矩形箱体の内部に板状氷を製造する方式の自動製氷機も存在する。なお、前述した3つの型式の自動製氷機は、何れも製氷室を水平に配置して開口部を下に向けたタイプであったが、この製氷部を縦に配置して、該製氷部へ製氷水を上方から供給する流下式製氷機も実用化されている。すなわち、冷凍系に接続する蒸発管を裏面に設けた冷却板に製氷小室を多数区画して製氷部を配設すると共に、該製氷部を縦に配置(斜めに配置する機種もある)したものである。   Furthermore, a rectangular box body that is not divided by an ice making chamber is used as an ice making chamber, and ice ice water is supplied to the rectangular box body that is opened downward to produce plate ice inside the rectangular box body. There is also an automatic ice maker of the type. All of the three types of automatic ice making machines described above were of the type in which the ice making chambers were arranged horizontally and the opening portion was directed downward. However, the ice making units were arranged vertically to the ice making unit. A flow-down type ice maker that supplies ice-making water from above has also been put into practical use. In other words, a large number of ice-making chambers are partitioned on a cooling plate having an evaporation tube connected to the refrigeration system on the back surface, and an ice-making unit is arranged vertically, and the ice-making unit is arranged vertically (some models are arranged obliquely). It is.

本発明は、前述した何れの製氷方式を採用した自動製氷機にも適用し得るものであるので、製氷機構の基本につき、クローズドセル式の製氷機構を例に挙げて以下説明する。オープンセル式製氷機は、例えば図3に示すように、下向きに開口する多数の製氷小室10が画成された製氷室12を有し、該製氷室12の冷却板(天板)14に冷凍系16から導出した蒸発管18が密着的に蛇行配置されている。なお、本明細書では、前記製氷室12は、前記冷却板14と、該冷却板14の各端縁に設けた側板からなる製氷枠13とからなる構成を云い、また前記各部材により構成される全体を製氷部15と称することにする。前記冷凍系16は、管路17を流れる冷媒を圧縮する圧縮機20、冷媒を凝縮させる凝縮器24、冷媒の膨張弁22、該膨張弁22に接続する前記蒸発管18および前記凝縮器24の空冷ファン26等を備えている。そして製氷運転に際しては、前記膨張弁22を開放させて蒸発管18に冷媒を供給することで、前記製氷室12を氷点下にまで冷却する。なお、前記圧縮機20の吐出側と前記蒸発管18の冷媒流入口とにバイパス管28が接続され、除氷運転に際しては該バイパス管28に設けたホットガス弁30を開放して、該蒸発管18へホットガス(高温冷媒)を供給することで前記製氷室12を加熱する。   Since the present invention can be applied to an automatic ice making machine adopting any of the above-described ice making methods, the basics of the ice making mechanism will be described below by taking a closed cell type ice making mechanism as an example. As shown in FIG. 3, for example, the open cell ice making machine has an ice making chamber 12 in which a large number of ice making chambers 10 opening downward are defined, and a freezing plate (top plate) 14 in the ice making chamber 12 is frozen. An evaporation pipe 18 led out from the system 16 is closely arranged in a meandering manner. In the present specification, the ice making chamber 12 is constituted by the cooling plate 14 and an ice making frame 13 made of a side plate provided at each edge of the cooling plate 14, and is constituted by the members. The whole is referred to as an ice making unit 15. The refrigeration system 16 includes a compressor 20 that compresses the refrigerant flowing in the pipe line 17, a condenser 24 that condenses the refrigerant, an expansion valve 22 for the refrigerant, the evaporation pipe 18 that is connected to the expansion valve 22, and the condenser 24. An air cooling fan 26 and the like are provided. During the ice making operation, the ice making chamber 12 is cooled to below the freezing point by opening the expansion valve 22 and supplying a refrigerant to the evaporation pipe 18. A bypass pipe 28 is connected to the discharge side of the compressor 20 and the refrigerant inlet of the evaporation pipe 18, and the hot gas valve 30 provided in the bypass pipe 28 is opened during the deicing operation so that the evaporation is performed. The ice making chamber 12 is heated by supplying hot gas (high temperature refrigerant) to the pipe 18.

更に詳細には、図4に示す製氷部15は、水皿により製氷室を下方から閉成する所謂クローズドセルタイプのものである。すなわち、図4に示す製氷部15の内部上方に製氷ユニット34が配設されると共に、内部下方には該製氷部15で製造されて落下放出される多数の氷塊を貯留する貯氷室(図示せず)が配設されている。前記製氷部15は、前記筐体32に水平に配設した梁材36の下方に製氷室12が固定され、多数の製氷小室10を直下に開放させている。また、図4において前記梁材36の左側に垂下するブラケット38に支軸40が水平に挿通されて、該支軸40は水皿42を斜め下方へ傾動自在に支持し、常には前記製氷室12の各製氷小室10を下方から閉成している。ここで前記水皿42は、前記製氷室12を下方から閉成する水皿本体46と、該水皿本体46の下部に一体的に設けた製氷水タンク48とから構成され、該水皿本体46の上面に各製氷小室10に対応する数の噴射孔44が穿設されている。   More specifically, the ice making unit 15 shown in FIG. 4 is of a so-called closed cell type in which the ice making chamber is closed from below by a water dish. That is, an ice making unit 34 is disposed in the upper part of the ice making unit 15 shown in FIG. 4, and an ice storage chamber (not shown) for storing a large number of ice blocks produced and dropped by the ice making unit 15 in the lower part of the inside. Is provided. In the ice making unit 15, the ice making chamber 12 is fixed below a beam member 36 disposed horizontally in the housing 32, and a large number of ice making chambers 10 are opened directly below. Further, in FIG. 4, a support shaft 40 is horizontally inserted into a bracket 38 that hangs down to the left side of the beam member 36, and the support shaft 40 supports a water dish 42 so as to be inclined obliquely downward. Each of the 12 ice making chambers 10 is closed from below. Here, the water tray 42 includes a water tray main body 46 that closes the ice making chamber 12 from below, and an ice making water tank 48 that is integrally provided at a lower portion of the water tray main body 46. A number of injection holes 44 corresponding to each ice making chamber 10 are formed on the upper surface of 46.

