JP6712442B2 - Automatic ice machine - Google Patents

Automatic ice machine Download PDF

Info

Publication number
JP6712442B2
JP6712442B2 JP2015099249A JP2015099249A JP6712442B2 JP 6712442 B2 JP6712442 B2 JP 6712442B2 JP 2015099249 A JP2015099249 A JP 2015099249A JP 2015099249 A JP2015099249 A JP 2015099249A JP 6712442 B2 JP6712442 B2 JP 6712442B2
Authority
JP
Japan
Prior art keywords
ice making
ice
electroless nickel
plating film
phosphorus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015099249A
Other languages
Japanese (ja)
Other versions
JP2016217547A (en
Inventor
輝道 原
輝道 原
野津 真澄
真澄 野津
誠治 小林
誠治 小林
門脇 静馬
静馬 門脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOSHIZAKI KABUSHIKI KAISHA
Original Assignee
HOSHIZAKI KABUSHIKI KAISHA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2015099249A priority Critical patent/JP6712442B2/en
Application filed by HOSHIZAKI KABUSHIKI KAISHA filed Critical HOSHIZAKI KABUSHIKI KAISHA
Priority to CN201680007923.7A priority patent/CN107429962A/en
Priority to EP16792427.3A priority patent/EP3242097B1/en
Priority to AU2016261527A priority patent/AU2016261527B2/en
Priority to ES16792427T priority patent/ES2877134T3/en
Priority to KR1020177018839A priority patent/KR20180006361A/en
Priority to PCT/JP2016/058191 priority patent/WO2016181702A1/en
Priority to US15/541,256 priority patent/US10274239B2/en
Publication of JP2016217547A publication Critical patent/JP2016217547A/en
Application granted granted Critical
Publication of JP6712442B2 publication Critical patent/JP6712442B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemically Coating (AREA)

Description

この発明は、蒸発器により冷却される製氷部に製氷水を供給して氷塊を連続的に製造する自動製氷機に関するものであって、更に詳しくは、前記製氷部の耐腐蝕性を向上し得る被膜に関するものである。 The present invention relates to an automatic ice making machine for continuously producing ice blocks by supplying ice making water to an ice making section cooled by an evaporator, and more specifically, it can improve corrosion resistance of the ice making section. It relates to a coating.

多量の氷塊を連続的に製造する自動製氷機が、喫茶店やレストラン等の施設その他の厨房において好適に使用されている。これらの自動製氷機としては、下向きに開口する多数の製氷小室に製氷水を下方から供給して所要形状の氷を連続的に製造する噴射式自動製氷機や、傾斜させた製氷板の上面に製氷水を流下させて該製氷板に板状氷を製造する流下式自動製氷機等が存在する。 An automatic ice making machine for continuously producing a large amount of ice blocks is suitably used in facilities such as coffee shops and restaurants and other kitchens. These automatic ice machines include jet-type automatic ice machines that continuously supply ice making water to a large number of downwardly opening ice making chambers to produce ice of a desired shape, and the top surface of an inclined ice making plate. There is a flow-down type automatic ice-making machine or the like that flows ice making water to produce plate-like ice on the ice making plate.

例えば、図2に示すように、噴射式自動製氷機として所謂クローズドセルタイプの製氷機構13を備えたものがある。このクローズドセルタイプの製氷機構13は、下方に開口する多数の製氷小室12が画成された製氷部としての製氷室10を備え、該製氷室10の下方には、傾動可能な水皿40が支軸42に枢支されている。この水皿40の下部には、給水部43から供給される製氷水を貯留する製氷水タンク44が一体的に設けられている。前記製氷室10の上面には、冷凍系46から導出した蒸発器48が蛇行配置され、圧縮機CM、凝縮器CDおよび膨張弁EVからなる前記冷凍系46からの冷媒を該蒸発器48に循環供給することで、該製氷室10を氷点下にまで冷却するようになっている。なお、前記圧縮機CMの吐出側と蒸発器48の吸込側とはバイパス管50で接続され、該バイパス管50にホットガス弁HVが設けられている。 For example, as shown in FIG. 2, there is an injection type automatic ice making machine provided with a so-called closed cell type ice making mechanism 13. The closed-cell type ice making mechanism 13 includes an ice making chamber 10 as an ice making section in which a large number of ice making small chambers 12 opening downward are defined. Below the ice making chamber 10, a tiltable water tray 40 is provided. It is pivotally supported by the support shaft 42. An ice making water tank 44 for storing the ice making water supplied from the water supply unit 43 is integrally provided at the lower portion of the water tray 40. An evaporator 48 led out from a refrigeration system 46 is arranged in a meandering manner on the upper surface of the ice making chamber 10, and a refrigerant from the refrigeration system 46 including a compressor CM, a condenser CD and an expansion valve EV is circulated to the evaporator 48. By supplying, the ice making chamber 10 is cooled to below the freezing point. The discharge side of the compressor CM and the suction side of the evaporator 48 are connected by a bypass pipe 50, and the bypass pipe 50 is provided with a hot gas valve HV.

前記自動製氷機の製氷運転時には、前記製氷小室12を下方から閉成した前記水皿40から製氷水を各製氷小室12に噴射供給することで、強制冷却されている該製氷小室12内に氷塊が形成される。また、除氷運転時には、前記水皿40を斜め下方に傾動させて前記製氷小室12を開放すると共に、前記ホットガス弁HVを開いて前記圧縮機CMからのホットガスを前記蒸発器48へ供給することで、該製氷小室12と氷塊との氷結を融解させ、該氷塊を自重により下方に位置する貯氷室へ落下させる。 During the ice making operation of the automatic ice maker, ice-making water is jetted from each of the water trays 40 that closes the ice making compartments 12 from below to the ice making compartments 12, so that the ice blocks are forcedly cooled into the ice making compartments 12. Is formed. Further, during the deicing operation, the water tray 40 is tilted downward to open the small ice making chamber 12, and the hot gas valve HV is opened to supply hot gas from the compressor CM to the evaporator 48. By doing so, the freezing between the ice making compartment 12 and the ice blocks is melted, and the ice blocks are dropped by their own weight into the ice storage chamber located below.

