JP2016205300A - エンジンの制御装置 - Google Patents

エンジンの制御装置 Download PDF

Info

Publication number
JP2016205300A
JP2016205300A JP2015090032A JP2015090032A JP2016205300A JP 2016205300 A JP2016205300 A JP 2016205300A JP 2015090032 A JP2015090032 A JP 2015090032A JP 2015090032 A JP2015090032 A JP 2015090032A JP 2016205300 A JP2016205300 A JP 2016205300A
Authority
JP
Japan
Prior art keywords
injection
detection value
engine
mode
fuel ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015090032A
Other languages
English (en)
Other versions
JP6477202B2 (ja
Inventor
明大 土谷
Akihiro Tsuchiya
明大 土谷
充広 湯浅
Mitsuhiro Yuasa
充広 湯浅
健介 近藤
Kensuke Kondo
健介 近藤
諭司 佐藤
Satoshi Sato
諭司 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2015090032A priority Critical patent/JP6477202B2/ja
Publication of JP2016205300A publication Critical patent/JP2016205300A/ja
Application granted granted Critical
Publication of JP6477202B2 publication Critical patent/JP6477202B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

【課題】エンジンの制御装置に関し、エンジンの排ガス性能を向上させる。【解決手段】実空燃比を検出する第一センサ8と排気の酸素濃度を検出する第二センサ9とを具備し、第一センサ8で検出された第一検出値Aと第二センサ9で検出された第二検出値Bとに基づいて燃料噴射量をフィードバック制御するエンジンの制御装置1に関する。複数の噴射弁6,7における噴射比率、又は、エンジン10の一行程中における燃料噴射回数が異なる複数の噴射モードを有し、エンジン10の運転状態に応じて複数の噴射モードの何れかを選択する選択部2を設ける。また、噴射モードの切り替えに際し、第二検出値Bが不安定であるか否かを判定する判定部4を設ける。さらに、第二検出値Bが不安定である場合に、第一検出値Aを使用せず第二検出値Bに基づいてフィードバック制御を実施する制御部5を設ける。【選択図】図1

