JP2016210519A - コンベヤベルト - Google Patents

コンベヤベルト Download PDF

Info

Publication number
JP2016210519A
JP2016210519A JP2015092193A JP2015092193A JP2016210519A JP 2016210519 A JP2016210519 A JP 2016210519A JP 2015092193 A JP2015092193 A JP 2015092193A JP 2015092193 A JP2015092193 A JP 2015092193A JP 2016210519 A JP2016210519 A JP 2016210519A
Authority
JP
Japan
Prior art keywords
rubber
examples
conveyor belt
fine fibers
comparative example
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015092193A
Other languages
English (en)
Inventor
大樹 土屋
Daiki Tsuchiya
大樹 土屋
博之 橘
Hiroyuki Tachibana
博之 橘
奥野 茂樹
Shigeki Okuno
茂樹 奥野
正吾 小林
Shogo Kobayashi
正吾 小林
鉄平 中山
Teppei Nakayama
鉄平 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bando Chemical Industries Ltd
Original Assignee
Bando Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bando Chemical Industries Ltd filed Critical Bando Chemical Industries Ltd
Priority to JP2015092193A priority Critical patent/JP2016210519A/ja
Publication of JP2016210519A publication Critical patent/JP2016210519A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Belt Conveyors (AREA)

Abstract

【課題】優れた強度を有するコンベヤベルトを提供する。【解決手段】カバーゴム層12,13を備えたベルト本体1を有するコンベヤベルトVであって、前記カバーゴム層12,13は、セルロース系微細繊維14を含有する。また、コンベヤベルトVにおいて、波桟と横桟とをさらに有し、セルロース系微細繊維14の繊維径の分布範囲は、コンベヤベルトVの強度向上の観点から、3〜500nmを含むことが好ましい。更に、セルロース系微細繊維の含有量は、前記ゴム層のゴム成分100質量部に対し、1〜25質量部とする。【選択図】図1