図3は、噴射式自動製氷機に配設される製氷室10の分解斜視図である。この製氷室10は、下方に開放した箱状の外枠14と、該外枠14の内部に配設されて、前記複数の製氷小室12を画成する格子状の仕切部材30とから基本的に構成されている。また、前記外枠14の上面には、前記蒸発器としての冷却パイプ48が密着的に蛇行配置されている。この製氷室10は、所要の形状に成形された外枠14、仕切部材30および冷却パイプ48等の構成部材を組付けて製作される。すなわち、製氷室10は、金属板を折り曲げて箱状に成形された前記外枠14の内部に、複数の金属板を格子状に組立てた前記仕切部材30を収容すると共に、外枠14の上面に長尺の中空パイプを折り曲げて蛇行状とした前記冷却パイプ48を配置して組立てられる。そして、前記外枠14と仕切部材30とは、カシメ固定やろう付け等の手段により接合され、外枠14と冷却パイプ48とはろう付けにより接合される。なお、前記カシメ固定を行う場合は、前記仕切部材30の上部に突起31を設けると共に、前記外枠の上面にカシメ孔14aを開設し、該カシメ孔14aに挿通して外枠14の上面に突出させた突起31をハンマー等で圧潰することで行う。また、前記仕切部材30を構成する各仕切板30aの側端部に係止片を設けると共に、前記外枠14における前記係止片と対応する位置に該係止片と係合する係合溝を設け、両部材14,30を位置決めするようにしても良い。 FIG. 3 is an exploded perspective view of the ice making chamber 10 arranged in the jet type automatic ice making machine. The ice making chamber 10 is basically composed of a box-shaped outer frame 14 that opens downward, and a grid-like partition member 30 that is disposed inside the outer frame 14 and that defines the plurality of ice making small chambers 12. Is configured. A cooling pipe 48 serving as the evaporator is closely arranged in a meandering manner on the upper surface of the outer frame 14. The ice making chamber 10 is manufactured by assembling the outer frame 14, the partitioning member 30, the cooling pipe 48, and the like, which are formed into a desired shape, into the components. That is, the ice making chamber 10 accommodates the partition member 30 in which a plurality of metal plates are assembled in a lattice shape inside the outer frame 14 formed by bending a metal plate into a box shape, and at the same time, the upper surface of the outer frame 14 is accommodated. The long cooling pipe 48 is bent and a meandering cooling pipe 48 is arranged. The outer frame 14 and the partition member 30 are joined by means such as caulking fixing or brazing, and the outer frame 14 and the cooling pipe 48 are joined by brazing. When the caulking is performed, the protrusion 31 is provided on the partition member 30, and the caulking hole 14a is formed in the upper surface of the outer frame, and the caulking hole 14a is inserted into the upper surface of the outer frame 14. This is performed by crushing the projected protrusion 31 with a hammer or the like. Further, a locking piece is provided at a side end portion of each partition plate 30a that constitutes the partition member 30, and an engaging groove that engages with the locking piece at a position corresponding to the locking piece in the outer frame 14. May be provided to position both members 14 and 30.

前記外枠14、仕切部材30および冷却パイプ48などの製氷室10の構成部材は、素地16(図4参照)として熱伝導率の良い銅等の金属材料が使用され、冷却パイプ48の内部を循環する冷媒との熱交換を良好に行い得るようになっている。この銅等からなる素地16は、熱伝導率に優れるが錆び易いので、図4に拡大して示すように、前記製氷室10の表面には、防錆処理として溶融錫めっき被膜20を形成するのが一般的である。前記融錫めっき被膜20は、溶融させた錫を主成分とする錫浴中に、各構成部材14,30,48が組付けられた製氷室10の全体をそっくり浸すことで、該製氷室10の表面に形成される。なお、このめっき処理は、前記各構成部材14,30,48に対して個別に行う場合もあり、この場合、前記製氷室10は、めっき処理後の各構成部材14,30,48を組付けて組立てられる。前述した表面に溶融錫めっき被膜を施した製氷室を備える自動製氷機は、例えば、特許文献1に開示されている。 The constituent members of the ice making chamber 10, such as the outer frame 14, the partition member 30, and the cooling pipe 48, are made of a metal material such as copper having high thermal conductivity as the base material 16 (see FIG. 4). The heat exchange with the circulating refrigerant can be favorably performed. Since the base material 16 made of copper or the like is excellent in thermal conductivity but easily rusts, as shown in the enlarged view of FIG. Is common. The soluble Torusuzu plating film 20 is, in Suzuyoku composed mainly of melted tin, by entirely immersing the whole of the ice making chamber 10 to each component 14,30,48 is assembled, the formulation icehouse It is formed on the surface of 10. In addition, this plating process may be performed individually for each of the constituent members 14, 30, 48. In this case, the ice-making chamber 10 is assembled with the constituent members 14, 30, 48 after the plating process. Assembled. An automatic ice-making machine including an ice-making chamber whose surface is coated with a hot-dip tinned coating is disclosed in, for example, Patent Document 1.

特開2005−30702号公報JP, 2005-30702, A

前記溶融錫めっき被膜は、銅等からなる素地に較べると錆び難いが、使用雰囲気に酸化性物質等が含まれている場合、経時的に錆等の腐蝕生成物を生じることがある。この腐蝕生成物はめっき被膜から剥がれ易いため、該腐蝕生成物が氷塊に混入する等の問題が指摘される。また、前記溶融錫めっき被膜は、次亜塩素ナトリウムや電解酸性水等の殺菌剤に対する耐性が低いので、前記被膜を形成した製氷室をこれらの薬剤で殺菌処理するのには適さない。 The hot-dip tinned coating is less likely to rust than a base material made of copper or the like, but when the atmosphere used contains an oxidizing substance or the like, corrosion products such as rust may occur over time. Since this corrosion product is easily peeled off from the plating film, problems such as mixing the corrosion product with ice blocks are pointed out. Further, the hot-dip plated film has low resistance to bactericidal agents such as sodium hypochlorite and electrolytic acid water, and therefore is not suitable for sterilizing the ice-making chamber in which the film is formed with these agents.