Description

本発明は、空燃比をフィードバック制御するエンジンの制御装置に関する。
従来、筒内噴射とポート噴射との二種類の燃料噴射方式を両立させたエンジン(内燃機関)が開発されている。すなわち、エンジンの運転状態に応じて、気筒内に燃料を噴射する筒内噴射弁と吸気ポートに燃料を噴射するポート噴射弁とを使い分け、あるいは併用するものである。このようなエンジンでは、エンジンの回転数や負荷に応じて燃料噴射方式を使い分けるさまざまな技術が提案されている(特許文献1参照)。
特開2006-138252号公報
ところで、気筒内に供給される混合気の実空燃比は、エンジンの排気系に設けられる空燃比センサの出力に基づいて推定される。また、エンジンの燃料噴射量や吸入空気量は、この実空燃比が所望の目標空燃比に一致するようにフィードバック制御される。空燃比センサの具体例としては、排ガスの拡散を律速する多孔質材料で固体電解質を被覆した構造のリニア空燃比センサが知られている。リニア空燃比センサでは、酸素イオンが固体電解質中を移動することによって生じる起電力が計測され、排ガス中の酸素濃度に対応する空燃比の値が推定される。
しかしながら、上記のような空燃比センサの出力特性は、燃料の噴射形態によって変動する。例えば、筒内噴射を実施した場合には、ポート噴射を実施した場合と比較して筒内における燃料濃度分布にばらつきが生じやすく、燃料が燃焼する過程で水素が発生しやすくなる。一方、水素イオンが固体電解質内に拡散すると、固体電解質に生じる起電力が小さくなり、排ガス中の酸素濃度が実際よりも低く評価されることになる。つまり、空燃比センサの出力が、実際の空燃比よりもリッチ側にシフトしたものとなってしまう。このような出力特性の変動は、実空燃比の推定精度を低下させるだけでなく、エンジンの排ガス性能を低下させる要因の一つとなる。
本件の目的の一つは、上記のような課題に鑑み創案されたものであり、エンジンの排ガス性能を向上させることができるようにしたエンジンの制御装置を提供することである。なお、この目的に限らず、後述する「発明を実施するための形態」に示す各構成から導き出される作用効果であって、従来の技術では得られない作用効果を奏することも、本件の他の目的として位置付けることができる。
(1)ここで開示するエンジンの制御装置は、実空燃比を検出する第一センサと排気の酸素濃度を検出する第二センサとを具備し、前記第一センサで検出された第一検出値と前記第二センサで検出された第二検出値とに基づいて燃料噴射量をフィードバック制御するエンジンの制御装置である。本制御装置は、複数の噴射弁における噴射比率、又は、前記エンジンの一行程中における燃料噴射回数が異なる複数の噴射モードを有し、前記エンジンの運転状態に応じて前記複数の噴射モードの何れかを選択する選択部を備える。また、前記噴射モードの切り替えに際し、前記第二検出値が不安定であるか否かを判定する判定部を備える。さらに、前記第二検出値が不安定である場合に、前記第一検出値を使用せず前記第二検出値に基づいて前記フィードバック制御を実施する制御部を備える。
なお、前記制御部は、前記第二検出値が安定している場合に、前記第一検出値と前記第二検出値とを併用して前記フィードバック制御を実施することが好ましい。
つまり、前記噴射モードの切り替えに際し、前記第二検出値が安定するまでの間は、前記第一センサを用いることなく、前記第二センサを用いて前記フィードバック制御を実施することが好ましい。一方、前記第二検出値が安定した後には、前記第一センサと前記第二センサとを併用して前記フィードバック制御を実施することが好ましい。
(2)前記エンジンが、気筒内に燃料を噴射する第一噴射弁と吸気通路内に燃料を噴射する第二噴射弁とを具備することが好ましい。また、前記複数の噴射モードには、前記第一噴射弁の噴射比率が前記第二噴射弁の噴射比率以上となる第一モードと、前記第一モード以外の第二モードとが含まれることが好ましい。
なお、前記第一モードには、MPI+DI単噴射モード(ポート・筒内単噴射モード)やMPI+DI分割噴射モード(ポート・筒内分割噴射モード)が含まれることが好ましい。また、前記第二モードには、前記第一噴射弁の噴射比率が前記第二噴射弁の噴射比率未満となるMPI噴射モード(ポート噴射モード)が含まれることが好ましい。
(3)前記複数の噴射モードには、前記エンジンの一行程中において複数回に分けて燃料噴射する分割噴射モードと、複数回に分けずに燃料噴射する単噴射モードとが含まれることが好ましい。
なお、前記分割噴射モードには、MPI+DI分割噴射モード(ポート・筒内分割噴射モード)が含まれることが好ましい。また、前記単噴射モードには、MPI+DI単噴射モード(ポート・筒内単噴射モード)が含まれることが好ましい。
(4)前記噴射モードに応じて、前記第一検出値の基準値を規定するマップを変更する変更部を備えることが好ましい。
この場合、前記変更部が、前記第一モードにおける前記基準値を、前記第二モードにおける前記基準値よりもリッチ寄りの値に設定することが好ましい。また、前記変更部が、前記分割噴射モードにおける前記基準値を、前記単噴射モードにおける前記基準値よりもリッチ寄りの値に設定することが好ましい。
(5)前記判定部は、前記第二検出値が所定範囲内に入っている時間が所定時間以上となった場合に、前記第二検出値が安定しているものと判定することが好ましい。
(6)前記制御部は、前記噴射モードの切り替えからの経過時間が第二所定時間未満である場合に、前記第一検出値を使用せず前記第二検出値に基づいて前記フィードバック制御を実施することが好ましい。
開示のエンジンの制御装置によれば、燃料噴射量のフィードバック制御を適正化し、エンジンの排ガス性能を総合的に向上させることができる。
実施形態としてのエンジンの制御装置の構成を示す模式図である。 本制御装置のブロック図である。 (A),(B)は噴射モードを設定するためのマップ例である。 (A)は噴射モードと検出値Aとの関係を示す棒グラフ、(B)は第一噴射弁からの燃料噴射開始タイミングと検出値Aとの関係を示す折れ線グラフである。 (A)は第一センサの出力特性を表すグラフ、(B)は第二センサの出力特性を表すグラフである。 本制御装置の制御内容を示すフローチャート例である。
図面を参照して、実施形態としてのエンジンの制御装置について説明する。なお、以下に示す実施形態はあくまでも例示に過ぎず、以下の実施形態で明示しない種々の変形や技術の適用を排除する意図はない。本実施形態の各構成は、それらの趣旨を逸脱しない範囲で種々変形して実施することができる。また、必要に応じて取捨選択することができ、あるいは適宜組み合わせることができる。
[1.構成]