Description

本発明はコンベヤベルトに関する。
いわゆるセルロース繊維を含有するゴム組成物をタイヤ等のゴム製品に適用することは公知である。
例えば、特許文献1には、平均繊維径が4nm〜1μmの化学変性ミクロフィブリルセルロースを配合したゴム組成物を空気入りタイヤに適用することが開示されている。
特許第4581116号公報
しかしながら、セルロース系微細繊維を含有するゴム組成物をコンベヤベルトに適用することは、これまでに開示されていない。
本発明の課題は、優れた強度を有するコンベヤベルトをもたらすことである。
本発明は、ゴム層を備えたベルト本体を有するコンベヤベルトであって、前記ゴム層は、セルロース系微細繊維を含有する。
本発明によれば、優れた強度を有するコンベヤベルトをもたらすことができる。
実施形態1に係るコンベヤベルトのベルト本体1の断面図である。 実施形態2に係る急傾斜搬送用コンベヤベルトのベルト構造体2の斜視図である。
以下、実施形態について詳細に説明する。
[実施形態1]
(コンベヤベルト)
実施形態1のコンベヤベルトVは、ベルト本体1を備える。ベルト本体1は、図1に示すように、芯体層11と、この芯体層11の両面に積層された表カバーゴム層(ゴム層)12と裏カバーゴム層(ゴム層)13とを備えたものである。
芯体層11は、搬送物や走行抵抗によってベルトにかかる張力を担うものである。具体的には例えば、図1に示すような帆布11aと接着ゴム11cとからなるものや、図示していないが、スチールコード11bと接着ゴム11cとからなるものが挙げられる。帆布としては、ポリエステル繊維、ナイロン(ポリアミド)繊維、アラミド繊維等が使用される。そして、帆布を使用する場合にはRFL(レゾルシン・ホルマリン・ラテックス)等で接着処理を行う。また、スチールコードを使用する場合には該スチールコードをメッキ等で処理する。その後、帆布11aの両面、又はスチールコード11bの配置間及び両面に介在させる接着ゴム11cとともに芯体層11として前記表カバーゴム層12及び前記裏カバーゴム層13に加硫接着される。
カバーゴム層12,13は、ゴム成分に種々の配合剤が配合されて混練された未架橋ゴム組成物が加熱及び加圧されて架橋剤により架橋したゴム組成物で形成されている。そして、表カバーゴム層12及び裏カバーゴム層13を形成するゴム組成物は、セルロース系微細繊維14を含有する。このようにセルロース系微細繊維14を含有することにより、コンベヤベルトVに優れた強度が付与される。
ゴム成分としては、例えば、SBR(スチレン・ブタジエンゴム)、NR(天然ゴム)、BR(ブタジエンゴム)、NBR(ニトリル・ブタジエンゴム)、CR(クロロプレンゴム)、EPR(エチレン・プロピレンゴム)等が挙げられる。ゴム成分は、これらのうち1種又は2種以上であることが好ましい。
セルロース系微細繊維14は、植物繊維を細かくほぐすことで得られる植物細胞壁の骨格成分で構成されたセルロース微細繊維を由来とする繊維材料である。セルロース系微細繊維14の原料植物としては、例えば、木材、竹、稲(稲わら)、じゃがいも、サトウキビ(バガス)、水草、海藻等が挙げられる。これらのうち木材が好ましい。
セルロース系微細繊維14は、セルロース微細繊維自体であっても、また、疎水化処理された疎水化セルロース微細繊維であっても、どちらでもよい。また、セルロース系微細繊維14として、セルロース微細繊維自体と疎水化セルロース微細繊維とを併用してもよい。分散性の観点からは、セルロース系微細繊維14は、疎水化セルロース微細繊維を含むことが好ましい。疎水化セルロース微細繊維としては、セルロースの水酸基の一部又は全部が疎水性基に置換されたセルロース微細繊維、及び表面処理剤によって疎水化表面処理されたセルロース微細繊維が挙げられる。
セルロースの水酸基の一部又は全部が疎水性基に置換されたセルロース微細繊維を得るための疎水化としては、例えば、エステル化(アシル化)(アルキルエステル化、複合エステル化、β−ケトエステル化など)、アルキル化、トシル化、エポキシ化、アリール化等が挙げられる。これらのうちエステル化が好ましい。具体的には、エステル化された疎水化セルロース微細繊維は、セルロースの水酸基の一部又は全部が、酢酸、無水酢酸、プロピオン酸、酪酸等のカルボン酸、若しくは、そのハロゲン化物(特に塩化物)によりアシル化されたセルロース微細繊維である。表面処理剤によって疎水化表面処理されたセルロース微細繊維を得るための表面処理剤としては、例えば、シランカップリング剤等が挙げられる。
セルロース系微細繊維14は、コンベヤベルトVの強度向上の観点から、繊維径の分布が広い方が好ましい。セルロース系微細繊維14の繊維径の分布範囲は、コンベヤベルトVの強度向上の観点から、3〜500nmを含むことが好ましい。
カバーゴム層12,13を形成するゴム組成物に含まれたセルロース系微細繊維14の平均繊維径は、コンベヤベルトVの強度向上の観点から、10nm以上で且つ200nm以下が好ましい。
セルロース系微細繊維14の繊維径の分布は、カバーゴム層12,13を形成するゴム組成物の試料を凍結粉砕した後、その断面を透過型電子顕微鏡(TEM)で観察すると共に、50本のセルロース系微細繊維14を任意に選択して繊維径を測定し、その測定結果に基づいて求められる。また、セルロース系微細繊維14の平均繊維径は、その任意に選択した50本のセルロース系微細繊維14の繊維径の数平均として求められる。
セルロース系微細繊維14は、機械的解繊手段によって製造された高アスペクト比のものであっても、また、化学的解繊手段によって製造されたものであっても、どちらでもよい。また、セルロース系微細繊維として、機械的解繊手段によって製造されたものと化学的解繊手段によって製造されたものとを併用してもよい。機械的解繊手段に用いる解繊装置としては、例えば、二軸混練機などの混練機、高圧ホモジナイザー、グラインダー、ビーズミル等が挙げられる。化学的解繊手段に用いる処理としては、例えば、酸加水分解処理等が挙げられる。
カバーゴム層12,13を形成するゴム組成物におけるセルロース系微細繊維14の配向方向は、ベルト幅方向であっても、また、ベルト長さ方向であっても、どちらでもよい。