本発明は、従来技術に係る自動製氷機に内在する前記諸問題に鑑み、これらを好適に解決するべく提案されたものであって、製氷部の耐腐蝕性を向上させた自動製氷機を提供することを目的とする。 The present invention has been proposed in order to solve these problems in view of the problems inherent in the automatic ice making machine according to the prior art, and provides an automatic ice making machine with improved corrosion resistance of the ice making unit. The purpose is to do.

前記課題を克服し、所期の目的を達成するため、請求項1に係る発明は、蒸発器により冷却される製氷部に製氷水を循環供給して所要形状の氷を生成する自動製氷機において、前記製氷部の最外層に、10%〜15%のリン成分を含有した無電解ニッケル−リンめっき被膜が15μm以上の厚みで形成され、前記無電解ニッケル−リンめっき被膜は、ろう付けによる部材の接合がなされた後の前記製氷部における銅からなる素地の外表面に直接形成されたものであることを要旨とする。 In order to overcome the above-mentioned problems and achieve a desired object, the invention according to claim 1 is an automatic ice-making machine that circulates and supplies ice-making water to an ice-making unit cooled by an evaporator to produce ice of a required shape. An electroless nickel-phosphorus plating film containing a phosphorus component of 10% to 15% is formed in a thickness of 15 μm or more on the outermost layer of the ice making part, and the electroless nickel-phosphorus plating film is a member formed by brazing. the der Rukoto which junction is directly formed on the outer surface of the base material made of copper in the ice making unit after being made to the subject matter.

請求項1に係る発明によれば、製氷部の最外層に形成された無電解ニッケル−リンめっき被膜により、該製氷部の耐腐蝕性を向上し得る。このため、従来の製氷部では腐蝕が進行してしまう使用雰囲気の下であっても、腐蝕の発生が抑えられるので氷の製造を行うことができる。また、殺菌剤に対する耐腐蝕性も高いので、殺菌剤を使用したメンテナンスにより製氷部を衛生に保つことが可能となる。更に、製氷部の最外層に形成された無電解ニッケル−リンめっき被膜により、該製氷部の耐腐蝕性が向上するので、素地の腐蝕を防ぐ目的で該素地に多層の被膜を施す必要がなく、製造効率を高めることができる。 According to the invention of claim 1, the electroless nickel-phosphorus plating film formed on the outermost layer of the ice making portion can improve the corrosion resistance of the ice making portion. Therefore, even in a use atmosphere in which the conventional ice-making part is corroded, the generation of corrosion can be suppressed, so that ice can be manufactured. Further, since the antibacterial agent has a high corrosion resistance, it is possible to maintain the sanitary condition of the ice making part by maintenance using the antibacterial agent. Furthermore, since the electroless nickel-phosphorus plating film formed on the outermost layer of the ice making portion improves the corrosion resistance of the ice making portion, it is not necessary to apply a multi-layer coating to the base material for the purpose of preventing corrosion of the base material. The manufacturing efficiency can be increased.

本発明に係る自動製氷機によれば、製氷部の耐腐蝕性が向上するため、錆等の腐蝕生成物が製氷水や氷に混入することがなく、食品衛生の信頼性を高め得る。 According to the automatic ice maker according to the present invention, since the corrosion resistance of the ice making part is improved, corrosion products such as rust are not mixed in the ice making water or ice, and the reliability of food hygiene can be improved.

実施例に係る製氷室の表層部を拡大した断面図であって、(a)は、素地の外表面に無電解ニッケル−リンめっき被膜を施したものであり、(b)は、(a)の無電解ニッケル−リンめっき被膜の下に下地層を設けたものであり、(c)は、(b)の素地と下地層との間に調整層を設けたものである。It is sectional drawing which expanded the surface layer part of the ice making chamber which concerns on an Example, (a) is what applied the electroless nickel-phosphorus plating film to the outer surface of a base material, (b) is (a). The underlayer is provided under the electroless nickel-phosphorus plating film, and the adjustment layer is provided between the base material and the underlayer in (b). 噴射式自動製氷機の概略構成図である。It is a schematic block diagram of an injection type automatic ice maker. 従来技術に係る製氷室の分解斜視図である。It is an exploded perspective view of an ice making room concerning a prior art. 図3に示す製氷室の表層部を拡大した断面図である。It is sectional drawing which expanded the surface layer part of the ice making room shown in FIG.

次に、本発明に係る自動製氷機の好適な実施例について、添付図面を参照しながら説明する。実施例では、製氷部として所謂クローズドセルタイプの噴射式自動製氷機で用いられる製氷室について説明する。前記製氷部としては、水皿を介さずに製氷水を噴射供給する所謂オープンセルタイプの噴射式自動製氷機の製氷室や、製氷面に製氷水を流下する流下式自動製氷機の製氷板などであってもよい。なお、実施例で説明する製氷室は、図3で説明した従来の製氷室と基本的な構成は共通するため、既出の部材については、同じ参照符号を使用してある。 Next, a preferred embodiment of the automatic ice making machine according to the present invention will be described with reference to the accompanying drawings. In the embodiment, an ice making chamber used in a so-called closed cell type injection type automatic ice making machine will be described as an ice making section. As the ice making unit, an ice making chamber of a so-called open cell type injection type automatic ice making machine that supplies ice making water without passing through a water tray, an ice making plate of a downflow type automatic ice making machine that makes the ice making surface flow down, etc. May be Since the ice making chamber described in the embodiment has the same basic configuration as the conventional ice making chamber described in FIG. 3, the same reference numerals are used for the already-explained members.

