JP5792434B2 - Surface treatment copper pipe and heat pump water heater - Google Patents

Surface treatment copper pipe and heat pump water heater Download PDF

Info

Publication number
JP5792434B2
JP5792434B2 JP2010112604A JP2010112604A JP5792434B2 JP 5792434 B2 JP5792434 B2 JP 5792434B2 JP 2010112604 A JP2010112604 A JP 2010112604A JP 2010112604 A JP2010112604 A JP 2010112604A JP 5792434 B2 JP5792434 B2 JP 5792434B2
Authority
JP
Japan
Prior art keywords
polyphosphate
tube
pipe
water
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010112604A
Other languages
Japanese (ja)
Other versions
JP2011064445A (en
Inventor
柳澤 佳寿美
佳寿美 柳澤
大脇 武史
武史 大脇
細木 哲郎
哲郎 細木
白井 崇
崇 白井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Kobelco and Materials Copper Tube Ltd
Original Assignee
Kobe Steel Ltd
Kobelco and Materials Copper Tube Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Kobelco and Materials Copper Tube Ltd filed Critical Kobe Steel Ltd
Priority to JP2010112604A priority Critical patent/JP5792434B2/en
Publication of JP2011064445A publication Critical patent/JP2011064445A/en
Application granted granted Critical
Publication of JP5792434B2 publication Critical patent/JP5792434B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、給湯機等の熱交換器に用いられる銅管およびこれを用いたヒートポンプ給湯機に関し、特にスケールの付着を抑制できるものに関する。   The present invention relates to a copper tube used in a heat exchanger such as a water heater and a heat pump water heater using the copper tube, and more particularly to one that can suppress adhesion of scale.

近年、エコキュート(登録商標)の愛称で知られる自然冷媒ヒートポンプ給湯機は、貯湯式で割安な深夜電力を使用するため、従来の燃焼型給湯機に比べてランニングコストが低く、また代替フロンより格段に温暖化係数の小さい二酸化炭素(CO2)を冷媒(熱媒体)とするため、環境負荷が小さい等の特徴を備え、業務用、家庭用として普及が進んでいる。 In recent years, the natural refrigerant heat pump water heater known by the nickname of Ecocute (registered trademark) uses a hot water storage type, which uses cheap midnight power, and therefore has a lower running cost than a conventional combustion type water heater, and is far superior to alternative CFCs. In addition, since carbon dioxide (CO 2 ) having a small global warming potential is used as a refrigerant (heat medium), it has features such as a low environmental load, and is widely used for business use and home use.

一般に、給湯機等に用いられる熱交換器では、管の内部に水を流通させながら加熱する。実際の管の内部に流れる水である地下水や上水には、カルシウムイオン(Ca2+)や炭酸水素イオン(HCO3 -)が微量含まれているため、熱交換器で水が加熱されると、下式の反応により炭酸カルシウム(CaCO3)が生成し、この炭酸カルシウムがスケールとして管内壁に付着することが知られている。管の材料としては銅または銅合金が熱伝導に優れている点で好適であるが、銅または銅合金の酸化皮膜として存在するCu2Oは正に帯電しているため、負に帯電している炭酸カルシウムが付着し易いという問題がある。
Ca2++2HCO3 -→Ca(HCO3)2→CO2+H2O+CaCO3
Generally, in a heat exchanger used for a hot water heater or the like, heating is performed while water is circulated inside a pipe. The groundwater and clean water, which are the actual water flowing inside the pipe, contain a small amount of calcium ions (Ca 2+ ) and bicarbonate ions (HCO 3 ), so the water is heated by the heat exchanger. It is known that calcium carbonate (CaCO 3 ) is generated by the reaction of the following formula, and this calcium carbonate adheres to the inner wall of the tube as a scale. As a material for the tube, copper or a copper alloy is suitable in terms of excellent heat conduction, but Cu 2 O existing as an oxide film of copper or a copper alloy is positively charged. There is a problem that the calcium carbonate that is easily attached.
Ca 2+ + 2HCO 3 → Ca (HCO 3 ) 2 → CO 2 + H 2 O + CaCO 3

また、この反応は高温になるほど進行する。特に、自然冷媒ヒートポンプ給湯機は、タンクでの貯湯の必要上、出湯温度が約90℃で、燃焼型給湯機の約60℃よりも高温であり、炭酸カルシウムがより生成し易い環境となっている。熱交換器の長期間の使用で管へのスケールの付着が多くなると、圧力損失が増加したり、管の閉塞が発生する虞がある。このため、現状では、熱交換効率よりも口径の大きい管を適用する等して流路の確保を優先させた設計の管が採用されている。   In addition, this reaction proceeds as the temperature increases. In particular, the natural refrigerant heat pump water heater has a hot water temperature of about 90 ° C., which is higher than the temperature of about 60 ° C. of a combustion-type water heater due to the need for hot water storage in a tank, and an environment in which calcium carbonate is more easily generated. Yes. If the scale adheres to the pipes with a long-term use of the heat exchanger, the pressure loss may increase or the pipes may be blocked. For this reason, at present, pipes with a design that prioritizes securing the flow path by adopting a pipe having a larger diameter than the heat exchange efficiency are employed.