製氷運転に移行すると前記水皿42は、図4に示すアクチュエータ50により水平位置まで移動されて、前記製氷室12を下方から閉成する。また、前記タンク48中の製氷水は図示の製氷水ポンプ52により圧送されて、前記水皿42における噴射孔44から各対応の製氷小室10へ噴射供給され、該製氷小室10で氷塊を徐々に成長させる。製氷完了を検知して除氷運転に移行すると、前記アクチュエータ50は反転動作して、前記水皿42を強制的に傾動させて製氷室12を開放する。また、図3に示すホットガス弁30が開放して、前記圧縮機20からの熱いホットガスを前記蒸発管18に供給し、前記製氷室12を加温する。これにより各製氷小室10に形成された氷塊は、自重で該製氷小室10から落下して前記貯氷室(図示せず)に貯留される。   When shifting to the ice making operation, the water tray 42 is moved to the horizontal position by the actuator 50 shown in FIG. 4 to close the ice making chamber 12 from below. Further, the ice making water in the tank 48 is pumped by an ice making water pump 52 shown in the figure, and is sprayed and supplied from the injection holes 44 in the water tray 42 to the corresponding ice making chambers 10. Grow. When the completion of ice making is detected and the operation is shifted to the deicing operation, the actuator 50 reverses and forcibly tilts the water tray 42 to open the ice making chamber 12. Also, the hot gas valve 30 shown in FIG. 3 is opened, hot hot gas from the compressor 20 is supplied to the evaporation pipe 18, and the ice making chamber 12 is heated. As a result, the ice blocks formed in each ice making chamber 10 fall from the ice making chamber 10 by their own weight and are stored in the ice storage chamber (not shown).

図5は、図4に示す製氷部15を分解した斜視図であって、該製氷部15の外部を構成する製氷枠13と、該製氷枠13の内部に配設される格子状の仕切体56とに分離した状態で示してある。前記製氷枠13は、矩形状の冷却板14と、その端縁部に夫々設けた側板58とからなり、各側板58は該冷却板14に接合されて矩形箱体を構成している。なお、前記冷却板14には、前記冷凍系16から導出した蒸発管18が蛇行状に配設されている。   FIG. 5 is an exploded perspective view of the ice making unit 15 shown in FIG. 4, in which an ice making frame 13 constituting the outside of the ice making unit 15 and a grid-like partition disposed inside the ice making frame 13 are shown. 56 in a separated state. The ice making frame 13 is composed of a rectangular cooling plate 14 and side plates 58 provided at the end edges thereof, and each side plate 58 is joined to the cooling plate 14 to form a rectangular box. The cooling plate 14 is provided with an evaporation pipe 18 led out from the refrigeration system 16 in a meandering manner.

前記仕切体56は、例えば図6に示すように、複数の横方向仕切板60と縦方向仕切板62とを組合せ、内部を格子状に仕切ることにより前記複数の製氷小室10になる空間を画成している。すなわち、横方向仕切板60の下端縁に所定間隔でスリット60aを形成すると共に、縦方向仕切板62の上端縁にも所定間隔でスリット62aを形成し、夫々の横方向仕切板60のスリット60aを対応する縦方向仕切板62のスリット62aに嵌挿させることで、図5に示す格子状の仕切体56が得られる。ここで横方向仕切板60および縦方向仕切板62の何れも、前記製氷枠13における冷却板14の裏面に当接する部位が直線で構成されていて、カシメ接合用の突起は有していない。但し、図示しないが、前記横方向仕切板60にカシメ突起を設けると共に、前記冷却板14の対応位置にカシメ穴を設け、両部材60,14を組み合わせた後に、前記カシメ突起をカシメて潰すことにより接合する場合もある。なお、前記冷却板14、製氷枠13および仕切体56は、何れも熱伝導率の良好な銅を使用するのが好ましい。但し、熱伝導率が良いものであれば、他の金属乃至合金材料であってもよい。また、前記冷却板14、製氷枠13、仕切体56および蒸発管18等の部品は、これらを組立てるに先立ち脱脂洗浄を行って脂成分を完全に除去しておく。   For example, as shown in FIG. 6, the partition 56 combines a plurality of horizontal partition plates 60 and vertical partition plates 62, and partitions the interior in a lattice shape to define a space that becomes the plurality of ice making chambers 10. It is made. That is, the slits 60a are formed at the lower end edge of the horizontal partition plate 60 at predetermined intervals, and the slits 62a are also formed at the upper end edge of the vertical partition plate 62 at predetermined intervals, so that the slit 60a of each horizontal partition plate 60 is formed. Is inserted into the slit 62a of the corresponding vertical partition 62 to obtain a grid-like partition 56 shown in FIG. Here, in both the horizontal partition plate 60 and the vertical partition plate 62, the portion of the ice making frame 13 that is in contact with the back surface of the cooling plate 14 is formed by a straight line, and does not have a caulking joining projection. However, although not shown, a caulking projection is provided on the lateral partition plate 60 and a caulking hole is provided at a corresponding position of the cooling plate 14, and after the two members 60 and 14 are combined, the caulking projection is caulked and crushed. In some cases, bonding is also possible. The cooling plate 14, the ice making frame 13, and the partition 56 are all preferably made of copper having good thermal conductivity. However, other metal or alloy materials may be used as long as the thermal conductivity is good. In addition, the components such as the cooling plate 14, the ice making frame 13, the partition 56, and the evaporation pipe 18 are degreased and cleaned completely before assembling them.

