JP2016201418A - Adhesive film for joining semiconductor, and manufacturing method of semiconductor device - Google Patents

Adhesive film for joining semiconductor, and manufacturing method of semiconductor device Download PDF

Info

Publication number
JP2016201418A
JP2016201418A JP2015079356A JP2015079356A JP2016201418A JP 2016201418 A JP2016201418 A JP 2016201418A JP 2015079356 A JP2015079356 A JP 2015079356A JP 2015079356 A JP2015079356 A JP 2015079356A JP 2016201418 A JP2016201418 A JP 2016201418A
Authority
JP
Japan
Prior art keywords
semiconductor
temperature
solder
adhesive film
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015079356A
Other languages
Japanese (ja)
Other versions
JP6438340B2 (en
Inventor
さやか 脇岡
Sayaka Wakioka
さやか 脇岡
善雄 西村
Yoshio Nishimura
善雄 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2015079356A priority Critical patent/JP6438340B2/en
Publication of JP2016201418A publication Critical patent/JP2016201418A/en
Application granted granted Critical
Publication of JP6438340B2 publication Critical patent/JP6438340B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Adhesive Tapes (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Wire Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an adhesive film for joining a semiconductor capable of improving productivity by remarkably shortening a cycle time and capable of performing joining with high reliability, and a manufacturing method of a semiconductor device.SOLUTION: An adhesive film for joining a semiconductor is used for a manufacturing method of a semiconductor device including: a step 1 for supplying the adhesive film for joining the semiconductor to a surface having the solder electrode of a semiconductor chip with the solder electrode; a step 2 for temporarily joining the semiconductor chip with the solder electrode onto a semiconductor chip or a circuit board including a counter electrode or an electrode pad via the adhesive film for joining the semiconductor at a temperature lower than a solder melting temperature; and a step 3 for performing solder joint by bringing a bonding head that is heated to a temperature equal to or higher than the solder melting temperature, into contact with a joining portion. The adhesive film for joining the semiconductor contains at least a thermosetting resin, a thermosetting agent and a high molecular weight compound, lowest melting viscosity (VA) in a temperature range of 60°C to 300°C is 100 to 700 Pa s, and a ratio (VB/VA) of melting viscosity (VB) at a temperature that is higher than a lowest melting viscosity reach temperature by 10°C to the lowest melting viscosity (VA) is 1.2 or greater and smaller than 2.5.SELECTED DRAWING: None

Description

本発明は、大幅にタクトを短縮して生産性を向上させることができ、高い信頼性で接合できる半導体接合用接着フィルム、及び、半導体装置の製造方法に関する。 The present invention relates to an adhesive film for semiconductor bonding, which can significantly reduce tact time and improve productivity, and can be bonded with high reliability, and a method for manufacturing a semiconductor device.

半導体装置の小型化及び高密度化に伴い、半導体チップを基板に実装する方法として、表面に多数の突起電極が形成された半導体チップを用いたフリップチップ実装が注目され、急速に広まってきている。
フリップチップ実装においては、接合部分の接続信頼性を確保するための方法として、半導体チップの突起電極と基板の電極部とを接合した後に、半導体チップと基板との隙間に液状封止接着剤(アンダーフィル)を注入し、硬化させることが一般的な方法として採られている。しかしながら、アンダーフィルを用いたフリップチップ実装は、製造コストが高い、アンダーフィル充填に時間がかかる、電極間の距離及び半導体チップと基板との距離を狭めるのに限界がある等の問題を抱えている。
As semiconductor devices are miniaturized and densified, flip chip mounting using a semiconductor chip having a large number of protruding electrodes formed on the surface has attracted attention and is rapidly spreading as a method for mounting a semiconductor chip on a substrate. .
In flip chip mounting, as a method for ensuring the connection reliability of the joint portion, after bonding the protruding electrode of the semiconductor chip and the electrode portion of the substrate, a liquid sealing adhesive (in the gap between the semiconductor chip and the substrate) It is a common method to inject and cure the underfill. However, flip chip mounting using underfill has problems such as high manufacturing cost, long time for underfill filling, and limitations in reducing the distance between electrodes and the distance between the semiconductor chip and the substrate. Yes.

そこで、近年、半導体ウエハ又は半導体チップ上にフィルム状接着剤を供給した後、接着剤付き半導体チップを基板上に搭載する、いわゆる先塗布型のフリップチップ実装が提案されている(例えば、特許文献1等)。接着剤付き半導体チップを基板上に搭載する場合には、半導体ウエハ上に接着剤を一括供給し、ダイシングによって接着剤付き半導体チップを一括で多量に生産できることから、大幅なプロセス短縮が期待される。 Therefore, in recent years, so-called pre-coating type flip chip mounting in which a film-like adhesive is supplied onto a semiconductor wafer or a semiconductor chip and then a semiconductor chip with an adhesive is mounted on a substrate has been proposed (for example, Patent Documents). 1). When mounting semiconductor chips with adhesives on a substrate, a large amount of adhesive-adhesive semiconductor chips can be produced in one batch by dicing and supplying the adhesives to the semiconductor wafers in a batch. .