例えば、特許文献1には、スケールの付着し易い高温の水が流れる出口部分の配管の口径を大きくしたヒートポンプ給湯機が開示されている。また、特許文献2には、内面に螺旋状の突条を形成したコルゲート管を用いて、水流の撹拌により付着したスケールを破砕し、かつ熱交換効率を向上させた給湯用熱交換器が開示されている。また、特許文献3には、管内に形状記憶合金からなる螺旋状線材を備えて、この線材が、水温が上昇すると管内を摺動して付着したスケールを剥離させる熱交換器が開示されている。   For example, Patent Document 1 discloses a heat pump water heater in which the diameter of a pipe in an outlet portion through which high-temperature water that easily adheres to a scale flows is increased. Patent Document 2 discloses a heat exchanger for hot water supply that uses a corrugated tube having a spiral protrusion formed on the inner surface to crush the scale attached by stirring the water flow and improve the heat exchange efficiency. Has been. Patent Document 3 discloses a heat exchanger that includes a spiral wire made of a shape memory alloy in a pipe, and the wire slides inside the pipe to peel off the attached scale when the water temperature rises. .

特開2005−77062号公報JP-A-2005-77062 特開2008−249163号公報JP 2008-249163 A 特開2006−266514号公報JP 2006-266514 A

しかしながら、前記従来の熱交換器はいずれも配管の形状等に特徴を有するため、熱交換器の設計の自由度が小さく、例えば熱交換器の小型化・軽量化を阻害する虞がある。   However, since all of the conventional heat exchangers are characterized by the shape of the piping, etc., the degree of freedom in designing the heat exchanger is small, and for example, there is a risk of hindering the downsizing and weight reduction of the heat exchanger.

本発明は前記事情に鑑みてなされたものであって、その目的は、流路形状によらずスケールの付着し難い銅管、およびこれを用いたヒートポンプ給湯機を提供することにある。   This invention is made | formed in view of the said situation, The objective is to provide the copper pipe to which scale does not adhere easily irrespective of a flow-path shape, and a heat pump water heater using the same.

前記課題を解決するために、本発明に係る表面処理銅管は、銅または銅合金からなる基材と、この基材の少なくとも一方の面に形成されたポリリン酸塩からなる皮膜と、を備え、前記皮膜が形成された側の表面へ、炭酸カルシウムがスケールとして付着することを抑制したことを特徴とする。 In order to solve the above problems, a surface-treated copper tube according to the present invention includes a base material made of copper or a copper alloy, and a film made of polyphosphate formed on at least one surface of the base material. , to the surface of the film has been formed side, calcium carbonate characterized by being prevented from being deposited as scale.

なお、前記皮膜を構成するポリリン酸塩は、ポリリン酸鉄、ポリリン酸コバルト、ポリリン酸ニッケル、ポリリン酸スズ、ポリリン酸亜鉛、ポリリン酸マグネシウムから選択される1種以上であることが好ましい。   The polyphosphate constituting the film is preferably at least one selected from iron polyphosphate, cobalt polyphosphate, nickel polyphosphate, tin polyphosphate, zinc polyphosphate, and magnesium polyphosphate.

このように、ポリリン酸塩からなる皮膜で被覆することにより、水中にてポリリン酸イオンが発生し、さらに所定の金属との塩を適用することでこれらの金属イオンが発生して、これらのイオンが炭酸カルシウムの成長を阻害するのでスケールの生成を抑制する。また、このような作用は、銅管に容易に被覆できる皮膜により得られるので、管とするための成形性を保持することができる。   Thus, by covering with a film made of polyphosphate, polyphosphate ions are generated in water, and further, by applying a salt with a predetermined metal, these metal ions are generated. Inhibits the growth of calcium carbonate and suppresses scale formation. Moreover, since such an effect | action is obtained by the membrane | film | coat which can be easily coat | covered on a copper pipe, the moldability for setting it as a pipe | tube can be maintained.

また、本発明に係るヒートポンプ給湯機は、前記表面処理銅管を、水を媒体として流通させる伝熱部に、皮膜を形成された側の面を前記水に接触させて使用することを特徴とする。   Moreover, the heat pump water heater according to the present invention is characterized in that the surface-treated copper pipe is used in a heat transfer portion that circulates using water as a medium, with the surface on which the film is formed in contact with the water. To do.

このように、スケールが付着し難い表面処理銅管を、水、特に炭酸カルシウムが生成し易い高温の水道水を流通させるヒートポンプ給湯機の配管に適用することで、圧力損失が少なく、管の閉塞が発生し難くすることができる。   In this way, by applying a surface-treated copper pipe that does not easily adhere to the scale to the piping of a heat pump water heater that circulates water, particularly hot tap water that is likely to produce calcium carbonate, there is little pressure loss and the pipe is blocked. Can be made difficult to occur.

