JP2016215641A - 立体造形装置及び積層造形方法 - Google Patents

立体造形装置及び積層造形方法 Download PDF

Info

Publication number
JP2016215641A
JP2016215641A JP2016097896A JP2016097896A JP2016215641A JP 2016215641 A JP2016215641 A JP 2016215641A JP 2016097896 A JP2016097896 A JP 2016097896A JP 2016097896 A JP2016097896 A JP 2016097896A JP 2016215641 A JP2016215641 A JP 2016215641A
Authority
JP
Japan
Prior art keywords
image
marker
transfer body
unit
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016097896A
Other languages
English (en)
Inventor
育夫 祖父江
Ikuo Sofue
育夫 祖父江
茂樹 櫻井
Shigeki Sakurai
茂樹 櫻井
鈴木 範之
Noriyuki Suzuki
範之 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Publication of JP2016215641A publication Critical patent/JP2016215641A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/147Processes of additive manufacturing using only solid materials using sheet material, e.g. laminated object manufacturing [LOM] or laminating sheet material precut to local cross sections of the 3D object
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/205Means for applying layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/22Apparatus for electrographic processes using a charge pattern involving the combination of more than one step according to groups G03G13/02 - G03G13/20
    • G03G15/221Machines other than electrographic copiers, e.g. electrophotographic cameras, electrostatic typewriters
    • G03G15/224Machines for forming tactile or three dimensional images by electrographic means, e.g. braille, 3d printing

Abstract

【課題】造形対象物のスライス画像データに応じて配置した造形材料を順に積層して3次元の造形物を得る方式の積層造形装置において、造形物の品質及び精度を向上するための技術を提供する。
【解決手段】造形物の形成に先立ち、画像形成ユニットによって造形材料からなるキャリブレーションマーカを形成し、キャリブレーションマーカを転写体を介してステージ上に積層する処理を行う。前記ステージ上に積層された前記キャリブレーションマーカをセンサにより検出し、その検出結果から前記ステージ上に積層された前記キャリブレーションマーカの画像歪みを計測する。造形物を形成するときに、予め計測された前記画像歪みに基づいて、前記画像形成ユニットに与えるスライス画像データに対し前記画像歪みを低減する補正を行う。
【選択図】図4