特開2015−19012号公報Japanese Patent Laying-Open No. 2015-19012

フィルム状接着剤を用いたフリップチップ実装においては、接着剤付き半導体チップを基板上に配置して仮接合した後、半田溶融点以下の温度に調整したボンディングヘッドを接触させた樹脂を流動させてから(プリヒート工程)、ボンディングヘッドを半田溶融点以上の温度に昇温して(メインヒート工程)、半田接合させる実装工程が一般的である。しかしながら、このようなプリヒート工程−メインヒート工程を有する実装方法では、実装する度に毎回ボンディングヘッドを冷却/昇温することが必要であり、実装に時間がかかるという問題があった。
これに対して本発明者らは、プリヒート工程を省略して、直接、半田溶融温度以上の温度に加熱したボンディングヘッドを接触させることを検討した。プリヒート工程が省略できれば、実装する度に毎回ボンディングヘッドを冷却/昇温することが不要となり、大幅なタクト短縮による生産性向上が期待できる。しかしながら、従来のフィルム状接着剤では、プリヒート工程を省略して実装すると、接合不良が発生することがあるという問題が生じた。
本発明は、上記現状に鑑み、大幅にタクトを短縮して生産性を向上させることができ、高い信頼性で接合できる半導体接合用接着フィルム、及び、半導体装置の製造方法を提供することを目的とする。
In flip chip mounting using a film adhesive, a semiconductor chip with an adhesive is placed on a substrate and temporarily joined, and then a resin that is brought into contact with a bonding head adjusted to a temperature below the solder melting point is allowed to flow. (Preheating process), a mounting process in which the bonding head is heated to a temperature equal to or higher than the solder melting point (main heating process) and soldered is generally used. However, in the mounting method having such a preheating process-main heating process, it is necessary to cool / heat the bonding head every time it is mounted, and there is a problem that it takes time for mounting.
On the other hand, the present inventors studied to directly contact the bonding head heated to a temperature equal to or higher than the solder melting temperature, omitting the preheating step. If the preheating step can be omitted, it is not necessary to cool / heat the bonding head every time it is mounted, and productivity can be expected to be greatly improved by shortening tact time. However, the conventional film-like adhesive has a problem that bonding failure may occur when the preheating process is omitted.
An object of the present invention is to provide an adhesive film for semiconductor bonding, which can significantly reduce tact time and improve productivity, and can be bonded with high reliability, and a method for manufacturing a semiconductor device, in view of the above-described present situation. And

本発明は、半田電極付き半導体チップの該半田電極を有する面に半導体接合用接着フィルムを供給する工程1と、前記半田電極付き半導体チップを、前記半導体接合用接着フィルムを介して、対抗電極若しくは電極パッドを有する半導体チップ又は回路基板上に半田溶融温度未満の温度で仮接合する工程2と、半田溶融温度以上の温度に加熱したボンディングヘッドを接触させることにより半田接合する工程3を有する半導体装置の製造方法に用いられる半導体接合用接着フィルムであって、少なくとも、熱硬化性樹脂、熱硬化剤及び高分子量化合物を含有し、60℃〜300℃の温度範囲における最低溶融粘度(VA)が100〜700Pa・s、かつ、最低溶融粘度到達温度より10℃高い温度における溶融粘度(VB)と最低溶融粘度(VA)との比(VB/VA)が1.2以上、2.5未満である半導体接合用接着フィルムである。
以下に本発明を詳述する。
The present invention includes a step 1 of supplying a semiconductor bonding adhesive film to a surface having a solder electrode of a semiconductor chip with a solder electrode, and the semiconductor chip with solder electrode is connected to the counter electrode or the semiconductor electrode via the semiconductor bonding adhesive film. A semiconductor device comprising a step 2 of temporary bonding on a semiconductor chip or circuit board having an electrode pad at a temperature lower than the solder melting temperature and a step 3 of solder bonding by bringing a bonding head heated to a temperature higher than the solder melting temperature into contact. The adhesive film for semiconductor bonding used in the manufacturing method of the above, comprising at least a thermosetting resin, a thermosetting agent and a high molecular weight compound, and having a minimum melt viscosity (VA) in a temperature range of 60 ° C. to 300 ° C. of 100. Melt viscosity (VB) and minimum melt viscosity at ˜700 Pa · s and 10 ° C. higher than the minimum melt viscosity attainment temperature VA) ratio of (VB / VA) is 1.2 or more, an adhesive film for a semiconductor junction is less than 2.5.
The present invention is described in detail below.

本発明者らは、プリヒート工程を省略して、直接、半田溶融温度以上の温度に加熱したボンディングヘッドを接触させた場合の問題点について検討した。その結果、従来の半導体接合用接着フィルムでは、半田溶融温度以上の温度に加熱したボンディングヘッドを接触させたときに、溶融した半田が樹脂の流動抵抗によって押し流されてしまうことが、接合不良の原因となっていたことを見出した。このような樹脂の流動抵抗を低減させる方法としては、溶融粘度の低い半導体接合用接着フィルムを用いることが考えられた。しかしながら、溶融粘度を低くすると流動抵抗が低減して半田流れは抑制できるとしても、急激な温度上昇によってボイドが発生してしまう。ボイドの発生を防止しようと速硬化性の半導体接合用接着フィルムにすると、半田溶融前に樹脂硬化が進行し、樹脂の噛み込みによる半田接合不良が起きてしまう。 The inventors of the present invention have studied the problem when the bonding head heated to a temperature equal to or higher than the solder melting temperature is directly brought into contact with the preheating step omitted. As a result, in the conventional adhesive film for semiconductor bonding, when a bonding head heated to a temperature equal to or higher than the solder melting temperature is brought into contact, the molten solder is washed away by the flow resistance of the resin. I found out that it was. As a method for reducing the flow resistance of such a resin, it was considered to use an adhesive film for semiconductor bonding having a low melt viscosity. However, if the melt viscosity is lowered, the flow resistance is reduced and the solder flow can be suppressed, but a void is generated due to a rapid temperature rise. If a fast-curing adhesive film for joining semiconductors is used to prevent the generation of voids, the resin cures before the solder melts, resulting in poor solder joints due to resin biting.