ここで、前記格子状の仕切体56を、前記冷却板(天板)14および製氷枠13の内部に配設して接合することで、該製氷枠13の内部に前記製氷室12が得られる。この製氷枠13と仕切体56との接合は、所謂ろう付けにより行う。ここで2つの金属を接合する手段としては、錫と鉛とを主成分とする合金の「はんだ」を接合剤として用いる「はんだ付け」と、母材よりも融点の低い各種合金の「ろう材」を接合剤として用いる「ろう付け」とがある。「はんだ付け」および「ろう付け」の何れも学術的には溶接の一種で、トーチで加熱した際の融点が450℃以下の接合剤(軟ろう)を用いる場合を「はんだ付け」と称し、融点が450℃以上の接合剤(硬ろう)を用いる場合を「ろう付け」と一般に称する。本発明では、硬ろうを使用する場合を、所謂「ろう付け」と表記する。   Here, the ice-making chamber 12 is obtained inside the ice-making frame 13 by arranging and joining the grid-like partition bodies 56 inside the cooling plate (top plate) 14 and the ice-making frame 13. . The ice making frame 13 and the partition 56 are joined by so-called brazing. Here, as means for joining two metals, “soldering” using an alloy “solder” mainly composed of tin and lead as a bonding agent, and “brazing material” of various alloys having a melting point lower than that of the base material. And "brazing" using as a bonding agent. Both “soldering” and “brazing” are academically a type of welding, and the case where a bonding agent (soft brazing) with a melting point of 450 ° C. or less when heated with a torch is called “soldering” The case where a bonding agent (hard solder) having a melting point of 450 ° C. or higher is generally referred to as “brazing”. In the present invention, a case where a hard solder is used is referred to as so-called “brazing”.

特開2005−226887公報JP-A-2005-226887

図3〜図6に示す製氷部15を構成する前記冷却板14、製氷枠13および仕切体56の表面には、主として防錆のために溶融錫めっきの被膜を形成する処理がなされている。この溶融錫めっきは、溶融させた錫金属が入っているめっき槽に前記製氷部15をそっくり浸漬(めっき浴)させた後に取り出し、前記溶融錫金属を該製氷部15の表面に凝固させることで行われる。すなわち、錫めっきが前記製氷部15に全面的に施されることで、良好なめっき肌が得られる。この場合に、図4に示す各製氷小室(セル)10の内面に施されているめっき被膜の表面粗さ(パラメータ)は、日本工業規格に定めるJIS B 0601(1994)およびJIS B 0031(1994)の算術平均粗さ(Ra)によれば「1.0μm」程度である。   The surface of the cooling plate 14, the ice making frame 13, and the partition 56 constituting the ice making unit 15 shown in FIGS. 3 to 6 is subjected to a treatment for forming a hot tin plating film mainly for rust prevention. The molten tin plating is performed by immersing the ice making part 15 in a plating tank containing molten tin metal (plating bath) and then taking it out to solidify the molten tin metal on the surface of the ice making part 15. Done. That is, a good plating skin can be obtained by applying tin plating to the ice making part 15 over the entire surface. In this case, the surface roughness (parameter) of the plating film applied to the inner surface of each ice making chamber (cell) 10 shown in FIG. 4 is JIS B 0601 (1994) and JIS B 0031 (1994) defined in Japanese Industrial Standards. ) Is about “1.0 μm”.

また、前記製氷部15を構成する前記冷却板14、格子状の仕切体56および製氷枠13を接合するには、トーチによるろう付けや、カシメ部をカシメ穴に挿し込んでからカシメるカシメ接合が行われている。しかし、トーチによりろう付けする場合は、例えば前記冷却板14と仕切体56との加熱が局部的なものになるので、前記製氷室12の内部に歪みを生じてしまう。また、前記カシメ接合の場合は、機械的にカシメる際に、同じく前記製氷室12の内部に歪みを生じてしまうことがある。このため、これらトーチによるろう付けやカシメ接合をした後は、生じた歪みを修正して除却する工程を必要としている。しかし、前記歪み修正は必ずしも完全になされるとは限らず、前記歪みが製氷室12の内部に残留してしまうことが往々にしてある。   In addition, in order to join the cooling plate 14, the lattice-like partition 56 and the ice making frame 13 constituting the ice making part 15, brazing with a torch, or caulking joining after the caulking part is inserted into the caulking hole. Has been done. However, when brazing with a torch, for example, the heating of the cooling plate 14 and the partition 56 becomes localized, so that the inside of the ice making chamber 12 is distorted. Further, in the case of the caulking joining, when the caulking is mechanically performed, the inside of the ice making chamber 12 may be distorted. For this reason, after brazing or caulking with these torches, a process of correcting and removing the generated distortion is required. However, the distortion correction is not always complete, and the distortion often remains in the ice making chamber 12.

前述した製氷室12の内面に施されるめっき被膜がJIS規格の算術平均粗さ(Ra)で「1.0μm」程度であるということは、除氷運転の終期に該製氷室12に生成された氷塊が自重で脱落する際に相当の表面抵抗を生ずることを意味する。しかも、図5に示すように前記冷却板14に密着配置した前記蒸発管18は、冷媒の入口側と出口側では温度差がある。すなわち、除氷工程では、図3に示す冷凍系16のホットガス弁30を開放して前記圧縮機20からのホットガス(高温冷媒)を前記蒸発管18へ直接送り込んで、製氷部15を加熱し氷の氷結面を溶かすことで該氷の自重落下を促進する。しかし、前記ホットガスは、前記蒸発管18の入口側で最も高温であるが、該蒸発管18を流通して熱交換する間に温度降下を生じ、出口側ではかなり温度が低下してしまう。   The fact that the plating film applied to the inner surface of the ice making chamber 12 described above has an arithmetic average roughness (Ra) of JIS standard of about “1.0 μm” means that it is generated in the ice making chamber 12 at the end of the deicing operation. This means that a considerable amount of surface resistance is generated when the ice mass falls off due to its own weight. In addition, as shown in FIG. 5, the evaporation pipe 18 arranged in close contact with the cooling plate 14 has a temperature difference between the refrigerant inlet side and the outlet side. That is, in the deicing step, the hot gas valve 30 of the refrigeration system 16 shown in FIG. 3 is opened and hot gas (high-temperature refrigerant) from the compressor 20 is sent directly to the evaporation pipe 18 to heat the ice making unit 15. By melting the freezing surface of the ice, the fall of the ice is promoted. However, the hot gas has the highest temperature on the inlet side of the evaporation pipe 18, but a temperature drop occurs during the heat exchange through the evaporation pipe 18, and the temperature drops considerably on the outlet side.