カバーゴム層12,13を形成するゴム組成物におけるセルロース系微細繊維14の含有量は、コンベヤベルトVの強度向上の観点から、ゴム成分100質量部に対して、好ましくは1質量部以上、より好ましくは3質量部以上、更に好ましくは5質量部以上であり、また、好ましくは30質量部以下、より好ましくは20質量部以下、更に好ましくは10質量部以下である。
カバーゴム層12,13を形成するゴム組成物に配合される配合剤としては、補強剤、オイル、加工助剤、加硫促進助剤、老化防止剤、加硫促進剤、架橋剤等が挙げられる。
補強剤としては、例えば、カーボンブラックやシリカが挙げられる。カーボンブラックでは、例えば、チャネルブラック;SAF、ISAF、N−339、HAF、N−351、MAF、FEF、SRF、GPF、ECF、N−234などのファーネスブラック;FT、MTなどのサーマルブラック;アセチレンブラック等が挙げられる。補強剤は、単一種で構成されていても、また、複数種で構成されていても、どちらでもよい。
例えば、ゴム製品には補強剤としてカーボンブラックを添加することが一般的であるが、実施形態1に係るコンベヤベルトVによれば、カバーゴム層12,13がセルロース系微細繊維14を含むことにより、カバーゴム層12,13の強度が向上するため、カバーゴム層12,13へのカーボンブラックの添加量を大幅に低減するか、又は全く添加しない構成とすることができる。
従って、カバーゴム層12,13を形成するゴム組成物は、補強剤としてカーボンブラックを含有している構成であってもよいが、その場合、カーボンブラックの含有量は、ゴム成分100質量部に対して、好ましくは1質量部以上、より好ましくは5質量部以上であり、また、好ましくは20質量部以下、より好ましくは10質量部以下である。カーボンブラックの含有量は、セルロース系微細繊維の含有量と同一又はそれよりも多いことが好ましい。カーボンブラックの含有量のセルロース系微細繊維の含有量に対する比(カーボンブラックの含有量/セルロース系微細繊維の含有量)は、好ましくは1以上、より好ましくは5以上であり、また、好ましくは50以下、より好ましくは40以下である。
一方、カバーゴム層12,13を形成するゴム組成物は、補強剤としてカーボンブラックを含有していない構成であってもよい。その場合、セルロース系微細繊維の含有量は、ゴム成分100質量部に対して10質量部以上であることが好ましい。
オイルとしては、例えば、石油系軟化剤、パラフィンワックスなどの鉱物油系オイル、ひまし油、綿実油、あまに油、なたね油、大豆油、パーム油、やし油、落下生油、木ろう、ロジン、パインオイルなどの植物油系オイル等が挙げられる。オイルは、単一種で構成されていても、また、複数種で構成されていても、どちらでもよい。オイルの含有量は、ゴム組成物のゴム成分100質量部に対して例えば5〜20質量部である。
加工助剤としては、例えば、ステアリン酸、ポリエチレンワックス、脂肪酸の金属塩等が挙げられる。加工助剤は、単一種で構成されていても、また、複数種で構成されていても、どちらでもよい。加工助剤の含有量は、ゴム組成物のゴム成分100質量部に対して例えば0.5〜4質量部である。
加硫促進助剤としては、例えば、酸化亜鉛(亜鉛華)や酸化マグネシウムなどの金属酸化物、金属炭酸塩、脂肪酸及びその誘導体等が挙げられる。加硫促進助剤は、単一種で構成されていても、また、複数種で構成されていても、どちらでもよい。加硫促進助剤の含有量は、ゴム組成物のゴム成分100質量部に対して例えば3〜15質量部である。
加硫促進剤としては、例えば、チアゾール系(例えばMBT、MBTSなど)、チウラム系(例えばTT、TRAなど)、スルフェンアミド系(例えばCZなど)、ジチオカルバミン酸塩系(例えばBZ−Pなど)のもの等が挙げられる。加硫促進剤は、単一種で構成されていても、また、複数種で構成されていても、どちらでもよい。加硫促進剤の含有量は、ゴム組成物のゴム成分100質量部に対して例えば0.5〜5質量部である。
架橋剤としては、硫黄及び有機過酸化物が挙げられる。架橋剤として、硫黄が配合されていてもよく、また、有機過酸化物が配合されていてもよく、更には、それらの両方が併用されていてもよい。架橋剤の配合量は、硫黄の場合、ゴム組成物のゴム成分100質量部に対して例えば1〜5質量部であり、有機過酸化物の場合、ゴム組成物のゴム成分100質量部に対して例えば1〜5質量部である。
以上の構成の本実施形態1に係るコンベヤベルトVによれば、カバーゴム層12,13を形成するゴム組成物がセルロース系微細繊維14を含有することにより、コンベヤベルトVに優れた強度を付与することができる。
カバーゴム層12,13の強度は、カバーゴム層12,13中のセルロース系微細繊維14の含有量により制御することができるため、その含有量を調節することにより、所望の強度をコンベヤベルトVに付与することができる。
また、カバーゴム層12,13の耐摩耗性を向上させることができる。その耐摩耗性は、JIS K 6254 DIN摩耗試験に基づいた摩耗量で、好ましくは200mm以下、より好ましくは150mm以下、更に好ましくは100mm以下である。
更に、セルロース系微細繊維14は、従来の補強剤であるカーボンブラックやシリカに比べての比重が軽いため、本実施形態1に係るコンベヤベルトVのカバーゴム層12,13は、従来のものよりも比重が軽い。従ってコンベヤベルトを軽量化することができる。なお、カバーゴム層12,13の比重は、好ましくは1.1g/cm以下である。
また、セルロース系微細繊維14を含有することにより、従来の補強剤であるカーボンブラックやシリカ等の無機フィラーに比べ、カバーゴム層12,13の弾性率が大幅に向上する。従って、補強剤の添加量を低減しても、同一性能のカバーゴム層12,13を得られることから、コンベヤベルトVの薄肉化が可能となる。なお、カバーゴム層12,13の弾性率は、JIS K 6394に基づく貯蔵弾性率E’(MPa)で、好ましくは3MPa以上であり、好ましくは30MPa以下である。
また、セルロース系微細繊維14を含有するカバーゴム層12,13は、損失正接tanδが小さくなるため、走行抵抗が小さくなる。なお、カバーゴム層12,13の、JIS K 6394に基づいて得られる損失正接tanδは、雰囲気温度20℃において好ましくは0.1以下である。
このように、セルロース系微細繊維14を含有するカバーゴム層12,13を備えたコンベヤベルトVでは、コンベヤベルトの軽量化、薄肉化及び走行抵抗の低減が可能となることから、コンベヤベルトの低消費電力化・省エネ化が可能となる。