本発明に係る表面処理銅管によれば、水道水等の水を媒体として流通させる熱交換器の配管として、スケールの付着し難い配管が得られ、また、形状でなく皮膜の材質によりスケールが付着し難いため、流路断面を拡径する必要がなく、熱交換効率を低下させることがない。また、管形状や配管の設計に自由度があって汎用性が高い。そして、本発明に係るヒートポンプ給湯機によれば、連続運転時間を長くして、メンテナンスを容易なものとすることができ、また配管形状の制約が少ないため小型化等が容易である。   According to the surface-treated copper pipe according to the present invention, the pipe of the heat exchanger that circulates water such as tap water as a medium can be obtained. Since it is difficult to adhere, it is not necessary to enlarge the diameter of the cross section of the flow path, and the heat exchange efficiency is not reduced. In addition, there is a high degree of versatility because there is a degree of freedom in pipe shape and piping design. And according to the heat pump water heater which concerns on this invention, continuous operation time can be lengthened and a maintenance can be made easy, and since there are few restrictions on piping shape, size reduction etc. are easy.

本発明の一実施形態に係る表面処理銅管の構成およびスケール付着抑制効果を模式的に説明するための部分断面図である。It is a fragmentary sectional view for explaining typically the composition of a surface treatment copper pipe concerning one embodiment of the present invention, and a scale adhesion control effect. 本発明の一実施形態に係るヒートポンプ給湯機の構成を説明するための模式図である。It is a schematic diagram for demonstrating the structure of the heat pump water heater which concerns on one Embodiment of this invention.

以下、本発明に係る表面処理銅管およびこれを用いたヒートポンプ給湯機について、詳細に説明する。   Hereinafter, the surface-treated copper pipe and the heat pump water heater using the same according to the present invention will be described in detail.

〔表面処理銅管〕
本発明に係る表面処理銅管は、熱交換器、特に後記のヒートポンプ給湯機(図2参照)の水を流通させる配管に適用され、平滑管、内面溝付管等の用途に応じた形状および寸法とするが、特に限定するものではなく、さらには管状に限定されず例えば板状であってもよい。本発明の一実施形態に係る表面処理銅管1は、図1に示すように、銅または銅合金で形成された管(以下、銅管)を基材11とし、その少なくとも水と接触する側の表面すなわち内面に形成されたポリリン酸塩からなる皮膜12と、を備える。以下、この表面処理銅管を構成する各要素について説明する。
[Surface treatment copper tube]
The surface-treated copper pipe according to the present invention is applied to a heat exchanger, in particular, a pipe for circulating water of a heat pump water heater (see FIG. 2) described later, and has a shape corresponding to a use such as a smooth pipe, an inner grooved pipe, and the like. Although it is set as a dimension, it is not specifically limited, Furthermore, it is not limited to a tubular shape, For example, plate shape may be sufficient. As shown in FIG. 1, a surface-treated copper tube 1 according to an embodiment of the present invention uses a tube formed of copper or a copper alloy (hereinafter referred to as a copper tube) as a base material 11, and at least contacts with water. And a film 12 made of polyphosphate formed on the surface, that is, the inner surface. Hereinafter, each element which comprises this surface treatment copper pipe is demonstrated.

(銅管)
銅管(基材)11は、銅または銅合金からなり、JISH3300に規定されたリン脱酸銅(例えば、C1220)が好ましい。リン脱酸銅を使用することによって、強度が向上すると共に、後記の皮膜12が銅管(基材)1表面に形成され易くなる。また、銅管11の形状は表面処理銅管1に応じたものとなる。
(Copper tube)
The copper tube (base material) 11 is made of copper or a copper alloy, and is preferably phosphorous deoxidized copper (for example, C1220) defined in JISH3300. By using phosphorous-deoxidized copper, the strength is improved and a film 12 described later is easily formed on the surface of the copper tube (base material) 1. The shape of the copper tube 11 is in accordance with the surface-treated copper tube 1.

(皮膜)
皮膜12は、銅管11の表面、特に表面処理銅管1が内部に水を流通させる配管である場合は、内面を被覆し、ポリリン酸塩からなる。このような銅管11の皮膜12となるポリリン酸塩としては、Fe,Co,Ni,Sn,Zn,Mgの金属塩が好ましい。また、ポリリン酸塩の形態としては、トリポリリン酸H5310等の直鎖縮合ポリリン酸の塩や、シクロ四リン酸(HPO3)4等のシクロリン酸の塩が挙げられる。表面処理銅管1の皮膜12として存在するポリリン酸塩は、水中に、陰イオンであるこれら各種ポリリン酸のイオン、例えばP310 5-(トリポリリン酸)、P413 6-(テトラポリリン酸)、[PO3 -]n(ヘキサメタリン酸)として溶出し(図1では[PO3 -]nとして示す)、同じく皮膜12から溶出した金属イオンMe(Fe2+,Co2+,Ni2+,Sn2+,Zn2+,Mg2+等)と再び結合して、表面処理銅管1の内側表面に生成した炭酸カルシウムCaCO3の結晶成長面に吸着するため、炭酸カルシウムの成長を阻害し、スケール化することを防止できる。
(Film)
The coating 12 covers the inner surface of the copper tube 11, particularly when the surface-treated copper tube 1 is a pipe through which water flows, and is made of polyphosphate. As the polyphosphate that forms the coating 12 of the copper tube 11, metal salts of Fe, Co, Ni, Sn, Zn, and Mg are preferable. Examples of the polyphosphate include salts of linear condensed polyphosphoric acid such as tripolyphosphoric acid H 5 P 3 O 10 and salts of cyclophosphoric acid such as cyclotetraphosphoric acid (HPO 3 ) 4 . The polyphosphate existing as the coating 12 of the surface-treated copper tube 1 is an ion of these various polyphosphates, such as P 3 O 10 5− (tripolyphosphate), P 4 O 13 6− (tetra Polyphosphoric acid), elution as [PO 3 ] n (hexametaphosphoric acid) (indicated as [PO 3 ] n in FIG. 1), and metal ions Me (Fe 2+ , Co 2+ , Ni) eluted from the coating 12 as well. 2+ , Sn 2+ , Zn 2+ , Mg 2+, etc.) and adsorbed on the crystal growth surface of calcium carbonate CaCO 3 formed on the inner surface of the surface-treated copper tube 1, so that the growth of calcium carbonate Can be prevented and scaling can be prevented.