これを、図2を参照して説明する。図2に示す製氷枠13は、下から製氷水を供給して氷を生成するものであるが、製氷枠13の内部に前記格子状の仕切板は備えていない。従って、前記製氷枠13における製氷室12の中には大型の板状氷19が生成される。この場合に、前記製氷枠13の内部のめっき皮膜の粗さが、JIS規格の算術平均粗さ(Ra)で「1.0μm」であるとすると、除氷運転時に氷19が該製氷枠13から自重で落下しようとしても、先に述べたように製氷室12の内部の表面抵抗が大きいため円滑な落下が阻害される。しかも、前述の如く、前記蒸発管18に流入する高温冷媒は入口側が最も熱いが、流過している間に温度は熱交換で失われ、出口側ではかなり温度低下してしまう。すなわち、除氷工程では前記2つの条件が相俟って、図2(a)における前記製氷枠13の蒸発管18は、その入口側がホットガス温度が高いため、該製氷枠13の周辺部位が重点的に加熱される。従って、前記蒸発管18の入口側(図の左側)における氷19が自重で傾きつつ該製氷枠13から落ちかける。次いで図2(b)に示すように、氷19は前記蒸発管18の出口側(図の右側)の方から落ち始め(入口側の氷19は少し引っ込むことになる)、最終的に図2(c)に示すように、氷19が前記製氷枠13から落下する。なお、図2に示した製氷枠13は前記の如く格子状の仕切体を備えていないが、図5に示すように、製氷枠13の内部に格子状の仕切体56を設けて多数の製氷小室10を画成するものであってもよい。この場合は、製氷部15における各製氷小室10で生成された氷は、前記仕切体56の開放端でリブ状部位をもって相互に連結された状態になっている。従って、製氷小室10の内部表面が粗いと、前記リブで連結した氷が各製氷小室10を画成する仕切体56の部位でつかえ、除氷運転時に落下し難くなる。   This will be described with reference to FIG. The ice making frame 13 shown in FIG. 2 supplies ice making water from below to generate ice, but the ice making frame 13 is not provided with the grid-like partition plate. Accordingly, large plate ice 19 is generated in the ice making chamber 12 in the ice making frame 13. In this case, assuming that the roughness of the plating film inside the ice making frame 13 is “1.0 μm” in arithmetic mean roughness (Ra) according to JIS standard, the ice 19 is removed from the ice making frame 13 during the deicing operation. Even if it tries to fall by its own weight, as described above, since the surface resistance inside the ice making chamber 12 is large, the smooth fall is inhibited. Moreover, as described above, the high-temperature refrigerant flowing into the evaporation pipe 18 is hotter on the inlet side, but the temperature is lost by heat exchange while flowing, and the temperature is considerably lowered on the outlet side. That is, in the deicing step, the two conditions are combined, and the evaporation pipe 18 of the ice making frame 13 in FIG. 2A has a high hot gas temperature on the inlet side. Heated heavily. Accordingly, the ice 19 on the inlet side (left side in the figure) of the evaporation pipe 18 falls from the ice making frame 13 while being inclined by its own weight. Next, as shown in FIG. 2 (b), the ice 19 starts to fall from the outlet side (right side in the figure) of the evaporation pipe 18 (the ice 19 on the inlet side is slightly retracted), and finally FIG. As shown in (c), the ice 19 falls from the ice making frame 13. The ice making frame 13 shown in FIG. 2 does not include a grid-like partition as described above. However, as shown in FIG. 5, a lattice-like partition 56 is provided inside the ice making frame 13 to provide a large number of ice making frames. The chamber 10 may be defined. In this case, the ice generated in each ice making chamber 10 in the ice making unit 15 is in a state of being connected to each other with a rib-like portion at the open end of the partition 56. Therefore, if the inner surface of the ice making chamber 10 is rough, the ice connected by the ribs can be held by the partition 56 that defines each ice making chamber 10 and is difficult to fall during the deicing operation.

図2に関して説明したように、製氷室12の内部表面が粗いと、除氷の遅い蒸発管18の出口側の氷19が自重で落ち始めるまでに時間が掛かってしまう。また、入口側が先に大きく斜めに落ちかけることで、氷19が製氷室12に引っ掛かってしまう。すなわち、必要以上に氷19を溶かしてしまったり、部分的に氷19が落ちないまま除氷工程が終わってしまったりするので、例えばクローズドセル式の自動製氷機では、水皿42と製氷室12との間で氷19が噛んでしまうことがあった。また、前述したように、カシメ接合時に仕切板を潰す工程や、トーチろう付けによる局部加熱によって製氷部15は歪んでしまう。そこで歪み修正を必要とするが、この歪み修正が充分でない場合、除氷工程で製氷室12から氷19が落下する際に、蒸発管18の入口側と出口側とで大きなズレが発生し、上述したと同じ欠点を生じていた。   As described with reference to FIG. 2, if the inner surface of the ice making chamber 12 is rough, it takes time until the ice 19 on the outlet side of the evaporation pipe 18 that is slowly deiced starts to fall by its own weight. In addition, the ice 19 is caught in the ice making chamber 12 because the entrance side first falls largely diagonally. That is, the ice 19 is melted more than necessary, or the deicing process ends without the ice 19 partially falling. For example, in a closed cell type automatic ice maker, the water tray 42 and the ice making chamber 12 are used. Ice 19 may bite between the two. Moreover, as mentioned above, the ice making part 15 will be distorted by the process which crushes a partition plate at the time of caulking joining, or the local heating by torch brazing. Therefore, distortion correction is required, but when this distortion correction is not sufficient, when the ice 19 falls from the ice making chamber 12 in the deicing process, a large deviation occurs between the inlet side and the outlet side of the evaporation pipe 18, It had the same drawbacks as described above.