また、補強剤として、セルロース系微細繊維14を用いることにより、従来の補強剤に比べ、その添加量を削減できることから、コンベヤベルトVの加工性の悪化を抑制することができる。また、従来のコンベヤベルトでは、補強のため補強布を適用することが通常であるが、本実施形態1に係るコンベヤベルトVでは、補強布が不要となる。
(コンベヤベルトの製造方法)
次に、コンベヤベルトの製造過程について説明する。コンベヤベルトの製造工程は、芯体層形成工程、カバーゴム層形成工程、加硫工程とを備える。
<芯体層形成工程>
ロール状に巻かれた帯状の帆布を、端から順次引き出しつつ接着用のゴムを塗布または浸潤、或いはRFL(レゾルシン・ホルマリン・ラテックス)処理を行ったのち、再びロール状に巻き直す。
<カバーゴム層形成工程>
こうして、接着性を高める処理を行った帆布を芯体層11として、未加硫のベルト成形体を形成する。具体的には、ロールから帆布を引き出しながら、帆布の表裏両面に未加硫のゴムシートを積層するとともに、幅方向両端に未加硫の耳ゴム材料を取り付け、両耳部の余剰部分をカットすることによって、所定の幅と厚みとを備えた未加硫のベルト成形体を得る。こうして形成された未加硫のベルト成形体を順次ドラムに巻き取る。通常、未加硫のゴムシートは、搬送面側に位置するものを非搬送面に位置するものに比べて厚みを厚くしている。
−未架橋ゴムシート12’,13’−
カバーゴム層12,13に用いられる未架橋のゴムシートは以下のように作製する。すなわち、ゴム成分に各種のゴム配合剤を配合し、ニーダー、バンバリーミキサー等の混練機で混練し、得られた未架橋ゴム組成物をカレンダー成形等によってシート状に成形して未架橋ゴムシート12’,13’を作製する。
そして、本実施形態では、カバーゴム層12,13のゴム組成物中又はそれらの表面に、予めセルロース系微細繊維14を含有させている。なお、セルロース系微細繊維14は、カバーゴム層12,13両方に含有させてもよいし、いずれか一方の層にのみセルロース系微細繊維14を含有させてもよい。
カバーゴム層12,13の表面にセルロース系微細繊維14を含有させる具体的方法としては、前記カバーゴム層用のゴム組成物を作製する際、ゴム組成物にセルロース系微細繊維14を混練りしておく方法や、セルロース系微細繊維14を含有しないゴム組成物を用いて芯体層11の上下にカバーゴム層12,13を積層して未加硫のベルト成形体1’を成形した後、該カバーゴム層12,13の表面にセルロース系微細繊維14を付着させる方法が挙げられる。
ゴム組成物にセルロース系微細繊維14を混練りしておく場合には、以下の方法で行う。
まず、素練りしているゴム成分にセルロース系微細繊維14を投入して混練することにより分散させる。
ここで、ゴム成分へのセルロース系微細繊維14の分散方法としては、例えば、セルロース系微細繊維14を水に分散させた分散体(ゲル)を、オープンロールで素練りしているゴム成分に投入し、それらを混練しながら水分を気化させる方法、セルロース系微細繊維14を水に分散させた分散体(ゲル)とゴムラテックスとを混合して水分を気化させて得られたセルロース系微細繊維/ゴムのマスターバッチを、素練りしているゴム成分に投入する方法、疎水化したセルロース系微細繊維14を溶剤に分散させた分散液とゴム成分を溶剤に溶解させた溶液を混合して溶剤を気化させて得られたセルロース系微細繊維/ゴムのマスターバッチを、素練りしているゴム成分に投入する方法、セルロース系微細繊維14を水に分散させた分散体(ゲル)を凍結乾燥させて粉砕したものを、素練りしているゴム成分に投入する方法、疎水化したセルロース系微細繊維14を素練りしているゴム成分に投入する方法等が挙げられる。
なお、このような分散体(ゲル)又はマスターバッチに、さらに界面活性剤を添加してもよい。これにより、セルロース系微細繊維14とゴム成分との相溶性が向上する。
次いで、ゴム成分とセルロース系微細繊維14とを混練しながら、各種の配合剤を投入して混練を継続する。
そして、得られたゴム組成物をカレンダー成形等によってシート状に成形してゴムシート12’,13’を作製する。
このように、セルロース系微細繊維14をゴム組成物の配合時に混練りする場合には、コンベヤベルトVの強度向上の観点から、該ゴム組成物中のセルロース系微細繊維14の割合が1〜25質量%となるように混練りし、カバーゴム層の表面、内部ともにセルロース系微細繊維14が含有されるようにすることが好ましい。
次に、カバーゴム層12,13の表面にセルロース系微細繊維14を付着させる方法としては、該セルロース系微細繊維14を物理的に塗布する方法や、静電気を利用して付着させる方法などによって行うことができる。この場合には、コンベヤベルトVの強度向上の観点から、カバーゴム層の単位表面積当たりに、セルロース系微細繊維14の付着量が1〜300g/mとなるように付着させることが好ましい。
<加硫工程>
加硫工程において、未加硫のベルト成形体を加硫してコンベヤベルトVを形成する。加硫工程で用いられる加硫機は、上下一対の熱盤を備え、これらの間に未加硫のベルト成形体を仕込んでプレスし、熱と圧力とを一定時間加えて加硫することにより、所望の幅と厚みを有するコンベヤベルトVを形成する。例えば、150℃〜160℃の温度で20kg/cmの面圧を15分〜20分間かけて加硫を行なう。
[実施形態2]
以下、本発明に係る他の実施形態について詳述する。なお、これらの実施形態の説明において、実施形態1と同じ部分については同じ符号を付して詳細な説明を省略する。
(急傾斜搬送用コンベヤベルト)
図2に示すように、本実施形態に係る急傾斜搬送用コンベヤベルトV’は、ベルト構造体2を備える。このベルト構造体2は、ベルト本体1と、ベルト本体1上の両側縁部近傍に立設された平面視波形状の一対の波桟22と、これら一対の波桟22の間に所定間隔でベルト本体1の周方向に設けられた多数の横桟23とを有している。
急傾斜搬送用コンベヤベルトV’は、例えば、砂、土砂、砕石、塊状物等の搬送物を低い場所から高い場所に搬送する手段として用いることができる。この場合、搬送物は、ベルト本体1と、両側の波桟22と、隣接する2つの横桟23とに囲まれた部分からなるボックスに積載される。なお、上記では横桟23は傾斜して設けたが、搬送物の態様により横桟23はベルト本体1に対して直角に形成してもよい。