(自動製氷機について)
実施例に係る自動製氷機は、図3で説明した従来の製氷室10と同様に、蒸発器としての冷却パイプ48により冷却される製氷室(製氷部)10に製氷水を循環供給して所要形状の氷を生成する。また、前記製氷室10は、下方に開放した箱状の外枠14と、該外枠14の内部に配設されて、複数の製氷小室を画成する格子状の仕切部材30とから基本的に構成され、外枠14の上面に冷却パイプ48が密着的に蛇行配置されている。
(About automatic ice machine)
The automatic ice maker according to the embodiment requires the ice making water to be circulated and supplied to the ice making chamber (ice making unit) 10 which is cooled by the cooling pipe 48 as the evaporator, like the conventional ice making chamber 10 described in FIG. Generates ice in shape. Further, the ice making chamber 10 is basically composed of a box-shaped outer frame 14 opened downward, and a grid-like partition member 30 arranged inside the outer frame 14 to define a plurality of ice making small chambers. The cooling pipe 48 is closely arranged in a meandering manner on the upper surface of the outer frame 14.

(製氷室10について)
前記製氷室10を構成する箱状の外枠14、格子状の仕切部材30および冷却パイプ48は、図1に示すように、銅等の熱伝導性に優れた金属や合金等を材質としており、その素地16の最外層に無電解ニッケル−リンめっき被膜22が形成されている。ここで、製氷室10の最外層とは、該製氷室10における外部に露出する面に形成された層である。なお、製氷室10の露出面の一部に無電解ニッケル−リンめっき被膜22を形成しない領域があってもよい。図1(a)に示すように、前記無電解ニッケル−リンめっき被膜22は、前記素地16の外表面に接触して設けられていてもよく、図1(b)に示すように、無電解ニッケル−リンめっき被膜22の下地として、該被膜22の下層にニッケルやパラジウム等のめっき被膜からなる下地層24を設けてもよい。また、図1(c)に示すように、前記素地16の表面を整えるために、該素地16の表面に銅等のめっき被膜からなる調整層26を設けてもよい。なお前記素地16が、後述する無電解ニッケル−リンめっき処理でのニッケルの析出を阻害する錫や鉛などの元素を含んでいる場合には、該素地16の表面に前記下地層24を施すのが好ましい。すなわち、前記下地層24および調整層26は、前記素地16の表面状態や無電解ニッケル−リンめっき被膜22を施す下地の表面状態などに応じて適宜実施される。なお、前記下地層24および調整層26は、前記製氷室10の外面に露出しないので、表面状態を変更し得るものであればよい。例えば、下地層24および調整層26の厚さは、1μm程度であってもよい。
(About ice making room 10)
As shown in FIG. 1, the box-shaped outer frame 14, the lattice-shaped partition member 30, and the cooling pipe 48 that constitute the ice making chamber 10 are made of a metal or alloy having excellent thermal conductivity such as copper. An electroless nickel-phosphorus plating film 22 is formed on the outermost layer of the base material 16. Here, the outermost layer of the ice making chamber 10 is a layer formed on the surface of the ice making chamber 10 exposed to the outside. A part of the exposed surface of the ice making chamber 10 may have a region where the electroless nickel-phosphorus plating film 22 is not formed. As shown in FIG. 1( a ), the electroless nickel-phosphorus plating coating 22 may be provided in contact with the outer surface of the base material 16, and as shown in FIG. As a base of the nickel-phosphorus plated coating 22, a base layer 24 made of a plated coating of nickel, palladium or the like may be provided below the coating 22. Moreover, as shown in FIG. 1C, an adjustment layer 26 made of a plating film of copper or the like may be provided on the surface of the base material 16 in order to arrange the surface of the base material 16. When the base material 16 contains an element such as tin or lead that inhibits the precipitation of nickel in the electroless nickel-phosphorus plating process described later, the underlayer 24 is applied to the surface of the base material 16. Is preferred. That is, the base layer 24 and the adjustment layer 26 are appropriately formed according to the surface condition of the base material 16 and the surface condition of the base on which the electroless nickel-phosphorus plating film 22 is applied. Since the underlayer 24 and the adjustment layer 26 are not exposed to the outer surface of the ice making chamber 10, it is sufficient that the surface state can be changed. For example, the thickness of the base layer 24 and the adjustment layer 26 may be about 1 μm.

(無電解ニッケル−リンめっき被膜22について)
前記製氷室10の最外層に形成された無電解ニッケル−リンめっき被膜22は、10%〜15%(質量パーセント濃度、以下同様)のリン成分を含有している所謂高リンタイプである。また、図1(a)〜(c)に示すように、前記無電解ニッケル−リンめっき被膜22は、その膜厚tが15μm以上の厚みとなるよう形成されている。なお、無電解ニッケル−リンめっき被膜22の膜厚を15μm以上とすることで、前記素地16または前記下地層24や調整層26に達するピンホールの発生を抑えることが、後述する耐腐蝕性確認試験により確認されている。
(About electroless nickel-phosphorus plating film 22)
The electroless nickel-phosphorus plating film 22 formed on the outermost layer of the ice making chamber 10 is a so-called high phosphorus type containing 10% to 15% (mass percent concentration, the same applies hereinafter) of a phosphorus component. Further, as shown in FIGS. 1A to 1C, the electroless nickel-phosphorus plating film 22 is formed so that the film thickness t is 15 μm or more. By setting the thickness of the electroless nickel-phosphorus plating film 22 to 15 μm or more, it is possible to suppress the generation of pinholes that reach the substrate 16 or the underlayer 24 or the adjustment layer 26. Confirmed by testing.