皮膜12の厚さは特に規定しないが、10nm〜10μmが好ましい。皮膜12が薄いと、表面処理銅管1のスケール付着抑制効果の寿命が短くなる。一方、過剰に厚いと、表面処理銅管1の曲げ等の加工性が低下し、またヒートポンプ給湯機に適用したとき、その運転や停止の熱サイクルによる基材(銅管)11の熱膨張・収縮に追従できなくなって皮膜12が割れたり剥離する虞がある。   Although the thickness of the film 12 is not particularly defined, 10 nm to 10 μm is preferable. When the film 12 is thin, the life of the scale-adhesion suppressing effect of the surface-treated copper tube 1 is shortened. On the other hand, when the thickness is excessively thick, workability such as bending of the surface-treated copper pipe 1 is deteriorated, and when applied to a heat pump water heater, the thermal expansion / expansion of the base material (copper pipe) 11 due to the thermal cycle of operation and stoppage. There is a possibility that the film 12 cannot follow the shrinkage and the film 12 is cracked or peeled off.

(表面処理銅管の製造方法)
以下に、本発明に係る表面処理銅管の製造方法の一例を示す。
基材となる銅管11は公知の方法で製造されたものを適用できる。はじめに、原料の電気銅を木炭被覆の元で溶解し、銅が溶解した後、脱酸のために15質量%程度のPを含有する銅合金を添加し、成分調整した後、半連続鋳造により所定の寸法のビレットを作製する。次に、ビレットを必要に応じて偏析改善のための均質化熱処理を行った後、熱間押出しにより押出素管とする。押出素管を圧延して圧延素管とし、さらに抽伸加工にて所定の寸法の抽伸管(素管)を製造する。抽伸管はそのまま、あるいはさらに抽伸加工を行って平滑管とする。または、抽伸管を焼鈍(中間焼鈍)した後、溝付転造加工を行って内面溝付管とする。得られた平滑管または内面溝付管を焼鈍して銅管11が得られる。
(Method for manufacturing surface-treated copper tube)
Below, an example of the manufacturing method of the surface treatment copper pipe which concerns on this invention is shown.
The copper tube 11 used as a base material can apply what was manufactured by the well-known method. First, the raw electrolytic copper is dissolved under the charcoal coating. After the copper is dissolved, a copper alloy containing about 15% by mass of P is added for deoxidation, and the components are adjusted. A billet of a predetermined dimension is produced. Next, the billet is subjected to a homogenization heat treatment for improving segregation as required, and then formed into an extruded element tube by hot extrusion. The extruded element tube is rolled into a rolled element tube, and a drawn tube (element tube) having a predetermined size is manufactured by drawing. The drawing tube is used as it is or after further drawing to obtain a smooth tube. Alternatively, after drawing (intermediate annealing) the drawn tube, a grooved rolling process is performed to obtain an internally grooved tube. The obtained smooth tube or the internally grooved tube is annealed to obtain the copper tube 11.

次に、銅管11表面(内面)にポリリン酸塩からなる皮膜12を被覆して表面処理銅管1とする。その方法の一例としては、トリポリリン酸ナトリウム(Na5310)等の、水中でポリリン酸イオンとして溶出するポリリン酸塩と、このポリリン酸イオンと結合して析出する金属イオンに溶出する金属塩、例えば塩化鉄(III)(FeCl3)との混合溶液に、銅管11を浸漬する方法が挙げられる。皮膜12の厚さは溶液の濃度や浸漬時間等で調整する。また、銅管11の外側にマスキングを施して混合溶液に浸漬したり、銅管11の内部に混合溶液を満たすあるいは流通させることで、内側表面のみに皮膜12を形成することができる。 Next, the surface (inner surface) of the copper tube 11 is coated with a coating 12 made of polyphosphate to form a surface-treated copper tube 1. As an example of the method, polyphosphate which elutes as polyphosphate ions in water, such as sodium tripolyphosphate (Na 5 P 3 O 10 ), and metal which elutes to metal ions which are combined with the polyphosphate ions and deposited. A method of immersing the copper tube 11 in a mixed solution with a salt, for example, iron (III) chloride (FeCl 3 ) can be mentioned. The thickness of the film 12 is adjusted by the concentration of the solution, the immersion time, and the like. Further, the coating 12 can be formed only on the inner surface by masking the outer side of the copper tube 11 and immersing it in the mixed solution, or filling or circulating the mixed solution inside the copper tube 11.