波桟22は、主に搬送物の側部への脱落を防止するためのものである。また、波桟22は、平面視波形状に屈曲形成されているため、大きな横剛性を有するから、重い搬送物を積載した場合であっても、側部からの脱落を効果的に防止できる。また、横桟23は、主に搬送物が下方へずり落ちるのを防止するためのものである。
波桟22及び横桟23は、ゴム層22a及びゴム層23aをそれぞれ有する。当該ゴム層22a,23aは、ベルト本体1のカバーゴム層12,13と同様のゴム成分と配合剤とを含有するゴム組成物により形成される。また、波桟22、横桟23は、ゴム層22a,23aに積層される芯体層22b,23bを備える構成としてもよいし、芯体層22b,23bを備えないゴム層22a,23aのみの構成としてもよい。芯体層22b,23bは、上述の芯体層11と同様の構成とすることができる。
波桟22及び横桟23は、ベルト本体1のカバーゴム層12,13と同様に、セルロース系微細繊維14を含有することができる。本実施形態に係る急傾斜搬送用コンベヤベルトV’においては、ベルト本体1、波桟22及び横桟23のうち少なくとも1つの部材に備えられたゴム層が、セルロース系微細繊維14を含有する。
本実施形態2に係る急傾斜搬送用コンベヤベルトV’によれば、カバーゴム層12,13、及びゴム層22a,23aがセルロース系微細繊維14を含有することにより、コンベヤベルトに優れた強度を付与することができる。
セルロース系微細繊維14を含有するゴム層12,13,22a,23aを用いることにより、ゴム層の破断伸びは従来のものより増加する。また、一般的に高強度のゴム製品では、破断伸びは低減するが、セルロース系微細繊維14を含有するゴム層12,13,22a,23aは、強度に優れると共に加工性にも優れる。なお、ゴム層12,13,22a,23aの破断伸びは、好ましくは450%以上である。
また、セルロース系微細繊維14を含有するゴム層12,13,22a,23aを用いることにより、ゴム層の耐屈曲疲労性が向上し、コンベヤベルトV’の耐久性が向上する。ゴム層12,13,22a,23aの耐屈曲疲労性は、JIS K 6260に基づく50000回屈曲時の亀裂長さ(mm)で、好ましくは25mm以下である。
(急傾斜搬送用コンベヤベルトの製造方法)
波桟22及び横桟23のゴム層22a,23aは、実施形態1に係るカバーゴム層12,13と同様の方法により作製することができる。また、波桟22又は横桟23のゴム層22a,23aに、セルロース系微細繊維14を含有させる方法も上述の通りである。
芯体層22b,23bを設ける場合には、上述のごとくベルト成形体を製造し、加圧加硫の後、成形体を波桟22又は横桟23のサイズに裁断する。なお、波桟22を加圧加硫する際には、波形状の熱盤を備えた加硫機を用いて加圧加硫を行う。芯体層22b,23bを設けない場合には、ゴム層22a,23aのみのベルト成形体を製造し、上述のごとく加圧加硫を行う。
[コンベヤベルトのベルト本体について]
実施例1〜5及び比較例1として、実施形態1に係るコンベヤベルトV及び実施形態2に係る急傾斜搬送用コンベヤベルトV’のベルト本体1のカバーゴム層12,13に使用されるゴムシートを作製した。ゴムシートの配合及び各種試験結果を表1に示す。
Figure 2016210519
(実施例1)
−セルロース分散ゲル−
水に粉末セルロース(商品名:KCフロック W−50GK、日本製紙社製)を分散させた分散液を調製し、高圧ホモジナイザーを用い、その分散液同士を衝突させて粉末セルロースをセルロース微細繊維に解繊して、水にセルロース微細繊維が分散したゲル(以下、「セルロース分散ゲル」という)を得た。従って、セルロース微細繊維は、機械的解繊手段によって製造され、また、疎水化処理されていないものである。
−ゴムシート−
表1に示すように、ゴムシートは、NBRゴム(品番:N230S、JSR株式会社製)100質量部を神戸製鋼社製ミクストロンBB180にて混練し、そこへ、前記セルロース分散ゲルをセルロース微細繊維の含有量が1質量部となるように添加した後、さらに混練して水分を蒸発させた。そして、補強剤としてカーボンブラックHAF(品番:シースト3、東海カーボン株式会社製)10質量部、オイルとしてDBP(品番:DBP、ミヤコ化学株式会社製)7質量部を添加し、さらに混練させた。最後に加工助剤としてのステアリン酸(品番:ビーズ ステアリン酸 つばき、サンユインダストリアル株式会社製)2質量部、加硫促進助剤としての酸化亜鉛III種(品番:亜鉛華3号A、三井金属鉱業株式会社製)5質量部、老化防止剤(品番:ノクラック6C・ノクラック224・サンノック・ノクラックAW−N、大内振興化学株式会社製)3質量部、及び、加硫促進剤(品番:ノクセラーNS−F、大内振興化学株式会社製)1.7質量部を投入し、バンバリーミキサーにて混練した。混練後のゴムはTSRにてシート状にした後、ミルブレンダーにて架橋剤としての硫黄(品番:セイミOT、ゴム工業資材株式会社製)2.5質量部を投入してゴムシート(厚さ10mm)とした。
(実施例2〜5及び比較例1)
表1に示すように、実施例2〜5は、実施例1に比べ、それぞれセルロース微細繊維の配合量及び補強剤としてのカーボンブラックの配合量が異なる。特に実施例3〜5は、カーボンブラックを含有しない。また、比較例1は、セルロース微細繊維を含有しない。
[波桟について]
実施例6〜10及び比較例2として、実施形態2に係る波桟22のゴム層22aとして使用されるゴムシートを作製した。ゴムシートの配合及び各種試験結果を表2に示す。
Figure 2016210519
(実施例6)
表2に示すように、ゴム成分として、NRゴム(品番:SVR−L、株式会社三富商店製)及び再生ゴム(品番:TYREC−T−1、株式会社澤野商店製)を用いた点を除いて、実施例1と同様の方法によりゴムシートを製造した。
(実施例7〜10及び比較例2)
表2に示すように、実施例7〜10は、実施例6に比べ、それぞれセルロース微細繊維の配合量及び補強剤としてのカーボンブラックの配合量が異なる。特に実施例8〜10は、カーボンブラックを含有しない。また、比較例2は、セルロース微細繊維を含有しない。
[横桟について]
実施例11〜15及び比較例3〜5として、実施形態2に係る横桟23のゴム層23aとして使用されるゴムシートを作製した。ゴムシートの配合及び各種試験結果を表3に示す。