(無電解ニッケル−リンめっき処理について)
ここで、前記無電解ニッケル−リンめっき被膜22を形成する無電解ニッケル−リンめっき処理について説明する。無電解ニッケル−リンめっき処理は、硫酸ニッケルなどのニッケルを含む金属塩と、次亜リン酸ナトリウムなどの還元剤とを主成分とするニッケル−リンめっき溶液の貯留槽へ、前記製氷室10をそっくり浸漬させる所謂どぶ漬けで行われる。前記ニッケル−リンめっき溶液は、形成される無電解ニッケル−リンめっき被膜22におけるリン成分の濃度が、10%〜15%となるよう調整される。また、前記ニッケル−リンめっき溶液には、所要の触媒が添加されることもある。なお、前記素地16と無電解ニッケル−リンめっき被膜22との間に前記調整層26や前記下地層24を設ける場合には、これらの表面処理を施した後で無電解ニッケル−リンめっき処理を行う。前記貯留槽に浸漬された製氷室10の最外層には、前記金属塩由来のニッケル陽イオンが還元されて析出することでニッケル合金からなる前記無電解ニッケル−リンめっき被膜22が形成される。前述の如く、無電解ニッケル−リンめっき処理は、無電解ニッケル−リンめっき被膜22の膜厚が15μm以上となるまで行う。なお、無電解ニッケル−リンめっき処理は、前記外枠14、仕切部材30および冷却パイプ48等の構成部材に対して個別に行い、該めっき処理後の各構成部材14,30,48を組付けるようにしてもよい。
(About electroless nickel-phosphorus plating)
Here, the electroless nickel-phosphorus plating treatment for forming the electroless nickel-phosphorus plating film 22 will be described. In the electroless nickel-phosphorus plating treatment, the ice-making chamber 10 is placed in a storage tank of a nickel-phosphorus plating solution containing a metal salt containing nickel such as nickel sulfate and a reducing agent such as sodium hypophosphite as main components. It is performed by so-called dobu-zuke, which is a soaking process. The nickel-phosphorus plating solution is adjusted so that the concentration of the phosphorus component in the formed electroless nickel-phosphorus plating film 22 is 10% to 15%. Further, a required catalyst may be added to the nickel-phosphorus plating solution. When the adjustment layer 26 and the underlayer 24 are provided between the base material 16 and the electroless nickel-phosphorus plating film 22, an electroless nickel-phosphorus plating treatment is performed after the surface treatments are performed. To do. In the outermost layer of the ice making chamber 10 immersed in the storage tank, the electroless nickel-phosphorus plating film 22 made of a nickel alloy is formed by reducing and depositing nickel cations derived from the metal salt. As described above, the electroless nickel-phosphorus plating treatment is performed until the film thickness of the electroless nickel-phosphorus plating film 22 becomes 15 μm or more. In addition, the electroless nickel-phosphorus plating treatment is individually performed on the constituent members such as the outer frame 14, the partition member 30 and the cooling pipe 48, and the constituent members 14, 30, 48 after the plating treatment are assembled. You may do it.

〔実施例の作用〕
次に、実施例に係る自動製氷機の作用について説明する。前記製氷室10の最外層に形成された前記無電解ニッケル−リンめっき被膜22は、合金であるため、大抵の有機溶剤には全く浸食されず、有機酸、塩類、アルカリ類に対しても良好な耐腐蝕性を示し、非常に錆びにくいといった利点がある。更に、前記無電解ニッケル−リンめっき被膜22は、その膜厚を15μm以上としたことで、前記素地16または前記下地層24や調整層26に達するピンホールの発生が抑えられ、前述の良好な耐腐蝕性を充分に発揮し得る。また、前記無電解ニッケル−リンめっき被膜22の含有するリン成分の濃度を10%〜15%としたことで、リン成分の濃度を10%以下とした場合に較べて耐腐蝕性に優れている。なお、耐腐蝕性については、後述する耐腐蝕性確認試験により確認されている。なお、前記製氷室10の最外層に施されるめっき被膜は、その膜厚を10μm以下とするのが一般的である。これは、被膜の形成には時間を要するという製造上の理由や、膜厚を大きくすることで熱伝導率が低下したりめっき被膜が剥がれ易くなったりする等の理由に由来する。
[Operation of Example]
Next, the operation of the automatic ice maker according to the embodiment will be described. Since the electroless nickel-phosphorus plating film 22 formed on the outermost layer of the ice making chamber 10 is an alloy, it is not corroded by most organic solvents at all and is good for organic acids, salts and alkalis. It has excellent corrosion resistance and is extremely resistant to rust. Further, the electroless nickel-phosphorus plating film 22 has a film thickness of 15 μm or more, so that the occurrence of pinholes reaching the substrate 16, the underlayer 24, and the adjustment layer 26 is suppressed, and the above-mentioned favorable results are obtained. Corrosion resistance can be sufficiently exhibited. Further, by setting the concentration of the phosphorus component contained in the electroless nickel-phosphorus plating film 22 to 10% to 15%, the corrosion resistance is excellent as compared with the case where the concentration of the phosphorus component is 10% or less. .. The corrosion resistance has been confirmed by a corrosion resistance confirmation test described later. The plating film applied to the outermost layer of the ice making chamber 10 generally has a thickness of 10 μm or less. This is because of the manufacturing reason that it takes time to form the coating film, and the reason that the thermal conductivity decreases and the plated coating film is easily peeled off by increasing the film thickness.