前記課題を解決し、所期の目的を達成するため請求項1に記載の発明は、
冷却板に製氷枠を設けて内部に製氷室を画成した製氷部と、
前記冷却板に配置されて、冷凍系から供給される冷媒を循環させて前記製氷室を冷却する蒸発管と、
前記製氷室へ製氷水を循環供給する製氷水供給部とからなり、
前記冷却板と製氷枠とからなる前記製氷部に無電解ニッケル−リンめっき被膜が施されていると共に、該無電解ニッケル−リンめっき被膜の表面粗さRa(算術平均粗さ)は0.4μm以下になっていることを要旨とする。
請求項1に係る発明によれば、製氷運転により生成された氷が接触している製氷室の内面におけるめっき被膜の表面粗さRaがJISの算術平均粗さで0.4μm以下と小さく抑えられているので、脱氷運転に際し製氷室から氷が自重で円滑に落下する。
In order to solve the problem and achieve the intended object, the invention according to claim 1
An ice making part having an ice making frame on the cooling plate and defining an ice making chamber inside;
An evaporator tube disposed on the cooling plate for circulating the refrigerant supplied from the refrigeration system to cool the ice making chamber;
An ice making water supply unit that circulates and supplies ice making water to the ice making chamber;
An electroless nickel-phosphorous plating film is applied to the ice making part composed of the cooling plate and the ice making frame, and the surface roughness Ra (arithmetic average roughness) of the electroless nickel-phosphorous plating film is 0.4 μm. The summary is as follows.
According to the first aspect of the present invention, the surface roughness Ra of the plating film on the inner surface of the ice making chamber that is in contact with the ice produced by the ice making operation can be suppressed to 0.4 μm or less in terms of JIS arithmetic average roughness. As a result, the ice falls smoothly from its ice making chamber during its deicing operation.

請求項2に記載の発明では、前記冷却板と製氷枠とは、接合材として硬ろうが使用され、加熱炉で硬ろう接合がされていることを要旨とする。
請求項2に係る発明によれば、冷却板と製氷枠とは炉中ろう付けによる全体加熱がなされているから、歪みが残留することなく、氷は製氷室から円滑に落下する。
The gist of the invention described in claim 2 is that the cooling plate and the ice making frame use hard solder as a joining material and are hard soldered in a heating furnace.
According to the second aspect of the invention, since the cooling plate and the ice making frame are entirely heated by brazing in the furnace, the ice falls smoothly from the ice making chamber without any distortion remaining.

請求項3に記載の発明では、前記製氷枠は、複数の横方向仕切板と縦方向仕切板とを格子状に組み付けてなる仕切体と、前記仕切体を外方から囲む側板としての枠体とから構成されることを要旨とする。   According to a third aspect of the present invention, the ice making frame includes a partition body formed by assembling a plurality of horizontal partition plates and vertical partition plates in a lattice shape, and a frame body as a side plate surrounding the partition body from the outside. It is made up of the following.

請求項4に記載の発明では、前記製氷水供給部は、前記製氷室を下向きに開口させた前記製氷部の下方に配置されて、製氷運転時に製氷水を前記製氷室へ供給するようになっていることを要旨とする。   According to a fourth aspect of the present invention, the ice making water supply unit is arranged below the ice making unit with the ice making chamber opened downward, and supplies ice making water to the ice making chamber during ice making operation. It is a summary.

請求項5に記載の発明では、前記製氷水供給部は、前記製氷部の上方に配置されて、製氷運転時に製氷水を前記製氷室へ上から供給するようになっていることを要旨とする。   The invention according to claim 5 is characterized in that the ice making water supply unit is arranged above the ice making unit and supplies ice making water to the ice making chamber from above during ice making operation. .

本発明によれば、蒸発管を配設した冷却板に製氷枠を設けて内部に製氷室を画成した自動製氷機において、前記製氷室に施した耐腐蝕用被膜の表面粗さの程度に起因して、除氷運転時に該製氷室から氷が円滑に脱落しない現象が有り得る。しかし、前記被膜を無電解ニッケル−リンめっき被膜とし、該被膜の表面粗さを0.4μm以下にすることで、円滑に氷が落下するようになる。   According to the present invention, in an automatic ice making machine in which an ice making frame is provided on a cooling plate provided with an evaporation tube to define an ice making chamber, the degree of surface roughness of the anticorrosion coating applied to the ice making chamber is reduced. As a result, there may be a phenomenon in which ice does not fall off smoothly from the ice making chamber during the deicing operation. However, when the coating film is an electroless nickel-phosphorus plating film and the surface roughness of the coating film is 0.4 μm or less, the ice falls smoothly.

本発明の実施例を適用した製氷部における氷が落下して行く状態を、(a)〜(c)の順で示す断面図である。It is sectional drawing which shows the state in which the ice in the ice making part to which the Example of this invention is applied falls in order of (a)-(c). 蒸発管を設けた冷却板と製氷枠とで構成した製氷部の断面図であって、(a)は蒸発管の入口に近い部位の氷が先に製氷室から落ち始める状態を示し、(b)は蒸発管の出口側の部位から氷が落ち始めた状態を示し、(c)は氷が製氷部から自重で落下する状態を示している。It is sectional drawing of the ice making part comprised with the cooling plate and ice-making frame which provided the evaporation pipe, Comprising: (a) shows the state where the ice of the site | part close | similar to the inlet of an evaporation pipe begins to fall from an ice making chamber first, (b ) Shows a state in which ice begins to fall from a portion on the outlet side of the evaporation tube, and (c) shows a state in which the ice falls from the ice making unit by its own weight. 噴射式製氷機における製氷部の基本構造と、該製氷部に設けた蒸発管に冷媒を供給する冷凍系の基本構成とを示す説明図である。It is explanatory drawing which shows the basic structure of the ice making part in an injection type ice making machine, and the basic composition of the freezing system which supplies a refrigerant | coolant to the evaporation pipe provided in this ice making part. 本発明の実施例が適用される製氷室を有するクローズドセル式自動製氷機の一部切欠側面図である。It is a partially cutaway side view of a closed cell type automatic ice making machine having an ice making chamber to which an embodiment of the present invention is applied. 図4に示す製氷部の斜視図であって、蒸発器を上部に配設した冷却板を有する製氷枠と仕切体とに分解した状態を示している。It is a perspective view of the ice making part shown in FIG. 4, Comprising: The state which decomposed | disassembled into the ice making frame and partition which have the cooling plate which arrange | positioned the evaporator in the upper part is shown. 図5に示す仕切体を、縦方向仕切体と横方向仕切体とに分解した状態で示す斜視図である。It is a perspective view which shows the partition shown in FIG. 5 in the state decomposed | disassembled into the vertical direction partition and the horizontal direction partition.

