JP2016211850A - 電子線照射装置 - Google Patents

電子線照射装置 Download PDF

Info

Publication number
JP2016211850A
JP2016211850A JP2013261924A JP2013261924A JP2016211850A JP 2016211850 A JP2016211850 A JP 2016211850A JP 2013261924 A JP2013261924 A JP 2013261924A JP 2013261924 A JP2013261924 A JP 2013261924A JP 2016211850 A JP2016211850 A JP 2016211850A
Authority
JP
Japan
Prior art keywords
thick film
irradiation window
electron beam
electron
beam irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013261924A
Other languages
English (en)
Inventor
カーヴェ バクタリ
Bakhtari Kaveh
カーヴェ バクタリ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2013261924A priority Critical patent/JP2016211850A/ja
Priority to PCT/JP2014/005351 priority patent/WO2015092964A1/en
Publication of JP2016211850A publication Critical patent/JP2016211850A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J33/00Discharge tubes with provision for emergence of electrons or ions from the vessel; Lenard tubes
    • H01J33/02Details
    • H01J33/04Windows
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K5/00Irradiation devices
    • G21K5/02Irradiation devices having no beam-forming means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J33/00Discharge tubes with provision for emergence of electrons or ions from the vessel; Lenard tubes
    • H01J33/02Details
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/087Particle radiation, e.g. electron-beam, alpha or beta radiation

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • X-Ray Techniques (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)

Abstract

【課題】照射窓に欠陥や腐食が生じにくく、照射窓の交換頻度を低減することができる電子線照射装置を提供する。【解決手段】電子e−を発生させ得る電子発生源2と、この電子発生源2を内部30に配置する真空チャンバー3と、この真空チャンバー3の気密を保つとともに上記電子発生源2からの電子e−が透過し得る照射窓5と、この照射窓5を冷却する冷却手段32,31o,31iとを備える電子線照射装置1であって、上記照射窓5は、炭化珪素(SiC)のような耐食性熱伝導材料の無垢材(単一の塊)から形成されて、上記電子e−を透過させる薄膜部50と、この薄膜部50よりも厚くて厚さが連続的な厚膜部51とを有し、上記厚膜部51は、上記照射窓5の周縁部に位置する外側厚膜部を有し、この外側厚膜部は、上記真空チャンバー3を構成する壁31に支持されるとともに、上記冷却手段32,31o,31iに接続されるものである。【選択図】図1