Description

本発明は立体造形装置に関する。
多数の層を積み上げることで3次元造形物を形成する立体造形装置が注目を集めている。この種の積層造形技術は、アディティブマニファクチャリング(AM)、3次元プリンタ、ラピッドプロトタイピングなどと呼ばれる。積層造形技術にはさまざまな造形方式が提案されている。例えば、特許文献1、3には、電子写真プロセスを応用した造形方式が開示され、特許文献2には、レーザ焼結方式が開示されている。
特開平10−224581号公報 米国特許出願公開第2009/0060386号明細書 特開2003−053846号公報
立体造形装置では、各層の断面画像の形状精度(画像形成精度)と各層を積み重ねるときの位置精度(積層精度)が、最終的な造形物の品質に大きな影響を与え得る。特に、特許文献1、3の装置のように、各層の画像を独立に形成しそれらを順に積層するタイプの積層方式では、その問題が大きくなる。しかしながら、特許文献1、3に開示された装置では、画像の歪みや画像位置のばらつきへの対処はなされておらず、画像形成精度及び積層精度を保証することができない。
特許文献2には、レーザ焼結方式の装置において、造形開始前にキャリブレーションプレートをスキャンして画像のセンタ基準を確定する、という位置キャリブレーション方法が開示されている。しかしこの方法は、画像の描画位置をステージのセンタに合わせるというものにすぎず、画像そのものの歪みを補正するものではない。また、この方法は、特許文献1、3のような、各層の画像を独立に形成しそれらを順に積層するタイプの積層方式には適用することができない。
本発明は、上記実情に鑑みなされたものであって、各層の画像を独立に形成しそれらを順に積層して3次元の造形物を得る方式の立体造形装置において、造形物の品質及び精度を向上するための技術を提供することを目的とする。
本発明の第一態様は、入力された画像データに基づき造形材料からなる材料画像を形成する画像形成ユニットと、前記画像形成ユニットで形成された前記材料画像が転写され、前記材料画像を搬送する転写体と、前記転写体により搬送された前記材料画像が積層されるステージと、を有する立体造形装置において、キャリブレーションマーカの画像データを生成するマーカ生成部と、生成された前記キャリブレーションマーカの画像データを前記画像形成ユニットに入力する制御ユニットと、前記キャリブレーションマーカの画像データに基づいて前記画像形成ユニットで形成され、前記ステージ上に積層された前記キャリブレーションマーカの位置を検出する第1の検出部と、前記第1の検出部の検出結果から、前記ステージ上に積層された前記キャリブレーションマーカの画像歪みを計測する画像歪計測部と、を有することを特徴とする立体造形装置を提供する。
本発明の第二態様は、入力された画像データに基づいて造形材料からなる材料画像を形成する画像形成ユニットと、前記画像形成ユニットで形成された前記材料画像が転写され、前記材料画像を搬送する転写体と、前記転写体により搬送された前記材料画像が積層されるステージと、を有する立体造形装置において、造形対象物のスライス画像とレジストレーションマーカとを含むスライス画像データを生成し、前記画像形成ユニットに入力する制御ユニットと、前記スライス画像データに基づいて前記画像形成ユニットで形成され、前記転写体に転写された材料画像に含まれる前記レジストレーションマーカを検出する第2の検出部と、前記第2の検出部の検出結果から前記転写体上の前記材料画像の位置ずれを計測する位置計測部と、前記位置計測部で計測された前記位置ずれに基づいて、前記ステージの位置を調整する調整部と、を有することを特徴とする立体造形装置を提供する。
本発明の第三態様は、画像データに基づいて造形材料からなる材料画像を形成し、前記材料画像をステージ上で積層して立体物を造形する積層造形方法であって、前記造形材料からなるキャリブレーションマーカを形成する工程と、前記キャリブレーションマーカを前記ステージ上に積層する工程と、前記ステージ上に積層された前記キャリブレーションマーカの位置を検出する工程と、前記キャリブレーションマーカの位置から、前記材料画像に生じる画像歪みに関する画像歪情報を取得する工程と、を有する積層造形方法を提供する。
本発明の第四態様は、造形材料からなる材料画像を形成し、前記材料画像をステージ上で積層して立体物を造形する積層造形方法であって、造形対象物のスライス画像とレジストレーションマーカとを含むスライス画像データを生成する工程と、前記スライス画像データに基づいて前記材料画像を形成する工程と、前記材料画像に含まれる前記レジストレーションマーカの位置を検出し、前記材料画像と前記ステージとの位置を調整する工程と、を有する積層造形方法を提供する。
本発明によれば、各層の画像を独立に形成しそれらを順に積層して3次元の造形物を得る方式の立体造形装置において、造形物の品質及び精度を向上することができる。
第1実施形態に係る立体造形装置の構成を模式的に示す図。 造形コントローラの回路ブロック図。 キャリブレーションマーカと画像歪みを説明する図。 キャリブレーション及びレジストレーションに関わる機能ブロック図。 キャリブレーション及び画像歪み補正のフローチャート。 画像歪み補正の概念図。 レジストレーション転写マーカ検出の概念図。 第2実施形態に係る立体造形装置の構成を模式的に示す図。 第2実施形態に係る立体造形装置の他の構成を模式的に示す図。 第3実施形態に係る立体造形装置の構成を模式的に示す図。 第3実施形態のキャリブレーションマーカを示す図。
以下、この発明を実施するための形態を図面を参照して例示的に説明する。ただし、以下の実施形態に記載されている各部材の寸法、材質、形状、その相対配置など、各種制御の手順、制御パラメータ、目標値などは、特に特定的な記載がない限りは、この発明の範囲をそれらのみに限定する趣旨のものではない。
<第1実施形態>
(立体造形装置の構成)
図1を参照して、本発明の第1実施形態に係る立体造形装置の構成を説明する。図1は、第1実施形態に係る立体造形装置の構成を模式的に示す図である。
立体造形装置は、造形対象物の断面情報に応じて造形材料を積層することによって立体造形物(立体物)を作成する装置である。この装置は、AM(Additive Manufacturing)システム、3Dプリンタ、RP(Rapid Prototyping)システムなどとも呼ばれる。
本実施形態の立体造形装置は、概略、画像形成ユニット100、造形ユニット200、及び、制御ユニット60を有する。画像形成ユニット100は、各層のスライス画像データに基づき、造形材料からなる1層分の画像を形成する構成部分である。画像形成ユニット100は、画像形成コントローラ10、レーザスキャナ(露光装置)20、プロセスカートリッジ30、転写ローラ41などで構成される。造形ユニット200は、画像形成ユニット100で形成された複数層の画像を順に積層し固着することによって、3次元構造をもつ立体造形物を形成する構成部分である。造形ユニット200は、造形コントローラ70、転写体42、対向部材(ヒータローラ)43、ステージ52、ステージガイド53、複数のモータ111〜114、複数のセンサ44,45,54,55などで構成される。制御ユニット60は、造形対象物の3次元形状データから複数層のスライス画像データ(断面データ)を生成する処理、立体造形装置の各部の制御、などを担う構成部分である。
(制御ユニット)
制御ユニット60は、造形対象物の3次元形状データから積層造形用のスライス画像データを生成する機能、各層のスライス画像データを画像生成コントローラ10へ出力する機能、積層造形工程を管理する機能、などを有する。制御ユニット60は、例えばパーソナルコンピュータや組み込み型コンピュータにこれらの機能を有するプログラムを実装することにより構成することができる。3次元形状データとしては、3次元CAD、3次元モデラー、3次元スキャナなどで作成されたデータを用いることができる。3次元形状データのフォーマットは問わないが、例えば、STL(StereoLithography)などのポリゴンデータを好ましく用いることができる。またスライス画像データのフォーマットとしては、例えば、多値の画像データ(各値が材料の種類を表す)やマルチプレーンの画像データ(各プレーンが材料の種類に対応する)を用いることができる。
(画像形成ユニット)
画像生成コントローラ10は、制御ユニット60から入力されるスライス画像データ及び造形コントローラ70から入力される制御信号などに基づき、画像形成ユニット100における画像形成プロセスを制御する機能を有する。具体的には、画像生成コントローラ10は、スライス画像データの解像度変換や復号処理、レーザスキャナ20による画像書き出し位置及びタイミングの制御などを行う。その他にも、画像生成コントローラ10は、一般的なレーザプリンタ(2Dプリンタ)に内蔵されるプリンタコントローラと同じような機能を有していてもよい。
画像形成ユニット100は、電子写真プロセスを利用して造形材料からなる1層分の画像を形成するユニットである。電子写真プロセスとは、感光体を帯電し、露光によって潜像を形成し、現像剤粒子を潜像に付着させて画像を形成するという一連のプロセスによって、所望の画像を形成する手法である。立体造形装置では、トナーの代わりに、造形材料からなる粒子を現像剤として用いるが、電子写真プロセスの基本原理は2Dプリンタのも