本発明者らは、更に検討の結果、60℃〜300℃の温度範囲における最低溶融粘度(VA)が100〜700Pa・s、かつ、最低溶融粘度到達温度より10℃高い温度における溶融粘度(VB)と最低溶融粘度(VA)との比(VB/VA)が1.2以上、2.5未満である半導体接合用接着フィルムであれば、プリヒート工程を省略して、半田溶融温度以上の温度に加熱したボンディングヘッドを直接接触させた場合でも、半田流れによる接合不良、ボイドの発生、及び、樹脂の噛み込みによる半田接合不良を防止して、大幅にタクトを短縮して生産性を向上させることができることを見出し、本発明を完成した。これは、半導体接合用接着フィルムの最低溶融粘度を低くすることにより流動抵抗が低減して半田流れを抑制できるとともに、半導体接合用接着フィルムの硬化速度を適度な範囲内とすることにより、ボイドの発生と樹脂の噛み込みによる半田接合不良の発生とを抑制できるためであると考えられる。 As a result of further studies, the inventors have found that the minimum melt viscosity (VA) in the temperature range of 60 ° C. to 300 ° C. is 100 to 700 Pa · s, and the melt viscosity (VB) is 10 ° C. higher than the minimum melt viscosity attainment temperature. ) And the minimum melt viscosity (VA) ratio (VB / VA) is 1.2 or more and less than 2.5, the preheating step is omitted and the temperature equal to or higher than the solder melting temperature. Even when a heated bonding head is in direct contact, bonding failure due to solder flow, generation of voids, and solder bonding failure due to resin biting can be prevented, greatly reducing tact and improving productivity. The present invention has been completed. This is because the flow resistance is reduced by lowering the minimum melt viscosity of the semiconductor bonding adhesive film and the solder flow can be suppressed, and by setting the curing rate of the semiconductor bonding adhesive film within an appropriate range, This is considered to be because generation of solder and defective solder joints due to resin biting can be suppressed.

本発明の半導体接合用接着フィルムは、60℃〜300℃の温度範囲における最低溶融粘度(VA)の下限が100Pa・s、上限が700Pa・sである。最低溶融粘度(VA)を100Pa・s以上とすることにより、ボイドの発生を防止することができる。また、最低溶融粘度(VA)を700Pa・s以下とすることにより、後述する半導体装置の製造方法の工程3において、半田溶融温度以上の温度に加熱したボンディングヘッドを接触させたときに、樹脂の流動抵抗によって半田が押し流されてしまうことを防止することができ、接合不良の発生を防止することができる。上記最低溶融粘度(VA)の好ましい下限は150Pa・s、好ましい上限は680Pa・sであり、より好ましい下限は200Pa・s、より好ましい上限は650Pa・sである。
ここで60℃〜300℃の温度範囲としたのは、上記工程3において半田溶融温度以上の温度に加熱したボンディングヘッドを接触させたときに半導体接合用接着フィルムにかかる温度範囲に対応したものである。
なお、本明細書において60℃〜300℃の温度範囲における最低溶融粘度(VA)とは、回転式レオメーター装置(例えば、レオロジカ社製「VAR−100」)を用いて、昇温速度10℃/min、周波数1Hz、歪0.5%の条件で、測定温度範囲60℃から300℃まで測定したときの複素粘度の最低値を意味する。
In the adhesive film for semiconductor bonding of the present invention, the lower limit of the minimum melt viscosity (VA) in the temperature range of 60 ° C. to 300 ° C. is 100 Pa · s, and the upper limit is 700 Pa · s. Generation of voids can be prevented by setting the minimum melt viscosity (VA) to 100 Pa · s or more. In addition, by setting the minimum melt viscosity (VA) to 700 Pa · s or less, when the bonding head heated to a temperature equal to or higher than the solder melting temperature is brought into contact in Step 3 of the semiconductor device manufacturing method described later, the resin It is possible to prevent the solder from being washed away by the flow resistance, and to prevent the occurrence of poor bonding. The minimum with said minimum melt viscosity (VA) is 150 Pa * s, a preferable upper limit is 680 Pa * s, a more preferable minimum is 200 Pa * s, and a more preferable upper limit is 650 Pa * s.
Here, the temperature range of 60 ° C. to 300 ° C. corresponds to the temperature range applied to the semiconductor bonding adhesive film when the bonding head heated to a temperature equal to or higher than the solder melting temperature in Step 3 is brought into contact. is there.
In this specification, the minimum melt viscosity (VA) in the temperature range of 60 ° C. to 300 ° C. is a temperature increase rate of 10 ° C. using a rotary rheometer device (for example, “VAR-100” manufactured by Rheologicala). / Min, frequency 1 Hz, strain 0.5% means the lowest value of complex viscosity when measured from a measurement temperature range of 60 ° C to 300 ° C.

本発明の半導体接合用接着フィルムは、最低溶融粘度到達温度より10℃高い温度における溶融粘度(VB)と最低溶融粘度(VA)との比(VB/VA)が1.2以上、2.5未満である。熱硬化性の半導体接合用接着フィルムは、昇温するに従い樹脂が流動化して粘度が低下していくが、最低溶融粘度に到達した後も更に昇温すると、熱硬化が始まって粘度が上昇していく。VB/VAは、最低溶融粘度到達温度から10℃高い温度に達したときに、どの程度熱硬化により粘度が上昇したかを示すものであり、硬化速度の指標となる数値である。VB/VAが上記範囲内である場合には、半導体接合用接着フィルムの硬化速度が適度な範囲内となって、ボイドの発生と樹脂の噛み込みによる半田接合不良の発生とを抑制することができる。VB/VAが1.2未満であると、ボイドが発生したり、半田流れが発生することがあり、2.5以上であると、樹脂の噛み込みによる半田接合不良が発生したりすることがある。VB/VAの好ましい上限は2.0である。
なお、最低溶融粘度到達温度より10℃高い温度における溶融粘度(VB)と最低溶融粘度(VA)は、回転式レオメーター装置(例えば、レオロジカ社製「VAR−100」)を用いて、昇温速度10℃/min、周波数1Hz、歪0.5%の条件で測定することができる。
In the adhesive film for semiconductor bonding of the present invention, the ratio (VB / VA) of the melt viscosity (VB) and the minimum melt viscosity (VA) at a temperature 10 ° C. higher than the minimum melt viscosity reaching temperature is 1.2 or more, 2.5 Is less than. The thermosetting adhesive bonding film for semiconductor bonding causes the resin to fluidize and decrease in viscosity as the temperature rises, but when the temperature rises even after reaching the minimum melt viscosity, thermosetting begins and the viscosity increases. To go. VB / VA indicates how much the viscosity has been increased by thermosetting when the temperature reaches 10 ° C. higher than the lowest melt viscosity attainment temperature, and is a numerical value serving as an index of the curing rate. When VB / VA is within the above range, the curing rate of the adhesive film for semiconductor bonding is within an appropriate range to suppress the generation of voids and the occurrence of poor solder bonding due to resin biting. it can. If VB / VA is less than 1.2, voids or solder flow may occur, and if it is 2.5 or more, solder joint failure may occur due to resin biting. is there. A preferable upper limit of VB / VA is 2.0.
The melt viscosity (VB) and the minimum melt viscosity (VA) at a temperature 10 ° C. higher than the minimum melt viscosity attainment temperature are increased by using a rotary rheometer device (for example, “VAR-100” manufactured by Rheology Corporation). It can be measured under conditions of a speed of 10 ° C./min, a frequency of 1 Hz, and a strain of 0.5%.