実施例に係る製氷室10は、前述の如く優れた耐腐蝕性を有するので、図3で説明した従来の製氷室10では腐蝕が進行する環境であっても自動製氷機を設置して製氷を行うことができる。また、前記無電解ニッケル−リンめっき被膜22は、前述の如く優れた耐腐蝕性を発揮するので次亜塩素酸ナトリウムや電解酸性水等の殺菌剤により腐蝕され難い。このため、前記殺菌剤を使用した殺菌処理などのメンテナンスを行うことができ、製氷室10をより衛生に保つことができる。また、前記製氷室10は、前記無電解ニッケル−リンめっき被膜22により耐腐蝕性が高められるので、該素地16の腐蝕を防ぐ目的で無電解ニッケル−リンめっき被膜22の下層に施される被膜を省略することもできる。このため、図1(a)に示す如く、前記無電解ニッケル−リンめっき被膜22を前記素地16の外表面に直接形成しても、腐蝕の発生を効果的に抑制できる。すなわち、素地16の外表面に接触して無電解ニッケル−リンめっき被膜22を形成した場合には、製氷室10の表面処理に要する手間を削減することができ、製造効率を高める効果も期待できる。なお、図1(b)および図1(c)に示すように、多層の被膜を施した場合には、腐蝕防止の確実性が高められる。 Since the ice making chamber 10 according to the embodiment has excellent corrosion resistance as described above, in the conventional ice making chamber 10 described with reference to FIG. 3, an automatic ice making machine is installed to perform ice making even in an environment where corrosion progresses. It can be carried out. Further, since the electroless nickel-phosphorus plating film 22 exhibits excellent corrosion resistance as described above, it is hard to be corroded by a disinfectant such as sodium hypochlorite or electrolytic acid water. Therefore, maintenance such as sterilization using the sterilizer can be performed, and the ice making chamber 10 can be kept more hygienic. Further, since the corrosion resistance of the ice making chamber 10 is enhanced by the electroless nickel-phosphorus plating coating 22, a coating applied to the lower layer of the electroless nickel-phosphorus plating coating 22 for the purpose of preventing the corrosion of the base material 16. Can be omitted. Therefore, as shown in FIG. 1A, even if the electroless nickel-phosphorus plating film 22 is directly formed on the outer surface of the base material 16, the occurrence of corrosion can be effectively suppressed. That is, when the electroless nickel-phosphorus plating film 22 is formed in contact with the outer surface of the base material 16, the labor required for the surface treatment of the ice making chamber 10 can be reduced, and the effect of improving the manufacturing efficiency can be expected. .. As shown in FIGS. 1(b) and 1(c), when a multilayer coating is applied, the certainty of preventing corrosion is enhanced.

〔実験例〕
実施例の製氷室10に関して耐腐蝕性確認試験を行い、耐腐蝕性を確認した。また、比較例として、リン成分の含有濃度を8%とした比較例1、無電解ニッケル−リンめっき被膜22の膜厚を15μmより薄くした比較例2および比較例3、前記無電解ニッケル−リンめっき被膜22に変えて溶融錫めっきを施した比較例4および比較例5についても、耐腐蝕性確認試験を行った。実験例1〜6および比較例1〜3では、実施例の如く無電解ニッケル−リンめっき被膜22を施した試験片に対して試験を行っている。但し、比較例1における無電解ニッケル−リンめっき被膜22のリン成分含有濃度、比較例2および比較例3における無電解ニッケル−リンめっき被膜22の膜厚については、実施例とは変えてある。また、比較例4および比較例5では、図3で説明した従来の製氷室10の如く溶融錫めっきを施した試験片に対して試験を行っている。なお、各実験例および比較例の諸条件は表1に記載されている。実験例1、実験例2、比較例1、比較例2および比較例3に対しては、後述する試験Aを行い、実験例3、実験例4および比較例4に対しては、後述する試験Bを行い、実験例5、実験例6および比較例5に対しては、後述する試験Cを行った。
[Experimental example]
A corrosion resistance confirmation test was performed on the ice making chamber 10 of the example to confirm the corrosion resistance. Further, as comparative examples, Comparative Example 1 in which the content concentration of the phosphorus component was 8%, Comparative Examples 2 and 3 in which the film thickness of the electroless nickel-phosphorus plating film 22 was made thinner than 15 μm, and the above electroless nickel-phosphorus The corrosion resistance confirmation test was also performed for Comparative Examples 4 and 5 in which the tin coating was applied instead of the plating film 22. In Experimental Examples 1 to 6 and Comparative Examples 1 to 3, the test is performed on the test piece provided with the electroless nickel-phosphorus plated coating 22 as in the example. However, the phosphorus component content concentration of the electroless nickel-phosphorus plating film 22 in Comparative Example 1 and the film thickness of the electroless nickel-phosphorus plating film 22 in Comparative Examples 2 and 3 are different from those of the examples. Further, in Comparative Example 4 and Comparative Example 5, the test is performed on a test piece plated with molten tin as in the conventional ice making chamber 10 described in FIG. The conditions of each experimental example and comparative example are shown in Table 1. The test A described below is performed on the experimental example 1, the experimental example 2, the comparative example 1, the comparative example 2, and the comparative example 3, and the test described below is performed on the experimental example 3, the experimental example 4, and the comparative example 4. B was performed, and for Experimental Example 5, Experimental Example 6 and Comparative Example 5, Test C described later was performed.

前記試験Aでは、5%の塩化ナトリウム(NaCl)水溶液および0.5%の塩化水素(HCl)水溶液を混合して試験液を作成し、該試験液を35℃の試験槽に噴霧して前記試験片を試験液に168時間に亘って暴露させている。前記試験Bでは、前記試験片を1500時間に亘って10ppmの次亜塩素酸ナトリウム(NaClO)水溶液に浸漬させた。前記試験Cでは、前記試験片を1500時間に亘って5ppmの硫化水素ガス雰囲気下に暴露させている。耐腐蝕性確認試験では、試験片に腐蝕が発生しているか否かを主に目視により確認した。その結果を表1に示す。なお、表1の試験結果では、腐蝕の発生が確認された場合には「×」と評価し、腐蝕の発生が確認されなかった場合には「○」と評価してある。 In the test A, a 5% sodium chloride (NaCl) aqueous solution and a 0.5% hydrogen chloride (HCl) aqueous solution were mixed to prepare a test solution, and the test solution was sprayed into a test tank at 35° C. The test piece is exposed to the test liquid for 168 hours. In the test B, the test piece was immersed in a 10 ppm sodium hypochlorite (NaClO) aqueous solution for 1500 hours. In the test C, the test piece was exposed to a hydrogen sulfide gas atmosphere of 5 ppm for 1500 hours. In the corrosion resistance confirmation test, it was mainly visually confirmed whether or not corrosion occurred on the test piece. The results are shown in Table 1. In addition, in the test results of Table 1, when the occurrence of corrosion was confirmed, it was evaluated as “x”, and when the occurrence of corrosion was not confirmed, it was evaluated as “◯”.