次に、本発明の実施例について、好適な実施例を挙げて以下説明する。なお、本発明が実施される対象は、先に述べたように、製氷部を水平に配置したクローズドセル式およびオープンセル式の製氷機に限られず、製氷部を縦または斜めに配置して該製氷部に上方から製氷水を供給する流下式の製氷機も含まれる。なお、前述した解決課題に関して、(1)製氷室の内面に施されているめっき被膜の表面粗さに起因する解決策を実施例1に説明し、(2)製氷部を製造する工程でトーチろう付けの採用に起因して、製氷部の歪み修正が充分でない場合の解決策を実施例2に説明する。   Next, preferred embodiments of the present invention will be described below. Note that the object of the present invention is not limited to the closed cell type and open cell type ice making machines in which the ice making units are arranged horizontally, as described above, and the ice making units are arranged vertically or diagonally. A flow-down type ice making machine that supplies ice making water to the ice making unit from above is also included. In addition, regarding the above-mentioned solution problems, (1) a solution caused by the surface roughness of the plating film applied to the inner surface of the ice making chamber is described in Example 1, and (2) the torch in the process of manufacturing the ice making part A solution when the distortion correction of the ice making part is not sufficient due to the use of brazing will be described in Example 2.

〔実施例1〕
前記製氷枠13と仕切体56との接合をろう付けで行った場合、前記製氷部15の表面にはフラックスの残渣が付着している。そこで、フラックスの残渣を洗浄剤や水等で洗い流したり、サンドブラスト等の手段で物理的に削り落としたりして製氷室表面の清浄化を行う。次に、表面洗浄処理を終えた製氷部15の表面(製氷枠13および仕切体56の内外表面の全て)に無電解ニッケル−リンめっき被膜を施す。この場合の無電解ニッケル−リンめっきの仕様は、リン濃度は10%以上(高リンタイプ)とし、膜厚は15μm以上とする。すなわち前記ニッケル−リンめっきの被膜は、前記製氷室12の耐腐蝕性を高めるためのものであって、耐腐蝕性確認試験を行った結果として15μm以上が良いことが判っている。なお、耐腐蝕性試験は5%NaCl+0.5%HCl水溶液を試験液とし、該試験液を試験槽温度35℃で試験片に噴霧し、該試験液をろう付けに必要な高温に曝露する腐蝕促進試験によった。
[Example 1]
When the ice making frame 13 and the partition 56 are joined by brazing, a flux residue adheres to the surface of the ice making portion 15. Therefore, the surface of the ice making chamber is cleaned by washing away the flux residue with a cleaning agent or water, or by physically scraping it off by means such as sandblasting. Next, an electroless nickel-phosphorus plating film is applied to the surface of the ice making unit 15 (all of the ice making frame 13 and the inner and outer surfaces of the partition 56) after the surface cleaning process. In this case, the electroless nickel-phosphorous plating specification is such that the phosphorus concentration is 10% or more (high phosphorus type) and the film thickness is 15 μm or more. That is, the nickel-phosphorus plating film is for enhancing the corrosion resistance of the ice making chamber 12, and as a result of performing a corrosion resistance confirmation test, it is known that the thickness is 15 μm or more. In the corrosion resistance test, 5% NaCl + 0.5% HCl aqueous solution is used as a test solution, and the test solution is sprayed onto a test piece at a test bath temperature of 35 ° C., and the test solution is exposed to a high temperature necessary for brazing. According to accelerated test.

無電解ニッケル−リンめっきの被膜処理は、ニッケル−リンめっき溶液の貯留槽へ前記製氷部15をそっくり浸漬させる所謂めっき浴が行われる。このとき、最外層となる無電解ニッケル−リンめっきの下地処理として、製氷部15の素地となる表面にニッケルやパラジウム等のめっきを施した後、その上に無電解ニッケル−リンめっきを施す2層処理としてもよい。更に、製氷部15の表面に銅めっきを施した上にニッケルめっきを施し、次いで該ニッケルめっきの上に前記無電解ニッケル−リンめっきを施す3層処理としてもよい。前記軟ろうによるはんだ付けをした場合は、錫や鉛の如く後工程における無電解めっきの析出を阻害する(触媒毒)ので、前記2層または3層めっきの如く、製氷部15の素地にニッケルめっきや銅めっきを施しておく必要性が高い。   The electroless nickel-phosphorus plating film treatment is performed by a so-called plating bath in which the ice making part 15 is completely immersed in a nickel-phosphorus plating solution storage tank. At this time, as a base treatment for the electroless nickel-phosphorous plating that is the outermost layer, after plating the surface of the ice making part 15 with nickel, palladium, or the like, electroless nickel-phosphorous plating is performed on the surface. It is good also as a layer process. Further, a three-layer process may be performed in which the surface of the ice making part 15 is plated with copper, then nickel is plated, and then the electroless nickel-phosphorus plating is performed on the nickel plating. When soldering with the soft solder, the deposition of electroless plating such as tin and lead is hindered (catalytic poison). Therefore, as with the two-layer or three-layer plating, nickel is applied to the base of the ice making part 15. There is a high need for plating or copper plating.

前述しためっき皮膜を2層処理または3層処理する場合、無電解ニッケル−リンめっきが膜厚15μm以上であれば、最も下層になるめっきの被膜は、例えば1μmの如く極く薄いものにしても良い。なお、前記被膜が15μmよりも小さいと、素地に達するピンホールを生ずることがあり、前記無電解ニッケル−リンめっきを施しても高い耐腐蝕性は得られない。   When the above-described plating film is processed in two layers or three layers, if the electroless nickel-phosphorous plating has a film thickness of 15 μm or more, the lowermost plating film may be made extremely thin, for example, 1 μm. good. In addition, when the said film is smaller than 15 micrometers, the pinhole which reaches a base may be produced, and even if it performs the said electroless nickel-phosphorus plating, high corrosion resistance is not acquired.

前記無電解ニッケル−リンめっきを製氷部15に生成する際には、該めっきの析出速度を、ニッケル−リンめっき溶液の濃度やPH、その他めっき浴の温度等を勘案して、10μm/hr(範囲としては12μm/hr以下)に調整する。これにより、前記製氷部15に施される無電解ニッケル−リンめっきの表面粗さRa(JISによる算術平均粗さ)を0.4μm以下にすることができる。   When the electroless nickel-phosphorous plating is produced in the ice making part 15, the plating deposition rate is set to 10 μm / hr (in consideration of the concentration of nickel-phosphorous plating solution, pH, temperature of the plating bath, etc. The range is adjusted to 12 μm / hr or less. Thereby, the surface roughness Ra (arithmetic mean roughness according to JIS) of the electroless nickel-phosphorous plating applied to the ice making part 15 can be reduced to 0.4 μm or less.