本発明の半導体接合用接着フィルムは、少なくとも、熱硬化性樹脂、熱硬化剤及び高分子量化合物を含有する。
上記熱硬化性樹脂は特に限定されず、例えば、付加重合、重縮合、重付加、付加縮合、開環重合等の反応により硬化する化合物が挙げられる。
上記熱硬化性樹脂として、具体的には例えば、ユリア樹脂、メラミン樹脂、フェノール樹脂、レゾルシノール樹脂、エポキシ樹脂、アクリル樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリベンズイミダゾール樹脂、ジアリルフタレート樹脂、キシレン樹脂、アルキル−ベンゼン樹脂、エポキシアクリレート樹脂、珪素樹脂、ウレタン樹脂等が挙げられる。なかでも、半導体接合用接着フィルムの硬化物の強度及び接合信頼性を確保する観点から、エポキシ樹脂、アクリル樹脂が好ましい。
The adhesive film for semiconductor bonding of the present invention contains at least a thermosetting resin, a thermosetting agent, and a high molecular weight compound.
The said thermosetting resin is not specifically limited, For example, the compound hardened | cured by reaction, such as addition polymerization, polycondensation, polyaddition, addition condensation, ring-opening polymerization, is mentioned.
Specific examples of the thermosetting resin include urea resin, melamine resin, phenol resin, resorcinol resin, epoxy resin, acrylic resin, polyester resin, polyamide resin, polybenzimidazole resin, diallyl phthalate resin, xylene resin, alkyl -A benzene resin, an epoxy acrylate resin, a silicon resin, a urethane resin, etc. are mentioned. Especially, an epoxy resin and an acrylic resin are preferable from a viewpoint of ensuring the intensity | strength and joining reliability of the hardened | cured material of the adhesive film for semiconductor joining.

上記エポキシ樹脂は特に限定されず、例えば、ビスフェノールA型、ビスフェノールF型、ビスフェノールAD型、ビスフェノールS型等のビスフェノール型エポキシ樹脂、フェノールノボラック型、クレゾールノボラック型等のノボラック型エポキシ樹脂、レゾルシノール型エポキシ樹脂、トリスフェノールメタントリグリシジルエーテル等の芳香族エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、フルオレン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ポリエーテル変性エポキシ樹脂、NBR変性エポキシ樹脂、CTBN変性エポキシ樹脂、及び、これらの水添化物等が挙げられる。これらのエポキシ樹脂は、単独で用いてもよく、2種以上を併用してもよい。 The epoxy resin is not particularly limited, and examples thereof include bisphenol type epoxy resins such as bisphenol A type, bisphenol F type, bisphenol AD type and bisphenol S type, novolac type epoxy resins such as phenol novolak type and cresol novolak type, and resorcinol type epoxy. Resin, aromatic epoxy resin such as trisphenolmethane triglycidyl ether, naphthalene type epoxy resin, biphenyl type epoxy resin, fluorene type epoxy resin, dicyclopentadiene type epoxy resin, glycidyl ester type epoxy resin, glycidyl amine type epoxy resin, poly Examples include ether-modified epoxy resins, NBR-modified epoxy resins, CTBN-modified epoxy resins, and hydrogenated products thereof. These epoxy resins may be used independently and may use 2 or more types together.

上記エポキシ樹脂は、常温で液状のエポキシ樹脂であっても、常温で固体のエポキシ樹脂であってもよく、これらを適宜組み合わせて用いてもよい。
上記常温で液状のエポキシ樹脂のうち、市販品として、例えば、EPICLON 840、840−S、850、850−S、EXA−850CRP(以上、DIC社製)、EP−4100HF(アデカ社製)等のビスフェノールA型エポキシ樹脂、EPICLON 830、830−S、EXA−830CRP(以上、DIC社製)EP−4900HF(アデカ社製)等のビスフェノールF型エポキシ樹脂、EP−4000S、EP−4000L、EP−4003S、EP−4010S、EP−4010L(以上、アデカ社製)等のビスフェノールA−PO型エポキシ樹脂、EPICLON HP−4032、HP−4032D(以上、DIC社製)等のナフタレン型エポキシ樹脂、EPICLON EXA−7015(DIC社製)、EX−252(ナガセケムテックス社製)等の水添ビスフェノールA型エポキシ樹脂、EX−201(ナガセケムテックス社製)等のレゾルシノール型エポキシ樹脂、EP−4088S、EP−4088L(以上、アデカ社製)等のジシクロペンタジエン型エポキシ樹脂、EP−3300E、EP−3300S(以上、アデカ社製)等のベンゾフェノン型エポキシ樹脂、EP−3900S、EP−3950L、EP−3980S(以上、アデカ社製)、JER−630、604(三菱化学社製)等のグリシジルアミン型エポキシ樹脂、JER−825、827、828、806、807、152、630、871、YX8000、YX8034、YL980、YL983(以上、三菱化学社製)等の液状エポキシ樹脂等が挙げられる。
The epoxy resin may be an epoxy resin that is liquid at room temperature, or may be an epoxy resin that is solid at room temperature, or may be used in appropriate combination.
Among the epoxy resins that are liquid at normal temperature, commercially available products such as EPICLON 840, 840-S, 850, 850-S, EXA-850CRP (manufactured by DIC), EP-4100HF (manufactured by ADEKA), etc. Bisphenol A epoxy resin, EPICLON 830, 830-S, EXA-830CRP (manufactured by DIC) EP-4900HF (manufactured by Adeka), etc., bisphenol F epoxy resin, EP-4000S, EP-4000L, EP-4003S Bisphenol A-PO type epoxy resins such as EP-4010S and EP-4010L (manufactured by Adeka), naphthalene type epoxy resins such as EPICLON HP-4032 and HP-4032D (manufactured by DIC), EPICLON EXA- 7015 (manufactured by DIC), EX-2 Hydrogenated bisphenol A type epoxy resin such as 52 (manufactured by Nagase ChemteX), resorcinol type epoxy resin such as EX-201 (manufactured by Nagase ChemteX), EP-4088S, EP-4088L (manufactured by Adeka) Benzophenone type epoxy resins such as dicyclopentadiene type epoxy resin, EP-3300E, EP-3300S (manufactured by Adeka), EP-3900S, EP-3950L, EP-3980S (manufactured by Adeka), JER- Glycidylamine type epoxy resins such as 630 and 604 (manufactured by Mitsubishi Chemical Corporation), JER-825, 827, 828, 806, 807, 152, 630, 871, YX8000, YX8034, YL980, YL983 (and above, manufactured by Mitsubishi Chemical Corporation) And liquid epoxy resins.