のとほぼ同じである。
感光ドラム34は、有機感光体やアモルファスシリコン感光体などの感光体層を有する像担持体である。一次帯電ローラ33は、感光ドラム34の感光体層を一様に帯電するための帯電装置である。レーザスキャナ20は、画像生成コントローラ10から与えられる画像信号にしたがい、レーザ光で感光ドラム34上をスキャンし、潜像を描画する露光装置である。造形材料供給部31は現像剤としての造形材料を収容・供給する装置である。現像ローラ32は、感光ドラム34上の静電潜像に造形材料を供給する現像装置である。転写ローラ41は、感光ドラム34上に形成された造形材料の画像を転写体(転写ベルト)42に転写する転写装置である。図示しないが、感光ドラム34と転写ローラ41のあいだの転写ニップの下流に、感光ドラム34の表面をクリーニングするためのクリーニング装置を設けてもよい。本実施形態では、感光ドラム34、一次帯電ローラ33、造形材料供給部31、現像ローラ32が、プロセスカートリッジ30として一体化され、交換が容易になっている。
造形材料としては、作成する造形物の用途・機能・目的などに応じてさまざまな材料を選択することができる。本明細書では、造形物(構造体)を構成する材料を「構造材料」と呼び、積層途中の造形物を支持するためのサポート体(例えばオーバーハング部を下から支える柱)を構成する材料を「サポート材料」と呼ぶ。また両者を特に区別する必要がない場合には、単に「造形材料」という用語を用いる。構造材料としては、例えば、PE(ポリエチレン)、PP(ポリプロピレン)、ABS、PS(ポリスチレン)など、熱可塑性の樹脂を用いることができる。また、サポート材料としては、構造体からの除去を簡単にするため、熱可塑性と水溶性を有する材料を好ましく用いることができる。サポート材料としては、例えば、糖質、ポリ乳酸(PLA)、PVA(ポリビニルアルコール)、PEG(ポリエチレングリコール)などを例示できる。
(造形ユニット)
造形コントローラ70は、立体造形装置のメカトロ制御を行う機能を有している。駆動系は、転写ローラ41を回転する転写ローラモータ111、ステージ52の3軸移動を行うステージ駆動Xモータ112,ステージ駆動Yモータ113,及びステージ駆動Zモータ114を含む。センシング系は、オンラインレジストレーションで利用される材料先端検知センサ44、オフラインキャリブレーションで利用される材料先端検知センサ45、材料左先端センサ54、材料右先端センサ55を含む。なお、これらのセンサの役割とオンラインレジストレーション及びオフラインキャリブレーションの詳細については後述する。
図2に、造形コントローラ70の回路ブロックの一例を示す。造形コントローラ70は、CPU71、メモリ72、インタフェース73、UI手段74、モータ駆動回路75、モータドライバ76、センサ回路77、センサインタフェース78を有する。また、造形コントローラ70は、その他のIO(入出力)回路79、ヒータ回路80、IOインタフェース81を有する。モータドライバ76には、転写ローラモータ111、ステージ駆動Xモータ112、ステージ駆動Yモータ113、及びステージ駆動Zモータ114が接続される。センサインタフェース78には、材料先端検知センサ44、材料先端検知センサ45、材料左先端センサ54、材料右先端センサ55が接続される。ヒータ回路80には、ヒータローラ43内のヒータ及び熱電対が接続される。IOインタフェース81には、図示しないが、立体造形装置のカバーオープン検知スイッチ、ステージ52のホームポジションセンサなどが接続される。
転写体42は、画像形成ユニット100で形成された造形材料の画像を担持し、ステージ52(積層ニップ)まで搬送する搬送部材である。転写体42は、例えば、樹脂、ポリ
イミドなどの無端ベルトで構成される。対向部材43は、ヒータを内蔵しており、転写体42上の造形材料画像を溶融し、ステージ52上の造形物上に積層する加熱積層装置である。ここでは、対向部材43として転写体42の搬送に用いるローラ(ヒータローラ43)を利用しているが、この構成に限定されるものではない。対向部材43は、積層時に、溶融した造形材料画像をステージ52上の造形物へ押し当てる機能を有していれば良く、造形材料画像を溶融する加熱部は対向部材43とは別に設けられていても良い。ステージ52は、積層中の造形物を保持する部材であり、ステージガイド53によりXYZの3軸方向に移動可能である。
(立体造形装置の動作)
次に、立体造形装置による造形物作成の基本動作について説明する。
制御ユニット60は、各層のスライス画像データを生成する。例えば、制御ユニット60は、造形対象物の3次元形状データに基づき、当該造形対象物を所定のピッチ(例えば数ミクロンから十数ミクロンの厚さ)でスライスして各層のスライス画像を生成する。そして、制御ユニット60は、各層のスライス画像にレジストレーションマーカ(後で詳細に説明する)を付加して各層のスライス画像データを生成する。各層のスライス画像の生成は必ずしも制御ユニット60で行う必要はなく、制御ユニット60の外で生成したスライス画像を取得して、レジストレーションマーカを付加してスライス画像データを生成しても良い。最下層のスライス画像データから順に画像生成コントローラ10に入力される。画像生成コントローラ10は、入力されたスライス画像データにしたがって、レーザスキャナ20のレーザ発光及びスキャンを制御する。
画像形成ユニット100では、一次帯電ローラ33によって感光ドラム34の表面が均一に帯電される。レーザスキャナ20からのレーザ光により感光ドラム34の表面が露光されると、その露光部分が除電される。現像バイアスで帯電された造形材料が現像ローラ32によって除電部分に供給され、造形材料からなる1層分の画像(以下「材料画像」と呼ぶ)が感光ドラム34の表面に形成される。この材料画像は、転写ローラ41により転写体42上に転写される。
転写体42は材料画像を担持しつつ回転し、材料画像を積層位置へと搬送する。一方、造形コントローラ70は、ステージ52(又はステージ52上の半造形物)が材料画像と同じタイミング且つ同じ速度で積層位置へと進入するように、ステージ52を制御する。そして、ステージ52と転写体42を同期して移動させつつ、ヒータローラ43により熱を与えることで、材料画像がステージ52上(又はステージ52上の半造形物の上面)に熱溶着される。材料画像が積層されるたび、造形コントローラ70はステージ52をZ方向に一層の厚み分だけ下降させ、次の層の積層に備える。
以上の画像形成及び積層の動作を、スライス画像データの枚数分繰り返すことで、ステージ52上に目的の立体造形物が形成される。
なお、本明細書では、立体造形装置で作成しようとする目的物(つまり立体造形装置に与えられる3次元形状データが表す物体)を「造形対象物」と呼び、立体造形装置で作成された(出力された)物体(立体物)を「造形物」と呼ぶ。また、造形物がサポート体を含む場合において、サポート体を除いた部分を特に区別して呼ぶ場合には「構造体」の用語を用いる。また、造形対象物の3次元形状データをスライスして得られる1スライス分のデータと、レジストレーションマーカのデータとを含むデジタルデータを「スライス画像データ」と呼ぶ。スライス画像データに基づき画像形成ユニットで形成される、造形材料からなる1層分の画像を「材料画像」と呼ぶ。
(積層造形の課題)
本実施形態のように、多数の画像を積層して造形物を形成するタイプ(積層型)の立体
造形装置では、材料画像の形状精度と積層時の位置精度の2つが、最終造形物の品質を左右する。例えば、露光のスキャン精度、感光ドラムや転写ローラの寸法精度などに起因して、材料画像に歪みが生じることがある。このような画像歪みが累積すると、最終造形物の寸法や形状に無視できない影響が表れる。また、各層の材料画像をステージ52上の造形物上に積層する際に位置のばらつきがあると、最終造形物の側面が凹凸になり、滑らかな表面を得ることができない。これらは、数百から数万枚の画像を重ねて1つの最終造形物を作る積層型の立体造形装置に特有の課題といえる。
そこで本実施形態では、各層の材料画像の形状精度を担保するため、造形物の形成に先立ち、画像形成ユニット100で発生する画像歪みを計測し(オフラインキャリブレーションと呼ぶ)、画像形成時には各層のスライス画像データに対し画像歪み補正を施す。さらに、積層時の位置精度を担保するために、各層の材料画像の転写体上の位置を計測し、積層時に材料画像とステージ52上の造形物とのあいだの位置合わせを行う(オンラインレジストレーションと呼ぶ)。以下、オフラインキャリブレーション、画像歪み補正、及び、オンラインレジストレーションの詳細を説明する。
(オフラインキャリブレーション)
造形物の生成前に行われるオフラインキャリブレーションについて説明する。オフラインキャリブレーションでは、前述した画像形成及び積層と同じ手順で、キャリブレーションマーカをステージ52上に形成し、そのマーカ間の位置関係の変化から画像歪みを計測する。なお、オフラインキャリブレーションは、造形物の生成前だけでなく材料画像を積層する合間に行うこともできる。