Description

本発明は、電子線照射装置に関するものである。
飲料ボトルなどの容器を電子線で滅菌するような電子線滅菌設備には、電子線を照射するための電子線照射装置が具備される。このような電子線照射装置は、電子を発生させ得る電子発生源と、この電子発生源を内部に配置する真空チャンバーとを備える。また、この真空チャンバーには、電子を透過させ得る照射窓が設けられる。この照射窓は、電子を透過させる箔と、この箔の強度部材として作用するとともに熱伝導により冷却するグリッドとからなる。なお、照射窓は、そのサイズが小さければ、グリッドを要しない。すなわち、上記電子線照射装置は、上記電子発生源で発生させた電子を上記真空チャンバーの内部で加速させ、加速させた電子に上記照射窓を透過させて、上記真空チャンバーの外部に電子線を照射するものである。このような電子線照射装置のための照射窓として、製造が簡単になる構成が開示されている(例えば、特許文献1参照)。
上記電子線照射装置では、照射窓に到達した電子の全てが照射窓を透過するのではなく、一部が照射窓に吸収されて、照射窓が高温になる。このため、通常は、照射窓を冷却する冷却手段が電子線照射装置に設けられている。
また、上記電子線照射装置は、上述した電子線滅菌設備や、オゾン発生設備など、大気中に配置されることが多い。この場合、電子線照射装置からの電子が大気中で腐食性の高い因子(窒素酸化物、オゾンまたは硝酸など)を副産物として生成するので、電子線照射装置が腐食性の高い環境に配置されることになる。
特許3649743号公報
ところで、上述した特許文献1に記載の電子線照射装置は、その照射窓として、複数の層からなるものを採用している。これらの層は、少なくとも第一の層44(または第二の層46)と腐食停止層48とで熱膨張率が異なるので、熱応力が生じ、層44,48の接合界面で欠陥が生じやすい。一方で、熱応力が生じないよう腐食停止層48を用いなければ、照射窓が腐食しやすくなってしまう。
このため、従来の電子線照射装置では、照射窓に欠陥や腐食が生じやすいので、照射窓の交換頻度が高いという問題があった。
そこで、本発明は、照射窓に欠陥や腐食が生じにくく、照射窓の交換頻度を低減することができる電子線照射装置を提供することを目的とする。
上記課題を解決するため、本発明の請求項1に係る電子線照射装置は、電子を発生させ得る電子発生源と、この電子発生源を内部に配置する真空室と、この真空室の気密を保つとともに上記電子発生源からの電子が透過し得る照射窓と、この照射窓を冷却する冷却手段とを備える電子線照射装置であって、
上記照射窓は、耐食性熱伝導材料の無垢材から形成されて、上記電子を透過させる薄膜部と、この薄膜部よりも厚くて厚さが連続的な厚膜部とを有し、
上記厚膜部は、上記照射窓の少なくとも周縁部に位置し、
上記照射窓の周縁部に位置する厚膜部は、上記真空室を構成する壁に支持されるとともに、上記冷却手段に接続されるものである。
また、本発明の請求項2に係る電子線照射装置は、請求項1に記載の電子線照射装置において、耐食性熱伝導材料は、炭化珪素、窒化珪素、珪素、サファイア、酸化アルミニウム、二酸化珪素、ダイヤモンド、および窒化アルミニウムからなる一群から選択される少なくとも1つであるものである。
さらに、本発明の請求項3に係る電子線照射装置は、請求項1または2に記載の電子線照射装置において、照射窓は、真空室の外部側が面一にされているものである。
また、本発明の請求項4に係る電子線照射装置は、請求項1乃至3のいずれか一項に記載の電子線照射装置において、厚膜部と冷却手段との接続は、ロウ付けによりされているものである。
また、本発明の請求項5に係る電子線照射装置は、請求項1乃至4のいずれか一項に記載の電子線照射装置において、厚膜部は、ハニカム構造に配置されているものである。
また、本発明の請求項6に係る電子線照射装置は、請求項1乃至4のいずれか一項に記載の電子線照射装置において、厚膜部は、照射窓の中心部から周縁部まで放射状に配置されているものである。
上記電子線照射装置によると、照射窓に欠陥や腐食が生じにくく、照射窓の交換頻度を低減することができる。
本発明の実施例1に係る電子線照射装置の概略断面図である。 同電子線照射装置を示す図であり、(a)は断面斜視図、(b)は(a)のA−A断面図(同電子線照射装置における照射窓の平面図)である。 同電子線照射装置に冷却液を循環させない場合での照射窓における拡大断面の等温線図である。 冷却液による冷却の厚膜部における伝達を示す拡大断面図であり、(a)は厚さが連続的な厚膜部(本発明)の等温線図、(b)は厚さが不連続的な厚膜部の等温線図である。 同照射窓の製造方法を示す断面図であり、(a)は照射窓の元となる無垢材の図、(b)は無垢材のレーザーパターニングによる加工を示す図、(c)は製造された照射窓を示す図である。 本発明の実施例2に係る電子線照射装置における照射窓の図2(b)に対応する図(同照射窓の平面図)である。 本発明の実施例3に係る電子線照射装置における照射窓の図2(b)に対応する図(同照射窓の平面図)である。
以下、本発明の実施例1に係る電子線照射装置について図面に基づき説明する。
図1に示すように、この電子線照射装置1は、電子eを発生させ得る電子発生源2と、この電子発生源2を内部30に配置する真空チャンバー(真空室である)3とを備える。この真空チャンバー3は、その内部30を真空にするための真空ポンプ(着脱式のものでもよい)4が接続される。また、上記真空チャンバー3には、上記電子発生源2からの電子eを透過させ得る照射窓5が設けられる。この照射窓5は、上記真空チャンバー3を構成する壁31とともに、真空チャンバー3の気密を保つものでもある。上記真空チャンバー3は、上記照射窓5と接続される部分の壁31が2重殻構造、つまり外殻31oおよび内殻31iからなるようにされている。そして、この外殻31oと内殻31iとの間が、冷却液32を循環させる空間となる。また、上記外殻31oおよび内殻31iと照射窓5とは、ロウ付け35により接続される。なお、上記外殻31oおよび内殻31iと冷却液32とは、冷却手段の一例である。