図1は、車両に搭載されるエンジン10及びこれを制御するエンジン制御装置1を示す図である。ここでは、エンジン10に設けられる複数の気筒11のうち、一つを例示する。このエンジン10には、筒内噴射及びポート噴射を併用した燃料噴射システムが適用される。各気筒11には、気筒11内へ燃料を噴射する第一噴射弁6(筒内噴射弁)と、吸気通路内に燃料を噴射する第二噴射弁7(ポート噴射弁)とが設けられる。図1に示す第二噴射弁7は、吸気ポート12内に燃料を噴射するものである。吸気ポート12よりも吸気の上流側となる吸気通路には、吸入空気量を制御するためのスロットル弁16が介装される。
エンジン10の排気通路13には過給機のタービン15が介装され、その下流側に触媒装置14が設けられる。触媒装置14は、例えば三元触媒,DPF,NOx吸蔵還元触媒,S吸蔵還元触媒などである。触媒装置14の上流側(タービン15と触媒装置14との間の排気通路)には、第一センサ8が設けられる。また、触媒装置14の下流側には第二センサ9が設けられる。図1中の符号18,19はそれぞれ、エンジン回転速度Neを検出するエンジン回転速度センサ18,アクセル開度Acを検出するアクセル開度センサ19である。
第一センサ8は、実空燃比を検出するリニア空燃比センサ(全域空燃比センサ,LAFセンサ,LAFS)であり、排ガスの拡散を律速する多孔質材料(律速層)で固体電解質を被覆した構造を持つ。第一センサ8では、酸素イオンが固体電解質中を移動することによって生じる起電力が計測され、その起電力に所定の演算処理が施されたのち、演算結果が検出値A(第一検出値)として出力される。検出値Aには、気筒11に供給された混合気の実際の空燃比が反映される。第一センサ8の検出値Aは、図5(A)に示すように、空燃比の変動に対してほぼリニアに変化する特性を有する。
第二センサ9は、第一センサ8から律速層を取り除いた構造を持つ酸素濃度センサ(ジルコニア酸素センサ,O2センサ)である。第二センサ9は、酸素濃度の変化に対し、理論空燃比付近を境として急激に出力を変化させる二値的な特性を持つ。図5(B)に示すように、第二センサ9の検出値B(第二検出値)は、酸素濃度が低い(空燃比がリッチである)場合に大きい値となり、酸素濃度が高い(空燃比がリーンである)場合に小さい値となる。このように、第二センサ9は、排ガス中の酸素濃度を検出する機能を持つ。具体的には、排ガス中の酸素濃度が、リッチな空燃比に対応する酸素濃度なのか、それともリーンな空燃比に対応する酸素濃度なのかを判別する機能を持つ。
エンジン制御装置1は、車載ネットワークに接続されてエンジン10の運転状態を司る電子制御装置であり、CPU,MPUなどのプロセッサ装置21やROM,RAMなどのメモリ装置22を集積した電子デバイスである。このエンジン制御装置1は、エンジン10に設けられる各々の気筒11について、空燃比の制御結果を制御内容にフィードバックする機能と、各気筒11における燃料の噴射形態を制御する機能とを有する。ここで、前者の制御を空燃比フィードバック制御と呼び、後者を噴射モード切替制御と呼ぶ。空燃比フィードバック制御及び噴射モード切替制御を実施するためのプログラムは、メモリ装置22に記録され、プロセッサ装置21で実行される。
空燃比フィードバック制御では、各気筒11の実空燃比が目標空燃比に近づくように(ひいては、実空燃比が目標空燃比にほぼ一致するように)、燃料噴射量や吸入空気量が制御される。実空燃比は、第一センサ8の検出値Aに基づいて把握される。また、目標空燃比は、第二センサ9の検出値Bに基づいて理論空燃比を補正した値とされる。エンジン制御装置1は、実空燃比と理論空燃比との差がゼロとなるように、第一噴射弁6及び第二噴射弁7の燃料噴射量を増減させ、あるいは、スロットル弁16の開度を制御する。
噴射モード切替制御では、エンジン10の運転状態やエンジン10に要求される出力の大きさに応じて、筒内噴射,ポート噴射といった燃料噴射方式が使い分けられる。ここでは、エンジン回転速度Ne及び負荷Ecに基づき、複数の噴射モードのうち何れか一つが選択される。本実施形態では「MPI噴射モード(ポート噴射モード)」,「MPI+DI単噴射モード(ポート・筒内単噴射モード)」,「MPI+DI分割噴射モード(ポート・筒内分割噴射モード)」の三種類の噴射モードが選択対象とされる。エンジン10の負荷Ecは、エンジン回転速度Ne及びアクセル開度Acに基づき、公知の演算手法を用いて算出される。
MPI噴射モード(第二モード)は、おもに第二噴射弁7を用いて燃料噴射を実施する噴射モードであり、エンジン10が比較的低負荷,低回転のときに選択される。本実施形態のMPI噴射モードでは、第一噴射弁6からの燃料噴射が停止し、第二噴射弁7のみで燃料噴射が実施される。つまり、MPI噴射モードでは、第一噴射弁6の噴射比率が第二噴射弁7の噴射比率未満となる。ポート噴射が実施される時期は、おもに排気行程内に設定される。なお、必要に応じて、排気行程の直前(燃焼行程後期)や排気行程の直後(吸気行程前期)にポート噴射時期を設定してもよい。
MPI+DI単噴射モード,MPI+DI分割噴射モードは、おもに第一噴射弁6を用いて燃料噴射を実施する噴射モードであり、MPI噴射モードと比較してエンジン10の負荷Ecがやや高いときやエンジン回転速度Neがやや高いときに選択される。これらのモードでは、少なくとも第一噴射弁6が使用され、あるいは第一噴射弁6と第二噴射弁7とが併用されて、燃料噴射が実施される。本実施形態のMPI+DI単噴射モード,MPI+DI分割噴射モードは、ともに第一噴射弁6の噴射比率が第二噴射弁7の噴射比率以上である。このように、第一噴射弁6の噴射比率が第二噴射弁7の噴射比率以上である噴射モードのことを第一モードと呼ぶ。これに対し、第一噴射弁6の噴射比率が第二噴射弁7の噴射比率未満である噴射モードのことを第二モードと呼ぶ。
また、MPI+DI単噴射モードでは、少なくとも第一噴射弁6からの燃料噴射が単噴射とされる。単噴射とは、エンジン10の一行程中において噴射回数を複数回に分けずに燃料を噴射することである。一方、MPI+DI分割噴射モードでは、少なくとも第一噴射弁6からの燃料噴射が分割噴射とされる。分割噴射とは、エンジン10の一行程中において複数回に分けて燃料を噴射することである。MPI+DI分割噴射モードは、MPI+DI単噴射モードよりも、エンジン10の負荷Ecが高い場合に使用される。
上記の通り、本実施形態では、MPI+DI単噴射モード,MPI+DI分割噴射モードにおける筒内噴射量が、少なくともポート噴射量以上の値を持つように設定される。すなわち、ポート噴射と筒内噴射との噴射比率(ポート噴射:筒内噴射)は、1以下に設定される(例えば、0:10,1:9,2:8,…,5:5など)。反対に、MPI噴射モードは、第一噴射弁6の噴射比率が第二噴射弁7の噴射比率未満となるモード(第二モード,第一モード以外のモード)の一例である。MPI噴射モードにおけるポート噴射と筒内噴射との噴射比率(ポート噴射:筒内噴射)は、1を超える値となるように設定される(例えば、6:4,7:3,…,9:1,10:0など)。