以下の説明では、画像生成コントローラ10に与えられるキャリブレーションマーカ用の画像データを「キャリブレーションマーカデータ」と呼ぶ。キャリブレーションマーカデータは、制御ユニット60のメモリ内に記憶されており、オフラインキャリブレーションの際に読み出される。また、キャリブレーションマーカデータに基づき形成された造形材料からなる画像を「キャリブレーションマーカ」又は単に「マーカ」と呼ぶ。さらに、感光ドラム34から転写体42に転写されたマーカ(つまり転写体42上のマーカ)を「キャリブレーション転写マーカ」と呼び、ステージ52上に転写されたマーカを「キャリブレーション積層マーカ」と呼ぶ。場所によってマーカの呼称を変える理由は、マーカが転移していく過程において画像歪みが変化し得ること、及び、場所ごとに異なるセンサを用いてマーカを検出すること等から、マーカがどこにあるかを説明の便宜上区別するほうが好ましいからである。なお、場所を特に区別する必要のない文脈では「キャリブレーションマーカ」又は「マーカ」の用語を用いる。
図3Aは、本実施形態で用いるキャリブレーションマーカ(画像歪みの無い状態)の一例を示す。キャリブレーションチャート203の点線で示した四角形は、横200mm、縦300mmの画像形成範囲に相当している。この画造形成範囲の大きさは、ステージ52上の造形領域(造形が可能な最大領域)の大きさに等しい。画像形成範囲の四隅に、先左端キャリブレーションマーカAFL、先右端キャリブレーションマーカAFR、後左端キャリブレーションマーカARL、後右端キャリブレーションマーカARRがある。各マーカAFL,AFR,ARL,ARRは、5mm角の正方形画像であり、画像形成範囲の四隅の10mm角の領域の中心に生成される。
図3Bは、ステージ52上に転写されたキャリブレーション積層マーカ204の一例を示す。画像形成及び/又は積層の過程で発生した画像歪みにより、四隅のマーカAFL,AFR,ARL,ARRの位置及び、マーカ間の相対位置が変化している様子を示している。
図3Cは、ステージ、キャリブレーション積層マーカ、センサの構成を示す模式図である。ステージ52には、センサの検出基準となる原点O1と原点O2が記されている。原点O1,O2は寸法基準となるもので、高い位置精度が要求される。よってレーザマーキングのような高精度印字か、高精度NC加工による穴開けにより、原点O1,O2を作成することが望ましい。センサの検出精度にも影響を与えるため、本実施形態で用いるような光学センサの場合には、原点とその周囲の間のコントラストが最大となる印字手法または加工手法が望ましい。ここではレーザマーキングにより原点O1,O2を作成する。
ステージ52の上方には、原点O1に対応するY位置に材料左先端センサ54が配置され、原点O2に対応するY位置に材料右先端センサ55が配置されている。材料左先端センサ54は、先左端キャリブレーションマーカAFLと後左端キャリブレーションマーカARLの位置を検出するためのセンサである。材料右先端センサ55は、先右端キャリブレーションマーカAFRと後右端キャリブレーションマーカARRの位置を検出するためのセンサである。図3Cに示すベクトルVFL,VFR,VRL,VRRはそれぞれ、画像歪みがない状態でのマーカAFL,AFR,ARL,ARRの位置に対する、AFL,AFR,ARL,ARRの変位(変形ベクトル)を表している。本実施形態のオフラインキャリブレーションは、キャリブレーションマーカを実際にステージ52上に形成し、画像形成や積層によって生じる変形ベクトルVFL,VFR,VRL,VRRを実測する処理である。
通常、四隅のマーカの変形ベクトルは同一方向のベクトルとはならない。転写体42の歪みや各ローラ軸のアライメントずれなどの影響で、造形領域内の位置ごとに変位の方向や程度が相違するからである。したがって、キャリブレーションマーカとしては、造形領域内の複数点について変形ベクトルを取得できるものであればよい。例えば、ステージ上の造形領域内の離れた位置に少なくとも2つ以上のマーカを配置し、それぞれの位置における変形ベクトルを検出(計測)するとよく、望ましくは、本実施形態のように矩形の造形領域の四隅にマーカを配置するとよい。キャリブレーションマーカは複数のマーカで構成されるものには限定はされず、AFL,AFR,ARL,ARRを繋いだ枠状の材料画像をキャリブレーションマーカとして形成し、枠の角部で変形ベクトルを計測してもよい。これにより、造形領域内の各マーカ位置に生じる変位を把握することができる。なお、転写体42として硬質のベルト材を用いることにより、造形領域内の各位置で生じる変位は比較的線形となるため、四隅のマーカ以外の位置での変形ベクトルは四隅のマーカから得られる変形ベクトルの線形補間により求めることができる。もし転写体42の撓みが部分的に周期をもったり不連続性が有る場合は、キャリブレーションマーカの数を増やしてもよい。例えば、造形領域の四辺に沿って複数のマーカを配列することが望ましい。
図4及び図5Aを用いて、オフラインキャリブレーションの詳細を説明する。図4は、オフラインキャリブレーションに関わる機能を示すブロック図であり、図5Aは、オフラインキャリブレーションの処理フローである。
図4に示すように、制御ユニット60は、オフラインキャリブレーションに関わる機能として、キャリブレーションマーカ生成部65を有する。また造形コントローラ70は、オフラインキャリブレーションに関わる機能として、キャリブレーション積層マーカ位置検出部201と画像歪計測部202を有する。キャリブレーション積層マーカ位置検出部201は、材料左先端センサ54と材料右先端センサ55のセンシング結果に基づき、各マーカAFL,AFR,ARL,ARRの位置を検出する機能である。画像歪計測部202は、各マーカの変形ベクトルVFL,VFR,VRL,VRRを求める機能である。
図5Aのフローチャートに沿って、造形コントローラ70によるオフラインキャリブレーションの流れを説明する。
ステップ301では、造形コントローラ70が、ステージ駆動Xモータ112とステージ駆動Yモータ113を制御してステージ52のXY位置を変化させながら、材料左先端センサ54の出力を監視する。造形コントローラ70は、原点O1を検出すると、そのときのステージ52のXY位置をX=0,Y=0として記憶する。ステップ302では、同じように、造形コントローラ70はステージ52のXY位置を変化させながら、材料右先端センサ55の出力を監視する。ステップ303では、造形コントローラ70は、原点O2を検出したときのステージ52のXY位置と原点O1を検出したときのステージ52のXY位置との差を、X=dx、Y=dyとして記憶する。この(dx,dy)は、材料左先端センサ54と材料右先端センサ55の取り付け誤差を表す誤差オフセット量である。なお、2つのセンサ54,55の取り付け誤差を無視できる場合(つまりdx=dy=0とみなせる場合)には、ステップ302と303の処理は省略してもよい。
ステップ304では、制御ユニット60のキャリブレーションマーカ生成部65がキャリブレーションマーカデータを画像生成コントローラ10に出力する。これにより、画像形成ユニット100及び造形ユニット200にキャリブレーション積層マーカの生成処理を行わせる。具体的には、画像形成ユニット100は、キャリブレーションマーカデータに基づき、造形物の材料画像を形成するのと同じプロセスで、感光ドラム34上に造形材料からなるキャリブレーションマーカを形成する。このマーカは感光ドラム34から転写体42上に転写され、キャリブレーション転写マーカとして造形ユニット200へ搬送される。材料先端検知センサ45によってキャリブレーション転写マーカの先端が検知されると、造形コントローラ70は、ステージ52がキャリブレーション転写マーカと同じタイミングで積層位置へと進入するよう、ステージ52を制御する。そして、ヒータローラ43によりキャリブレーション転写マーカがステージ52上に転写され、キャリブレーション積層マーカが得られる。キャリブレーション積層マーカAFL,AFR,ARL,ARRには、図3Bに示すように、露光、現像、転写、積層といった一連のプロセスの中で発生した画像歪みの情報が含まれている。
ステップ305では、造形コントローラ70が、ステージ駆動Xモータ112とステージ駆動Yモータ113を制御してステージ52のXY位置を変化させながら、材料左先端センサ54及び材料右先端センサ55の出力を監視する。材料左先端センサ54で検出されたマーカAFLのXY位置、及び、材料右先端センサ55で検出されたマーカAFRのXY位置は、キャリブレーション積層マーカ位置検出部201に記憶される。ステップ306では、造形コントローラ70が、ステージ駆動Xモータ112を制御し、ステージ52を後端のキャリブレーション積層マーカARL,ARRの位置まで移動させる。ステップ307では、造形コントローラ70が、ステージ駆動Xモータ112とステージ駆動Yモータ113を制御してステージ52のXY位置を変化させながら、材料左先端センサ54及び材料右先端センサ55の出力を監視する。材料左先端センサ54で検出されたマーカARLのXY位置、及び、材料右先端センサ55で検出されたマーカARRのXY位置は、キャリブレーション積層マーカ位置検出部201に記憶される。
ステップ308では、画像歪計測部202が、原点O1のXY位置に基づき、画像歪みが無い場合の各マーカAFL,AFR,ARL,ARRのXY位置(これを正規位置と呼ぶ)を計算する。そして、画像歪計測部202は、各マーカの正規位置と、ステップ305及び307で検出された各マーカの検出位置との差に基づいて、各マーカの変位量と変位の向きを表す変形ベクトルVFL,VFR,VRL,VRRを計算する。2つのセンサ54と55の間に誤差オフセット量(dx,dy)がある場合は、変形ベクトルVFR,VRRを計算する際に誤差オフセット量(dx,dy)を考慮する。