次に、上記照射窓5について説明する。
上記照射窓5は、耐食性熱伝導材料からなり、図1に示すように、上記電子eを透過させる薄膜部50と、この薄膜部50よりも厚い厚膜部51とを有する。この厚膜部51は、照射窓5における強度部材として作用する。このため、上記照射窓5は、厚さが均一である従来の照射窓に比べて、電子eの透過する部分をより薄くすることが可能である。したがって、上記照射窓5は、より薄い部分(つまり薄膜部50)で電子eを透過させるので、透過する電子eから奪うエネルギーを低く抑えるような構成といえる。
上記耐食性熱伝導材料は、炭化珪素、炭化窒素、珪素、サファイア、酸化アルミニウム、二酸化珪素、ダイヤモンド、および窒化アルミニウムからなる一群から選択される少なくとも1つである。なお、上記耐熱性熱伝導材料は、高耐食性、高熱伝導性および高強度の点など総合的な観点から、炭化珪素が最も好ましい。
上記厚膜部51は、図2に示すように、上記照射窓5の周縁部に位置する外側厚膜部52と、この外側厚膜部52の内側に位置する内側厚膜部53とからなる。詳しくは後述するが、上記外側厚膜部52は冷却液32により直接冷却される部分であり、上記内側厚膜部53は外側厚膜部52からの冷却の伝達を受ける部分である。また、上記照射窓5は、薄膜部50と厚膜部51との厚さの差による凸凹を電子発生源2側に向けて配置され、この凸凹の反対面55(真空チャンバー3の外部側)が面一にされる。なお、上記照射窓5は、この反対面55が面一にされることからも、透過する電子eから奪うエネルギーを低く抑えるような構成といえる。
上記外側厚膜部52は、図3に詳しく示すように、電子発生源2側で上記内殻31iとロウ付け35iにより接続され、外周側で上記外殻31oとロウ付け35oにより接続される。すなわち、上記外側厚膜部52は、上記冷却液32で直接冷却されるように接続される。ここで、上記厚膜部51は、上記薄膜部50と比べて、より厚いことから、より多くの電子eを吸収して高温になる。このため、図3に示すように、仮に冷却液32を循環させない場合、外側厚膜部52において、上記内殻31iよりも内側の部分(等値線におけるH1)が高温となり、上記部分H1に隣接する部分(等値線におけるH2)が上記部分H1に次いで高温となり、上記部分H2に隣接する部分(等値線におけるH3)が上記部分H2に次いで高温となる。すなわち、外側厚膜部52が冷却液32で直接冷却されるように接続されることで、高温となる部分H1〜H3が効率的に冷却される。
上記内側厚膜部53は、図2に示すように、平面視で外側厚膜部52に連続しており、内側厚膜部53自身も連続している。すなわち、内側厚膜部53は、外側厚膜部52から一筆書き状に形成される。このため、上記厚膜部51は、図4(a)に示す縦断面からも明らかなように、厚さが連続的[図4(a)では一例として厚さが均一]である。これは、図4(b)に示すような厚さが不連続的な厚膜部よりも、以下の理由により、効率的に冷却される構成である。
図4(a)および(b)は、厚膜部がいずれも所定の部分(冷却液32に接する部分を想定)で冷却されるとともに、その冷却の厚膜部における伝達を示す図である。この図4において、厚膜部が直接冷却されるC1は最も低温の部分であり、次いでC2,C3,・・・,C9の順に低温の部分である。図4(a)に示す本実施例1に係る厚膜部51の場合、厚さが連続的なので、上記所定の部分での冷却は、順にC1,C2,・・・,C8と阻害されることなく伝達する。そして、最も温度が高い部分でC8となる。これに対して、図4(b)に示す厚膜部の場合、厚さが不連続的なので、上記所定の部分での冷却は、順にC1,C2,・・・,C9と不連続の部分を迂回するように伝達する。そして、最も温度が高い部分でC9(C8よりも高温)となる。したがって、図4(a)に示す本実施例1に係る厚膜部51の場合の方が、図4(b)に示す厚膜部の場合よりも、冷却が効率的に伝達し全体的に低温となるので、効率的に冷却される構成といえる。なお、本実施例1に係る照射窓5は、耐食性熱伝導材料、つまり高熱伝導材料からなるので、一層効率的に冷却される構成となる。
上記内側厚膜部53は、図2に示すように、例えばハニカム構造に配置される。これにより、上記照射窓5は、強度的に有利であるから、外側厚膜部52および内側厚膜部53をより薄くすることが可能である。このため、上記照射窓5は、電子eを吸収しにくく、極端な高温になりにくい構成といえる。
以下、上記電子線照射装置1における照射窓5の製造方法について説明する。
まず、図5(a)に示すように、厚さが均一で上記耐食性熱伝導材料からなる無垢材(つまり単一の塊)5pを準備する。
次に、図5(b)に示すように、上記無垢材5pに対して、厚膜部51とする部分のみをマスクMで覆ってから、レーザーパターニングを行う。
このレーザーパターニングにより、図5(c)に示すように、加工された部分が薄膜部50となり、またマスクMで覆われて加工されなかった部分が厚膜部51となって、照射窓5が完成する。なお、マスクMは、膜厚部51の形状によっては必ずしも必要でない。この照射窓5は、ロウ付け35により、真空チャンバー3の内殻31iおよび外殻31oに接続される。