MPI+DI単噴射モード,MPI+DI分割噴射モードにおいてポート噴射が実施される時期は、MPI噴射モードと同様に、おもに排気行程内に設定される。必要に応じて、排気行程の直前(燃焼行程後期)や排気行程の直後(吸気行程前期)にポート噴射時期を設定してもよい。これに対し、筒内噴射が実施される時期は、少なくともポート噴射が実施される時期よりも遅角側に設定される。本実施形態では、MPI+DI単噴射モードの筒内噴射が、吸気行程で実施される。また、MPI+DI分割噴射モードの筒内噴射は、吸気行程と圧縮行程とに二分割される。
図2は、エンジン制御装置1の機能を模式的に示すブロック図である。エンジン制御装置1には、選択部2,変更部3,判定部4,制御部5が設けられる。本実施形態では、これらの各機能がメモリ装置22に記録されたソフトウェアで実現されるものとする。ただし、各機能の一部又は全部をハードウェア(電子制御回路)で実現してもよく、あるいはソフトウェアとハードウェアとを併用して実現してもよい。
[1−1.選択部]
選択部2は、噴射モード切替制御を実施するものであり、エンジン10の運転状態に応じた噴射モードを択一的に選択するものである。選択部2には、エンジン10の運転状態と複数の噴射モードとの関係を規定するための数式,グラフ,マップなどが予め設定される。本実施形態における噴射モードの数は三種類(MPI噴射モード,MPI+DI単噴射モード,MPI+DI分割噴射モード)である。図3(A)に示すように、エンジン回転速度Ne及び負荷Ecで特定されるエンジン10の運転点に対し、何れか一つの噴射モードが割り当てられる。ここで選択された噴射モードの情報は、変更部3に伝達される。なお、マップ上における噴射モードの数や各噴射モードの内容,各噴射モードの具体的な形状は任意であり、図3(B)に示すように、エンジン10の特性や、第一噴射弁6,第二噴射弁7の燃料噴射特性,エンジン10を搭載する車両の特性などに応じて設定することができる。
マップ上における各噴射モードの境界には、ヒステリシス特性(履歴特性)が付与される。例えば、図3(A)中でエンジン10の運転点がMPI噴射モードからMPI+DI単噴射モードへと移動しつつあるときには、図中に実線で示す境界線を超えた場合に、噴射モードがMPI噴射モードからMPI+DI単噴射モードへと変更される。一方、運転点が反対方向に移動しつつあるときには、図中に破線で示す境界線を超えた場合に、噴射モードがMPI+DI単噴射モードからMPI噴射モードへと変更される。MPI+DI単噴射モードとMPI+DI分割噴射モードとの境界についても同様である。噴射モードの境界にヒス幅を設けることで、境界付近における噴射モードの振動的な変化が抑制され、噴射モード切替制御の安定性が向上する。
[1−2.変更部]
変更部3は、選択部2で選択された噴射モードに応じて、第一センサ8の検出信号の基準値を規定する噴射モードマップを択一的に選択するものである。ここでは、噴射モードの変化に合わせて、噴射モードマップが変更される。ここで選択,変更された噴射モードマップの情報は、制御部5に伝達され、空燃比フィードバック制御で目標空燃比を設定する際に使用される。
変更部3には、三種類の噴射モードのそれぞれに対応するように、三種類の噴射モードマップ(MPI噴射モードマップ,MPI+DI単噴射モードマップ,MPI+DI分割噴射モードマップ)が予め設定される。また、各々の噴射モードマップには、エンジン10の運転状態やエンジン10に要求される出力の大きさに応じた基準値が設定される。ここでいう基準値とは、その噴射モードにおいて、実空燃比が理論空燃比であるときに第一センサ8で検出される検出値Aの平均値を意味し、空燃比フィードバック制御における目標空燃比に相当する。以下、この基準値のことを「LAFS中央値C」とも呼ぶ。図2中には、エンジン回転速度Ne,負荷Ec,LAFS中央値Cの三者関係が規定された三次元マップを示す。
第一センサ8の検出値Aは、酸素イオンの移動によって生じる固体電解質の起電力に応じた値を持ち、実空燃比に対応する値となる。また、検出値Aと実空燃比との対応関係は、固体電解質の起電力に影響を与える要因がほかにない限り、基本的には変化しない。しかし、エンジン10の噴射モードが異なれば、気筒11内における燃料濃度分布が相違するため、排ガス中の水素発生量も相違する。また、排気中の水素は、固体電解質中で水素イオンとして拡散し、起電力に影響を与えうる。したがって、エンジン10の噴射モードが変化したときに、検出値Aと実空燃比との対応関係がずれることがある。
そこで、各々の噴射モードマップにおけるLAFS中央値Cは、上記のようなずれを予め考慮して設定される。例えば、MPI+DI単噴射モードマップに規定されるLAFS中央値Cは、MPI+DI単噴射モードマップにおいて、実空燃比が理論空燃比であるときに第一センサ8で検出される検出値Aに相当する。同様に、MPI+DI分割噴射モードマップに規定されるLAFS中央値Cは、MPI+DI分割噴射モードでの検出値Aに相当する。
ここで、三種類の噴射モードマップ(MPI噴射モードマップ,MPI+DI単噴射モードマップ,MPI+DI分割噴射モードマップ)の各々に規定されるLAFS中央値Cのことを、第一中央値,第二中央値,第三中央値と呼ぶ。これらの値を同一の運転点で比較すると、第二中央値は、第一中央値よりもリッチ寄りの特性を持つ値(小さい空燃比に相当する値)とされ、第三中央値は、第二中央値よりもさらにリッチ寄りの特性を持つ値(さらに小さい空燃比に相当する値)とされる。これは、第一センサ8の検出値Aがリッチ側にシフトする度合い(リッチ側への騙されやすさ)に着目すると、MPI噴射モードが最も小さく、MPI+DI分割噴射モードが最も大きいからである。
図4(A)は、実空燃比を一定として噴射モードのみを変更したときに、第一センサ8で検出された検出値Aを示すグラフである。検出値Aは、MPI噴射モードで最も大きくなり、すなわち検出結果がリーン寄りとなる。また、MPI+DI分割噴射モードでは検出値Aが最も小さくなり、すなわち検出結果がリッチ寄りとなる。各々の噴射モードマップにおけるLAFS中央値Cは、このような第一センサ8の出力特性の変動に適合するように設定される。
[1−3.判定部]
判定部4は、噴射モードの切り替えに際し、第二センサ9で検出された検出値Bが安定しているか否か(実空燃比がストイキ空燃比の近傍に位置しているか否か)を判定するものである。ここでは、検出値Bの値が以下の条件を満たす場合に、検出値Bが安定しているものと判定される。
・検出値Bが、ストイキ空燃比に対応する値を含む所定範囲内に入っている
・検出値Bが所定範囲内に入っている時間が、所定時間以上である
図5(B)に示すように、上記の所定範囲は「第一所定値B1以上、第二所定値B2以下」の範囲である。検出値Bが変動していたとしても、その変動が上記の所定範囲内であれば、検出値Bが安定しているものと判断される。判定部4での判定結果は制御部5に伝達される。