このように、前記製氷部15に施した無電解ニッケル−リンめっきの表面粗さRaを0.4μm以下にすると、図1に示すように、該製氷部15における製氷室12からの氷19の落下が円滑になされる。すなわち、図1(a)に示すように、前記蒸発管18の冷媒入口側と出口側とにおいて、前記製氷室12に対する氷19のズレが僅かになる。このため、図1(b)および図1(c)に示すように、氷19は製氷室12の内面に引っ掛かることがなく、水平に位置している製氷部15に対し平行姿勢を保って重力によりスムーズに落下する。従って、解決課題に述べたような氷19が前記製氷室12に引っ掛かって余分に融解したりすることがない。また、前記水皿42を使用する場合は、該水皿42と製氷部15との間で氷噛みを生じたりする不都合がなくなり、また除氷運転時における氷19の落下速度も短縮される。   Thus, when the surface roughness Ra of the electroless nickel-phosphorous plating applied to the ice making part 15 is 0.4 μm or less, the ice 19 from the ice making chamber 12 in the ice making part 15 is removed as shown in FIG. The fall is made smoothly. That is, as shown in FIG. 1A, the ice 19 is slightly displaced from the ice making chamber 12 between the refrigerant inlet side and the outlet side of the evaporation pipe 18. For this reason, as shown in FIGS. 1B and 1C, the ice 19 does not get caught on the inner surface of the ice making chamber 12, and keeps a parallel posture with respect to the ice making portion 15 located horizontally, and gravity is maintained. Will drop more smoothly. Therefore, the ice 19 as described in the problem to be solved is not caught by the ice making chamber 12 and melted excessively. In addition, when the water tray 42 is used, there is no inconvenience that an ice biting occurs between the water tray 42 and the ice making unit 15, and the falling speed of the ice 19 during the deicing operation is shortened.

〔実施例2〕
図5に関して説明した如く、前記冷却板14、前記製氷枠13および仕切体56を接合して前記製氷部15を構成する場合に、硬ろう付けによる接合を加熱炉で行うのが実施例2である。すなわち、ろう付けする際に、加熱炉により前記製氷部15を全体加熱することで、局部的な加熱による歪みが生じないようにするものである。なお、前記仕切体56と製氷枠13とをろう付け接合する際の手順については、例えば特開2006−118816号公報に開示されているので、加熱する前までの手順を以下に箇条書きにする。
(1)先ず、使用される部品は全て脱脂洗浄を行う。
(2)仕切板はカシメ用の突起がなく、また冷却板もカシメ穴を有しないものを利用する。
(3)仕切板を格子状に組み合わせる。
(4)冷却板に仕切板を配置する。
(5)仕切板と製氷枠を、ろう付けで接合するために、ろう材を配置する。このとき、シート状のもの(箔)や棒状のもの、線状のものを配置してもよいし、ペースト状のものを塗ってもよい。
(6)ろう付け温度に設定した加熱炉に製氷室を通すことで、ろう付け接合を行う。この時に蒸発管や他の部品の接合もろう付けにすると、一度に全てを接合することができる。
(7)接合が終わった製氷部は、表面にフラックス残渣等が付着しているので除去を行う。除去にあたっては洗浄剤や水、お湯で洗浄を行ったり、サンドブラスト等で物理的に削り落としたりしてもよい。
[Example 2]
As described with reference to FIG. 5, when the ice plate 15 is formed by joining the cooling plate 14, the ice making frame 13, and the partition 56, joining by hard brazing is performed in a heating furnace in the second embodiment. is there. That is, when brazing, the ice making unit 15 is entirely heated by a heating furnace so that distortion due to local heating does not occur. In addition, about the procedure at the time of brazing and joining the said partition body 56 and the ice making frame 13, since it is disclosed by Unexamined-Japanese-Patent No. 2006-118816, for example, the procedure before a heating is made into a bullet item below. .
(1) First, all parts used are degreased and cleaned.
(2) Use a partition plate that does not have caulking projections and a cooling plate that does not have caulking holes.
(3) Combine the partition plates in a grid pattern.
(4) A partition plate is disposed on the cooling plate.
(5) A brazing material is arranged to join the partition plate and the ice making frame by brazing. At this time, a sheet-like material (foil), a rod-like material, a linear material may be disposed, or a paste-like material may be applied.
(6) Brazing joining is performed by passing an ice making chamber through a heating furnace set to a brazing temperature. At this time, if the evaporator tube and other parts are joined together by brazing, all of them can be joined at once.
(7) The ice making part after joining is removed because flux residue and the like are adhered to the surface. For removal, it may be washed with a cleaning agent, water or hot water, or physically removed by sandblasting or the like.

前記の炉中ろう付けによる全体加熱で接合を行う際には、図示しない治具のクリアランスを熱膨張によっても接触しない寸法として、接合後の平坦度を0.6mm以下にする。これにより、製氷室からの氷の落下時に発生していた入口側と出口側との氷ズレが僅かとなり、円滑に氷が落下するため、氷が引っ掛かって余分に溶けたり、氷噛みを生じる不都合を解消することができる。また出口側が落ち始めて、氷全体がズレ落ちるまでの時間も短くなった。   When joining is performed by overall heating by brazing in the furnace, the clearance of a jig (not shown) is set so as not to contact even by thermal expansion, and the flatness after joining is set to 0.6 mm or less. As a result, the ice displacement between the inlet side and the outlet side that occurred when the ice from the ice making room falls is small, and the ice falls smoothly, so that the ice is caught and melts excessively, or the ice bites. Can be eliminated. Also, the time from when the exit side started to fall and the whole ice slipped was shortened.