以下、上記電子線照射装置1の作用について説明する。
まず、真空ポンプ4により真空チャンバー3の内部30を真空にする。そして、内殻31iと外殻31oとの間に冷却液32を循環させるとともに、電子発生源2により電子eを発生させる。すると、電子発生源2からの電子eは、真空チャンバー3の内部30で加速されて、照射窓5に到達する。照射窓5の薄膜部50に到達した電子eは、大半が薄膜部50を透過し、照射用の電子線を構成する。一方、照射窓5の厚膜部51に到達した電子eは、厚膜部51に吸収されて、厚膜部51を高温にする。しかし、高温の外側厚膜部52は、冷却液32により直接冷却される。また、高温の内側厚膜部53は、外側厚膜部52と連続的であり、内側厚膜部53自身も連続的なので、外側厚膜部52の冷却が効率的に伝達される。さらに、外側厚膜部52および内側厚膜部53は、いずれも高熱伝導材料(耐食性熱伝導材料)からなるので、一層効率的に冷却される。このため、上記電子線照射装置1は、照射窓5から電子線を照射しながら、照射窓5が一層効率的に冷却される。
このように、上記電子線照射装置1によると、照射窓5が極端な高温にならず一層効率的に冷却されるので、熱膨張による欠陥が生じにくい。また、照射窓5は、無垢材5pの加工から形成されるので、複数の材料層からなるものと異なり、熱膨張が生じても欠陥が生じにくい。さらに、上記照射窓5は、耐食性を有する材料(耐食性熱伝導材料)からなるので、腐食が生じにくい。したがって、上記電子線照射装置1は、上記照射窓5に欠陥および腐食が生じにくいので、照射窓5の交換頻度を低減することができる。
また、上記照射窓5に腐食が生じにくいので、腐食により発生する微粒子が原因となる汚染を防止することができる。
上記実施例1に係る電子線照射装置1では、内側厚膜部53がハニカム構造に配置されるのに対し、本実施例2に係る電子線照射装置1では、平面視で、内側厚膜部53が照射窓5の中心部から外側厚膜部52まで放射状に配置されるものである。以下、本実施例2に係る電子線照射装置1について説明するが、上記実施例1と異なる構成について説明するとともに、上記実施例1と同一の構成については、同一符号を付してその説明を省略する。
本実施例2に係る内側厚膜部53は、図6に示すように、平面視で、上記照射窓5の中心部C近傍から外側厚膜部52まで放射状に形成された放射主桁68と、この放射主桁68に平行で当該放射主桁68より短い平行補助桁69とからなる。
このため、本実施例2に係る電子線照射装置1は、その放射主桁68が外側厚膜部52から照射窓5の中心部C近傍まで直線状にされているので、照射窓5の最も冷却しにくい部分である中心部Cまで効率的に冷却される。すなわち、本実施例2に係る電子線照射装置1は、照射窓5から電子線を照射しながら、照射窓5がさらに一層効率的に冷却される。
このように、本実施例2に係る電子線照射装置1によると、上記本実施例1に係る電子線照射装置1よりも照射窓5がさらに一層効率的に冷却されるので、照射窓5の交換頻度をさらに低減することができる。
上記実施例1および2に係る電子線照射装置1では、平面視で、照射窓5が円形状であるのに対し、本実施例3に係る電子線照射装置1では、平面視で、照射窓5が長方形状であるものである。以下、本実施例3に係る電子線照射装置1について説明するが、上記実施例1および2と異なる構成について説明するとともに、上記実施例1および2と同一の構成については、同一符号を付してその説明を省略する。
本実施例3に係る内側厚膜部53は、図7に示すように、平面視で、照射窓5の中心部Cを通る長手方向に形成された横主桁78と、この横主桁78から短手方向に多数形成された縦補助桁79とからなる。
このため、本実施例3に係る電子線照射装置1は、その横主桁78が外側厚膜部52から照射窓5の中心部Cまで直線状にされているので、照射窓5の最も冷却しにくい部分である中心部Cまで効率的に冷却される。すなわち、本実施例3に係る電子線照射装置1は、照射窓5から電子線を照射しながら、照射窓5をより一層効率的に冷却する。また、本実施例3に係る電子線照射装置1は、平面視で、照射窓5が長方形状であるから、照射する電子線の横断面も長方形状になる。
このように、本実施例3に係る電子線照射装置1によると、上記本実施例2に係る電子線照射装置1と同様の効果を奏する上に、照射する電子線の横断面が長方形状になるので、横断面が長方形状の電子線を照射するのに適した用途(例えば、容器の外面滅菌など)に対応することができる。
ところで、上記実施例1〜3では、外側厚膜部52および内側厚膜部53の厚さが均一として説明したが、少なくとも連続的であればよい。
また、上記実施例1〜3では、冷却手段の一例として、上記外殻31oおよび内殻31iと冷却液32とについて説明したが、これに限定されるものではなく、外側厚膜部52を冷却するものであればよい。
さらに、上記実施例1〜3では、照射窓5の面一の面55について詳しく説明しなかったが、この面55にカバーを配置してもよい。このカバーは、強度部材として作用するもの(蒸着膜、グラファイト、カーボンナノチューブ、原子層堆積)や、耐食性のもの(二酸化珪素)などが挙げられ、いずれもミクロンオーダーの厚さである。
また、上記実施の形態1〜3では、無垢材5pを加工する方法としてレーザーパターニングについて説明したが、プラズマエッチングなど他の方法を用いてもよい。
e 電子
1 電子線照射装置
2 電子発生源
3 真空チャンバー
5 照射窓
31 壁
31o 外殻
31i 内殻
32 冷却液
35 ロウ付け
50 薄膜部
51 厚膜部
52 外側厚膜部
53 内側厚膜部