ステップ309では、造形コントローラ70が、各マーカの変形ベクトルを、画像形成ユニットで形成してステージ上に積層されるまでに、材料画像に生じる画像歪みに関する画像歪情報として制御ユニット60に送信する。
(画像歪み補正)
次に、図4及び図5Bを参照して、オフラインキャリブレーションによって予め取得された画像歪情報に基づき、材料画像の形成時に実行される画像歪み補正について説明する。
図4に示すように、制御ユニット60は、スライス画像データの生成及び画像歪み補正に関わる機能として、3Dデータスライサ61、レジストレーションマーカ付加部62、画像歪補正部63、プリンタドライバ64を有する。以下、図5Bのフローチャートに沿って、画像形成時の制御ユニット60の動作を説明する。
ステップ311では、造形コントローラ70から画像歪情報が取得される。ステップ312では、画像歪補正部63が、画像歪情報として得られた四隅のマーカの変形ベクトルから逆ベクトルを算出し、それらを線形補間することによって画素ごとの補正パラメータを算出する。補正パラメータは、例えば、補正前の画像における画素座標と補正後の画像における画素座標の対応を示す情報である。
ステップ313では、造形対象物の3次元形状データが読み込まれる。ステップ314では、3Dデータスライサ61が3次元形状データに基づき、当該造形対象物の3次元形状を所定のピッチ(例えば数ミクロンから十数ミクロンの厚さ)でスライスして各層のスライス画像を生成する。ステップ315では、レジストレーションマーカ付加部62が、各層のスライス画像に対しレジストレーションマーカを付加し、スライス画像データを生成する(レジストレーションマーカの詳細は後述する)。ステップ314〜315に変えて、レジストレーションマーカ付加部62が読み込んだ3次元形状データにレジストレーションマーカの積層体を付加した後、3Dデータスライサ61がスライスすることにより、各層のスライス画像データを生成してもよい。
ステップ316では、画像歪補正部63が、ステップ312で求めた補正パラメータを用いて、スライス画像データの歪み補正を行う。ここでの歪み補正は、画像形成から積層までの過程で発生する画像歪みが低減ないしキャンセルされるように、逆方向の歪みをスライス画像に与える処理となる。なお、3Dデータスライサ61によるスライス後のデータに歪み補正を行う以外に、スライス前の3次元形状データに対して歪み補正を行うことにより、スライス画像データの歪み補正を行うもできる。ステップ317では、プリンタドライバ64が、補正後のスライス画像データを画像生成コントローラ10に送信する。
以上のように、オフラインキャリブレーションによって得られた画像歪情報に基づきスライス画像データを補正することで、ステージ52上に積層したときに画像歪みの無い又は小さい材料画像を形成することができ、造形物の寸法精度を向上することができる。
図6A〜図6Cを用いて、画像歪み補正の概念を説明する。図6A〜図6Cでは、説明を簡略化するため、画像の上端辺の画素の補正についてのみ示す(実際の補正では、画像中のすべての画素について同様の補正が行われる)。
図6Aの破線はステージ52上の造形領域を示し、造形領域の左右の白四角AFLO,AFROは画像歪みが無い状態でのキャリブレーション積層マーカの正規位置を示している。また、黒四角AFL,AFRは、オフラインキャリブレーションのときに実際にキャリブレーション積層マーカが積層された位置を示している。VFL及びVFRは、それぞれ、マーカAFL及びAFRの変形ベクトルを示す。図6Aの例では、画像が左右に伸び、画像の左側は正規位置より前進し、右側は正規位置より後退していることがわかる。
図6Bは画像歪み補正の概念を模式的に示している。破線はステージ52上の造形領域を示し、実線は補正後のスライス画像の領域を仮想的に示している。画像の左上端においては、変形ベクトルVFLの逆ベクトル−VFLだけ画素を移動させる。また画像の右上端においては、変形ベクトルVFRの逆ベクトル−VFRだけ画素を移動させる。左上端と右上端のあいだの位置では、逆ベクトル−VFLと−VFRの線形補間により、画素の移動及び間引きを行う。なお、積層造形に用いるスライス画像は二値画像(材料粒子の有り無し)であるため、各画素は中間階調をもつことができない。したがって、画像歪みの補正(画素の移動)は画素単位となり、補正後の画像のエッジは図6Bのように階段状になる。画素間引きについても、図6Bのように2つの画素の移動先が同じ画素になった場合に、いずれか一方の画素を削除するという単純間引きとなる。
図6Cは、図6Bの実線で示した補正後のスライス画像データを用いて画像形成及び積層を行った場合にステージ52上に形成される画像を示している。キャリブレーション積層マーカAFL,AFRは正規位置に積層され先端は傾きが無い直線となる。これにより、画像歪みの無い積層が実現できる。ここでは厳密には表現されていないが画像の上端エッジは階段状になっており部分的には画素が傾斜している。画素数が少なく実際の升目(一画素)は若干伸びて横幅は正規幅となっている。一画素50ミクロンの粒子であれば1%の伸縮では0.5ミクロンの伸縮となるが全体の画像レベルでは見た目では判断できない差分である。
(オンラインレジストレーション)
次に、材料画像の積層時に行われるオンラインレジストレーションについて説明する。オンラインレジストレーションでは、材料画像にレジストレーションマーカを挿入し、そのマーカの検出位置に基づき積層時の位置合わせを行う。
以下の説明では、画像生成コントローラ10に与えられるレジストレーションマーカ用の画像データを「レジストレーションマーカデータ」と呼ぶ。また、レジストレーションマーカデータに基づき形成された造形材料からなる画像を「レジストレーションマーカ」又は単に「マーカ」と呼ぶ。さらに、感光ドラム34から転写体42に転写されたマーカ(つまり転写体42上のマーカ)を「レジストレーション転写マーカ」と呼び、ステージ52上に転写されたマーカを「レジストレーション積層マーカ」と呼ぶ。場所によってマーカの呼称を変える理由は、マーカが転移していく過程において画像歪みが変化し得ること、及び、場所ごとに異なるセンサを用いてマーカを検出すること等から、マーカがどこにあるかを説明の便宜上区別するほうが好ましいからである。なお、場所を特に区別する必要のない文脈では「レジストレーションマーカ」又は「マーカ」の用語を用いる。
図4に示すように、造形コントローラ70は、オンラインレジストレーションに関わる機能として、レジストレーション転写マーカ位置検出部211、位置計測部212、積層位置調整部213を有する。
図5Bのステップ315で説明したように、各層のスライス画像データには位置合わせ用のレジストレーションマーカの画像が埋め込まれる。本実施形態では、図7に示すように、造形領域内の所定位置(造形物断面と重ならない位置)に直角三角形のレジストレーションマーカAFが形成されるようにする。
レジストレーション転写マーカ位置検出部211は、材料先端検知センサ44を用いて、転写体42上のレジストレーション転写マーカAFを検出する。そして、位置計測部212が、レジストレーション転写マーカAFの検出結果から、材料画像のX方向位置(先端位置)とY方向の位置ずれ量を取得する。ここで、X方向とは転写体42の進行方向であり、Y方向は転写体42の幅方向(進行方向に直交する方向)である。積層位置調整部
213は、材料画像のX方向位置を基に、ステージ駆動Xモータ112の駆動開始タイミングを制御し、ステージ52上の造形物と転写体42上の材料画像の先端合わせを行う。また積層位置調整部213は、材料画像のY方向の位置ずれ量を基に、ステージ駆動Yモータ113を制御し、ステージ52上の造形物と転写体42上の材料画像の左端の位置合わせを行う。これにより、半造形物と材料画像のXY面内での積層ばらつきがオンラインで解消され、高品質な造形が可能となる。
図7は、転写体上のレジストレーション転写マーカ検出の概念図である。レジストレーション転写マーカAFは転写体42上の造形領域先端部の所定位置(造形物断面に重ならない位置)に形成される。本実施形態のレジストレーション転写マーカAFは、転写体42の進行方向(X方向)に対し直交する第1エッジと、X方向に対し斜めの第2エッジを有する、直角三角形状の図形である。
直角三角形の斜辺の変化量を式にあらわすと、
Y=1−aX
となる。ここで、aは斜辺の傾きであり、三角形の一辺の長さは1である。
レジストレーション転写マーカAFの左端の辺をY=0とし、Y=0.5を正規位置とすると、ずれ量ΔYは、
ΔY=Y−0.5=(1−aX)−0.5=0.5−aX
と表すことができる。
斜辺の角度が45°であればa=1であり、
X=0.5のときに ΔY=0
X=0のときに ΔY=0.5
X=1のときに ΔY=−0.5
となる。0<X<1の範囲とする。