上記常温で固体のエポキシ樹脂のうち、市販品として、例えば、EPICLON 860、10550、1055(以上、DIC社製)等のビスフェノールA型エポキシ樹脂、EPICLON EXA−1514(DIC社製)等のビスフェノールS型エポキシ樹脂、JER−4004P、4005P、4007P、4010P(以上、三菱化学社製)等のビスフェノールF型エポキシ樹脂、EPICLON HP−4700、HP−4710、HP−4770(以上、DIC社製)等のナフタレン型エポキシ樹脂、EPICLON HP−7200シリーズ(DIC社製)等のジシクロペンタジエン型エポキシ樹脂、EPICLON HP−5000、EXA−9900(以上、DIC社製)等のクレゾールノボラック型エポキシ樹脂、JER−1001、1002、1003、1055、1004、1005、1006、1007、1009、1010、154、157S70、1031S、1032H60、YL6810、YL7700、YX8800、YX4000、YL6121H、YX7399(以上、三菱化学社製)等の固形エポキシ樹脂等が挙げられる。 Among the epoxy resins that are solid at room temperature, commercially available products include, for example, bisphenol A type epoxy resins such as EPICLON 860, 10550, and 1055 (manufactured by DIC), and bisphenol S such as EPICLON EXA-1514 (manufactured by DIC). Type epoxy resin, bisphenol F type epoxy resin such as JER-4004P, 4005P, 4007P, 4010P (Mitsubishi Chemical), EPICLON HP-4700, HP-4710, HP-4770 (Made by DIC) Naphthalene type epoxy resin, dicyclopentadiene type epoxy resin such as EPICLON HP-7200 series (manufactured by DIC), cresol novolac type epoxy resin such as EPICLON HP-5000, EXA-9900 (manufactured by DIC), JER −1001, 1002, 1003, 1055, 1004, 1005, 1006, 1007, 1009, 1010, 154, 157S70, 1031S, 1032H60, YL6810, YL7700, YX8800, YX4000, YL6121H, YX7399 (manufactured by Mitsubishi Chemical Corporation), etc. Examples thereof include solid epoxy resins.

上記熱硬化剤は特に限定されず、従来公知の熱硬化剤を上記熱硬化性樹脂に合わせて適宜選択することができる。上記熱硬化性樹脂としてエポキシ樹脂を用いる場合、上記熱硬化剤として、例えば、酸無水物系硬化剤、フェノール系硬化剤、アミン系硬化剤、ジシアンジアミド等の潜在性硬化剤、カチオン系触媒型硬化剤、ケチミン硬化剤、チオール系硬化剤等が挙げられる。これらの熱硬化剤は、単独で用いてもよく、2種以上を併用してもよい。なかでも、硬化速度、硬化物の物性等に優れることから、酸無水物系硬化剤が好ましい。 The said thermosetting agent is not specifically limited, A conventionally well-known thermosetting agent can be suitably selected according to the said thermosetting resin. When an epoxy resin is used as the thermosetting resin, the thermosetting agent may be, for example, an acid anhydride curing agent, a phenol curing agent, an amine curing agent, a latent curing agent such as dicyandiamide, or a cationic catalytic curing. Agents, ketimine curing agents, thiol-based curing agents, and the like. These thermosetting agents may be used independently and may use 2 or more types together. Of these, an acid anhydride curing agent is preferable because of excellent curing speed, physical properties of the cured product, and the like.

上記酸無水物系硬化剤のうち、市販品として、例えば、YH−306、YH−307(以上、三菱化学社製、常温(25℃)で液状)、YH−309(三菱化学社製、常温(25℃)で固体)等が挙げられる。 Among the acid anhydride curing agents, commercially available products include, for example, YH-306, YH-307 (above, manufactured by Mitsubishi Chemical Corporation, liquid at normal temperature (25 ° C.)), YH-309 (manufactured by Mitsubishi Chemical Corporation, normal temperature). (Solid at 25 ° C.)).