[1−4.制御部]
制御部5は、選択部2で選択された噴射モードマップに基づき、第一センサ8の検出値Aと第二センサ9の検出値Bとを用いて空燃比フィードバック制御を実施するものである。フィードバック補正量は、基本的には実空燃比と目標空燃比との差Dに基づいて算出される。また、実空燃比は第一センサ8で検出された検出値Aに基づいて算出され、目標空燃比はLAFS中央値Cに基づいて算出される。一方、噴射モードが切り替えられたときには、第一センサ8の検出値Aと実空燃比との対応関係がずれることがある。そこで制御部5は、噴射モードの切り替えに際し、検出値Bが安定している場合に、検出値A,検出値Bを併用して空燃比フィードバック制御を実施する。また、検出値Bが安定していない場合には、検出値Aを使用せず、検出値Bに基づいて空燃比フィードバック制御を実施する。
つまり、噴射モードが切り替えられると、検出値Bが安定するまでの間は検出値Bに基づく空燃比フィードバック制御が実施される。その後、検出値Bが安定すれば、検出値A,検出値Bが併用される。本実施形態では、検出値Bが安定しており、かつ、噴射モードが切り替えられてからの経過時間が第二所定時間以上となった場合に、検出値A,検出値Bが併用されるものとする。以下、検出値Aが使用されない空燃比フィードバック制御のことを第一制御と呼び、検出値A,検出値Bを併用した空燃比フィードバック制御のことを第二制御と呼ぶ。
第一制御では、検出値Bに応じた大きさのフィードバック補正量を算出して、空燃比フィードバック制御を実施する。例えば、検出値Bが第二所定値B2以上である場合には、酸素濃度が低い(空燃比がリッチである)ものと判断し、実空燃比をリーンにするフィードバック補正量を算出する。このとき、検出値Bが第二所定値B2以上となっている継続時間が長いほど、フィードバック補正量をリーン寄りの値とする。一方、検出値Bが第二所定値B2よりも小さい第一所定値B1以下である場合には、酸素濃度が高い(空燃比がリーンである)ものと判断し、実空燃比をリッチにするフィードバック補正量を算出する。このとき、検出値Bが第一所定値B1以下となっている継続時間が長いほど、フィードバック補正量をリッチ寄りの値とする。
第二制御では、まずエンジン10の運転状態と噴射モードマップとからLAFS中央値Cが算出され、LAFS中央値Cに基づいて目標空燃比が算出される。続いて、検出値Bに基づいて目標空燃比が補正される。一方、第一センサ8の検出値Aに基づいて実空燃比が算出されるとともに、目標空燃比と実空燃比との差Dが算出される。その後、実空燃比が目標空燃比に近づく(差Dがゼロに近づく)ように、第一噴射弁6,第二噴射弁7,スロットル弁16がフィードバック制御される。本実施形態では、目標空燃比と実空燃比との差Dに応じた大きさのフィードバック補正量が算出され、このフィードバック補正量に基づいて次回の燃料噴射量が増減補正される。
検出値Bに基づく目標空燃比の補正手法は種々考えられる。例えば、検出値Bが第二所定値B2以上である場合には、酸素濃度が低い(空燃比がリッチである)ものと判断し、目標空燃比をリーン寄りに移動させる補正を加える。このとき、検出値Bが第二所定値B2以上となっている継続時間が長いほど、目標空燃比をより大きくリーン方向に移動させる。一方、検出値Bが第二所定値B2よりも小さい第一所定値B1以下である場合には、酸素濃度が高い(空燃比がリーンである)ものと判断し、目標空燃比をリッチ寄りに移動させる補正を加える。このとき、検出値Bが第一所定値B1以下となっている継続時間が長いほど、目標空燃比をより大きくリッチ方向に移動させる。
実空燃比の値は、第一センサ8の検出値Aに基づいて算出される。上記の通り、検出値Aと実空燃比との対応関係は、エンジン10の噴射モードに応じて変化する。しかし、本実施形態では、各々の噴射モードに応じて設定される噴射モードマップが目標空燃比に反映されるため、噴射モードに起因する「対応関係のずれ」が相殺される。したがって、ここでは「対応関係のずれ」の大小を考慮することなく、通常の検出値Aと実空燃比との対応関係(例えば、MPI噴射モードにおける対応関係)に基づいて、実空燃比を算出することができる。
制御部5は、目標空燃比と実空燃比との差Dを算出し、差Dに応じた大きさのフィードバック補正量を算出する。その後、フィードバック補正量を次回の燃料噴射量に反映させることで、差Dが徐々にゼロに近づくようにフィードバックが作用し、実空燃比が目標空燃比へと収束する。具体的な空燃比フィードバック制御の実施手法についてはこれに限らず、公知のフィードバック手法を採用することができる。なお、目標空燃比の値をわずかに振動させることで第一センサ8のセンシング能力を診断する公知の故障診断制御を付加してもよい。
[2.フローチャート]
空燃比フィードバック制御及び噴射モード切替制御の手順を図5に例示する。このフローチャートに示された制御は、エンジン制御装置1にて所定周期で繰り返し実行される。フローチャート中のフラグFは、第一制御の実施状態に対応する制御用フラグである。F=1は第一制御が実施されている(第二制御が不実施の)状態に対応し、F=0は第一制御が実施されていない(第二制御が実施中の)状態に対応する。
まず、各種情報(検出値A,検出値B,エンジン回転速度Ne,アクセル開度Acなど)が取得され(A1)、エンジン10の負荷Ecが算出される。選択部2では、エンジン回転速度Ne,負荷Ecに基づき、エンジン10の運転点に対応する噴射モードが選択される(A2)。ここで、フラグFの値がゼロであるか否かが判定され(A3)、F=0の場合はステップA4に進む。一方、F=1の場合はステップA7に進む。ステップA4では、前回の制御周期と比較して噴射モードが切り替えられたか否かが判定される。噴射モードが変更されている場合には噴射モードが切り替えられてからの経過時間の計測が開始されるとともにフラグFがF=1に設定される(A5,A6)。また、判定部4では、第二センサ9の検出値Bが安定しているか否かの判定が開始され、ステップA7に進む。一方、噴射モードが切り替えられていない場合には、ステップA10に進む。
ステップA7,A8では第一制御の開始条件が判定される。ここで、噴射モードが切り替えられてからの経過時間が第二所定時間未満であるか、又は、検出値Bが不安定であると判定されている場合には、第一制御が実施される。第一制御では、検出値Bに応じた大きさのフィードバック補正量が算出され(A16)このフィードバック補正量に基づいて空燃比フィードバック制御が実施される(A17)。一方、第一制御の開始条件が成立しない場合には、フラグFがF=0に設定されて(A9)第二制御が実施される。