〔ヒートポンプ給湯機〕
本発明に係るヒートポンプ給湯機は、前記の本発明に係る表面処理銅管を、水を流通させながらこの水に伝熱する配管として用いたものである。本発明の一実施形態に係るヒートポンプ給湯機10は、二酸化炭素(CO2)および水を熱媒体として熱交換を行う自然冷媒ヒートポンプ給湯機であり、図2に示すように、熱交換としてCO2で水を加熱する伝熱部21等を備えるヒートポンプユニット2と、伝熱部21に供給する水および加熱された水(湯)を貯留する貯湯タンク3と、を水および湯を流通させる配管で接続して備える。ヒートポンプユニット2における熱媒体CO2の状態の変化と、水の加熱は公知の自然冷媒ヒートポンプ給湯機による通りである。すなわち、圧縮機24で圧縮されて高温・高圧の流体となったCO2は伝熱部21に供給される。伝熱部21では、貯湯タンク3からポンプPにより所定流量で供給された水(冷水)が、表面処理銅管1の内部を流通しながら、前記CO2で加熱されて湯となって流出して貯湯タンク3へ戻っていく。反対に、水で冷却されたCO2は、膨張弁22により膨張して、蒸発器23でファンにより取り込まれた大気の熱(大気熱)を吸熱し、再び圧縮機24に送られる。
[Heat pump water heater]
The heat pump water heater according to the present invention uses the surface-treated copper pipe according to the present invention as a pipe for transferring heat to the water while circulating the water. The heat pump water heater 10 in accordance with an embodiment of the present invention, carbon dioxide (CO 2) and water are natural refrigerant heat pump water heater for heat exchange as a heat medium, as shown in FIG. 2, CO 2 as a heat exchanger A pipe that circulates water and hot water between the heat pump unit 2 including the heat transfer unit 21 that heats the water and the hot water storage tank 3 that stores the water supplied to the heat transfer unit 21 and the heated water (hot water). Connect and prepare. And changes in the state of the heat medium CO 2 in the heat pump unit 2, heating of the water is as by known natural refrigerant heat pump water heater. That is, CO 2 compressed by the compressor 24 to become a high-temperature / high-pressure fluid is supplied to the heat transfer section 21. In the heat transfer section 21, water (cold water) supplied from the hot water storage tank 3 by the pump P at a predetermined flow rate is heated by the CO 2 and flows out as hot water while flowing inside the surface-treated copper pipe 1. Then go back to the hot water storage tank 3. On the other hand, the CO 2 cooled with water is expanded by the expansion valve 22, absorbs the atmospheric heat (atmospheric heat) taken in by the fan in the evaporator 23, and is sent to the compressor 24 again.

伝熱部21において、水用の配管である表面処理銅管1は、その外側にCO2用の配管を螺旋状に巻回する等して近接して配置したものを、ヒートポンプユニット2を小型化するためにコの字型を繰り返して屈曲させる等して備えられる。このような伝熱部21において、流通する水は、接触する表面処理銅管1およびその外側のCO2用の配管を介してCO2と熱交換する。あるいは、表面処理銅管1(水用の配管)の内部に小径のCO2用の配管を配した二重管としてもよい。このような構成の伝熱部21においては、流通する水はCO2用の配管を介してCO2と熱交換し、言い換えればCO2用の配管内部を流通するCO2が当該配管を介してその外部の水と熱交換する。なお、この場合は、CO2用の配管は、その外側に直接に水が接触するので、外側表面に皮膜12を形成した本発明に係る表面処理銅管とする。その他の仕様に関しては特に規定するものではなく、ヒートポンプ給湯機の用途等に応じて本発明に係る表面処理銅管を用いる。 In the heat transfer section 21, the surface-treated copper pipe 1, which is a pipe for water, is a small-sized heat pump unit 2 that is disposed close to the outside by, for example, spirally winding a pipe for CO 2 . In order to make it easier, the U-shape is repeatedly bent. In such a heat transfer section 21, the circulating water exchanges heat with CO 2 through the surface-treated copper pipe 1 and the CO 2 pipe outside thereof. Alternatively, it may be a double pipe in which a small diameter CO 2 pipe is arranged inside the surface-treated copper pipe 1 (water pipe). In heat transfer section 21 having such a configuration, the water in circulation CO 2 and heat exchanger via a pipe for CO 2, CO 2 flowing inside the pipe for CO 2 in other words, through the pipe It exchanges heat with its external water. In this case, the CO 2 pipe is a surface-treated copper pipe according to the present invention in which the coating 12 is formed on the outer surface because water directly contacts the outside. Other specifications are not particularly stipulated, and the surface-treated copper pipe according to the present invention is used according to the application of the heat pump water heater.

