JP2016213334A - Wavelength conversion member and light-emitting device - Google Patents

Wavelength conversion member and light-emitting device Download PDF

Info

Publication number
JP2016213334A
JP2016213334A JP2015096175A JP2015096175A JP2016213334A JP 2016213334 A JP2016213334 A JP 2016213334A JP 2015096175 A JP2015096175 A JP 2015096175A JP 2015096175 A JP2015096175 A JP 2015096175A JP 2016213334 A JP2016213334 A JP 2016213334A
Authority
JP
Japan
Prior art keywords
conversion member
wavelength conversion
powder
glass
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015096175A
Other languages
Japanese (ja)
Other versions
JP6617948B2 (en
Inventor
藤田 直樹
Naoki Fujita
直樹 藤田
裕正 蓑口
Hiromasa Minoguchi
裕正 蓑口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP2015096175A priority Critical patent/JP6617948B2/en
Publication of JP2016213334A publication Critical patent/JP2016213334A/en
Application granted granted Critical
Publication of JP6617948B2 publication Critical patent/JP6617948B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Device Packages (AREA)
  • Glass Compositions (AREA)
  • Luminescent Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a wavelength conversion member which is small in the decrease in light emission intensity with time when exposed to light of an LED or LD is applied.SOLUTION: A wavelength conversion member comprises: a sintered compact of a powder mixture of (a) glass powder including, as a glass composition, an alkali metal element and at least one element selected from Sn and Fe and (b) inorganic phosphor powder.SELECTED DRAWING: Figure 1

Description

本発明は、発光ダイオード(LED:Light Emitting Diode)やレーザーダイオード(LD:Laser Diode)等が発する光の波長を別の波長に変換する波長変換部材に関するものである。   The present invention relates to a wavelength conversion member that converts the wavelength of light emitted from a light emitting diode (LED), a laser diode (LD), or the like into another wavelength.

近年、蛍光ランプや白熱灯に変わる次世代の光源として、低消費電力、小型軽量、容易な光量調節という観点から、LEDやLDを用いた光源に対する注目が高まってきている。そのような次世代光源の一例として、例えば特許文献1には、青色光を出射するLED上に、LEDからの光の一部を吸収して黄色光に変換する波長変換部材が配置された光源が開示されている。この光源は、LEDから出射された青色光と、波長変換部材から出射された黄色光との合成光である白色光を発する。   In recent years, as a next-generation light source that replaces fluorescent lamps and incandescent lamps, attention has been focused on light sources using LEDs and LDs from the viewpoints of low power consumption, small size and light weight, and easy light quantity adjustment. As an example of such a next-generation light source, for example, Patent Document 1 discloses a light source in which a wavelength conversion member that absorbs part of light from an LED and converts it into yellow light is disposed on an LED that emits blue light. Is disclosed. This light source emits white light which is a combined light of blue light emitted from the LED and yellow light emitted from the wavelength conversion member.

波長変換部材としては、従来、樹脂マトリクス中に無機蛍光体粉末を分散させたものが用いられている。しかしながら、当該波長変換部材を用いた場合、LEDからの光により樹脂マトリクスが劣化し、光源の輝度が低くなりやすいという問題がある。特に、LEDが発する熱や高エネルギーの短波長(青色〜紫外)光によって樹脂マトリクスが劣化し、変色や変形を起こすという問題がある。   As the wavelength conversion member, a material in which an inorganic phosphor powder is dispersed in a resin matrix has been conventionally used. However, when the wavelength conversion member is used, there is a problem that the resin matrix is deteriorated by the light from the LED, and the luminance of the light source tends to be lowered. In particular, there is a problem that the resin matrix deteriorates due to heat emitted from the LED or high energy short wavelength (blue to ultraviolet) light, causing discoloration or deformation.

そこで、樹脂マトリクスに代えてガラスマトリクス中に無機蛍光体粉末を分散固定した完全無機固体からなる波長変換部材が提案されている(例えば、特許文献2及び3参照)。当該波長変換部材は、母材となるガラスがLEDチップの熱や照射光により劣化しにくく、変色や変形といった問題が生じにくいという特徴を有している。   Therefore, a wavelength conversion member made of a completely inorganic solid in which an inorganic phosphor powder is dispersed and fixed in a glass matrix instead of a resin matrix has been proposed (see, for example, Patent Documents 2 and 3). The wavelength conversion member has a feature that glass as a base material is not easily deteriorated by heat of the LED chip or irradiation light, and problems such as discoloration and deformation hardly occur.

しかしながら、上記波長変換部材は、製造時の焼成工程により無機蛍光体粉末が劣化し、輝度劣化しやすいという問題がある。特に、一般照明、特殊照明等の用途においては、高い演色性が求められるため、赤色や緑色といった比較的耐熱性の低い無機蛍光体粉末を使用する必要があり、無機蛍光体粉末の劣化が顕著になる傾向がある。そこで、アルカリ金属元素を含有させることにより軟化点を低下させたガラスを用いた波長変換部材が提案されている(例えば、特許文献4参照)。当該波長変換部材は、比較的低温での焼成により製造可能なため、焼成工程における無機蛍光体粉末の劣化を抑制することができる。   However, the wavelength conversion member has a problem in that the inorganic phosphor powder is deteriorated due to a baking process at the time of manufacture, and luminance is easily deteriorated. In particular, in applications such as general lighting and special lighting, since high color rendering properties are required, it is necessary to use inorganic phosphor powder with relatively low heat resistance such as red and green, and the deterioration of inorganic phosphor powder is remarkable. Tend to be. Then, the wavelength conversion member using the glass which lowered the softening point by containing an alkali metal element is proposed (for example, refer to patent documents 4). Since the wavelength conversion member can be manufactured by firing at a relatively low temperature, deterioration of the inorganic phosphor powder in the firing step can be suppressed.

特開2000−208815号公報JP 2000-208815 A 特開2003−258308号公報JP 2003-258308 A 特許第4895541号公報Japanese Patent No. 4895541 特開2007−302858号公報JP 2007-302858 A

ガラスマトリクス中にアルカリ金属元素を含む上記の波長変換部材は、発光強度が経時的に低下(温度消光)しやすいという問題がある。近年のLEDやLD等の光源のさらなる出力増大に伴って、上記の現象はますます顕著になっている。   The wavelength conversion member containing an alkali metal element in the glass matrix has a problem that the emission intensity is likely to decrease with time (temperature quenching). With the further increase in the output of light sources such as LEDs and LDs in recent years, the above phenomenon has become more prominent.

そこで、本発明は、製造時の焼成工程で蛍光体が劣化しにくく、しかもLEDやLDの光を照射した場合に、経時的な発光強度の低下の少ない波長変換部材を提供することを目的とする。   Accordingly, an object of the present invention is to provide a wavelength conversion member in which the phosphor is unlikely to deteriorate in the firing step during manufacturing, and has little decrease in light emission intensity over time when irradiated with light from an LED or LD. To do.

本発明の波長変換部材は、(a)ガラス組成として、アルカリ金属元素、並びに、Sn及びFeから選択される少なくも1種を含有するガラス粉末と、(b)無機蛍光体粉末と、を含有する混合粉末の焼結体からなることを特徴とする。   The wavelength conversion member of the present invention contains (a) a glass powder containing at least one selected from an alkali metal element and Sn and Fe as a glass composition, and (b) an inorganic phosphor powder. It consists of a sintered body of mixed powder.

既述の通り、ガラスマトリクス中にアルカリ金属元素を含む波長変換部材に高出力のLEDやLDの光を照射すると、経時的に発光強度が低下する傾向がある。この原因の詳細につき、本発明者等は以下のように推察している。   As described above, when the wavelength conversion member containing an alkali metal element in the glass matrix is irradiated with light from a high-power LED or LD, the emission intensity tends to decrease with time. The present inventors have inferred the details of the cause as follows.