Figure 2016210519
(実施例11)
ゴム成分として、SBRゴム(品番:SBR1712、JSR株式会社製)及びNRゴム(品番:SVR−L、株式会社三富商店製)を用いた点を除いて、実施例1と同様の方法によりゴムシートを製造した。
(実施例12〜15及び比較例3〜5)
表3に示すように、実施例12〜15は、実施例11に比べ、それぞれセルロース微細繊維の配合量及び補強剤としてのカーボンブラックの配合量が異なる。特に実施例13〜15は、カーボンブラックを含有しない。また、比較例3〜5は、セルロース微細繊維を含有せず、比較例3はカーボンブラックのみ、比較例4はセルロース微細繊維の代わりにナイロン短繊維を含むと共にカーボンブラックを含まず、比較例5はナイロン短繊維及びカーボンブラック共に含む構成とした。
<試験評価方法>
(平均繊維径・繊維径分布)
実施例2について、架橋させたゴムシートの試料を凍結粉砕した後、その断面を透過型電子顕微鏡(TEM)で観察すると共に、50本の繊維を任意に選択して繊維径を測定し、その数平均を求めて平均繊維径とした。
また、実施例2のゴムシートの試料について、50本のセルロース微細繊維のうち繊維径の最大値及び最小値を求めた。
(比重)
比重は、JIS K 6268に基づいて密度D(g/cm)を測定することにより求めた。実施例1〜5は比較例1のゴムシートについて得られた測定値を100として、その相対値により評価した。同様に、実施例6〜10は比較例2、実施例11〜15及び比較例4,5は比較例3のゴムシートについて得られた測定値を100として、その相対値により各々評価した。
(省エネ性)
省エネ性は、JIS K 6394に基づいて損失正接tanδを測定することにより求めた。試験機として、株式会社レオロジー製「FT−レオスペクトラDVE−V4」を使用した。試験条件は、周波数1.0Hz,温度25℃,サンプル厚さ2.0mm,サンプル長さ8.00mm、サンプル幅5mmとした。損失正接tanδの測定値は、長さに対するサンプル歪み量を0.1〜10%の範囲で測定したときの最大値とした。実施例1〜5は比較例1のゴムシートについて得られた測定値の逆数(1/tanδ)を100として、1/tanδの相対値により評価した。同様に、実施例6〜10は比較例2、実施例11〜15及び比較例4,5は比較例3のゴムシートについて得られた1/tanδを100として、その相対値により各々評価した。
(弾性率)
弾性率は、JIS K 6394に基づいて貯蔵弾性率E’(MPa)を測定することにより求めた。実施例1〜5は比較例1のゴムシートについて得られた測定値を100として、その相対値により評価した。同様に、実施例6〜10は比較例2、実施例11〜15及び比較例4,5は比較例3のゴムシートについて得られた測定値を100として、その相対値により各々評価した。
(耐候性)
耐候性は、JIS K 6259に基づいて亀裂状態観察を行った。ゴムシート表面の所定倍率の光学顕微鏡写真について、撮影範囲のゴムシート表面全体のクラックの数をカウントした。実施例1〜5は比較例1のゴムシートについて得られた測定値を100として、その相対値により評価した。同様に、実施例6〜10は比較例2、実施例11〜15及び比較例4,5は比較例3のゴムシートについて得られた測定値を100として、その相対値により各々評価した。
(耐摩耗性)
耐摩耗性の試験は、JIS K 6264(1993)「加硫ゴムの摩耗試験方法」に準拠した。試験機として、KARL FRANK GMBH製 DIN摩耗試験機「Type584c」(商品名)を使用した。試験片は直径16mm、厚さ6.0mmとした。なお、実施例1〜5は比較例1のゴムシートについて得られた測定値を100として、その相対値により評価した。同様に、実施例6〜10は比較例2、実施例11〜15及び比較例4,5は比較例3のゴムシートについて得られた測定値を100として、その相対値により各々評価した。
(耐クラック性)
耐クラック性は、JIS K 6260に基づいてデマッチャ式における亀裂発生時回数を測定することにより求めた。実施例1〜5は比較例1のゴムシートについて得られた測定値を100として、その相対値により評価した。同様に、実施例6〜10は比較例2、実施例11〜15及び比較例4,5は比較例3のゴムシートについて得られた測定値を100として、その相対値により各々評価した。
(耐衝撃性(チップカット性))
耐衝撃性(チップカット性)は、以下の方法により測定した。すなわち、1面の1片が45mmの正三角形からなる鉄製の六面体の各面に径5mmの鉄製焼き入れピン3本を埋め込んだ針山ブロックを、内径が155mm、高さ177mmの円筒状鉄製容器内面に、成形枠を使用して架橋成形し、予め質量を測定した120mm×82mm×5mm(厚み)のサンプルゴムを6枚ドラム内に固定する。その後ドラムに100V×200Wの赤外線ランプを用いてドラム内温を約70℃に保持して7日間、36rpmの速度で回転させたのち、針山ブロックを取り出し、サンプルゴムをドラムから外して付着しているゴム屑を完全に除去してその質量を測定し、比重から体積に換算し下記の式(1)にて体積変化率を求めた。実施例1〜5は比較例1のゴムシートについて得られた測定値を100として、その相対値により評価した。同様に、実施例6〜10は比較例2、実施例11〜15及び比較例4,5は比較例3のゴムシートについて得られた測定値を100として、その相対値により各々評価した。
{(前体積−後体積)÷(前体積)}×100 …(1)
(破断伸び)
破断伸びは、JIS K 6251に基づいてEb(%)を測定することにより求めた。実施例11〜15及び比較例4,5は比較例3のゴムシートについて得られた測定値を100として、その相対値により評価した。
(耐屈曲疲労性)
耐屈曲疲労性は、JIS K 6260に基づいてデマッチャ式における50000回屈曲時の亀裂長さ(mm)を測定することにより求めた。実施例11〜15及び比較例4,5は比較例3のゴムシートについて得られた測定値の逆数を100として、その測定値の逆数の相対値により評価した。
<試験評価結果>
[コンベヤベルトのベルト本体について]
表1によれば、実施例2のゴムシートについて、セルロース微細繊維の平均繊維径は90nmであった。また、実施例2のゴムシートについて、セルロース微細繊維の繊維径の最小値及び最大値は、それぞれ3nm及び150nmであった。