以上のように、本発明に係る表面処理銅管によれば、流路形状や流量を問わずに、水道水等の水を流通させる熱交換器の配管、特に約90℃の高温の水を流通させるヒートポンプ給湯機の伝熱部の配管として、スケールの付着し難い配管が得られる。したがって、配管を縮径したり内面溝付管としても管が閉塞することがないので、連続運転時間を長くするだけでなく、水の流量あたりの管壁への接触面積を増大させて熱交換効率を向上させたヒートポンプ給湯機とすることができる。   As described above, according to the surface-treated copper pipe according to the present invention, pipes of heat exchangers that circulate water such as tap water, particularly high-temperature water of about 90 ° C., regardless of flow path shape or flow rate. As the piping of the heat transfer section of the heat pump water heater to be circulated, piping that is difficult to adhere to the scale is obtained. Therefore, since the pipe is not reduced in diameter or clogged as an internally grooved pipe, not only the continuous operation time is lengthened, but also the heat exchange by increasing the contact area to the pipe wall per water flow rate. A heat pump water heater with improved efficiency can be obtained.

以上、本発明を実施するための形態について述べてきたが、以下に、本発明の効果を確認した実施例を、本発明の要件を満たさない比較例と対比して具体的に説明する。なお、本発明はこの実施例によって制限を受けるものではなく、請求項に示した範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。   As mentioned above, although the form for implementing this invention has been described, the Example which confirmed the effect of this invention is demonstrated concretely compared with the comparative example which does not satisfy | fill the requirements of this invention below. It should be noted that the present invention is not limited by this embodiment, and can be implemented with appropriate modifications within the scope of the claims, all of which are included in the technical scope of the present invention. The

(供試材作製)
供試材を、以下の工程により作製した。
基材となる銅管として、リン脱酸銅(P:0.015質量%)からなる外径9.52mm、肉厚0.8mmの平滑管を適用し、これを長さ50mmに切り出して、脱脂剤(サーフクリーナー53:日本ペイント(株)製)で洗浄後、室温にて風乾した。この銅管を、表1に示すポリリン酸ナトリウム(Nan+2n3n+1)と金属塩(塩化物)との混合水溶液からなる表面処理液に24hr浸漬して表面に皮膜を形成した後、イオン交換水にて洗浄、室温にて風乾した。供試材No.4について、GD−OES(グロー放電発光分析分析)にて皮膜厚さを測定したところ、皮膜厚さは約100nmであった。なお、皮膜を形成しない(脱脂剤による洗浄のみの)銅管を比較例(供試材No.7)とした。
(Sample preparation)
The sample material was produced by the following steps.
As a copper tube as a base material, a smooth tube having an outer diameter of 9.52 mm and a wall thickness of 0.8 mm made of phosphorous deoxidized copper (P: 0.015% by mass) is applied, and this is cut into a length of 50 mm, After washing with a degreasing agent (Surf Cleaner 53: manufactured by Nippon Paint Co., Ltd.), it was air-dried at room temperature. This copper tube is immersed in a surface treatment solution consisting of a mixed aqueous solution of sodium polyphosphate (Na n + 2 P n O 3n + 1 ) and metal salt (chloride) shown in Table 1 to form a film on the surface. Then, it was washed with ion exchange water and air-dried at room temperature. Specimen No. For No. 4, the film thickness was measured by GD-OES (Glow Discharge Emission Analysis), and the film thickness was about 100 nm. In addition, the copper pipe which does not form a film | membrane (only washing | cleaning by a degreasing agent) was made into the comparative example (test material No. 7).

(スケール付着性評価)
表面処理銅管の評価として、特開2009−75080号公報に記載された方法でスケール付着性を評価した。スケール付着試験液として、炭酸水素ナトリウムNaHCO3:1.5g/L、塩化カルシウムCaCl2・2H2O:1.3g/Lの混合水溶液(Ca:354ppm)を20℃で作製した(炭酸水素ナトリウム、塩化カルシウム:和光純薬工業(株)製の特級試薬)。
(Scale adhesion evaluation)
As an evaluation of the surface-treated copper tube, scale adhesion was evaluated by the method described in JP-A-2009-75080. As a scale adhesion test solution, a mixed aqueous solution (Ca: 354 ppm) of sodium hydrogen carbonate NaHCO 3 : 1.5 g / L, calcium chloride CaCl 2 .2H 2 O: 1.3 g / L was prepared at 20 ° C. (sodium hydrogen carbonate , Calcium chloride: a special grade reagent manufactured by Wako Pure Chemical Industries, Ltd.).