組成中にアルカリ金属元素を含有するガラスマトリクスに励起光が照射されると、励起光のエネルギーによりガラスマトリクス中の酸素イオンの最外殻に存在する電子が励起され、酸素イオンから離れてその一部はガラスマトリクス中のアルカリイオンと結合して、着色中心を形成する(ここで、アルカリイオンが抜けた後には空孔が形成される)。一方、電子が抜けることにより生成した正孔は、ガラスマトリクス中を移動し、一部はアルカリイオンが抜けた後に形成された空孔に捕えられて着色中心を形成する。ガラスマトリクス中に形成されたこれらの着色中心が、励起光や蛍光の吸収源となり、波長変換部材の発光強度が低下すると考えられる。   When a glass matrix containing an alkali metal element in the composition is irradiated with excitation light, the energy of the excitation light excites the electrons present in the outermost shell of oxygen ions in the glass matrix and separates them from the oxygen ions. The part is combined with alkali ions in the glass matrix to form a colored center (here, after the alkali ions are released, vacancies are formed). On the other hand, the holes generated by the escape of electrons move in the glass matrix, and a part of the holes are captured by the vacancies formed after the escape of alkali ions to form a colored center. It is considered that these colored centers formed in the glass matrix serve as an absorption source of excitation light and fluorescence, and the emission intensity of the wavelength conversion member decreases.

そこで、上記の現象を抑制するために、本発明の波長変換部材は、ガラス組成中にSn及びFeから選択される少なくも1種を含有している。SnイオンやFeイオンは価数変化しやすく、電子の授受を容易に行うことができる。そのため、SnイオンやFeイオンは着色中心に捕えられた正孔に電子を与え、当該正孔を消滅させる作用を有する。一方で、正孔に電子を与えて価数が増加したSnイオンやFeイオンは、着色中心に捕えられた電子を奪うことによって元の価数に戻る。つまり、SnイオンやFeイオンは電子のキャリヤーとしての役割を果たし、電子を捕えた着色中心から電子を奪うとともに、電子の不足する着色中心に電子を与えることにより、電子と正孔の再結合を促進するものと考えられる。結果として、ガラスマトリクス中に着色中心が発生しにくくなり、波長変換部材の経時的な発光強度の低下を抑制することが可能になる。   Therefore, in order to suppress the above phenomenon, the wavelength conversion member of the present invention contains at least one selected from Sn and Fe in the glass composition. Sn ions and Fe ions are likely to change in valence and can easily exchange electrons. For this reason, Sn ions and Fe ions have an action of giving electrons to the holes trapped in the coloring center and extinguishing the holes. On the other hand, Sn ions and Fe ions that have increased in valence by giving electrons to holes return to their original valence by depriving the electrons trapped in the coloring center. In other words, Sn ions and Fe ions play a role as electron carriers, depriving electrons from the colored centers that have captured the electrons, and giving electrons to the colored centers that are lacking electrons, thereby recombining electrons and holes. It is thought to promote. As a result, it is difficult for color centers to occur in the glass matrix, and it is possible to suppress a decrease in light emission intensity over time of the wavelength conversion member.

本発明の波長変換部材において、ガラス粉末が、酸化物換算のモル%で、LiO+NaO+KO 0.1〜35%を含有することが好ましい。なお、本明細書において、「○+○+・・・」は各成分の含有量の合量を意味する。 In the wavelength conversion member of the present invention, it is preferable that the glass powder contains 0.1 to 35% of Li 2 O + Na 2 O + K 2 O in mol% in terms of oxide. In addition, in this specification, "(circle) + (circle) + ..." means the total amount of content of each component.

本発明の波長変換部材において、ガラス粉末が、酸化物換算のモル%で、SnO+Fe 0.001〜10%を含有することが好ましい。 In the wavelength conversion member of the present invention, the glass powder preferably contains SnO + Fe 2 O 3 0.001 to 10% in mol% in terms of oxide.

本発明の波長変換部材において、ガラス粉末が、酸化物換算のモル%で、SiO 30〜80%、B 0〜40%、LiO+NaO+KO 0.1〜35%、MgO+CaO+SrO+BaO 0.1〜45%、及び、SnO+Fe 0.001〜10%を含有することが好ましい。 In the wavelength conversion member of the present invention, the glass powder is in mol% in terms of oxides, SiO 2 30-80%, B 2 O 3 0-40%, Li 2 O + Na 2 O + K 2 O 0.1-35%, MgO + CaO + SrO + BaO 0.1~45 %, and preferably contains SnO + Fe 2 O 3 0.001~10% .

本発明の波長変換部材において、ガラス粉末が、酸化物換算のモル%で、SiO 35〜85%、B 0〜55%、LiO 0〜20%、NaO 0〜25%、KO 0〜25%、LiO+NaO+KO 0.1〜35%、及び、SnO+Fe 0.001〜10%を含有することが好ましい。 In the wavelength converting member of the present invention, the glass powder is in mole percent oxide equivalent, SiO 2 35~85%, B 2 O 3 0~55%, Li 2 O 0~20%, Na 2 O 0~25 %, K 2 O 0 to 25%, Li 2 O + Na 2 O + K 2 O 0.1 to 35%, and SnO + Fe 2 O 3 0.001 to 10% are preferably contained.

本発明の波長変換部材において、無機蛍光体粉末が、窒化物蛍光体、酸窒化物蛍光体、酸化物蛍光体、硫化物蛍光体、酸硫化物蛍光体、ハロゲン化物蛍光体及びアルミン酸塩蛍光体から選択される少なくとも1種であることが好ましい。   In the wavelength conversion member of the present invention, the inorganic phosphor powder includes nitride phosphor, oxynitride phosphor, oxide phosphor, sulfide phosphor, oxysulfide phosphor, halide phosphor, and aluminate phosphor. It is preferably at least one selected from the body.

本発明の波長変換部材は、ガラス組成として、アルカリ金属元素、並びに、Sn及びFeから選択される少なくも1種を含有するガラスマトリクス中に、無機蛍光体粉末が分散してなることを特徴とする。   The wavelength conversion member of the present invention is characterized in that an inorganic phosphor powder is dispersed in a glass matrix containing at least one selected from an alkali metal element and Sn and Fe as a glass composition. To do.

本発明の発光デバイスは、上記の波長変換部材、及び、波長変換部材に励起光を照射する光源を備えてなることを特徴とする。   The light-emitting device of the present invention includes the above-described wavelength conversion member and a light source that irradiates the wavelength conversion member with excitation light.

本発明によれば、製造時の焼成工程で蛍光体が劣化しにくく、しかもLEDやLDの光を照射した場合に、経時的な発光強度の低下の少ない波長変換部材を提供することが可能となる。   According to the present invention, it is possible to provide a wavelength conversion member in which the phosphor is not easily deteriorated in the firing step at the time of manufacture, and when the light emitted from the LED or LD is irradiated, the decrease in emission intensity with time is small. Become.

本発明の発光デバイスの一実施形態を示す模式図である。It is a schematic diagram which shows one Embodiment of the light-emitting device of this invention.

本発明の波長変換部材は、(a)ガラス組成として、アルカリ金属元素、並びに、Sn及びFeから選択される少なくも1種を含有するガラス粉末と、(b)無機蛍光体粉末と、を含有する混合粉末の焼結体からなることを特徴とする。以下に、各構成成分について詳細に説明する。   The wavelength conversion member of the present invention contains (a) a glass powder containing at least one selected from an alkali metal element and Sn and Fe as a glass composition, and (b) an inorganic phosphor powder. It consists of a sintered body of mixed powder. Below, each component is demonstrated in detail.

ガラス粉末は、本発明の波長変換部材において、無機蛍光体粉末を安定に保持するための媒体としての役割がある。ここで、ガラス粉末の組成によって、焼成時における無機蛍光体粉末との反応性に差が出るため、使用する無機蛍光体粉末に適したガラス組成を選択することが好ましい。   The glass powder serves as a medium for stably holding the inorganic phosphor powder in the wavelength conversion member of the present invention. Here, since the reactivity with the inorganic phosphor powder during firing varies depending on the composition of the glass powder, it is preferable to select a glass composition suitable for the inorganic phosphor powder to be used.