表1によれば、実施例1〜5のゴムシートでは、比較例1に比べ、比重が軽くなっているため、軽量化することができる。
また、省エネ性は、比較例1に比べ、実施例1〜5のゴムシートでは向上が見られる。特に、実施例1〜5を比較すると、セルロース微細繊維の含有量が増加するに従い、省エネ性にも向上が見られる。
また、弾性率は、比較例1に比べ、実施例1〜5のゴムシートでは向上しており、特に実施例1〜5を比較すると、セルロース微細繊維の含有量が増加するに従い、弾性率は大幅に向上している。
さらに、耐候性は、比較例1に比べ、実施例1〜5のゴムシートではクラックの発生が抑えられていることが判る。特に、実施例1〜5を比較すると、カーボンブラックを含有する実施例1,2に比べて、カーボンブラックを含有しない実施例3〜5は、大幅に耐候性が向上していることが判る。
耐摩耗性は、比較例1に比べ、実施例1〜5のゴムシートでは向上していることが判る。
耐クラック性は、比較例1に比べ、実施例1〜5のゴムシートでは大幅に向上していることが判る。特に、実施例1〜5を比較すると、カーボンブラックを含有する実施例1,2に比べて、カーボンブラックを含有しない実施例3〜5は、大きく耐クラック性が向上していることが判る。
耐衝撃性は、比較例1に比べ、実施例1〜5のゴムシートでは大幅に向上していることが判る。特に、実施例1〜5を比較すると、カーボンブラックを含有する実施例1,2に比べて、カーボンブラックを含有しない実施例3〜5は、大きく耐衝撃性が向上していることが判る。
[波桟について]
表2によれば、実施例6〜10のゴムシートでは、比較例2に比べ、比重が軽くなっているため、軽量化することができる。
また、省エネ性は、比較例2に比べ、実施例6〜10のゴムシートでは向上が見られる。
また、弾性率は、比較例2に比べ、実施例6〜10のゴムシートでは向上しており、特に実施例6〜10を比較すると、セルロース微細繊維の含有量が増加するに従い、弾性率は大幅に向上している。
さらに、耐候性は、比較例2に比べ、実施例6〜10のゴムシートではクラックの発生が抑えられていることが判る。特に、実施例6〜10を比較すると、カーボンブラックを含有する実施例6,7に比べて、カーボンブラックを含有しない実施例8〜10は、大幅に耐候性が向上していることが判る。
耐摩耗性は、比較例2に比べ、実施例6〜10のゴムシートでは向上していることが判る。また、実施例6〜10を比較すると、セルロース微細繊維の含有量が増加するに従い、耐摩耗性は向上している。
耐クラック性は、比較例2に比べ、実施例6〜10のゴムシートでは大幅に向上していることが判る。特に、実施例6〜10を比較すると、カーボンブラックを含有する実施例6,7に比べて、カーボンブラックを含有しない実施例8〜10は、大きく耐クラック性が向上していることが判る。
耐衝撃性は、比較例2に比べ、実施例6〜10のゴムシートでは大幅に向上していることが判る。特に、実施例6〜10を比較すると、カーボンブラックを含有する実施例6,7に比べて、カーボンブラックを含有しない実施例8〜10は、大きく耐衝撃性が向上していることが判る。
[横桟について]
表3によれば、実施例11〜15のゴムシートでは、比較例3に比べ、比重が軽くなっているため、軽量化することができる。
また、省エネ性は、比較例3に比べ、実施例11〜15のゴムシートでは向上が見られる。特に、実施例11〜15を比較すると、セルロース微細繊維の含有量が増加するに従い、省エネ性にも向上が見られる。
また、弾性率は、比較例3に比べ、実施例11〜15のゴムシートでは向上しており、特に実施例11〜15を比較すると、セルロース微細繊維の含有量が増加するに従い、弾性率は大幅に向上している。
さらに、耐候性は、比較例3に比べ、実施例11〜15のゴムシートではクラックの発生が抑えられていることが判る。特に、実施例11〜15を比較すると、カーボンブラックを含有する実施例11,12に比べて、カーボンブラックを含有しない実施例13〜15は、大幅に耐候性が向上していることが判る。
耐摩耗性は、比較例3に比べ、実施例11〜15のゴムシートでは向上していることが判る。また、実施例11〜15を比較すると、セルロース微細繊維の含有量が増加するに従い、耐摩耗性は向上している。
耐クラック性は、比較例3に比べ、実施例11〜15のゴムシートでは大幅に向上していることが判る。特に、実施例11〜15を比較すると、カーボンブラックを含有する実施例11,12に比べて、カーボンブラックを含有しない実施例13〜15は、大きく耐クラック性が向上していることが判る。
耐衝撃性は、比較例3に比べ、実施例11〜15のゴムシートでは大幅に向上していることが判る。特に、実施例11〜15を比較すると、カーボンブラックを含有する実施例11,12に比べて、カーボンブラックを含有しない実施例13〜15は、大きく耐衝撃性が向上していることが判る。
破断伸びは、比較例3に比べ、実施例11〜15のゴムシートでは増加していることが判る。また、実施例11〜15を比較すると、セルロース微細繊維の含有量が増加するに従い、破断伸びは増加していることが判る。
耐屈曲疲労性は、比較例3に比べ、実施例11〜15のゴムシートでは向上していることが判る。また、実施例11〜15を比較すると、セルロース微細繊維の含有量が増加するに従い、耐屈曲疲労性は向上していることが判る。
また、比較例4は、セルロース微細繊維及びカーボンブラックの代わりに、ナイロン短繊維のみを含有しているが、比重、耐摩耗性、耐クラック性、及び耐衝撃性で、実施例11〜15と同様に数値の改善が見られるが、破断伸び及び耐屈曲疲労性において比較例3よりも大幅に劣っていることが判る。
また、比較例5は、セルロース微細繊維の代わりに、カーボンブラック及びナイロン短繊維を含有しているが、耐摩耗性、耐クラック性、及び耐衝撃性で、実施例11〜15と同様に数値の改善が見られるが、比重において比較例3よりも劣っており、また、破断伸び及び耐屈曲疲労性においては比較例3よりも大幅に劣っていることが判る。
本発明はコンベヤベルトの技術分野において有用である。
V コンベヤベルト
V’ 急傾斜搬送用コンベヤベルト(コンベヤベルト)
1 ベルト本体
12 表カバーゴム層(ゴム層)
13 裏カバーゴム層(ゴム層)
22 波桟
22a ゴム層
23 横桟
23a ゴム層