第二制御では、変更部3において、噴射モードに応じて噴射モードマップが選択される(A10)。ここで、前回の制御周期から噴射モードが変更されている場合には、噴射モードマップも即座に変更されることになる。続いて、噴射モードマップとエンジン回転速度Ne,負荷Ecに基づき、LAFS中央値Cが算出される(A11)。ここで算出されるLAFS中央値Cは、空燃比フィードバック制御における目標空燃比の基準を与える値となる。また、制御部5では、第二センサ9で検出された検出値Bに基づき、酸素濃度補正量Zが算出される(A12)。例えば、検出値Bが大きいほど(空燃比がリッチであるほど)、酸素濃度補正量Zが正の範囲で大きい値に設定される。このとき、検出値Bがリッチとなっている時間が長いほど、酸素濃度補正量Zの絶対値がより大きい値に設定される。これにより、目標空燃比がリーン寄りに移動しやすくなる。また、検出値Bが小さいほど(空燃比がリーンであるほど)、酸素濃度補正量Zが負の範囲で大きい値に設定される。このとき、検出値Bがリーンとなっている時間が長いほど、酸素濃度補正量Zの絶対値がより大きい値に設定される。
その後、LAFS中央値Cに酸素濃度補正量Zが加算されて、最終的な目標空燃比が算出される(A13)。一方、第一センサ8で検出された検出値Aに基づき、実空燃比が算出される(A14)。そして、目標空燃比と実空燃比との差Dが算出され、差Dに基づいて空燃比フィードバック制御が実施される(A15)。例えば、差Dに応じた大きさのフィードバック補正量が算出され、差Dが徐々にゼロに近づくように第一噴射弁6及び第二噴射弁7の燃料噴射量が増減制御されるとともに、スロットル弁16の開度が増減制御される。
[3.作用,効果]
(1)上記のエンジン制御装置1では、噴射モードの切り替えに際し、第二センサ9の検出値B(第二検出値)が安定している場合には、第二制御が実施される。つまり、検出値Aと検出値Bとを併用することで、フィードバック制御の精度を高めることができる。一方、検出値Bが不安定な場合には、第一制御が実施される。これにより、検出値Aを不使用とすることで、噴射モードの切り替えによる第一センサ8の誤検出を避けてフィードバック制御を実施することができ、フィードバック制御の収束性を高めることができる。また、噴射モードマップの急変による実空燃比のブレを防止することができる。したがって、エンジン10の排ガス性能を総合的に向上させることができる。例えば、実空燃比が目標空燃比に収束しやすくなり、実空燃比が過剰にリーン化することが防止されるため、NOx低減を図ることができる。また、実空燃比が過剰にリッチ化することも防止されるため、CO低減を図ることができる。
(2)噴射モードがMPI噴射モード(第二モード)からMPI+DI単噴射モードやMPI+DI分割噴射モード(第一モード)へと切り替わると、第一噴射弁6からの燃料噴射の影響を受けて、気筒11内における燃料濃度分布にばらつきが生じ、第一センサ8の検出信号が実際よりもリッチ側へとシフトしやすくなる。反対に、噴射モードが第一モードから第二モードへと切り替わったときには、第一センサ8の検出信号が相対的にリーン側へとシフトしやすくなる。このような現象を考慮して、上記のエンジン制御装置1では、噴射モードが第一モードと第二モードとの間で切り替えられた場合に、第一制御が開始される。これにより、噴射モードの切り替えによって検出値Aがリッチ側やリーン側へとシフトした場合であっても、検出値Bのみを用いて空燃比をフィードバック制御することができる。したがって、エンジン10の排ガス性能を向上させることができる。
(3)同様に、噴射モードがMPI+DI単噴射モードからMPI+DI分割噴射モードへと切り替わった場合にも、気筒11内における燃料濃度分布が不均一になりやすくなることから、第一センサ8の検出信号が実際よりもリッチ側へとシフトしやすくなる。このような現象を考慮して、上記のエンジン制御装置1では、噴射モードが単噴射モードと分割噴射モードとの間で切り替えられた場合に、第一制御が開始される。これにより、空燃比を精度よくフィードバック制御することができ、エンジン10の排ガス性能を向上させることができる。
(4)上記のエンジン制御装置1には、複数の噴射モードの各々について、噴射モードマップが設定される。これにより、第二制御で参照される検出値Aの基準値を、各噴射モードに適した値へと変更することができる。つまり、第一制御が完了した後、検出値Bが安定して第二制御が開始されたときに、検出値Aに基づく実空燃比の検出精度を高めることができ、空燃比フィードバック制御を適正化することができる。したがって、エンジン10の排ガス性能を総合的に向上させることができる。
(5)上記のエンジン制御装置1では、「検出値Bが所定範囲内に入っている時間が、所定時間以上である」場合に、判定部4で検出値Bが安定しているものと判定される。このように、検出値Bが所定範囲内に存在する時間を計測することで、検出値Bの推移を精度よく把握することができ、検出値Bが安定したか否かの判定精度を向上させることができる。
(6)上記のエンジン制御装置1では、噴射モードが切り替えられてからの経過時間が少なくとも第二所定時間に達するまでは、制御部5で第一制御が継続される。これにより、噴射モードの切り替えによる第一センサ8の誤検出を確実に回避することができ、空燃比フィードバック制御を適正化することができる。また、空燃比のフィードバック内容を公知の学習制御に反映させる場合には、学習精度の低下を防止することができる。
[4.変形例]
上述の実施形態では、噴射モードに応じて噴射モードマップを変更するものを例示したが、噴射モードだけでなく、燃料の噴射開始タイミングに応じて噴射モードマップを変更してもよい。例えば、MPI+DI単噴射モードにおいて、第一噴射弁6からの燃料噴射が開始されるタイミングが遅いほど、LAFS中央値Cがリッチ寄りとなるように、MPI+DI単噴射モードマップを補正,変更することができる。あるいは、MPI噴射モードにおいて、第二噴射弁7からの燃料噴射が開始されるタイミングが遅いほど、LAFS中央値Cがリッチ寄りとなるように、MPI噴射モードマップを補正,変更することも考えられる。
ここで、第一噴射弁6からの燃料噴射が開始されるタイミングと、第一センサ8の検出値Aとの関係を図4(B)に示す。燃料噴射が開始されるタイミングが遅れるほど、燃料の拡散時間が短縮されることから、気筒11内における燃料濃度分布のばらつきが増大し、第一センサ8の検出信号が実際よりもリッチ側へとシフトしやすくなる。したがって、燃料噴射が開始されるタイミングに応じて噴射モードマップを変更することで、第一センサ8の誤検出による不適切なフィードバックを防止することができ、空燃比を適正化することができる。したがって、エンジン10の排ガス性能を向上させることができる。
1 エンジン制御装置
2 選択部
3 変更部
4 判定部
5 制御部
6 第一噴射弁(筒内噴射弁)
7 第二噴射弁(ポート噴射弁)
8 第一センサ(空燃比センサ)
9 第二センサ(酸素濃度センサ)
10 エンジン
18 エンジン回転速度センサ
19 アクセル開度センサ