Claims (6)

  1. 電子を発生させ得る電子発生源と、この電子発生源を内部に配置する真空室と、この真空室の気密を保つとともに上記電子発生源からの電子が透過し得る照射窓と、この照射窓を冷却する冷却手段とを備える電子線照射装置であって、
    上記照射窓は、耐食性熱伝導材料の無垢材から形成されて、上記電子を透過させる薄膜部と、この薄膜部よりも厚くて厚さが連続的な厚膜部とを有し、
    上記厚膜部は、上記照射窓の少なくとも周縁部に位置し、
    上記照射窓の周縁部に位置する厚膜部は、上記真空室を構成する壁に支持されるとともに、上記冷却手段に接続されるものであることを特徴とする電子線照射装置。
  2. 耐食性熱伝導材料は、炭化珪素、窒化珪素、珪素、サファイア、酸化アルミニウム、二酸化珪素、ダイヤモンド、および窒化アルミニウムからなる一群から選択される少なくとも1つであることを特徴とする請求項1に記載の電子線照射装置。
  3. 照射窓は、真空室の外部側が面一にされていることを特徴とする請求項1または2に記載の電子線照射装置。
  4. 厚膜部と冷却手段との接続は、ロウ付けによりされていることを特徴とする請求項1乃至3のいずれか一項に記載の電子線照射装置。
  5. 厚膜部は、ハニカム構造に配置されていることを特徴とする請求項1乃至4のいずれか一項に記載の電子線照射装置。
  6. 厚膜部は、照射窓の中心部から周縁部まで放射状に配置されていることを特徴とする請求項1乃至4のいずれか一項に記載の電子線照射装置。
JP2013261924A 2013-12-19 2013-12-19 電子線照射装置 Pending JP2016211850A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013261924A JP2016211850A (ja) 2013-12-19 2013-12-19 電子線照射装置
PCT/JP2014/005351 WO2015092964A1 (en) 2013-12-19 2014-10-22 Electron beam emitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013261924A JP2016211850A (ja) 2013-12-19 2013-12-19 電子線照射装置