上記熱硬化剤の含有量は特に限定されず、上記熱硬化性樹脂としてエポキシ樹脂を用い、エポキシ基と等量反応する熱硬化剤を用いる場合、上記熱硬化剤の含有量は、半導体接合用接着フィルム中に含まれるエポキシ基の総量に対する好ましい下限が60当量、好ましい上限が110当量である。含有量が60当量未満であると、半導体接合用接着フィルムを充分に硬化させることができないことがある。含有量が110当量を超えても、特に半導体接合用接着フィルムの硬化性には寄与せず、過剰な熱硬化剤が揮発することによってボイドの原因となることがある。含有量のより好ましい下限は70当量、より好ましい上限は100当量である。 The content of the thermosetting agent is not particularly limited. When an epoxy resin is used as the thermosetting resin and a thermosetting agent that reacts with an epoxy group in an equal amount is used, the content of the thermosetting agent is for semiconductor bonding. The preferable lower limit with respect to the total amount of epoxy groups contained in the adhesive film is 60 equivalents, and the preferable upper limit is 110 equivalents. When the content is less than 60 equivalents, the adhesive film for semiconductor bonding may not be sufficiently cured. Even if the content exceeds 110 equivalents, it does not contribute particularly to the curability of the adhesive film for semiconductor bonding, and may cause voids due to volatilization of an excessive thermosetting agent. The more preferable lower limit of the content is 70 equivalents, and the more preferable upper limit is 100 equivalents.

上記高分子量化合物は、特に限定されず、例えば、ユリア樹脂、メラミン樹脂、フェノール樹脂、レゾルシノール樹脂、エポキシ樹脂、アクリル樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリベンズイミダゾール樹脂、ジアリルフタレート樹脂、キシレン樹脂、アルキル−ベンゼン樹脂、エポキシアクリレート樹脂、珪素樹脂、ウレタン樹脂等の公知の高分子量化合物が挙げられる。なかでも、エポキシ基を有する高分子量化合物が好ましい。 The high molecular weight compound is not particularly limited. For example, urea resin, melamine resin, phenol resin, resorcinol resin, epoxy resin, acrylic resin, polyester resin, polyamide resin, polybenzimidazole resin, diallyl phthalate resin, xylene resin, alkyl -Well-known high molecular weight compounds, such as a benzene resin, an epoxy acrylate resin, a silicon resin, and a urethane resin, are mentioned. Among these, a high molecular weight compound having an epoxy group is preferable.

上記エポキシ基を有する高分子量化合物を添加することで、半導体接合用接着フィルムの硬化物は、優れた可撓性を発現する。即ち、半導体接合用接着フィルムの硬化物は、上記熱硬化性樹脂としてのエポキシ樹脂に由来する優れた機械的強度、耐熱性及び耐湿性と、上記エポキシ基を有する高分子量化合物に由来する優れた可撓性とを兼備することとなるので、耐冷熱サイクル性、耐ハンダリフロー性、寸法安定性等に優れるものとなり、高い接合信頼性及び高い導通信頼性を発現することとなる。 By adding the high molecular weight compound having an epoxy group, the cured product of the adhesive film for semiconductor bonding exhibits excellent flexibility. That is, the cured product of the adhesive film for semiconductor bonding is excellent in mechanical strength, heat resistance and moisture resistance derived from the epoxy resin as the thermosetting resin, and excellent in the high molecular weight compound having the epoxy group. Since it combines flexibility, it will be excellent in cold-heat cycle resistance, solder reflow resistance, dimensional stability, etc., and will exhibit high joint reliability and high conduction reliability.

上記エポキシ基を有する高分子量化合物は、末端及び/又は側鎖(ペンダント位)にエポキシ基を有する高分子量化合物であれば特に限定されず、例えば、エポキシ基含有アクリルゴム、エポキシ基含有ブタジエンゴム、ビスフェノール型高分子量エポキシ樹脂、エポキシ基含有フェノキシ樹脂、エポキシ基含有アクリル樹脂、エポキシ基含有ウレタン樹脂、エポキシ基含有ポリエステル樹脂等が挙げられる。なかでも、エポキシ基を多く含む高分子量化合物を得ることができ、硬化物の機械的強度及び耐熱性がより優れたものとなることから、エポキシ基含有アクリル樹脂が好ましい。これらのエポキシ基を有する高分子量化合物は、単独で用いてもよく、2種以上を併用してもよい。 The high molecular weight compound having an epoxy group is not particularly limited as long as it is a high molecular weight compound having an epoxy group at the terminal and / or side chain (pendant position). For example, an epoxy group-containing acrylic rubber, an epoxy group-containing butadiene rubber, Examples thereof include bisphenol type high molecular weight epoxy resin, epoxy group-containing phenoxy resin, epoxy group-containing acrylic resin, epoxy group-containing urethane resin, and epoxy group-containing polyester resin. Especially, since the high molecular weight compound containing many epoxy groups can be obtained and the mechanical strength and heat resistance of hardened | cured material will become more excellent, an epoxy group containing acrylic resin is preferable. These high molecular weight compounds having an epoxy group may be used alone or in combination of two or more.

上記高分子量化合物として、上記エポキシ基を有する高分子量化合物、特に、エポキシ基含有アクリル樹脂を用いる場合、上記エポキシ基を有する高分子量化合物の重量平均分子量の好ましい下限は1万、好ましい上限は100万である。重量平均分子量が1万未満であると、半導体接合用接着フィルムの製膜性が不充分となったり、半導体接合用接着フィルムの硬化物の可撓性が充分に向上しなかったりすることがある。重量平均分子量が100万を超えると、高分子量化合物は、溶媒への溶解性が低下して取扱い性が低下することがある。 When the high molecular weight compound having an epoxy group, particularly an epoxy group-containing acrylic resin is used as the high molecular weight compound, the preferred lower limit of the weight average molecular weight of the high molecular weight compound having the epoxy group is 10,000, and the preferred upper limit is 1,000,000. It is. When the weight average molecular weight is less than 10,000, the film forming property of the adhesive film for semiconductor bonding may be insufficient, or the flexibility of the cured product of the adhesive film for semiconductor bonding may not be sufficiently improved. . When the weight average molecular weight exceeds 1,000,000, the high molecular weight compound may have a reduced solubility in a solvent and a handleability.