ガラス粉末は、軟化点を低下させることを目的として、ガラス組成としてアルカリ金属元素(Li、Na及びKから選択される少なくとも1種)を含有している。具体的には、ガラス粉末は、酸化物換算のモル%で、LiO+NaO+KOを0.1〜35%、1〜25%、特に2〜20%含有することが好ましい。LiO+NaO+KOの含有量が少なすぎると、上記効果が得られにくくなり、一方、多すぎると、化学耐久性が低下しやすくなる。なお、後述するように、LiO、NaO及びKOの含有量は、ガラス組成系に応じて、適宜適切な範囲を設定することが好ましい。 The glass powder contains an alkali metal element (at least one selected from Li, Na and K) as a glass composition for the purpose of lowering the softening point. Specifically, the glass powder is the mole percent of the oxide equivalent, Li 2 O + Na 2 O + K 2 O of from 0.1 to 35% 1 to 25%, and preferably in particular 2-20%. If the content of Li 2 O + Na 2 O + K 2 O is too small, the above effect is difficult to obtain. On the other hand, if the content is too large, the chemical durability tends to decrease. In addition, as will be described later, it is preferable that the contents of Li 2 O, Na 2 O, and K 2 O are appropriately set in accordance with the glass composition system.

また、ガラス粉末はSn及びFeから選択される少なくも1種を含有することにより、波長変換部材の経時的な発光強度の低下を抑制することができる。具体的には、ガラス粉末は、酸化物換算のモル%で、SnO+Feを0.001〜10%、0.01〜5%、特に0.1〜3%含有することが好ましい。SnO+Feの含有量が少なすぎると、上記効果が得られにくくなり、一方、多すぎると、ガラス粉末自体が着色して発光強度が低下する傾向がある。なお、SnO及びFeの含有量も、それぞれ上記範囲とすることが好ましい。特に、SnOは経時的な発光強度の低下を顕著に抑制でき、さらに、ガラス粉末自体も着色しにくいため好ましい。 Moreover, the glass powder can contain the at least 1 sort (s) selected from Sn and Fe, and can suppress the fall of the light emission intensity of the wavelength conversion member with time. Specifically, it is preferable that the glass powder contains 0.001 to 10%, 0.01 to 5%, particularly 0.1 to 3% of SnO + Fe 2 O 3 in mol% in terms of oxide. If the content of SnO + Fe 2 O 3 is too small, the above effect is difficult to obtain. On the other hand, if the content is too large, the glass powder itself tends to be colored and the emission intensity tends to decrease. The content of SnO and Fe 2 O 3 is also preferably respectively within the above range. In particular, SnO is preferable because it can remarkably suppress a decrease in light emission intensity over time, and the glass powder itself is difficult to be colored.

ガラス粉末は、SiO、B、RO(RはMg、Ca、Sr及びBaから選択される少なくとも1種)、R’O(R’はLi、Na及びKから選択される少なくとも1種)から選択される少なくとも1種をモル%で10〜99%含有するものが好ましい。具体的には、SiO−B−RO−R’O系ガラス、SiO−B−R’O系ガラス、SiO−B−ZnO−R’O系ガラス等が挙げられる。 The glass powder is SiO 2 , B 2 O 3 , RO (R is at least one selected from Mg, Ca, Sr and Ba), R ′ 2 O (R ′ is at least selected from Li, Na and K) What contains 10-99% by mol% of at least 1 sort (s) selected from 1 sort (s) is preferable. Specifically, SiO 2 —B 2 O 3 —RO—R ′ 2 O glass, SiO 2 —B 2 O 3 —R ′ 2 O glass, SiO 2 —B 2 O 3 —ZnO—R ′ 2 O glass etc. are mentioned.

SiO−B−RO−R’O系ガラスとしては、例えば、酸化物換算のモル%で、SiO 30〜80%、B 0〜40%、LiO+NaO+KO 0.1〜35%、MgO+CaO+SrO+BaO 0.1〜45%、及び、SnO+Fe 0.001〜10%を含有するものが好ましい。ガラス組成をこのように限定した理由を以下に説明する。 Examples of the SiO 2 —B 2 O 3 —RO—R ′ 2 O-based glass include SiO 2 30 to 80%, B 2 O 3 0 to 40%, Li 2 O + Na 2 O + K in terms of oxide equivalent mol%. 2 O 0.1~35%, MgO + CaO + SrO + BaO 0.1~45%, and those containing SnO + Fe 2 O 3 0.001~10% is preferred. The reason for limiting the glass composition in this way will be described below.

SiOはガラスネットワークを形成する成分である。SiOの含有量は30〜80%、特に40〜60%であることが好ましい。SiOの含有量が少なすぎると、化学的耐久性が低下する傾向にある。一方、SiOの含有量が多すぎると、軟化点が高くなることから、十分に焼結させるために高温焼成が必要となる。その結果、焼成時に無機蛍光体粉末が劣化しやすくなる。 SiO 2 is a component that forms a glass network. The content of SiO 2 is preferably 30 to 80%, particularly preferably 40 to 60%. When the content of SiO 2 is too small, chemical durability tends to decrease. On the other hand, if the content of SiO 2 is too large, the softening point becomes high, so that high-temperature firing is necessary for sufficient sintering. As a result, the inorganic phosphor powder tends to deteriorate during firing.

は溶融温度を低下させて溶融性を改善する効果が大きい成分である。Bの含有量は0〜40%、1〜35%、特に5〜30%であることが好ましい。Bの含有量が多すぎると、化学的耐久性が低下する傾向にある。 B 2 O 3 is a component having a great effect of improving the meltability by lowering the melting temperature. The content of B 2 O 3 is preferably 0 to 40%, 1 to 35%, particularly preferably 5 to 30%. If the B 2 O 3 content is too large, chemical durability tends to decrease.

LiO、NaO及びKOは軟化点を低下させる成分である。LiO、NaO及びKOの含有量(合量)は0.1〜35%、1〜25%、特に2〜20%であることが好ましい。これら成分の含有量が少なすぎると、軟化点が低下しにくくなり、一方、多すぎると、化学耐久性や耐候性が低下しやすくなる。 Li 2 O, Na 2 O and K 2 O are components that lower the softening point. The content (total amount) of Li 2 O, Na 2 O and K 2 O is preferably 0.1 to 35%, 1 to 25%, particularly preferably 2 to 20%. When the content of these components is too small, the softening point is difficult to decrease, while when too large, chemical durability and weather resistance are likely to decrease.

なお、LiO、NaO及びKOの各成分の含有量の好ましい範囲は以下の通りである。LiOの含有量は0〜15%、特に0.1〜10%であることが好ましい。NaOの含有量は0〜15%、特に0.1〜10%であることが好ましい。KOの含有量は0〜15%、特に0.1〜10%であることが好ましい。 Incidentally, Li 2 O, the preferred range of the content of each component of Na 2 O and K 2 O is as follows. The content of Li 2 O is preferably 0 to 15%, particularly preferably 0.1 to 10%. The content of Na 2 O is preferably 0 to 15%, particularly preferably 0.1 to 10%. The content of K 2 O is preferably 0 to 15%, particularly preferably 0.1 to 10%.

MgO、CaO、SrO及びBaOは溶融温度を低下させて溶融性を改善する成分である。BaOには無機蛍光体粉末との反応を抑制する効果もある。MgO、CaO、SrO及びBaOの含有量(合量)は0.1〜45%、1〜40%、特に2〜35%であることが好ましい。これらの成分の含有量が少なすぎると、上記効果が得られにくくなり、一方、多すぎると、化学的耐久性が低下する傾向にある。   MgO, CaO, SrO and BaO are components that improve the meltability by lowering the melting temperature. BaO also has an effect of suppressing the reaction with the inorganic phosphor powder. The content (total amount) of MgO, CaO, SrO and BaO is preferably 0.1 to 45%, 1 to 40%, particularly preferably 2 to 35%. If the content of these components is too small, it is difficult to obtain the above effect, while if too much, the chemical durability tends to decrease.