材料先端検知センサ44により、レジストレーション転写マーカAFの第1エッジと第2エッジを検出する。L1は、転写体42上のレジストレーション転写マーカAFが正規位置を通過した場合の材料先端検知センサ44の検出ラインである。つまり、材料先端検知センサ44がラインL1を通過する状態が基準(ずれ量ΔY=0)となる。ラインL1を通過したときの材料先端検知センサ44の出力信号をS1に示す。レジストレーション転写マーカAFの第1エッジを検出すると信号はローレベルからハイレベルに変化する。第2エッジL2を検出すると信号はハイレベルからローレベルに変化する。
ここで仮に転写体42が基準からΔYだけ左にシフトした場合、材料先端検知センサ44はラインL3を通過することになる。ラインL3を通過したときの材料先端検知センサ44の出力信号をS3に示す。レジストレーション転写マーカAFの第1エッジを検出すると信号はローレベルからハイレベルに変化する。第2エッジL4を検出すると信号はハイレベルからローレベルに変化する。
したがって、材料先端検知センサ44の出力信号S3の立ち上がりのタイミングによってX方向位置(先端位置)がわかる。また、出力信号S3のハイレベルの期間(第1エッジの検出タイミングと第2エッジの検出タイミングの差)と式Y=1−aXから、レジストレーション転写マーカの、正規位置に対するY方向の位置ずれ量ΔYを求めることができる。このように1つのレジストレーション転写マーカ及び1つの材料先端検知センサ44により、X、Yの2方向の位置の検出が可能となる。これは構成及び処理が簡易化されるというコストメリットと、2方向の位置合わせを高速に行うことができるというメリットがある。積層時は転写体42及びステージ52が高速に移動するために、本実施形態の
ような構成が有効である。ただし、Y方向の位置ずれが無視できほど小さい場合は、X方向の位置さえ検出できればよく、例えば、Y方向に平行な二辺とX方向に平行な二辺とを有する四角形のマーカを用いることができる。
以上述べた本実施形態の立体造形装置の構成によれば、オフラインキャリブレーション及び画像歪み補正を行うことにより、画像形成から積層までの過程で発生する画像のXY面内歪みを可及的に抑えることができる。また、オンラインレジストレーションを行うことにより、積層時の位置ずれを可及的に抑えることができる。したがって、形状精度及び寸法精度の高い、高品質な造形物を形成することが可能となる。
なお、画像形成に起因する画像歪みは、例えば、感光ドラム34の歪み、現像ローラ32の歪み、各ローラ軸のアライメントずれ、各部材の摩耗などにより発生する。したがって、オフラインキャリブレーションは、各造形ジョブの先頭のタイミングなどに実行することが好ましい。ただし、画像歪みが無視できる場合には、オフラインキャリブレーションを省略しても良い。
<第2実施形態>
図8は、本発明の第2実施形態に係る立体造形装置の構成を示す図である。第1実施形態との違いは、複数の画像形成ユニットを有する点である。図8の例では、カートリッジ30A、感光ドラム34A、転写ローラ41Aを有する第1の画像形成ユニット100Aと、カートリッジ30B、感光ドラム34B、転写ローラ41Bを有する第2の画像形成ユニット100Bが設けられている。この構成は、例えば、カートリッジ30Aに構造材料、カートリッジ30Bにサポート材料を入れることで、構造体とは異なる材料(例えば除去性の高い材料)からなるサポート体を有する造形物を簡単に作成する目的に使用できる。あるいは、両方のカートリッジ30A,30Bに同じ材料を入れておき、一つの画像形成ユニット100Aで画像形成を行い、材料が空になると自動的に他方の画像形成ユニット100Bに切り替えて画像形成を続行する、という目的にも使用できる。あるいは、カートリッジ30Aと30Bに色や物性が異なる材料を入れておき、カラフルな造形物や、複数種の材料が混ざった造形物を作る目的にも使用できる。
本実施形態の立体造形装置の場合も、画像形成ユニットごとにオフラインキャリブレーション及び画像歪み補正を実施すれば、形状精度の高い造形を実現できる。ただし露光のスキャン精度や感光ドラムの寸法精度など、画像形成ユニット100A、100Bで生じる画像歪みが小さい場合は、画像形成ユニット100A、100Bのいずれかでキャリブレーションを行うだけでもよい。例えば、一方の画像形成ユニットを用いオフラインキャリブレーションを行って得られる画像歪情報を、両方の画像形成ユニットで材料画像を形成する際の画像歪み補正に用いても良い。
図9は、図8の装置の変形例である。図9の立体造形装置では、画像形成ユニット100A,100Bごとに、転写体42A,42Bとヒータローラ43A,43Bと材料先端検知センサ44A,44Bが設けられている。
この構成の場合、転写体42Aと42Bとで画像歪みが独立しており、且つ、積層タイミングも別であるため、個別の画像歪み補正とレジストレーションが必要となる。したがって、画像形成ユニット100A,100Bごとにオフラインキャリブレーションを行い、画像歪み補正を行う。また積層時には、転写体42A上のマーカと転写体42B上のマーカを個別のセンサ44A,44Bで読み取ることにより、それぞれの材料画像の位置合わせが可能である。
<第3実施形態>
図10は、本発明の第3実施形態に係る立体造形装置の構成を示す図である。第1実施
形態との違いは、4つの画像形成ユニット100A〜100Dを有する点と、転写体を画像形成用の一次転写体47と積層用の二次転写体42に分けた点である。複数の画像形成ユニット100A〜100Dを設ける構成の利点は、第2実施形態と同じく、複数種類の材料による造形、材料の切替使用、造形物のカラー化などにある。複数の転写体47,42を設ける構成の利点の1つは、2Dプリンタや複写機の分野で確立された転写ベルトの技術を有効利用できることである。また、一次転写体47には転写特性の優れた材料を用い、二次転写体42には耐熱性に優れた材料を用いるなど、転写体を分けることで、各転写体の材料選択の自由度を高めるとともに、各転写体の機能向上を図ることができる。
立体造形装置は、追加の構成として、感光ドラム34A,34B,34C,34D、転写ローラ41A,41B,41C,41D、一次転写体47と転移ローラ対46,48を有する。各画像形成ユニット100A〜100Dで形成された材料画像は感光ドラム34A〜34Dから一次転写体47上に順に転写される。一次転写体47上の材料画像は転移ローラ対46,48により二次転写体42に転写される。二次転写体42上の材料画像は造形ユニットに搬送され、ステージ52又はステージ52上の半造形物上に積層される。このような構成において画像形成ユニット100A〜100Dごとの画像歪みを補正するため、画像形成ユニット100A〜100Dごとにオフラインキャリブレーションを実行するとよい。
図11は、本実施形態で用いるキャリブレーションマーカの一例を示している。画像形成ユニット100A用のマーカとして、先左端キャリブレーションマーカAFL、先右端キャリブレーションマーカAFR、後左端キャリブレーションマーカARL、後右端キャリブレーションマーカARRが生成される。同様に、画像形成ユニット100B用のマーカとして、先左端キャリブレーションマーカBFL、先右端キャリブレーションマーカBFR、後左端キャリブレーションマーカBRL、後右端キャリブレーションマーカBRRが生成される。画像形成ユニット100C用のマーカとして、先左端キャリブレーションマーカCFL、先右端キャリブレーションマーカCFR、後左端キャリブレーションマーカCRL、後右端キャリブレーションマーカCRRが生成される。画像形成ユニット100D用のマーカとして、先左端キャリブレーションマーカDFL、先右端キャリブレーションマーカDFR、後左端キャリブレーションマーカDRL、後右端キャリブレーションマーカDRRが生成される。各マーカは互いに重ならないように配置されている。
第1実施形態と同様に各マーカの変形ベクトルを計算し、画像形成ユニット100A〜100Dそれぞれで形成される画像の画像歪情報を取得することができる。これにより、造形時には、画像形成ユニット100A〜100Dそれぞれで形成される画像に対して発生する画像歪みを個別に補正することができるため、寸法精度及び形状精度にすぐれた造形物を得ることができる。
また、画像形成ユニット100Bを画像形成ユニット100Aの予備として待機させておき、画像形成ユニット100Aの材料が無くなったときに画像形成ユニット100Bに切り替える、という使用方法を想定する。この場合に、画像形成ユニット100A、100Bそれぞれの補正パラメータを予め作成し、記憶しておくとよい。そうすると、使用する画像形成ユニットを100Aから100Bに切り替えるときに、画像形成ユニット100A用の補正パラメータから画像ユニット100B用の補正パラメータに即座に切り替えることができる。これにより、カートリッジの入れ替えやキャリブレーションなどの段取りが不要となり、自動的に高精度な積層造形を継続することが可能となる。
本実施形態においても、第2実施形態と同様に、露光のスキャン精度や感光ドラムの寸法精度など、画像形成ユニット100A〜100Dで生じる画像歪みが小さい場合は、いずれかの画像形成ユニットでキャリブレーションを行うだけでもよい。例えば、いずれか
の画像形成ユニットを用いオフラインキャリブレーションを行って得られる画像歪情報を、他の画像形成ユニットで材料画像を形成する際の画像歪み補正に用いても良い。
34:感光ドラム、42:転写体、52:ステージ、65:キャリブレーションマーカ生成部、54:材料左先端センサ、55:材料右先端センサ、202:画像歪計測部、63:画像歪補正部