Figure 0006712442
Figure 0006712442

試験Aでは、無電解ニッケル−リンめっき被膜22の膜厚を10.4μmおよび10.8μmとした比較例2および比較例3では、腐蝕が見られたが、無電解ニッケル−リンめっき被膜22の膜厚を27.0μmおよび27.1μmとした実験例1および実験例2では、腐蝕が確認されなかった。これは、実験例1および実験例2と比べて被膜の厚みが薄い比較例1および比較例2では、被膜のピンホールを介して露出した素地16が酸化されたのに対し、被膜を厚くした実験例1および実験例2では、素地16に達するピンホールが存在しないためだと考えられる。試験Bおよび試験Cにおいても、無電解ニッケル−リンめっき被膜22の厚みを夫々15.2μm、21.0μm、15.1μmおよび21.5μmとした実験例3、実験例4、実験例5および実験例6では腐蝕が発生しなかった。このことから、被膜22の厚みを15μm以上とすることで、充分な耐腐蝕性を発揮し得ることが確認された。 In Test A, corrosion was observed in Comparative Example 2 and Comparative Example 3 in which the electroless nickel-phosphorus plating film 22 had a film thickness of 10.4 μm and 10.8 μm, but the electroless nickel-phosphorus plating film 22 had a corrosion resistance. In Experimental Examples 1 and 2 in which the film thickness was 27.0 μm and 27.1 μm , no corrosion was confirmed. This is because in Comparative Example 1 and Comparative Example 2 in which the thickness of the coating is thinner than in Experimental Examples 1 and 2, the base material 16 exposed through the pinholes in the coating was oxidized, whereas the coating was thickened. It is considered that in Experimental Examples 1 and 2, there is no pinhole reaching the base material 16. Also in Test B and Test C, the electroless nickel-phosphorus plating film 22 had thicknesses of 15.2 μm, 21.0 μm, 15.1 μm, and 21.5 μm, respectively, Experimental Example 3, Experimental Example 4, Experimental Example 5, and Experiment. In Example 6, no corrosion occurred. From this, it was confirmed that sufficient corrosion resistance can be exhibited by setting the thickness of the coating film 22 to 15 μm or more.

無電解ニッケル−リンめっき被膜22におけるリン成分の含有量を8%(所謂中リンタイプ)とした比較例1では、膜厚が15μm以上であるが、該被膜に腐蝕が確認された。これに対し、無電解ニッケル−リンめっき被膜22のリン成分の含有量を10%〜15%(所謂高リンタイプ)とした実験例1〜6では、腐蝕が確認されなかった。従って、無電解ニッケル−リンめっき被膜22のリン成分の含有量を10%〜15%とすることで、充分な耐腐蝕性を発揮し得ることが確認できる。 In Comparative Example 1 in which the content of the phosphorus component in the electroless nickel-phosphorus plating film 22 was 8% (so-called medium phosphorus type), the film thickness was 15 μm or more, but corrosion was confirmed in the film. On the other hand, in Experimental Examples 1 to 6 in which the content of the phosphorus component of the electroless nickel-phosphorus plated coating 22 was 10% to 15% (so-called high phosphorus type), no corrosion was confirmed. Therefore, it can be confirmed that by setting the content of the phosphorus component of the electroless nickel-phosphorus plated coating 22 to 10% to 15%, sufficient corrosion resistance can be exhibited.

また、溶融錫めっき被膜の厚さを夫々21.8μmおよび21.3μmとした比較例4および比較例5では、何れも被膜に腐蝕が確認された。これに対し、無電解ニッケル−リンめっき被膜22の厚さを夫々15.2μmおよび15.1μmとした実験例3および実験例5では、何れも被膜に腐蝕は確認されなかった。このことから、無電解ニッケル−リンめっき被膜22は、溶融錫めっき被膜に比べて高い耐腐蝕性を発揮することが確認できる。 Further, in Comparative Examples 4 and 5 in which the thickness of the hot-dip plated film was 21.8 μm and 21.3 μm, respectively, corrosion was confirmed in the film. On the other hand, in Experimental Example 3 and Experimental Example 5 in which the thicknesses of the electroless nickel-phosphorus plating film 22 were 15.2 μm and 15.1 μm, respectively, no corrosion was observed in the film. From this, it can be confirmed that the electroless nickel-phosphorus plating film 22 exhibits higher corrosion resistance than the molten tin plating film.