なお、MgO、CaO、SrO及びBaOの各成分の含有量の好ましい範囲は以下の通りである。MgOの含有量は0〜20%、特に0〜10%であることが好ましい。CaOの含有量は0〜30%、特に0〜20%であることが好ましい。SrOの含有量は0〜20%、特に0〜10%であることが好ましい。BaOの含有量は0〜40%、特に0.1〜30%であることが好ましい。   In addition, the preferable range of content of each component of MgO, CaO, SrO, and BaO is as follows. The content of MgO is preferably 0 to 20%, particularly preferably 0 to 10%. The CaO content is preferably 0 to 30%, particularly preferably 0 to 20%. The SrO content is preferably 0 to 20%, particularly preferably 0 to 10%. The BaO content is preferably 0 to 40%, particularly preferably 0.1 to 30%.

SnO、Feの合量及び個別の含有量については、上述の通りである。 The total amount and individual content of SnO and Fe 2 O 3 are as described above.

ガラス粉末には、上記成分以外にも下記の成分を含有させることができる。   In addition to the above components, the glass powder may contain the following components.

Alは化学的耐久性を向上させる成分である。Alの含有量は0〜20%、特に1〜18%であることが好ましい。Alの含有量が多すぎると、溶融性が低下する傾向がある。 Al 2 O 3 is a component that improves chemical durability. The content of Al 2 O 3 is preferably 0 to 20%, particularly preferably 1 to 18%. When the content of Al 2 O 3 is too large, there is a tendency that the melting is lowered.

ZnOは溶融温度を低下させて溶融性を改善する成分である。ZnOの含有量は0〜20%、特に0.1〜10%であることが好ましい。ZnOの含有量が多すぎると、化学的耐久性が低下しやすくなる。   ZnO is a component that improves the meltability by lowering the melting temperature. The content of ZnO is preferably 0 to 20%, particularly preferably 0.1 to 10%. When there is too much content of ZnO, chemical durability will fall easily.

また、化学的耐久性の向上等を目的として、Ta、TiO、Nb、Gd、La、Y、BiまたはZrOをそれぞれ15%まで含有させてもよい。 For the purpose of improving chemical durability, Ta 2 O 5 , TiO 2 , Nb 2 O 5 , Gd 2 O 3 , La 2 O 3 , Y 2 O 3 , Bi 2 O 3 or ZrO 2 is used. You may make it contain to 15%.

SiO−B−R’O系ガラスとしては、例えば、モル%で、SiO 35〜85%、B 0〜55%、LiO 0〜20%、NaO 0〜25%、KO 0〜25%、LiO+NaO+KO 0.1〜35%、及び、SnO+Fe 0.001〜10%を含有するものが好ましい。ガラス組成をこのように限定した理由を以下に説明する。 Examples of the SiO 2 —B 2 O 3 —R ′ 2 O glass include mol%, SiO 2 35 to 85%, B 2 O 3 0 to 55%, Li 2 O 0 to 20%, and Na 2 O. 0~25%, K 2 O 0~25% , Li 2 O + Na 2 O + K 2 O 0.1~35%, and those containing SnO + Fe 2 O 3 0.001~10% is preferred. The reason for limiting the glass composition in this way will be described below.

SiOはガラスネットワークを形成する成分である。SiOの含有量は35〜85%、特に 45〜80%であることが好ましい。SiOの含有量が少なすぎると、化学的耐久性が低下する傾向にある。一方、SiOの含有量が多すぎると、軟化点が高くなることから、十分に焼結させるために高温焼成が必要となる。その結果、焼成時に無機蛍光体粉末が劣化しやすくなる。 SiO 2 is a component that forms a glass network. The SiO 2 content is preferably 35 to 85%, particularly preferably 45 to 80%. When the content of SiO 2 is too small, chemical durability tends to decrease. On the other hand, if the content of SiO 2 is too large, the softening point becomes high, so that high-temperature firing is necessary for sufficient sintering. As a result, the inorganic phosphor powder tends to deteriorate during firing.

は溶融温度を低下させて溶融性を改善する効果が大きい成分である。Bの含有量は0〜55%、0.1〜45%、特に1〜30%であることが好ましい。Bの含有量が多すぎると、化学的耐久性が低下する傾向にある。 B 2 O 3 is a component having a great effect of improving the meltability by lowering the melting temperature. The content of B 2 O 3 is preferably 0 to 55%, 0.1 to 45%, particularly 1 to 30%. If the B 2 O 3 content is too large, chemical durability tends to decrease.

LiO、NaO及びKOは軟化点を低下させる成分である。LiO、NaO及びKOの含有量(合量)は0.1〜35%、1〜25%、特に2〜20%であることが好ましい。これら成分の含有量が少なすぎると、軟化点が低下しにくくなり、一方、多すぎると、化学耐久性や耐候性が低下しやすくなる。 Li 2 O, Na 2 O and K 2 O are components that lower the softening point. The content (total amount) of Li 2 O, Na 2 O and K 2 O is preferably 0.1 to 35%, 1 to 25%, particularly preferably 2 to 20%. When the content of these components is too small, the softening point is difficult to decrease, while when too large, chemical durability and weather resistance are likely to decrease.

なお、LiO、NaO及びKOの各成分の含有量の好ましい範囲は以下の通りである。LiOの含有量は0〜20%、特に0.1〜10%であることが好ましい。NaOの含有量は0〜25%、特に0.1〜15%であることが好ましい。KOの含有量は0〜25%、特に0.1〜15%であることが好ましい。 Incidentally, Li 2 O, the preferred range of the content of each component of Na 2 O and K 2 O is as follows. The content of Li 2 O is preferably 0 to 20%, particularly preferably 0.1 to 10%. The content of Na 2 O is preferably 0 to 25%, particularly preferably 0.1 to 15%. The content of K 2 O is preferably 0 to 25%, particularly preferably 0.1 to 15%.

上記成分以外にも、溶融性を向上させるためにMgO、CaO、SrO及びBaOを合量で30%まで、ZnOを10%まで含有させることができる。他にも、溶融性を向上させるためにPを5%まで、化学的耐久性を向上させるためにAl、Ta、TiO、Nb、GdまたはLaをそれぞれ15%まで含有させてもよい。 In addition to the above components, MgO, CaO, SrO, and BaO can be contained in a total amount of up to 30% and ZnO up to 10% in order to improve the meltability. In addition, P 2 O 5 is increased to 5% for improving the meltability, and Al 2 O 3 , Ta 2 O 5 , TiO 2 , Nb 2 O 5 , Gd 2 O for improving the chemical durability. 3 or La 2 O 3 may be contained up to 15% each.

SiO−B−ZnO−R’O系ガラスとしては、例えば、モル%で、SiO 5〜50%、B 10〜55%、ZnO 30〜80%、LiO 0〜20%、NaO 0〜20%、KO 0〜20%、LiO+NaO+KO 0.1〜25%、MgO 0〜10%、CaO 0〜10%、SrO 0〜10%、BaO 0〜10%、及び、SnO+Fe 0.001〜10%を含有するものが好ましい。上記成分以外にも、化学的耐久性を向上させるためにAlを5%まで、Ta、TiO、Nb、GdまたはLaをそれぞれ15%まで含有させてもよい。 Examples of the SiO 2 —B 2 O 3 —ZnO—R ′ 2 O glass include mol%, SiO 2 5-50%, B 2 O 3 10-55%, ZnO 30-80%, Li 2 O. 0~20%, Na 2 O 0~20% , K 2 O 0~20%, Li 2 O + Na 2 O + K 2 O 0.1~25%, 0~10% MgO, CaO 0~10%, SrO 0~ 10%, BaO 0%, and those containing SnO + Fe 2 O 3 0.001~10% is preferred. In addition to the above components, in order to improve chemical durability, Al 2 O 3 is up to 5%, Ta 2 O 5 , TiO 2 , Nb 2 O 5 , Gd 2 O 3 or La 2 O 3 is 15%. You may make it contain.