上記高分子量化合物として、上記エポキシ基を有する高分子量化合物、特に、エポキシ基含有アクリル樹脂を用いる場合、上記エポキシ基を有する高分子量化合物のエポキシ当量の好ましい下限が200、好ましい上限が1000である。エポキシ当量が200未満であると、半導体接合用接着フィルムの硬化物の可撓性が充分に向上しないことがある。エポキシ当量が1000を超えると、半導体接合用接着フィルムの硬化物の機械的強度又は耐熱性が不充分となることがある。 When the high molecular weight compound having an epoxy group, particularly an epoxy group-containing acrylic resin is used as the high molecular weight compound, the preferable lower limit of the epoxy equivalent of the high molecular weight compound having the epoxy group is 200, and the preferable upper limit is 1000. If the epoxy equivalent is less than 200, the flexibility of the cured product of the adhesive film for semiconductor bonding may not be sufficiently improved. If the epoxy equivalent exceeds 1000, the mechanical strength or heat resistance of the cured product of the adhesive film for semiconductor bonding may be insufficient.

本発明の半導体接合用接着フィルムにおける上記高分子量化合物の含有量は特に限定されず、本発明の半導体接合用接着フィルムにおける好ましい下限は3重量%、好ましい上限は30重量%である。 Content of the said high molecular weight compound in the adhesive film for semiconductor joining of this invention is not specifically limited, The preferable minimum in the adhesive film for semiconductor joining of this invention is 3 weight%, and a preferable upper limit is 30 weight%.

本発明の半導体接合用接着フィルムは、硬化速度、硬化物の物性等を調整する目的で、更に、硬化促進剤を含有してもよい。
上記硬化促進剤は特に限定されず、例えば、イミダゾール系硬化促進剤、3級アミン系硬化促進剤等が挙げられる。なかでも、硬化速度、硬化物の物性等の調整をするための反応系の制御をしやすいことから、イミダゾール系硬化促進剤が好ましい。
The adhesive film for semiconductor bonding of the present invention may further contain a curing accelerator for the purpose of adjusting the curing speed, the physical properties of the cured product, and the like.
The said hardening accelerator is not specifically limited, For example, an imidazole series hardening accelerator, a tertiary amine type hardening accelerator, etc. are mentioned. Of these, an imidazole curing accelerator is preferred because it is easy to control the reaction system for adjusting the curing speed and the physical properties of the cured product.

上記イミダゾール系硬化促進剤は特に限定されず、例えば、フジキュアー7000(T&K TOKA社製、常温(25℃)で液状)、イミダゾールの1位をシアノエチル基で保護した1−シアノエチル−2−フェニルイミダゾール、イソシアヌル酸で塩基性を保護したイミダゾール系硬化促進剤(商品名「2MA−OK」、四国化成工業社製、常温(25℃)で固体)、2MZ、2MZ−P、2PZ、2PZ−PW、2P4MZ、C11Z−CNS、2PZ−CNS、2PZCNS−PW、2MZ−A、2MZA−PW、C11Z−A、2E4MZ−A、2MAOK−PW、2PZ−OK、2MZ−OK、2PHZ、2PHZ−PW、2P4MHZ、2P4MHZ−PW、2E4MZ・BIS、VT、VT−OK、MAVT、MAVT−OK(以上、四国化成工業社製)等が挙げられる。これらのイミダゾール系硬化促進剤は、単独で用いてもよく、2種以上を併用してもよい。 The imidazole curing accelerator is not particularly limited. For example, Fujicure 7000 (manufactured by T & K TOKA, liquid at room temperature (25 ° C.)), 1-cyanoethyl-2-phenylimidazole in which 1-position of imidazole is protected with a cyanoethyl group, Imidazole-based curing accelerator with basicity protected with isocyanuric acid (trade name “2MA-OK”, manufactured by Shikoku Kasei Kogyo Co., Ltd., solid at room temperature (25 ° C.)), 2MZ, 2MZ-P, 2PZ, 2PZ-PW, 2P4MZ , C11Z-CNS, 2PZ-CNS, 2PZCNS-PW, 2MZ-A, 2MZA-PW, C11Z-A, 2E4MZ-A, 2MAOK-PW, 2PZ-OK, 2MZ-OK, 2PHZ, 2PHZ-PW, 2P4MHZ, 2P4MHZ -PW, 2E4MZ · BIS, VT, VT-OK, MAVT, MAVT-O (Or more, Shikoku Chemicals Co., Ltd.), and the like. These imidazole type hardening accelerators may be used independently and may use 2 or more types together.

上記硬化促進剤の含有量は特に限定されず、熱硬化剤100重量部に対する好ましい下限が2重量部、好ましい上限が50重量部である。含有量が2重量部未満であると、半導体接合用接着フィルムの熱硬化のために高温で長時間の加熱を必要とすることがある。含有量が50重量部を超えると、半導体接合用接着フィルムの貯蔵安定性が不充分となったり、過剰な硬化促進剤が揮発することによってボイドの原因となったりすることがある。含有量のより好ましい下限は3重量部、より好ましい上限は30重量部である。 Content of the said hardening accelerator is not specifically limited, The preferable minimum with respect to 100 weight part of thermosetting agents is 2 weight part, and a preferable upper limit is 50 weight part. When the content is less than 2 parts by weight, heating for a long time at a high temperature may be required for thermosetting the adhesive film for semiconductor bonding. When the content exceeds 50 parts by weight, the storage stability of the adhesive film for semiconductor bonding may be insufficient, or voids may be caused by excessive volatilization of the curing accelerator. A more preferred lower limit of the content is 3 parts by weight, and a more preferred upper limit is 30 parts by weight.