Claims (6)

  1. 実空燃比を検出する第一センサと排気の酸素濃度を検出する第二センサとを具備し、前記第一センサで検出された第一検出値と前記第二センサで検出された第二検出値とに基づいて燃料噴射量をフィードバック制御するエンジンの制御装置において、
    複数の噴射弁における噴射比率、又は、前記エンジンの一行程中における燃料噴射回数が異なる複数の噴射モードを有し、前記エンジンの運転状態に応じて前記複数の噴射モードの何れかを選択する選択部と、
    前記噴射モードの切り替えに際し、前記第二検出値が不安定であるか否かを判定する判定部と、
    前記第二検出値が不安定である場合に、前記第一検出値を使用せず前記第二検出値に基づいて前記フィードバック制御を実施する制御部と、を備える
    ことを特徴とする、エンジンの制御装置。
  2. 前記エンジンが、気筒内に燃料を噴射する第一噴射弁と吸気通路内に燃料を噴射する第二噴射弁とを具備し、
    前記複数の噴射モードには、前記第一噴射弁の噴射比率が前記第二噴射弁の噴射比率以上となる第一モードと、前記第一モード以外の第二モードとが含まれる
    ことを特徴とする、請求項1記載のエンジンの制御装置。
  3. 前記複数の噴射モードには、前記エンジンの一行程中において複数回に分けて燃料噴射する分割噴射モードと、複数回に分けずに燃料噴射する単噴射モードとが含まれる
    ことを特徴とする、請求項1又は2記載のエンジンの制御装置。
  4. 前記噴射モードに応じて、前記第一検出値の基準値を規定するマップを変更する変更部を備える
    ことを特徴とする、請求項1〜3の何れか1項に記載のエンジンの制御装置。
  5. 前記判定部は、前記第二検出値が所定範囲内に入っている時間が所定時間以上となった場合に、前記第二検出値が安定しているものと判定する
    ことを特徴とする、請求項1〜4の何れか1項に記載のエンジンの制御装置。
  6. 前記制御部は、前記噴射モードの切り替えからの経過時間が第二所定時間未満である場合に、前記第一検出値を使用せず前記第二検出値に基づいて前記フィードバック制御を実施する
    ことを特徴とする、請求項1〜5の何れか1項に記載のエンジンの制御装置。
JP2015090032A 2015-04-27 2015-04-27 エンジンの制御装置 Active JP6477202B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015090032A JP6477202B2 (ja) 2015-04-27 2015-04-27 エンジンの制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015090032A JP6477202B2 (ja) 2015-04-27 2015-04-27 エンジンの制御装置