Claims (4)

  1. ゴム層を備えたベルト本体を有するコンベヤベルトであって、
    前記ゴム層は、セルロース系微細繊維を含有するコンベヤベルト。
  2. 請求項1に記載されたコンベヤベルトにおいて、
    波桟と横桟とをさらに有し、
    前記波桟及び前記横桟のうち少なくとも一方は、セルロース系微細繊維を含有するゴム層を備えるコンベヤベルト。
  3. 請求項1又は2に記載されたコンベヤベルトにおいて、
    前記セルロース系微細繊維の繊維径の分布範囲が3〜500nmを含むコンベヤベルト。
  4. 請求項1乃至3のいずれかに記載されたコンベヤベルトにおいて、
    前記セルロース系微細繊維の含有量は、前記ゴム層のゴム成分100質量部に対し、1〜25質量部であるコンベヤベルト。
JP2015092193A 2015-04-28 2015-04-28 コンベヤベルト Pending JP2016210519A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015092193A JP2016210519A (ja) 2015-04-28 2015-04-28 コンベヤベルト

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015092193A JP2016210519A (ja) 2015-04-28 2015-04-28 コンベヤベルト

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2019151191A Division JP2020007156A (ja) 2019-08-21 2019-08-21 コンベヤベルト

Publications (1)

Publication Number Publication Date
JP2016210519A true JP2016210519A (ja) 2016-12-15

Family

ID=57549295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015092193A Pending JP2016210519A (ja) 2015-04-28 2015-04-28 コンベヤベルト

Country Status (1)

Country Link
JP (1) JP2016210519A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6371440B1 (ja) * 2017-04-28 2018-08-08 兵庫県 発泡ゴム成形体、その製造方法並びにそれを用いた水中用衣類、車両用緩衝材、防振ゴム、防音ゴム及びシール材
JP2020506998A (ja) * 2017-01-13 2020-03-05 ハンジョウ シングル テクノロジーズ カンパニー リミテッドHangzhou Xinglu Technologies Co.,Ltd. ゴム組成物および加工方法、並びにそれを用いたゴムベルト、ゴムローラおよび製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009173382A (ja) * 2008-01-23 2009-08-06 Bridgestone Corp コンベヤベルト
JP4581116B2 (ja) * 2007-09-10 2010-11-17 住友ゴム工業株式会社 加硫ゴム組成物、空気入りタイヤおよびこれらの製造方法
JP2013203803A (ja) * 2012-03-27 2013-10-07 Toyo Tire & Rubber Co Ltd ゴム/セルロースマスターバッチ及びゴム組成物
JP2014125607A (ja) * 2012-12-27 2014-07-07 Kao Corp ゴム組成物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4581116B2 (ja) * 2007-09-10 2010-11-17 住友ゴム工業株式会社 加硫ゴム組成物、空気入りタイヤおよびこれらの製造方法
JP2009173382A (ja) * 2008-01-23 2009-08-06 Bridgestone Corp コンベヤベルト
JP2013203803A (ja) * 2012-03-27 2013-10-07 Toyo Tire & Rubber Co Ltd ゴム/セルロースマスターバッチ及びゴム組成物
JP2014125607A (ja) * 2012-12-27 2014-07-07 Kao Corp ゴム組成物

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020506998A (ja) * 2017-01-13 2020-03-05 ハンジョウ シングル テクノロジーズ カンパニー リミテッドHangzhou Xinglu Technologies Co.,Ltd. ゴム組成物および加工方法、並びにそれを用いたゴムベルト、ゴムローラおよび製造方法
JP7118450B2 (ja) 2017-01-13 2022-08-16 ハンジョウ シングル テクノロジーズ カンパニー リミテッド ゴム組成物および加工方法、並びにそれを用いたゴムベルト、ゴムローラおよび製造方法
JP6371440B1 (ja) * 2017-04-28 2018-08-08 兵庫県 発泡ゴム成形体、その製造方法並びにそれを用いた水中用衣類、車両用緩衝材、防振ゴム、防音ゴム及びシール材
JP2018188514A (ja) * 2017-04-28 2018-11-29 兵庫県 発泡ゴム成形体、その製造方法並びにそれを用いた水中用衣類、車両用緩衝材、防振ゴム、防音ゴム及びシール材

Similar Documents

Publication Publication Date Title
WO2016170788A1 (ja) ゴム組成物、伝動ベルト及びその製造方法
KR101193006B1 (ko) 고무 조성물 및 고무 벨트
CN107532680B (zh) 传动带
US20170023098A1 (en) Power transmission belt
JP2016211589A (ja) 伝動ベルト
CN100549458C (zh) 用于动力传动带的橡胶复合物和由此橡胶复合物制成的动力传动带
WO2015198537A1 (ja) 再生ゴム及びその製造方法、並びにそれを用いた伝動ベルト
JP2016210519A (ja) コンベヤベルト
CN107532681B (zh) 传动带
CN105330906B (zh) 一种耐冲击抗撕裂钢丝绳芯输送带用覆盖胶及制备方法
JP6680464B2 (ja) ゴム組成物
JP6529323B2 (ja) 歯付ベルト
JP2004018752A (ja) コンベヤベルト用ゴム組成物およびコンベヤベルト
WO2016194371A1 (ja) 伝動ベルト
CN109476876A (zh) 橡胶组合物、输送带和带式输送机
WO2015194116A1 (ja) 伝動ベルト
JP2020007156A (ja) コンベヤベルト
JP6527009B2 (ja) 伝動ベルト
JP2017137489A (ja) コンベヤベルト用ゴム組成物及びコンベヤベルト
JP5243834B2 (ja) 動力伝動用ベルト
JP2008275004A (ja) 動力伝動用ベルト
JP6918047B2 (ja) 伝動ベルト
JP2008254300A (ja) 動力伝動用ベルト
JP6539099B2 (ja) 伝動ベルト
JP2016211145A (ja) 床材

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180913

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190521