ガラス粉末の粒子径は特に限定されないが、例えば、最大粒子径D99が200μm以下(特に150μm以下、さらには105μm以下)、かつ、平均粒子径D50が0.1μm以上(特に1μm以上、さらには2μm以上)であることが好ましい。ガラス粉末の最大粒子径D99が大きすぎると、得られる波長変換部材において、励起光が散乱しにくくなり発光効率が低下しやすくなる。また、平均粒子径D50が小さすぎると、得られる波長変換部材において、励起光が過剰に散乱して発光効率が低下しやすくなる。 The particle size of the glass powder is not particularly limited, for example, the maximum particle diameter D 99 is 200μm or less (especially 150μm or less, more 105μm or less), and an average particle diameter D 50 of more than 0.1 [mu] m (in particular 1μm or more, further Is preferably 2 μm or more. If the maximum particle diameter D 99 of the glass powder is too large, in the wavelength conversion member obtained, luminous efficiency becomes excitation light is less likely to scatter tends to decrease. When the average particle diameter D 50 is too small, in the wavelength conversion member obtained, luminous efficiency tends to decrease with the excitation light is excessively scattered.

なお、本発明において、平均粒子径D50及び最大粒子径D99はレーザー回折法により測定した値を指す。 In the present invention, the average particle diameter D 50 and the maximum particle diameter D 99 indicate values measured by a laser diffraction method.

無機蛍光体粉末としては、一般に市場で入手できるものであれば特に限定されない。例えば、窒化物蛍光体粉末、酸窒化物蛍光体粉末、酸化物蛍光体粉末(YAG蛍光体粉末等のガーネット系蛍光体粉末を含む)、硫化物蛍光体粉末、酸硫化物蛍光体粉末、ハロゲン化物蛍光体粉末(ハロリン酸塩化物等)及びアルミン酸塩蛍光体粉末等が挙げられる。これらの無機蛍光体粉末のうち、窒化物蛍光体粉末、酸窒化物蛍光体粉末及び酸化物蛍光体粉末は耐熱性が高く、焼成時に比較的劣化しにくいため好ましい。なお、窒化物蛍光体粉末及び酸窒化物蛍光体粉末は、近紫外〜青の励起光を緑〜赤という幅広い波長領域に変換し、しかも発光強度も比較的高いという特徴を有している。そのため、窒化物蛍光体粉末及び酸窒化物蛍光体粉末は、特に白色LED素子用波長変換部材に用いられる無機蛍光体粉末として有効である。   The inorganic phosphor powder is not particularly limited as long as it is generally available on the market. For example, nitride phosphor powder, oxynitride phosphor powder, oxide phosphor powder (including garnet phosphor powder such as YAG phosphor powder), sulfide phosphor powder, oxysulfide phosphor powder, halogen Fluoride phosphor powder (halophosphate chloride, etc.) and aluminate phosphor powder. Of these inorganic phosphor powders, nitride phosphor powders, oxynitride phosphor powders and oxide phosphor powders are preferable because they have high heat resistance and are relatively unlikely to deteriorate during firing. The nitride phosphor powder and the oxynitride phosphor powder are characterized by converting near-ultraviolet to blue excitation light into a wide wavelength region from green to red and having a relatively high emission intensity. Therefore, the nitride phosphor powder and the oxynitride phosphor powder are particularly effective as inorganic phosphor powders used for the wavelength conversion member for white LED elements.

上記無機蛍光体粉末としては、波長300〜500nmに励起帯を有し波長380〜780nmに発光ピークを有するもの、特に青色(波長440〜480nm)、緑色(波長500〜540nm)、黄色(波長540〜595nm)または赤色(波長600〜700nm)に発光するものが挙げられる。   Examples of the inorganic phosphor powder include those having an excitation band at a wavelength of 300 to 500 nm and an emission peak at a wavelength of 380 to 780 nm, particularly blue (wavelength 440 to 480 nm), green (wavelength 500 to 540 nm), yellow (wavelength 540). ˜595 nm) or red light (wavelength 600 to 700 nm).

波長300〜440nmの紫外〜近紫外の励起光を照射すると青色の発光を発する無機蛍光体粉末としては、(Sr,Ba)MgAl1017:Eu2+、(Sr,Ba)MgSi:Eu2+等が挙げられる。 Examples of inorganic phosphor powder that emits blue light when irradiated with ultraviolet to near-ultraviolet excitation light having a wavelength of 300 to 440 nm include (Sr, Ba) MgAl 10 O 17 : Eu 2+ , (Sr, Ba) 3 MgSi 2 O 8. : Eu 2+ and the like.

波長300〜440nmの紫外〜近紫外の励起光を照射すると緑色の蛍光を発する無機蛍光体粉末としては、SrAl:Eu2+、SrBaSiO:Eu2+、Y(Al,Gd)12:Ce3+、SrSiO:Eu2+、BaMgAl1017:Eu2+,Mn2+、BaMgSi:Eu2+、BaSiO:Eu2+、BaLiSi:Eu2+、BaAl:Eu2+等が挙げられる。 As inorganic phosphor powders that emit green fluorescence when irradiated with ultraviolet to near-ultraviolet excitation light having a wavelength of 300 to 440 nm, SrAl 2 O 4 : Eu 2+ , SrBaSiO 4 : Eu 2+ , Y 3 (Al, Gd) 5 O 12 : Ce 3+ , SrSiO n : Eu 2+ , BaMgAl 10 O 17 : Eu 2+ , Mn 2+ , Ba 2 MgSi 2 O 7 : Eu 2+ , Ba 2 SiO 4 : Eu 2+ , Ba 2 Li 2 Si 2 O 7 : Eu 2+ , BaAl 2 O 4 : Eu 2+ and the like.

波長440〜480nmの青色の励起光を照射すると緑色の蛍光を発する無機蛍光体粉末としては、SrAl:Eu2+、SrBaSiO:Eu2+、Y(Al,Gd)12:Ce3+、SrSiOn:Eu2+、β−SiAlON:Eu2+等が挙げられる。 As inorganic phosphor powders that emit green fluorescence when irradiated with blue excitation light having a wavelength of 440 to 480 nm, SrAl 2 O 4 : Eu 2+ , SrBaSiO 4 : Eu 2+ , Y 3 (Al, Gd) 5 O 12 : Ce 3+ , SrSiOn: Eu 2+ , β-SiAlON: Eu 2+ and the like.

波長300〜440nmの紫外〜近紫外の励起光を照射すると黄色の蛍光を発する無機蛍光体粉末としては、LaSi11:Ce3+等が挙げられる。 Examples of the inorganic phosphor powder that emits yellow fluorescence when irradiated with excitation light having a wavelength of 300 to 440 nm include La 3 Si 6 N 11 : Ce 3+ .

波長440〜480nmの青色の励起光を照射すると黄色の蛍光を発する無機蛍光体粉末としては、Y(Al,Gd)12:Ce3+、SrSiO:Eu2+が挙げられる。 Examples of the inorganic phosphor powder that emits yellow fluorescence when irradiated with blue excitation light having a wavelength of 440 to 480 nm include Y 3 (Al, Gd) 5 O 12 : Ce 3+ and Sr 2 SiO 4 : Eu 2+ .

波長300〜440nmの紫外〜近紫外の励起光を照射すると赤色の蛍光を発する無機蛍光体粉末としては、CaGa:Mn2+、MgSrSi:Eu2+,Mn2+、CaMgSi:Eu2+,Mn2+等が挙げられる。 Inorganic phosphor powders that emit red fluorescence when irradiated with ultraviolet to near-ultraviolet excitation light having a wavelength of 300 to 440 nm include CaGa 2 S 4 : Mn 2+ , MgSr 3 Si 2 O 8 : Eu 2+ , Mn 2+ , Ca 2. MgSi 2 O 7: Eu 2+, Mn 2+ , and the like.