12 製氷室,13 製氷枠,14 天板(冷却板),15 製氷部,16 冷凍系,
18 蒸発管,56 仕切体,58 側板(枠体),60 横方向仕切板,
62 縦方向仕切板
12 ice making room, 13 ice making frame, 14 top plate (cooling plate), 15 ice making unit, 16 refrigeration system,
18 evaporating pipe, 56 partition, 58 side plate (frame), 60 lateral partition plate,
62 Vertical divider

Claims (5)

冷却板(14)に製氷枠(13)を設けて内部に製氷室(12)を画成した製氷部(15)と、
前記冷却板(14)に配置されて、冷凍系(16)から供給される冷媒を循環させて前記製氷室(12)を冷却する蒸発管(18)と、
前記製氷室(12)へ製氷水を循環供給する製氷水供給部とからなり、
前記冷却板(14)と製氷枠(13)とからなる前記製氷部(15)に無電解ニッケル−リンめっき被膜が施されていると共に、該無電解ニッケル−リンめっき被膜の表面粗さRa(算術平均粗さ)は0.4μm以下になっている
ことを特徴とする自動製氷機。
An ice making part (15) in which an ice making frame (13) is provided on the cooling plate (14) to define an ice making chamber (12) inside;
An evaporation pipe (18) disposed on the cooling plate (14), for circulating the refrigerant supplied from the refrigeration system (16) to cool the ice making chamber (12),
An ice-making water supply unit that circulates and supplies ice-making water to the ice making chamber (12),
The ice making part (15) comprising the cooling plate (14) and the ice making frame (13) is provided with an electroless nickel-phosphorous plating film, and the surface roughness Ra ( An automatic ice maker characterized by an arithmetic average roughness of 0.4 μm or less.
前記冷却板(14)と製氷枠(13)とは、接合材として硬ろうが使用され、加熱炉で硬ろう接合がされている請求項1記載の自動製氷機。   The automatic ice maker according to claim 1, wherein the cooling plate (14) and the ice making frame (13) are made of hard solder as a joining material and are hard soldered in a heating furnace. 前記製氷枠(13)は、複数の横方向仕切板(60)と縦方向仕切板(62)とを格子状に組み付けてなる仕切体(56)と、前記仕切体(56)を外方から囲む側板としての枠体(58)とから構成される請求項1または2記載の自動製氷機。   The ice making frame (13) includes a partition body (56) formed by assembling a plurality of lateral partition plates (60) and longitudinal partition plates (62) in a lattice pattern, and the partition body (56) from the outside. The automatic ice maker according to claim 1 or 2, comprising a frame (58) as a surrounding side plate. 前記製氷水供給部は、前記製氷室(12)を下向きに開口させた前記製氷部(15)の下方に配置されて、製氷運転時に製氷水を前記製氷室(12)へ供給するようになっている請求項1〜3の何れか一項に記載の自動製氷機。   The ice making water supply unit is arranged below the ice making unit (15) with the ice making chamber (12) opened downward, and supplies ice making water to the ice making chamber (12) during ice making operation. The automatic ice making machine according to any one of claims 1 to 3. 前記製氷水供給部は、前記製氷部(15)の上方に配置されて、製氷運転時に製氷水を前記製氷室(12)へ上から供給するようになっている請求項1〜3の何れか一項に記載の自動製氷機。   The ice making water supply unit is arranged above the ice making unit (15) and supplies ice making water from above to the ice making chamber (12) during ice making operation. The automatic ice maker according to one item.
JP2016161536A 2016-08-19 2016-08-19 Automatic ice-making machine Pending JP2018028422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016161536A JP2018028422A (en) 2016-08-19 2016-08-19 Automatic ice-making machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016161536A JP2018028422A (en) 2016-08-19 2016-08-19 Automatic ice-making machine

Publications (1)

Publication Number Publication Date
JP2018028422A true JP2018028422A (en) 2018-02-22

Family

ID=61248334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016161536A Pending JP2018028422A (en) 2016-08-19 2016-08-19 Automatic ice-making machine

Country Status (1)

Country Link
JP (1) JP2018028422A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021533786A (en) * 2018-08-17 2021-12-09 コールドスナップ コーポレイション Serve a glass of chilled food and drink.
KR102337939B1 (en) * 2021-07-06 2021-12-14 포시엠컴퍼니(주) Ice maker

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021533786A (en) * 2018-08-17 2021-12-09 コールドスナップ コーポレイション Serve a glass of chilled food and drink.
JP7212225B2 (en) 2018-08-17 2023-01-25 コールドスナップ コーポレイション Serve one serving of chilled food and drink.
US11564402B2 (en) 2018-08-17 2023-01-31 Coldsnap, Corp. Providing single servings of cooled foods and drinks
US11627747B2 (en) 2018-08-17 2023-04-18 Coldsnap, Corp. Providing single servings of cooled foods and drinks
KR102337939B1 (en) * 2021-07-06 2021-12-14 포시엠컴퍼니(주) Ice maker

Similar Documents

Publication Publication Date Title
US10274239B2 (en) Automatic ice maker
JP7062679B2 (en) Hygienic evaporator assembly
JP6615103B2 (en) Evaporator assembly for ice making apparatus and ice making method
US10107538B2 (en) Ice cube evaporator plate assembly
US2064141A (en) Method of making refrigerating apparatus
KR100936691B1 (en) Refrigerant pipe for ice making and manufacturing method thereof
US2514469A (en) Method of fabricating heat exchangers
JP2018028422A (en) Automatic ice-making machine
US20050150250A1 (en) Evaporator device with improved heat transfer and method
US6247318B1 (en) Evaporator device for an ice maker and method of manufacture
JP5830188B1 (en) Flow-down type ice maker and method for manufacturing ice making shelf of flow-down type ice maker
JP2016217549A (en) Ice-making machinery
KR101266444B1 (en) Soak protrusion of ice making unit and ice making device comprising the same
JP2005090814A (en) Injection type ice-making machine
JP6712442B2 (en) Automatic ice machine
JP2005300023A (en) Ice-making compartment and manufacturing method thereof
KR101266445B1 (en) Soak protrusion of ice making unit
WO2018033397A1 (en) A cooling device comprising a clear ice making mechanism
RU111975U1 (en) COMPRESSOR REFRIGERATOR EVAPORATOR
JP2005226887A (en) Ice maker
KR20200142862A (en) Water-based ice maker that is harmless to the human body and can make various types of ice
JP2017003141A (en) Ice-making chamber
JP2005226919A (en) Ice making apparatus
JP2010025444A (en) Icemaker
JP2011052894A (en) Ice-making chamber and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200602