Publications (2)

Publication Number Publication Date
JP2016205300A true JP2016205300A (ja) 2016-12-08
JP6477202B2 JP6477202B2 (ja) 2019-03-06

Family

ID=57489336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015090032A Active JP6477202B2 (ja) 2015-04-27 2015-04-27 エンジンの制御装置

Country Status (1)

Country Link
JP (1) JP6477202B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019215775A1 (ja) * 2018-05-07 2020-12-17 日産自動車株式会社 タイヤ空気圧警報装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02230937A (ja) * 1989-03-04 1990-09-13 Toyota Motor Corp 内燃機関の空燃比制御装置
JPH0599043A (ja) * 1991-10-11 1993-04-20 Mitsubishi Motors Corp 空燃比センシングシステムの故障判定方法
JP2004084561A (ja) * 2002-08-27 2004-03-18 Toyota Motor Corp 筒内噴射式内燃機関の空燃比制御装置
JP2005155428A (ja) * 2003-11-25 2005-06-16 Honda Motor Co Ltd 内燃機関の制御装置
JP2007231754A (ja) * 2006-02-28 2007-09-13 Toyota Motor Corp 内燃機関の燃料噴射制御装置
JP2014163301A (ja) * 2013-02-26 2014-09-08 Daihatsu Motor Co Ltd 空燃比制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02230937A (ja) * 1989-03-04 1990-09-13 Toyota Motor Corp 内燃機関の空燃比制御装置
JPH0599043A (ja) * 1991-10-11 1993-04-20 Mitsubishi Motors Corp 空燃比センシングシステムの故障判定方法
JP2004084561A (ja) * 2002-08-27 2004-03-18 Toyota Motor Corp 筒内噴射式内燃機関の空燃比制御装置
JP2005155428A (ja) * 2003-11-25 2005-06-16 Honda Motor Co Ltd 内燃機関の制御装置
JP2007231754A (ja) * 2006-02-28 2007-09-13 Toyota Motor Corp 内燃機関の燃料噴射制御装置
JP2014163301A (ja) * 2013-02-26 2014-09-08 Daihatsu Motor Co Ltd 空燃比制御装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019215775A1 (ja) * 2018-05-07 2020-12-17 日産自動車株式会社 タイヤ空気圧警報装置
JP7099520B2 (ja) 2018-05-07 2022-07-12 日産自動車株式会社 タイヤ空気圧警報装置
US11787240B2 (en) 2018-05-07 2023-10-17 Nissan Motor Co., Ltd. Tire pressure warning device

Also Published As

Publication number Publication date
JP6477202B2 (ja) 2019-03-06

Similar Documents

Publication Publication Date Title
JP4973807B2 (ja) 内燃機関の空燃比制御装置
JP6098735B2 (ja) 内燃機関の制御装置
JP6269367B2 (ja) 内燃機関の制御装置
JP2013060927A (ja) 内燃機関の制御装置
US8261727B2 (en) Individual cylinder fuel control systems and methods for oxygen sensor degradation
JP6507823B2 (ja) エンジンの制御装置
JP6507824B2 (ja) エンジンの制御装置
JP6344080B2 (ja) 内燃機関の制御装置
JP6507822B2 (ja) エンジンの制御装置
US7874143B2 (en) Air-fuel ratio control apparatus of internal combustion engine and control method thereof
US20110314795A1 (en) Air-fuel ratio control system for internal combustion engine
JP6260452B2 (ja) 内燃機関の制御装置
JP6477202B2 (ja) エンジンの制御装置
JP6287939B2 (ja) 内燃機関の排気浄化装置
US10753295B2 (en) Controller for internal combustion engine and method for controlling internal combustion engine
JP2021042733A (ja) 内燃機関の制御装置
JPWO2012098641A1 (ja) 内燃機関の空燃比制御装置
JP5853709B2 (ja) 内燃機関の空燃比検出装置および空燃比インバランス検出装置
JP2011226350A (ja) 内燃機関の空燃比制御装置
JPH0552140A (ja) 内燃機関の空燃比制御装置
JP5077047B2 (ja) 内燃機関の制御装置
JP2012251434A (ja) 内燃機関の判定装置
JP2009162121A (ja) 内燃機関の空燃比制御装置
JP2010043552A (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180323

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190121

R151 Written notification of patent or utility model registration

Ref document number: 6477202

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151