〔変更例〕
本発明に係る発明は実施例の構成に限定されるものでなく、例えば以下のように変更することが可能である。
(1) 素地と無電解ニッケル−リンめっき被膜との間の層構成は、実施例に限定されない。すなわち、実施例とは異なる下地層や調整層が設けられていたり、別の層が設けられていてもよい。
(2) 製氷部としては、噴射式自動製氷機に用いられる製氷室、流下式自動製氷機に用いられる製氷板だけでなく、製氷部としての製氷室の構成についても、実施例に限定されない。例えば、冷却パイプが蛇行配置された製氷基板の下面に、製氷小室が形成された枠体が設けられたタイプ等であってもよい。また、自動製氷機は、実施例の如く独立したタイプだけではなく、冷蔵庫や冷凍庫に内蔵されたものでもよい。すなわち、本発明に係る自動製氷機としては、家庭用冷蔵庫の冷凍室に画成された製氷用空間に設けたものでもよく、この場合の製氷部としては、前記製氷用空間に配設され、冷凍系に接続する蒸発器により冷却されて氷を作る製氷皿等であってもよい。
(3) 無電解ニッケル−リンめっき被膜は、少なくとも製氷部の最外層において少なくとも氷が生成される範囲に形成されていればよい。
[Modification example]
The invention according to the present invention is not limited to the configuration of the embodiment and can be modified as follows, for example.
(1) The layer structure between the substrate and the electroless nickel-phosphorus plating film is not limited to the examples. That is, a base layer and an adjustment layer different from those in the examples may be provided, or another layer may be provided.
(2) As the ice making unit, the ice making chamber for use in injection type automatic ice maker, not only the ice making plate to be used in the flow-down type ice maker for the constitution of the ice making chamber as the manufacturing ice portion, not limited to the examples .. For example, it may be of a type in which a frame body in which an ice making chamber is formed is provided on the lower surface of an ice making substrate in which a cooling pipe is arranged in a meandering manner. Further, the automatic ice maker is not limited to the independent type as in the embodiment, but may be one built in a refrigerator or a freezer. That is, the automatic ice making machine according to the present invention may be provided in an ice making space defined in a freezer of a domestic refrigerator, and the ice making unit in this case is arranged in the ice making space, It may be an ice tray or the like that is cooled by an evaporator connected to a refrigeration system to produce ice.
(3) The electroless nickel-phosphorus plating film may be formed at least in the outermost layer of the ice making portion in a range where ice is generated.

10 製氷室(製氷部),14 外枠(部材),16 素地
2 無電解ニッケル−リンめっき被膜,30 仕切部材(部材),
8 冷却パイプ(蒸発器、部材)
10 ice making chamber (ice making part), 14 outer frame (member), 16 base material ,
2 2 electroless nickel - phosphorus plating film 30 partition member (member)
4 8 Cooling pipe (evaporator , member )

Claims (1)

蒸発器(48)により冷却される製氷部に製氷水を循環供給して所要形状の氷を生成する自動製氷機において、
前記製氷部(10)の最外層に、10%〜15%のリン成分を含有した無電解ニッケル−リンめっき被膜(22)が15μm以上の厚みで形成され、
前記無電解ニッケル−リンめっき被膜(22)は、ろう付けによる部材(14,30,48)の接合がなされた後の前記製氷部(10)における銅からなる素地(16)の外表面に直接形成されたものであ
ことを特徴とする自動製氷機。
In an automatic ice making machine that circulates and supplies ice making water to the ice making unit cooled by the evaporator (48) to produce ice of a required shape,
An electroless nickel-phosphorus plating film (22) containing 10% to 15% of a phosphorus component is formed in the outermost layer of the ice making part (10) with a thickness of 15 μm or more,
The electroless nickel-phosphorus plating film (22) is directly attached to the outer surface of the base material (16) made of copper in the ice making part (10) after the members (14, 30, 48) are joined by brazing. automatic ice maker, characterized in der Rukoto those formed.
JP2015099249A 2015-05-14 2015-05-14 Automatic ice machine Active JP6712442B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2015099249A JP6712442B2 (en) 2015-05-14 2015-05-14 Automatic ice machine
EP16792427.3A EP3242097B1 (en) 2015-05-14 2016-03-15 Automatic ice maker
AU2016261527A AU2016261527B2 (en) 2015-05-14 2016-03-15 Automatic ice maker
ES16792427T ES2877134T3 (en) 2015-05-14 2016-03-15 Automatic Ice Making Machine
CN201680007923.7A CN107429962A (en) 2015-05-14 2016-03-15 Automatic Ice Maker
KR1020177018839A KR20180006361A (en) 2015-05-14 2016-03-15 Automatic ice maker
PCT/JP2016/058191 WO2016181702A1 (en) 2015-05-14 2016-03-15 Automatic ice maker
US15/541,256 US10274239B2 (en) 2015-05-14 2016-03-15 Automatic ice maker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015099249A JP6712442B2 (en) 2015-05-14 2015-05-14 Automatic ice machine

Publications (2)

Publication Number Publication Date
JP2016217547A JP2016217547A (en) 2016-12-22
JP6712442B2 true JP6712442B2 (en) 2020-06-24

Family

ID=57580618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015099249A Active JP6712442B2 (en) 2015-05-14 2015-05-14 Automatic ice machine

Country Status (1)

Country Link
JP (1) JP6712442B2 (en)

Also Published As

Publication number Publication date
JP2016217547A (en) 2016-12-22

Similar Documents

Publication Publication Date Title
WO2016181702A1 (en) Automatic ice maker
JP3837336B2 (en) refrigerator
KR101328900B1 (en) A preventing water-overflow structure of ice maker for refrigerator
JPH10160305A (en) Ice machine
JP3837335B2 (en) refrigerator
JP6712442B2 (en) Automatic ice machine
JP2007240055A (en) Refrigerator
US9915460B2 (en) Ice tray for ice-making device and method of making ice
JP2018028422A (en) Automatic ice-making machine
KR20090105988A (en) A cooled air duct and a refrigerator
JP2008281334A (en) Refrigerator
JP2016217549A (en) Ice-making machinery
US2285701A (en) Refrigerator
KR102392190B1 (en) Spherical or Polyhedral Ice Maker, Beverage Supplying Apparatus and Refrigerator Having the Ice Maker
JP2005300023A (en) Ice-making compartment and manufacturing method thereof
JP2006250448A (en) Ice making device and refrigerator equipped therewith and ice making method
JP5792434B2 (en) Surface treatment copper pipe and heat pump water heater
JP4502897B2 (en) refrigerator
JP2007333325A (en) Ice making device and refrigerator equipped with same
KR20130033045A (en) Ice maker
JP4855099B2 (en) Cell ice machine
EP2307832A1 (en) Chiller having water line
JP2017116178A (en) Ice making machine
JP2005164146A (en) High-humidity and low-temperature storage
JP2023056310A (en) Ice making machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190514

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200601

R150 Certificate of patent or registration of utility model

Ref document number: 6712442

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150