波長440〜480nmの青色の励起光を照射すると赤色の蛍光を発する無機蛍光体粉末としては、CaAlSiN:Eu2+、CaSiN:Eu2+、(Ca,Sr)Si:Eu2+、α−SiAlON:Eu2+等が挙げられる。 Inorganic phosphor powders that emit red fluorescence when irradiated with blue excitation light having a wavelength of 440 to 480 nm include CaAlSiN 3 : Eu 2+ , CaSiN 3 : Eu 2+ , (Ca, Sr) 2 Si 5 N 8 : Eu 2+ , α-SiAlON: Eu 2+ and the like can be mentioned.

なお、励起光や発光の波長域に合わせて、複数の無機蛍光体粉末を混合して用いてもよい。例えば、紫外域の励起光を照射して白色光を得る場合は、青色、緑色、黄色、赤色の蛍光を発する無機蛍光体粉末を混合して使用すればよい。   A plurality of inorganic phosphor powders may be mixed and used in accordance with the wavelength range of excitation light or light emission. For example, when white light is obtained by irradiation with ultraviolet excitation light, inorganic phosphor powders emitting blue, green, yellow, and red fluorescence may be mixed and used.

波長変換部材における無機蛍光体粉末の含有量が多すぎると、焼結しにくくなったり、気孔率が大きくなる傾向がある。その結果、得られる波長変換部材において、励起光が効率良く無機蛍光体粉末に照射されにくくなったり、機械強度が低下しやすくなる等の問題が生じる。一方、無機蛍光体粉末の含有量が少なすぎると、所望の発光強度を得ることが困難になる。このような観点から、波長変換部材における無機蛍光体粉末の含有量は、質量%で、好ましくは0.01〜50%、より好ましくは0.05〜40%、さらに好ましくは0.1〜30%の範囲で調整される。   When there is too much content of the inorganic fluorescent substance powder in a wavelength conversion member, it will become difficult to sinter or there exists a tendency for a porosity to become large. As a result, in the obtained wavelength conversion member, problems such as it becomes difficult for the excitation light to be efficiently irradiated onto the inorganic phosphor powder, and the mechanical strength tends to decrease. On the other hand, when there is too little content of inorganic fluorescent substance powder, it will become difficult to obtain desired luminescence intensity. From such a viewpoint, the content of the inorganic phosphor powder in the wavelength conversion member is mass%, preferably 0.01 to 50%, more preferably 0.05 to 40%, and still more preferably 0.1 to 30. % Is adjusted.

なお、波長変換部材において発生した蛍光を、励起光入射側へ反射させ、主に蛍光のみを外部に取り出すことを目的とした波長変換部材においては、上記の限りではなく、発光強度が最大になるように、無機蛍光体粉末の含有量を多くする(例えば、質量%で、50%〜80%、さらには55〜75%)ことができる。   Note that the wavelength conversion member for the purpose of reflecting the fluorescence generated in the wavelength conversion member to the excitation light incident side and mainly taking out only the fluorescence to the outside is not limited to the above, and the emission intensity is maximized. As described above, the content of the inorganic phosphor powder can be increased (for example, in mass%, 50% to 80%, and further 55 to 75%).

本発明の波長変換部材は、上記のガラス粉末と無機粉末を含有する混合粉末を焼成することにより製造される。これにより、ガラス組成として、アルカリ金属元素、並びに、Sn及びFeから選択される少なくも1種を含有するガラスマトリクス中に、無機蛍光体粉末が分散してなる波長変換部材が得られる。   The wavelength conversion member of this invention is manufactured by baking the mixed powder containing said glass powder and inorganic powder. Thereby, the wavelength conversion member by which inorganic fluorescent substance powder disperse | distributes in the glass matrix containing at least 1 sort (s) selected from an alkali metal element and Sn and Fe as a glass composition is obtained.

焼成温度は、ガラス粉末の軟化点±150℃以内、好ましくは±100℃以内の範囲で適宜調整される。焼成温度が低すぎると、ガラス粉末が十分に流動せず、緻密な焼結体が得られにくい。一方、焼成温度が高すぎると、無機蛍光体粉末がガラス粉末中に溶出して発光強度が低下するおそれがある。あるいは、無機蛍光体粉末に含まれる成分がガラス粉末中に拡散して着色し、発光強度が低下するおそれがある。   The firing temperature is appropriately adjusted within the softening point of the glass powder within ± 150 ° C, preferably within ± 100 ° C. If the firing temperature is too low, the glass powder does not flow sufficiently and it is difficult to obtain a dense sintered body. On the other hand, if the firing temperature is too high, the inorganic phosphor powder may elute into the glass powder and the emission intensity may decrease. Or the component contained in inorganic fluorescent substance powder may diffuse and color in glass powder, and there exists a possibility that emitted light intensity may fall.

なお、焼成は減圧雰囲気中で行うことが好ましい。具体的には、焼成雰囲気は、1.013×10Pa未満であることが好ましく、1000Pa以下であることがより好ましく、400Pa以下であることがさらに好ましい。それにより、波長変換部材中に残存する気泡の量を少なくすることができる。その結果、波長変換部材内の光散乱因子を少なくすることができ、発光効率を向上させることができる。なお、焼成工程全体を減圧雰囲気中で行ってもよいし、例えば焼成工程のみを減圧雰囲気中で行い、その前後の昇温工程や降温工程を、減圧雰囲気ではない雰囲気(例えば大気圧下)で行ってもよい。 Note that firing is preferably performed in a reduced-pressure atmosphere. Specifically, the firing atmosphere is preferably less than 1.013 × 10 5 Pa, more preferably 1000 Pa or less, and even more preferably 400 Pa or less. Thereby, the amount of bubbles remaining in the wavelength conversion member can be reduced. As a result, the light scattering factor in the wavelength conversion member can be reduced, and the luminous efficiency can be improved. In addition, you may perform the whole baking process in a pressure-reduced atmosphere, for example, only a baking process is performed in a pressure-reduced atmosphere, and the temperature raising process and temperature-falling process before and behind that are performed in the atmosphere (for example, under atmospheric pressure) which is not a pressure-reduced atmosphere. You may go.

本発明の波長変換部材の形状は特に制限されず、例えば、板状、柱状、球状、半球状、半球ドーム状等、それ自身が特定の形状を有する部材だけでなく、ガラス基板やセラミック基板等の基材表面に形成された被膜状のものであってもよい。   The shape of the wavelength conversion member of the present invention is not particularly limited. For example, a plate shape, a column shape, a spherical shape, a hemispherical shape, a hemispherical dome shape, etc. It may be a film formed on the surface of the substrate.

図1に、本発明の発光デバイスの実施形態を示す。図1に示すように、発光デバイス1は波長変換部材2及び光源3を備えてなる。光源3は、波長変換部材2に対して励起光L1を照射する。波長変換部材2に入射した励起光L1は、別の波長の蛍光L2に変換され、光源3とは反対側から出射する。この際、波長変換されずに透過した励起光L1と、蛍光L2との合成光を出射させるようにしてもよい。   FIG. 1 shows an embodiment of a light emitting device of the present invention. As shown in FIG. 1, the light emitting device 1 includes a wavelength conversion member 2 and a light source 3. The light source 3 irradiates the wavelength conversion member 2 with excitation light L1. The excitation light L1 incident on the wavelength conversion member 2 is converted into fluorescence L2 having a different wavelength and is emitted from the side opposite to the light source 3. At this time, the combined light of the excitation light L1 transmitted without being wavelength-converted and the fluorescence L2 may be emitted.

以下に、本発明を実施例に基づいて詳細に説明するが、本発明はこれらの実施例に限定されるものではない。   Hereinafter, the present invention will be described in detail based on examples, but the present invention is not limited to these examples.