Claims (19)

  1. 入力された画像データに基づき造形材料からなる材料画像を形成する画像形成ユニットと、
    前記画像形成ユニットで形成された前記材料画像が転写され、前記材料画像を搬送する転写体と、
    前記転写体により搬送された前記材料画像が積層されるステージと、
    を有する立体造形装置において、
    キャリブレーションマーカの画像データを生成するマーカ生成部と、
    生成された前記キャリブレーションマーカの画像データを前記画像形成ユニットに入力する制御ユニットと、
    前記キャリブレーションマーカの画像データに基づいて前記画像形成ユニットで形成され、前記ステージ上に積層された前記キャリブレーションマーカの位置を検出する第1の検出部と、
    前記第1の検出部の検出結果から、前記ステージ上に積層された前記キャリブレーションマーカの画像歪みを計測する画像歪計測部と、を有する
    ことを特徴とする立体造形装置。
  2. 前記制御ユニットが、前記画像歪計測部で計測された前記画像歪みに基づいて、前記画像形成ユニットに入力される画像データに対し前記画像歪みを低減する補正を行う補正部をさらに有する
    ことを特徴とする請求項1に記載の立体造形装置。
  3. 前記画像歪計測部は、前記第1の検出部による前記キャリブレーションマーカの検出位置と、画像歪みが無い場合に前記キャリブレーションマーカが積層されるべき位置である正規位置と、の差から算出される変形ベクトルを前記画像歪みとする
    ことを特徴とする請求項1又は2に記載の立体造形装置。
  4. 前記キャリブレーションマーカは、前記ステージ上の造形領域内に離れて配置される複数のマーカを含む
    ことを特徴とする請求項1〜3のうちいずれか1項に記載の立体造形装置。
  5. 前記キャリブレーションマーカは、前記ステージ上の矩形の造形領域内の四隅に配置される複数のマーカを含む
    ことを特徴とする請求項1〜3のうちいずれか1項に記載の立体造形装置。
  6. 前記画像歪計測部は、前記造形領域内の前記複数のマーカの材料画像が形成されない位置での画像歪みを、前記複数のマーカの画像歪みの線形補間により算出する
    ことを特徴とする請求項4又は5に記載の立体造形装置。
  7. 複数の前記画像形成ユニットを有しており、
    前記マーカ生成部が、複数の前記画像形成ユニットそれぞれに対するキャリブレーションマーカの画像データを生成し、
    前記第1の検出部および前記画像歪計測部が、複数の前記画像形成ユニットそれぞれに対するキャリブレーションマーカの検出および画像歪みの計測を行う
    ことを特徴とする請求項1〜6のうちいずれか1項に記載の立体造形装置。
  8. 前記制御ユニットが、前記画像形成ユニットに入力するスライス画像データにレジストレーションマーカの画像データを含ませるマーカ付加部をさらに有し、
    前記転写体上の前記レジストレーションマーカを検出する第2の検出部と、
    前記第2の検出部の検出結果から前記転写体上の前記スライス画像データに基づく材料画像の位置ずれを計測する位置計測部と、
    前記転写体上の前記スライス画像データに基づく材料画像を積層するときに、前記位置計測部で計測された前記位置ずれに基づいて、前記ステージの位置を調整する調整部と、を有する
    ことを特徴とする請求項1〜7のうちいずれか1項に記載の立体造形装置。
  9. 前記レジストレーションマーカは、前記転写体の進行方向に対し直交する第1のエッジと前記転写体の進行方向に対し斜めの第2のエッジとを有する図形であり、
    前記位置計測部は、
    前記第1のエッジの検出タイミングから、前記転写体の進行方向に関する前記材料画像の位置を取得し、
    前記第1のエッジの検出タイミングと前記第2のエッジの検出タイミングの差から、前記転写体の進行方向に直交する方向に関する前記材料画像の位置ずれを取得する
    ことを特徴とする請求項8に記載の立体造形装置。
  10. 前記転写体は、前記画像形成ユニットから前記材料画像が転写される一次転写体と、前記一次転写体から前記材料画像が転写されて前記ステージ上の積層位置へ搬送する二次転写体とを有する
    ことを特徴とする請求項1〜9のうちいずれか1項に記載の立体造形装置。
  11. 前記画像形成ユニットは、電子写真プロセスによって前記材料画像を形成する
    ことを特徴とする請求項1〜10のうちいずれか1項に記載の立体造形装置。
  12. 入力された画像データに基づいて造形材料からなる材料画像を形成する画像形成ユニットと、
    前記画像形成ユニットで形成された前記材料画像が転写され、前記材料画像を搬送する転写体と、
    前記転写体により搬送された前記材料画像が積層されるステージと、を有する立体造形装置において、
    造形対象物のスライス画像とレジストレーションマーカとを含むスライス画像データを生成し、前記画像形成ユニットに入力する制御ユニットと、
    前記スライス画像データに基づいて前記画像形成ユニットで形成され、前記転写体に転写された材料画像に含まれる前記レジストレーションマーカを検出する第2の検出部と、
    前記第2の検出部の検出結果から前記転写体上の前記材料画像の位置ずれを計測する位置計測部と、
    前記位置計測部で計測された前記位置ずれに基づいて、前記ステージの位置を調整する調整部と、を有する
    ことを特徴とする立体造形装置。
  13. 前記レジストレーションマーカは、前記転写体の進行方向に対し直交する第1のエッジと前記転写体の進行方向に対し斜めの第2のエッジとを有する図形であり、
    前記位置計測部は、
    前記第1のエッジの検出タイミングから、前記転写体の進行方向に関する前記材料画像の位置を取得し、
    前記第1のエッジの検出タイミングと前記第2のエッジの検出タイミングの差から、前記転写体の進行方向に直交する方向に関する前記材料画像の位置ずれを取得する
    ことを特徴とする請求項12に記載の立体造形装置。
  14. 前記転写体は、前記画像形成ユニットから前記材料画像が転写される一次転写体と、前
    記一次転写体から前記材料画像が転写されて前記ステージ上の積層位置へ搬送する二次転写体とを有する
    ことを特徴とする請求項12又は13に記載の立体造形装置。
  15. 前記画像形成ユニットは、電子写真プロセスによって前記材料画像を形成する
    ことを特徴とする請求項12〜14のうちいずれか1項に記載の立体造形装置。
  16. 画像データに基づいて造形材料からなる材料画像を形成し、前記材料画像をステージ上で積層して立体物を造形する積層造形方法であって、
    前記造形材料からなるキャリブレーションマーカを形成する工程と、
    前記キャリブレーションマーカを前記ステージ上に積層する工程と、
    前記ステージ上に積層された前記キャリブレーションマーカの位置を検出する工程と、
    前記キャリブレーションマーカの位置から、前記材料画像に生じる画像歪みに関する画像歪情報を取得する工程と、
    を有する積層造形方法。
  17. 前記画像歪情報に基づいて、前記画像データに対し前記画像歪みを低減する補正を行う工程をさらに有する請求項16に記載の積層造形方法。
  18. 造形対象物のスライス画像とレジストレーションマーカとを含むスライス画像データを生成する工程と、
    前記画像歪情報に基づいて、前記スライス画像データに対し前記画像歪みを低減する補正を行う工程と、
    前記スライス画像データに基づいて材料画像を形成する工程と、
    前記材料画像に含まれる前記レジストレーションマーカの位置を検出し、前記材料画像と前記ステージとの位置を調整する工程と、
    をさらに有する請求項16又は17に記載の積層造形方法。
  19. 造形材料からなる材料画像を形成し、前記材料画像をステージ上で積層して立体物を造形する積層造形方法であって、
    造形対象物のスライス画像とレジストレーションマーカとを含むスライス画像データを生成する工程と、
    前記スライス画像データに基づいて前記材料画像を形成する工程と、
    前記材料画像に含まれる前記レジストレーションマーカの位置を検出し、前記材料画像と前記ステージとの位置を調整する工程と、
    を有する積層造形方法。
JP2016097896A 2015-05-22 2016-05-16 立体造形装置及び積層造形方法 Pending JP2016215641A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015104681 2015-05-22
JP2015104681 2015-05-22