Publications (1)

Publication Number Publication Date
JP2016211850A true JP2016211850A (ja) 2016-12-15

Family

ID=51866294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013261924A Pending JP2016211850A (ja) 2013-12-19 2013-12-19 電子線照射装置

Country Status (2)

Country Link
JP (1) JP2016211850A (ja)
WO (1) WO2015092964A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015152525A (ja) * 2014-02-18 2015-08-24 株式会社堀場製作所 放射線透過窓、放射線検出器及び放射線検出装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106061514A (zh) * 2014-02-25 2016-10-26 利乐拉瓦尔集团及财务有限公司 用于消毒装置的调节系统、消毒机及调节消毒装置的方法
US20220399196A1 (en) * 2019-11-11 2022-12-15 Ametek Finland Oy A shield device for a radiation window, a radiation arrangement comprising the shield device, and a method for producing the shield device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5612588A (en) * 1993-05-26 1997-03-18 American International Technologies, Inc. Electron beam device with single crystal window and expansion-matched anode
US5898261A (en) * 1996-01-31 1999-04-27 The United States Of America As Represented By The Secretary Of The Air Force Fluid-cooled particle-beam transmission window
JP3649743B2 (ja) 1996-06-12 2005-05-18 ウシオ電機株式会社 陽極の窓領域が薄いモノリシックシリコン膜により形成される化学線源
JP2005003564A (ja) * 2003-06-13 2005-01-06 Ushio Inc 電子ビーム管および電子ビーム取り出し用窓
DE102008025868A1 (de) * 2008-05-30 2009-12-03 Krones Ag Vorrichtung zum Sterilisieren von Behältnissen mittels Ladungsträgern

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015152525A (ja) * 2014-02-18 2015-08-24 株式会社堀場製作所 放射線透過窓、放射線検出器及び放射線検出装置
US10147511B2 (en) 2014-02-18 2018-12-04 Horiba, Ltd. Radiolucent window, radiation detector and radiation detection apparatus

Also Published As

Publication number Publication date
WO2015092964A1 (en) 2015-06-25

Similar Documents

Publication Publication Date Title
JP6253233B2 (ja) 透過型x線ターゲットおよび、該透過型x線ターゲットを備えた放射線発生管、並びに、該放射線発生管を備えた放射線発生装置、並びに、該放射線発生装置を備えた放射線撮影装置
JP6207246B2 (ja) 透過型ターゲットおよび該透過型ターゲットを備える放射線発生管、放射線発生装置、及び、放射線撮影装置
JP5984403B2 (ja) ターゲット構造体及びそれを備える放射線発生装置
JP5544907B2 (ja) ガスシャワー用の構造体及び基板処理装置
US20090159587A1 (en) Planar heater
JP2016211850A (ja) 電子線照射装置
TWI606546B (zh) 靜電夾頭裝置
JP2016176943A (ja) 電子射出窓箔、電子ビーム発生器、電子射出窓箔を提供するための方法及び高性能電子ビームデバイスを提供するための方法
EP2881969B1 (en) X-ray tube and method of manufacturing the same
JP2005091107A (ja) 真空密閉容器及びその製造方法
WO2018088334A1 (ja) 電子線照射装置
JP2017168216A (ja) X線ターゲットおよびそれを備えたx線発生装置
JP2017509868A (ja) 照射窓の冷却効率を向上させた電子線照射装置
RU2570357C2 (ru) Рентгеновская трубка
US20200273594A1 (en) Electron beam irradiation device and method for manufacturing same
JP2008081763A (ja) ターゲット組立ユニットおよびスパッタリング装置
US9589760B2 (en) X-ray generator
JP2012234981A (ja) 減圧処理容器
JP2015005337A (ja) 放射線発生ターゲット及びこれを用いた放射線発生管、放射線発生装置、放射線撮影システム
JP6558908B2 (ja) X線発生装置用ターゲットマウントおよびこれを備えたx線発生装置
JP2008187067A (ja) 熱処理装置、遮熱用真空バッファー体及び遮熱板
JP5235934B2 (ja) 半導体製造装置及び半導体装置の製造方法
JP2015005652A (ja) 熱処理装置
KR101896950B1 (ko) 진공 열처리 장치
JP2017215056A (ja) 太陽熱集熱管