(1)ガラス粉末の作製
表1、2は実施例で使用するガラス粉末(a−2〜a−3、b−2〜b−3、c−2〜c−3、d−2〜d−3、e−2〜e−3、f−2〜f−3、g−2〜g−3)及び比較例で使用するガラス粉末(a−1、b−1、c−1、d−1、e−1、f−1、g−1)を示している。
(1) Production of glass powder Tables 1 and 2 show glass powders used in Examples (a-2 to a-3, b-2 to b-3, c-2 to c-3, d-2 to d- 3, e-2 to e-3, f-2 to f-3, g-2 to g-3) and glass powders (a-1, b-1, c-1, d-1) used in comparative examples , E-1, f-1, g-1).

Figure 2016213334
Figure 2016213334

Figure 2016213334
Figure 2016213334

まず、表1、2に示す組成となるように原料を調合した。原料を白金坩堝内において1100〜1500℃の温度で1〜2時間溶融してガラス化し、溶融ガラスを一対の冷却ローラー間に流し出すことによりフィルム状に成形した。フィルム状のガラスをボールミルで粉砕した後、分級して平均粒子径D50が2.5μmのガラス粉末を得た。 First, the raw materials were prepared so as to have the compositions shown in Tables 1 and 2. The raw material was melted and vitrified in a platinum crucible at a temperature of 1100 to 1500 ° C. for 1 to 2 hours, and the molten glass was cast between a pair of cooling rollers to form a film. After the film-shaped glass was pulverized by a ball mill, the average particle diameter D 50 and classified to obtain a glass powder 2.5 [mu] m.

各ガラス粉末の軟化点及び密度は、各測定に応じて溶融ガラスを円柱状またはブロック状に成形し、アニールして得られた試料を用いて測定した。軟化点は、ファイバーエロンゲーション法を用い、粘度が107.6dPa・sとなる温度を採用した。密度はアルキメデス法より求めた。 The softening point and density of each glass powder were measured using a sample obtained by forming molten glass into a columnar shape or a block shape according to each measurement and annealing. For the softening point, a fiber elongation method was used, and a temperature at which the viscosity was 10 7.6 dPa · s was adopted. The density was determined by the Archimedes method.

(2)波長変換部材の作製
表3〜8は、本発明の実施例(1−2〜1−3、2−2〜2−3、3−2〜3−3、4−2〜4−3、5−2〜5−3、6−2〜6−3、7−2〜7−3、8−2〜8−3、9−2〜9−3、10−2〜10−3、11−2〜11−3、12−2〜12−3、13−2〜13−3、14−2〜14−3、15−2〜15−3、16−2〜16−3、17−2〜17−3、18−2〜18−3、19−2〜19−3、20−2〜20−3、21−2〜21−3)及び比較例(1−1、2−1、3−1、4−1、5−1、6−1、7−1、8−1、9−1、10−1、11−1、12−1、13−1、14−1、15−1、16−1、17−1、18−1、19−1、20−1、21−1)を示している。
(2) Production of Wavelength Conversion Member Tables 3 to 8 show examples of the present invention (1-2 to 1-3, 2-2 to 2-3, 3-2-3-3, 4-2 to 4- 3, 5-2 to 5-3, 6-2 to 6-3, 7-2 to 7-3, 8-2 to 8-3, 9-2 to 9-3, 10-2 to 10-3, 11-2 to 11-3, 12-2 to 12-3, 13-2 to 13-3, 14-2 to 14-3, 15-2 to 15-3, 16-2 to 16-3, 17- 2-17-3, 18-2 to 18-3, 19-2 to 19-3, 20-2 to 20-3, 212-2 to 21-3) and comparative examples (1-1, 2-1, 3-1, 4-1, 5-1, 6-1, 7-1, 8-1, 9-1, 10-1, 11-1, 12-1, 13-1, 14-1, 15- 1, 16-1, 17-1, 18-1, 19-1, 20-1, 21-1).

Figure 2016213334
Figure 2016213334

Figure 2016213334
Figure 2016213334

Figure 2016213334
Figure 2016213334

Figure 2016213334
Figure 2016213334

Figure 2016213334
Figure 2016213334

Figure 2016213334
Figure 2016213334

表1、2に記載のガラス粉末に対し、表3、4では、Y(Al,Gd)12:Ce3+(YAG)蛍光体粉末を、表5、6では、(Ca,Sr)Si:Eu2+(SCASN)蛍光体粉末を、表7、8では、α−SiAlON:Eu2+(α−SiAlON)蛍光体粉末を、所定量混合して混合粉末を得た。混合粉末を金型で加圧成型して直径1cmの円柱状予備成型体を作製した。予備成型体を表1、2に記載の温度で焼成して得られた焼結体に対して加工を施すことにより、1.2mm角、厚さ0.2mmの波長変換部材を得た。 In Tables 3 and 4, Y 3 (Al, Gd) 5 O 12 : Ce 3+ (YAG) phosphor powder is used in Tables 3 and 4, and in Tables 5 and 6, (Ca, Sr) is used. 2 Si 5 N 8 : Eu 2+ (SCASN) phosphor powder was mixed with a predetermined amount of α-SiAlON: Eu 2+ (α-SiAlON) phosphor powder in Tables 7 and 8 to obtain a mixed powder. The mixed powder was pressure-molded with a mold to prepare a cylindrical preform with a diameter of 1 cm. By processing the sintered body obtained by firing the preform at the temperatures shown in Tables 1 and 2, a 1.2 mm square, 0.2 mm thick wavelength conversion member was obtained.

得られた波長変換部材を発光波長445nmのLEDチップ上に載置し、700mAで通電して100時間連続照射を積分球内で行った。波長変換部材上面から発せられる光のエネルギー分布スペクトル(発光スペクトル)を汎用の発光スペクトル測定装置を用いて測定した。得られた発光スペクトルに標準比視感度を掛け合わせることにより全光束値を算出した。全光束値の変化率は、100時間照射後の全光束値を照射前の全光束値で除して、100を掛けた値(%)で表した。   The obtained wavelength conversion member was placed on an LED chip having an emission wavelength of 445 nm, energized at 700 mA, and continuously irradiated for 100 hours in an integrating sphere. The energy distribution spectrum (emission spectrum) of the light emitted from the upper surface of the wavelength conversion member was measured using a general-purpose emission spectrum measuring device. The total luminous flux value was calculated by multiplying the obtained emission spectrum by the standard relative luminous sensitivity. The change rate of the total luminous flux value was expressed as a value (%) obtained by dividing the total luminous flux value after irradiation for 100 hours by the total luminous flux value before irradiation and multiplying by 100.

表3〜8から明らかなように、実施例の波長変換部材はそれぞれ対応する比較例の波長変換部材と比較して、100時間の励起光照射後の全光束値の低下を抑制することができた。   As is apparent from Tables 3 to 8, the wavelength conversion members of the examples can suppress the decrease in the total luminous flux value after 100 hours of excitation light irradiation, as compared with the corresponding wavelength conversion members of the comparative examples. It was.

本発明の波長変換部材は、白色LED等の一般照明や特殊照明(例えば、プロジェクター光源、自動車のヘッドランプ光源)等の構成部材として好適である。   The wavelength conversion member of the present invention is suitable as a structural member for general illumination such as white LEDs and special illumination (for example, a projector light source and a headlamp light source of an automobile).