質量を測定した供試材の一端をチューブポンプの吸引側のチューブに接続し、供試材の外側表面をテフロン(登録商標)のテープで覆った。この供試材と、チューブポンプの排出側のチューブをビーカーに入れた試験液100mLに浸漬した。そして、チューブポンプにより流速1L/minで、供試材(表面処理銅管)内に試験液を循環させながら、室温(20℃)から90℃まで昇温した時点で1サイクル終了とし、次サイクルとしてビーカー内を新たな試験液(20℃)に入れ替えて、同様に循環・昇温を繰り返した。なお、1サイクルにおける試験液の90℃までの昇温には約8分間かかった。   One end of the test material whose mass was measured was connected to the tube on the suction side of the tube pump, and the outer surface of the test material was covered with Teflon (registered trademark) tape. This specimen and the tube on the discharge side of the tube pump were immersed in 100 mL of a test solution placed in a beaker. Then, one cycle is completed when the temperature is raised from room temperature (20 ° C.) to 90 ° C. while circulating the test solution in the test material (surface-treated copper tube) at a flow rate of 1 L / min by a tube pump. The inside of the beaker was replaced with a new test solution (20 ° C.), and the circulation and temperature increase were repeated in the same manner. Note that it took about 8 minutes to raise the temperature of the test solution to 90 ° C. in one cycle.

試験は、供試材各仕様につき、10サイクルおよび20サイクル行った。各サイクルでの試験後、供試材はテープおよびチューブを外して、室内に静置して自然乾燥させた後、質量を測定した。そして、試験前に測定した質量との差分から、供試材の管内表面の単位面積当たりのスケール付着量を算出し、表1に示す。   The test was performed for 10 cycles and 20 cycles for each specification of the test material. After the test in each cycle, the sample material was removed from the tape and tube, allowed to stand in the room and air-dried, and then the mass was measured. And from the difference with the mass measured before the test, the amount of scale adhesion per unit area of the tube inner surface of the test material is calculated and shown in Table 1.

Figure 0005792434
Figure 0005792434

(評価結果)
表1に示すように、供試材No.1〜6はポリリン酸ナトリウムと金属塩との混合水溶液で表面処理されたことにより、それぞれの金属のポリリン酸塩からなる皮膜を形成された本発明に係る表面処理銅管であり、いずれも皮膜を備えない銅管(供試材No.7)と比較して、スケールの付着量が少なく、スケール付着抑制効果を得られた。
(Evaluation results)
As shown in Table 1, the test material No. 1 to 6 are surface-treated copper tubes according to the present invention in which a film made of a polyphosphate of each metal is formed by surface treatment with a mixed aqueous solution of sodium polyphosphate and a metal salt. Compared with the copper pipe (test material No. 7) which is not equipped with the scale, the amount of scale adhesion was small, and the scale adhesion suppression effect was obtained.

10 ヒートポンプ給湯機
1 表面処理銅管
11 銅管(基材)
12 皮膜
21 伝熱部
10 Heat pump water heater 1 Surface treatment copper tube 11 Copper tube (base material)
12 Film 21 Heat transfer section

Claims (3)

銅または銅合金からなる基材と、この基材の少なくとも一方の面に形成されたポリリン酸塩からなる皮膜と、を備え、前記皮膜が形成された側の表面へ、炭酸カルシウムがスケールとして付着することを抑制したことを特徴とする表面処理銅管。 A substrate made of copper or a copper alloy, comprising: a film comprising polyphosphate salts formed on at least one surface of the substrate, wherein the the film is formed the side surface, deposition of calcium carbonate as scale A surface-treated copper tube characterized in that it is suppressed. 前記皮膜が、ポリリン酸鉄、ポリリン酸コバルト、ポリリン酸ニッケル、ポリリン酸スズ、ポリリン酸亜鉛、ポリリン酸マグネシウムから選択される1種以上からなることを特徴とする請求項1に記載の表面処理銅管。   2. The surface-treated copper according to claim 1, wherein the coating is made of at least one selected from iron polyphosphate, cobalt polyphosphate, nickel polyphosphate, tin polyphosphate, zinc polyphosphate, and magnesium polyphosphate. tube. 請求項1または請求項2に記載の表面処理銅管を、水を媒体として流通させる伝熱部に、前記皮膜を形成された側の面を前記水に接触させて使用することを特徴とするヒートポンプ給湯機。   The surface-treated copper pipe according to claim 1 or 2 is used in a heat transfer portion that circulates water as a medium, with the surface on the side on which the film is formed in contact with the water. Heat pump water heater.
JP2010112604A 2009-08-17 2010-05-14 Surface treatment copper pipe and heat pump water heater Active JP5792434B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010112604A JP5792434B2 (en) 2009-08-17 2010-05-14 Surface treatment copper pipe and heat pump water heater

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009188568 2009-08-17
JP2009188568 2009-08-17
JP2010112604A JP5792434B2 (en) 2009-08-17 2010-05-14 Surface treatment copper pipe and heat pump water heater

Publications (2)

Publication Number Publication Date
JP2011064445A JP2011064445A (en) 2011-03-31
JP5792434B2 true JP5792434B2 (en) 2015-10-14

Family

ID=43950882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010112604A Active JP5792434B2 (en) 2009-08-17 2010-05-14 Surface treatment copper pipe and heat pump water heater

Country Status (1)