Publications (1)

Publication Number Publication Date
JP2016215641A true JP2016215641A (ja) 2016-12-22

Family

ID=57325049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016097896A Pending JP2016215641A (ja) 2015-05-22 2016-05-16 立体造形装置及び積層造形方法

Country Status (2)

Country Link
US (1) US20160339644A1 (ja)
JP (1) JP2016215641A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019217729A (ja) * 2018-06-22 2019-12-26 株式会社リコー 造形装置、制御装置および方法
EP3656536A1 (en) 2018-11-21 2020-05-27 Ricoh Company, Ltd. Fabricating system, information processing apparatus, and method for expressing shape of fabrication object
EP3888891A1 (en) 2020-03-30 2021-10-06 Ricoh Company, Ltd. Three-dimensional fabricating apparatus, controller, and fabricating method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170197371A1 (en) * 2016-01-11 2017-07-13 University Of Massachusetts Method and apparatus for making a composite
GB2557658A (en) * 2016-12-14 2018-06-27 Addam Innovation Ltd Additive manufacturing
CN106863795B (zh) * 2017-03-29 2019-04-19 陕西恒通智能机器有限公司 一种打印质量优良且无翘边的智能型3d打印装置
CN110799324B (zh) * 2017-05-04 2021-10-08 Eos有限公司电镀光纤系统 用于设备的可更换腔室和用于生成性制作三维物体的方法
EP4242762A3 (en) * 2019-05-17 2023-12-27 Markforged, Inc. 3d printing apparatus and method
DE102019004342A1 (de) * 2019-06-23 2020-12-24 Voxeljet Ag Anordnung einer 3D-Druckvorrichtung
DE102019007595A1 (de) 2019-11-01 2021-05-06 Voxeljet Ag 3d-druckverfahren und damit hergestelltes formteil unter verwendung von ligninsulfat

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3079076B2 (ja) * 1997-03-19 2000-08-21 富士通株式会社 画像形成装置
US6909516B1 (en) * 2000-10-20 2005-06-21 Xerox Corporation Two dimensional surface motion sensing system using registration marks and linear array sensor
US20150251351A1 (en) * 2014-03-10 2015-09-10 Michael Feygin Remove and refill method and apparatus for laminated object manufacturing
US9688027B2 (en) * 2014-04-01 2017-06-27 Stratasys, Inc. Electrophotography-based additive manufacturing with overlay control
JP2016085069A (ja) * 2014-10-23 2016-05-19 理想科学工業株式会社 用紙位置検出装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019217729A (ja) * 2018-06-22 2019-12-26 株式会社リコー 造形装置、制御装置および方法
WO2019244568A1 (en) 2018-06-22 2019-12-26 Ricoh Company, Ltd. Three-dimensional fabrication apparatus, controller, and control method
JP7091876B2 (ja) 2018-06-22 2022-06-28 株式会社リコー 造形装置、制御装置および方法
EP3656536A1 (en) 2018-11-21 2020-05-27 Ricoh Company, Ltd. Fabricating system, information processing apparatus, and method for expressing shape of fabrication object
EP3888891A1 (en) 2020-03-30 2021-10-06 Ricoh Company, Ltd. Three-dimensional fabricating apparatus, controller, and fabricating method

Also Published As

Publication number Publication date
US20160339644A1 (en) 2016-11-24

Similar Documents

Publication Publication Date Title
JP2016215641A (ja) 立体造形装置及び積層造形方法
US20170001371A1 (en) Shaping system, shaping object manufacturing method, and data processing method
JP2017013341A (ja) 造形システム及び造形方法
EP3224025B1 (en) Apparatus for producing an object by means of additive manufacturing and method for calibrating an apparatus
CN106273453B (zh) 立体印刷装置与其印刷误差校正方法
US9688027B2 (en) Electrophotography-based additive manufacturing with overlay control
US20160339646A1 (en) Registration and overlay error correction of electrophotographically formed elements in an additive manufacturing system
US8553280B2 (en) Image on paper registration using image marks
US8649052B2 (en) Image on paper registration using transfer surface marks
US10518486B2 (en) Electrophotography-based additive manufacturing with support structure and support structure removal
WO2016177894A1 (en) Additive manufacturing yield improvement
CN110337362B (zh) 增材制造
US10931845B2 (en) Reading device, image forming apparatus, correction value calculating method, and storage medium storing program code
US9731452B2 (en) Three dimensional printer and method for adjusting working coordinate of platform thereof
US9019573B2 (en) Image forming apparatus, reading apparatus, and control method of reading
KR102159481B1 (ko) 층 및 기계식 플래너를 이용하는 정전식 3-d 프린터
US8328187B2 (en) Sheet conveying apparatus executing orientation correction
JP2003071940A (ja) 積層造形装置及び積層造形方法
JP5895431B2 (ja) 画像形成装置
JP2017013493A (ja) 造形システム、造形物の製造方法及びデータ処理方法
JP2017035879A (ja) 造形システム及び造形方法
JP2017128015A (ja) 立体物の造形方法
US10996602B2 (en) Height control in selective deposition based additive manufacturing of parts
JP2017132141A (ja) 造形装置、造形方法、ステージの経路補正装置及びステージの経路補正方法
WO2020051414A1 (en) Transfuse roller tracking in selective layer deposition based additive manufacturing

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20181116