1 発光デバイス
2 波長変換部材
3 光源
DESCRIPTION OF SYMBOLS 1 Light emitting device 2 Wavelength conversion member 3 Light source

Claims (8)

(a)ガラス組成として、アルカリ金属元素、並びに、Sn及びFeから選択される少なくも1種を含有するガラス粉末と、(b)無機蛍光体粉末と、を含有する混合粉末の焼結体からなることを特徴とする波長変換部材。   (A) As a glass composition, from a sintered powder of a mixed powder containing an alkali metal element and glass powder containing at least one selected from Sn and Fe; and (b) inorganic phosphor powder. The wavelength conversion member characterized by becoming. ガラス粉末が、酸化物換算のモル%で、LiO+NaO+KO 0.1〜35%を含有することを特徴とする請求項1に記載の波長変換部材。 2. The wavelength conversion member according to claim 1, wherein the glass powder contains Li 2 O + Na 2 O + K 2 O 0.1 to 35% in mol% in terms of oxide. ガラス粉末が、酸化物換算のモル%で、SnO+Fe 0.001〜10%を含有することを特徴とする請求項1または2に記載の波長変換部材。 The wavelength conversion member according to claim 1, wherein the glass powder contains SnO + Fe 2 O 3 0.001 to 10% in mol% in terms of oxide. ガラス粉末が、酸化物換算のモル%で、SiO 30〜80%、B 0〜40%、LiO+NaO+KO 0.1〜35%、MgO+CaO+SrO+BaO 0.1〜45%、及び、SnO+Fe 0.001〜10%を含有することを特徴とする請求項1〜3のいずれか一項に記載の波長変換部材。 Glass powder, in mol% of the oxide equivalent, SiO 2 30~80%, B 2 O 3 0~40%, Li 2 O + Na 2 O + K 2 O 0.1~35%, MgO + CaO + SrO + BaO 0.1~45%, and, the wavelength converting member according to any one of claims 1 to 3, characterized in that it contains SnO + Fe 2 O 3 0.001~10% . ガラス粉末が、酸化物換算のモル%で、SiO 35〜85%、B 0〜55%、LiO 0〜20%、NaO 0〜25%、KO 0〜25%、LiO+NaO+KO 0.1〜35%、及び、SnO+Fe 0.001〜10%を含有することを特徴とする請求項1〜3のいずれか一項に記載の波長変換部材。 Glass powder, in mol% of the oxide equivalent, SiO 2 35~85%, B 2 O 3 0~55%, Li 2 O 0~20%, Na 2 O 0~25%, K 2 O 0~25 %, Li 2 O + Na 2 O + K 2 O 0.1~35%, and the wavelength of any one of claims 1 to 3, characterized in that it contains SnO + Fe 2 O 3 0.001~10% Conversion member. 無機蛍光体粉末が、窒化物蛍光体、酸窒化物蛍光体、酸化物蛍光体、硫化物蛍光体、酸硫化物蛍光体、ハロゲン化物蛍光体及びアルミン酸塩蛍光体から選択される少なくとも1種であることを特徴とする請求項1〜5のいずれか一項に記載の波長変換部材。   The inorganic phosphor powder is at least one selected from a nitride phosphor, an oxynitride phosphor, an oxide phosphor, a sulfide phosphor, an oxysulfide phosphor, a halide phosphor, and an aluminate phosphor The wavelength conversion member according to any one of claims 1 to 5, wherein the wavelength conversion member is. ガラス組成として、アルカリ金属元素、並びに、Sn及びFeから選択される少なくも1種を含有するガラスマトリクス中に、無機蛍光体粉末が分散してなることを特徴とする波長変換部材。   A wavelength conversion member comprising an inorganic phosphor powder dispersed in a glass matrix containing, as a glass composition, an alkali metal element and at least one selected from Sn and Fe. 請求項1〜7のいずれか一項に記載の波長変換部材、及び、波長変換部材に励起光を照射する光源を備えてなることを特徴とする発光デバイス。   A light emitting device comprising: the wavelength conversion member according to claim 1; and a light source that irradiates the wavelength conversion member with excitation light.
JP2015096175A 2015-05-11 2015-05-11 Wavelength conversion member and light emitting device Active JP6617948B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015096175A JP6617948B2 (en) 2015-05-11 2015-05-11 Wavelength conversion member and light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015096175A JP6617948B2 (en) 2015-05-11 2015-05-11 Wavelength conversion member and light emitting device

Publications (2)

Publication Number Publication Date
JP2016213334A true JP2016213334A (en) 2016-12-15
JP6617948B2 JP6617948B2 (en) 2019-12-11

Family

ID=57551701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015096175A Active JP6617948B2 (en) 2015-05-11 2015-05-11 Wavelength conversion member and light emitting device

Country Status (1)

Country Link
JP (1) JP6617948B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020059499A1 (en) * 2018-09-18 2020-03-26 日本電気硝子株式会社 Powder material for wavelength conversion member
EP3689833A4 (en) * 2017-09-27 2021-06-23 Nippon Electric Glass Co., Ltd. Glass for use in wavelength conversion material, wavelength conversion material, wavelength conversion member, and light-emitting device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011213568A (en) * 2009-07-08 2011-10-27 Nippon Electric Glass Co Ltd Glass plate
JP2015042606A (en) * 2013-07-25 2015-03-05 セントラル硝子株式会社 Phosphor-dispersed glass
JP2015071699A (en) * 2013-10-03 2015-04-16 日本電気硝子株式会社 Wavelength conversion material, wavelength conversion member and light-emitting device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011213568A (en) * 2009-07-08 2011-10-27 Nippon Electric Glass Co Ltd Glass plate
JP2015042606A (en) * 2013-07-25 2015-03-05 セントラル硝子株式会社 Phosphor-dispersed glass
JP2015071699A (en) * 2013-10-03 2015-04-16 日本電気硝子株式会社 Wavelength conversion material, wavelength conversion member and light-emitting device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3689833A4 (en) * 2017-09-27 2021-06-23 Nippon Electric Glass Co., Ltd. Glass for use in wavelength conversion material, wavelength conversion material, wavelength conversion member, and light-emitting device
TWI782996B (en) * 2017-09-27 2022-11-11 日商日本電氣硝子股份有限公司 Glass for wavelength conversion material, wavelength conversion material, wavelength conversion member, and light emitting device
US11804577B2 (en) 2017-09-27 2023-10-31 Nippon Electric Glass Co., Ltd. Glass for use in wavelength conversion material, wavelength conversion material, wavelength conversion member, and light-emitting device
WO2020059499A1 (en) * 2018-09-18 2020-03-26 日本電気硝子株式会社 Powder material for wavelength conversion member

Also Published As

Publication number Publication date
JP6617948B2 (en) 2019-12-11

Similar Documents

Publication Publication Date Title
CN109301057B (en) Wavelength conversion member and light emitting device using the same
JP6273799B2 (en) Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member, and light emitting device
JP6222452B2 (en) Wavelength conversion member and light emitting device
JP6425001B2 (en) Wavelength conversion material, wavelength conversion member and light emitting device
KR102588722B1 (en) Wavelength conversion member, and light emitting device using same
JP2022184915A (en) Wavelength conversion member and light-emitting device using the same
JP6365828B2 (en) Glass used for wavelength conversion material, wavelength conversion material, wavelength conversion member, and light emitting device
JP2013055269A (en) Wavelength conversion member and light-emitting device
JP6168284B2 (en) Wavelength conversion material, wavelength conversion member, and light emitting device
JP6617948B2 (en) Wavelength conversion member and light emitting device
JP2013095849A (en) Wavelength conversion member and light emitting device using the same
JP7022367B2 (en) Glass used as wavelength conversion material, wavelength conversion material, wavelength conversion member and light emitting device
JP6861952B2 (en) Wavelength conversion member and light emitting device using it
JP2020045255A (en) Powder material for wavelength conversion member
JP7205808B2 (en) WAVELENGTH CONVERSION MEMBER AND LIGHT-EMITTING DEVICE USING THE SAME
CN111480098B (en) Wavelength conversion member and light emitting device using same
JP2012052018A (en) Phosphor-containing composition and wavelength conversion member obtained by firing the same
JP2022063277A (en) Glass for use in wavelength conversion material, wavelength conversion material, wavelength conversion member, and light-emitting device
JP2013030536A (en) Light-emitting color conversion member and light-emitting device using the same
JP2019151522A (en) Wavelength conversion member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191031

R150 Certificate of patent or registration of utility model

Ref document number: 6617948

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150