Country Link
JP (1) JP5792434B2 (en)

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60121581U (en) * 1984-01-21 1985-08-16 住友電気工業株式会社 double structure pipe
US4491500A (en) * 1984-02-17 1985-01-01 Rem Chemicals, Inc. Method for refinement of metal surfaces
JPS6155598A (en) * 1984-08-27 1986-03-20 Matsushita Electric Ind Co Ltd Corrosion-proof structure for heat exchanger
JPS61138054A (en) * 1984-12-11 1986-06-25 Matsushita Electric Ind Co Ltd Heat exchanger
JPS61250494A (en) * 1985-04-26 1986-11-07 Matsushita Electric Ind Co Ltd Heat exchanger
JPH0660296B2 (en) * 1988-03-15 1994-08-10 住友軽金属工業株式会社 Copper alloy tube with anticorrosion paint film for heat exchanger
JPH0598457A (en) * 1991-10-04 1993-04-20 Hitachi Ltd Electroless gold plating solution and gold plating method using same
JPH06128768A (en) * 1992-10-20 1994-05-10 Ishizuka Glass Co Ltd Sustained-release vitreous rust preventive
JPH06316678A (en) * 1993-05-06 1994-11-15 Nippon Chem Ind Co Ltd White rust-preventive pigment and rust-preventive paint
JP2002098496A (en) * 2000-09-22 2002-04-05 Toto Ltd Heat exchanger for hot-water supplier and manufacturing method thereof
JP2002316193A (en) * 2001-04-20 2002-10-29 Yukio Murai Ceramic for preventing occurrence of scale such as red rust
JP3986270B2 (en) * 2001-07-18 2007-10-03 株式会社コベルコ マテリアル銅管 Ceramic-coated copper or copper alloy material, method for producing the same, and ceramic-coated copper or copper alloy tube
JP2003231881A (en) * 2002-02-12 2003-08-19 Toshiba Corp Phosphor, method for producing phosphor and cathode- ray tube
JP2005105290A (en) * 2003-09-26 2005-04-21 Kobe Steel Ltd Resin-coated metal plate having excellent conductivity and being easy to work
JP4508623B2 (en) * 2003-12-15 2010-07-21 シャープ株式会社 Scale adhesion preventing apparatus and scale adhesion preventing method
JP2005238023A (en) * 2004-02-24 2005-09-08 Kurita Water Ind Ltd Scale prevention apparatus
JP2006088089A (en) * 2004-09-27 2006-04-06 Nippon Paint Co Ltd Double-layered coating film and method for forming it
JP5634000B2 (en) * 2006-04-06 2014-12-03 新日鐵住金株式会社 Surface treated metal parts
JP5260109B2 (en) * 2007-03-31 2013-08-14 株式会社コベルコ マテリアル銅管 Copper alloy member and heat exchanger
JP5140306B2 (en) * 2007-04-10 2013-02-06 日出雄 江口 Antifouling method and antifouling device for circulating water and facilities using the circulating water

Also Published As

Publication number Publication date
JP2011064445A (en) 2011-03-31

Similar Documents

Publication Publication Date Title
JP5260109B2 (en) Copper alloy member and heat exchanger
JP4921410B2 (en) Copper alloy member and heat exchanger
JP2010156002A (en) Copper alloy tube, method for manufacturing the same, and heat pump water heater
JP2009235428A (en) Copper alloy member and heat-exchanger
JP6838864B2 (en) Aluminum alloy LNG vaporizer member and LNG vaporizer
JP5792434B2 (en) Surface treatment copper pipe and heat pump water heater
JP4615422B2 (en) Heat transfer tubes, heat exchangers for hot water supply and heat pump water heaters
JP6793467B2 (en) Aluminum alloy parts and LNG vaporizer
JP2010163665A (en) Copper alloy member and heat exchanger
JP2008304170A (en) Scale adhesion-resistant heat transfer pipe for heat exchanger
JP4645187B2 (en) Cold transport medium
JP5852338B2 (en) Method for producing surface-treated metal material excellent in scale adhesion control and seawater evaporator
JP2010139101A (en) Heat exchanger and hot water supply device using the same
JP2008190771A (en) Plate fin having superior corrosion resistance
JP5072059B2 (en) Cleaning method for inner surface of copper tube or copper alloy tube
CN106766343A (en) A kind of lithium bromide cold and hot water machine group and expansion tube method
CN206637886U (en) A kind of lithium bromide cold and hot water machine group
JP3945202B2 (en) Corrosion prevention method
JP2007023311A (en) Clad material and manufacturing method therefor
JP6635173B1 (en) Corrosion protection method for metal members of cooling water system
CN218000713U (en) Air conditioner heat dissipation copper pipe
JP4799151B2 (en) Pitting corrosion resistant copper or copper alloy tube
JP2007263526A (en) Heat exchanger with superior scale adhesion resistance
JP2011027280A (en) Heat transfer pipe for hot water supply
JP2016217547A (en) Automatic ice making machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120815

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150806

R150 Certificate of patent or registration of utility model

Ref document number: 5792434

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250