本発明の半導体接合用接着フィルムは、更に、無機フィラーを含有してもよい。
上記無機フィラーは特に限定されず、例えば、シリカ、アルミナ、窒化アルミニウム、窒化ホウ素、窒化珪素、炭化珪素、酸化マグネシウム、酸化亜鉛等が挙げられる。これらの無機フィラーは単独で用いてもよく、2種以上を併用してもよい。なかでも、流動性に優れることから球状シリカが好ましく、メチルシランカップリング剤、フェニルシランカップリング剤、ビニルシランカップリング剤、メタクリルシランカップリング剤等で表面処理された球状シリカがより好ましい。
The adhesive film for semiconductor bonding of the present invention may further contain an inorganic filler.
The inorganic filler is not particularly limited, and examples thereof include silica, alumina, aluminum nitride, boron nitride, silicon nitride, silicon carbide, magnesium oxide, and zinc oxide. These inorganic fillers may be used alone or in combination of two or more. Among them, spherical silica is preferable because of excellent fluidity, and spherical silica surface-treated with a methylsilane coupling agent, a phenylsilane coupling agent, a vinylsilane coupling agent, a methacrylic silane coupling agent, or the like is more preferable.

上記無機フィラーの平均粒子径は特に限定されないが、半導体接合用接着フィルムの透明性、流動性、接合信頼性等の観点から、0.01〜1μm程度が好ましい。
上記無機フィラーの含有量特に限定されず、上記熱硬化性樹脂100重量部に対する好ましい下限は10重量部、好ましい上限は70重量部である。
Although the average particle diameter of the said inorganic filler is not specifically limited, About 0.01-1 micrometer is preferable from viewpoints, such as transparency of the adhesive film for semiconductor joining, fluidity | liquidity, joining reliability.
Content of the said inorganic filler is not specifically limited, The preferable minimum with respect to 100 weight part of the said thermosetting resins is 10 weight part, and a preferable upper limit is 70 weight part.

本発明の半導体接合用接着フィルムは、必要に応じて、更に、希釈剤、チキソトロピー付与剤、溶媒、無機イオン交換体、ブリード防止剤、イミダゾールシランカップリング剤等の接着性付与剤、密着性付与剤、ゴム粒子等の応力緩和剤等のその他の添加剤を含有してもよい。 The adhesive film for semiconductor bonding of the present invention is further provided with an adhesive imparting agent such as a diluent, a thixotropy imparting agent, a solvent, an inorganic ion exchanger, a bleed inhibitor, and an imidazole silane coupling agent, as necessary. Other additives such as an agent and a stress relaxation agent such as rubber particles may be contained.

例えば、上記高分子量化合物と熱硬化性樹脂との配合比、液状の熱硬化性樹脂の含有量、無機フィラーの含有量を調整することにより、本発明の半導体接合用接着フィルムの60℃〜300℃の温度範囲における最低溶融粘度(VA)を所期の範囲内とし、最低溶融粘度到達温度より10℃高い温度における溶融粘度(VB)と最低溶融粘度(VA)との比(VB/VA)を所期の範囲内とすることができる。
より具体的には例えば、高分子量化合物/液状の熱硬化性樹脂の重量比を1〜3に調整したり、無機フィラーの含有量を20〜60重量部の範囲に調整したりする方法が挙げられる。
また、熱硬化性樹脂がエポキシ樹脂である場合、含窒素化合物がエポキシ樹脂の架橋反応において触媒的な働きを示すことから、半導体接合用接着フィルム中の含窒素化合物の含有量を調整することも考えられる。含窒素化合物として、具体的には、例えば、熱硬化性樹脂としてグリシジルアミン型エポキシ樹脂、硬化剤又は硬化促進剤としてアミン系硬化剤又は硬化促進剤、ジシアンジアミド、イミダゾール系硬化促進剤等が挙げられる。より具体的には例えば、半導体接合用接着フィルム中の含窒素化合物の含有量を2〜12重量%に調整する方法が挙げられる。
For example, by adjusting the blending ratio of the high molecular weight compound and the thermosetting resin, the content of the liquid thermosetting resin, and the content of the inorganic filler, the adhesive film for semiconductor bonding of the present invention has a temperature of 60 ° C. to 300 ° C. The ratio (VB / VA) of the melt viscosity (VB) and the minimum melt viscosity (VA) at a temperature 10 ° C higher than the minimum melt viscosity attainment temperature, with the minimum melt viscosity (VA) in the temperature range of ° C within the expected range Can be within the expected range.
More specifically, for example, a method of adjusting the weight ratio of the high molecular weight compound / liquid thermosetting resin to 1 to 3 or adjusting the content of the inorganic filler to a range of 20 to 60 parts by weight. It is done.
In addition, when the thermosetting resin is an epoxy resin, the nitrogen-containing compound exhibits a catalytic function in the crosslinking reaction of the epoxy resin, so that the content of the nitrogen-containing compound in the adhesive film for semiconductor bonding can be adjusted. Conceivable. Specific examples of the nitrogen-containing compound include glycidylamine type epoxy resins as thermosetting resins, amine-based curing agents or curing accelerators as curable agents or curing accelerators, dicyandiamide, imidazole-based curing accelerators, and the like. . More specifically, for example, there is a method of adjusting the content of the nitrogen-containing compound in the adhesive film for semiconductor bonding to 2 to 12% by weight.

本発明の半導体接合用接着フィルムの厚みは特に限定されないが、好ましい下限は5μm、好ましい上限は60μmであり、より好ましい下限は10μm、より好ましい上限は50μmである。 Although the thickness of the adhesive film for semiconductor bonding of the present invention is not particularly limited, the preferable lower limit is 5 μm, the preferable upper limit is 60 μm, the more preferable lower limit is 10 μm, and the more preferable upper limit is 50 μm.

本発明の半導体接合用接着フィルムを製造する方法は特に限定されず、例えば、熱硬化性樹脂、熱硬化剤及び高分子量化合物に、必要に応じてその他の添加剤を所定量配合して混合し、得られた樹脂組成物を離型フィルム上に塗工し、乾燥させてフィルムを製造する方法等が挙げられる。上記混合の方法は特に限定されず、例えば、ホモディスパー、万能ミキサー、バンバリーミキサー、ニーダー等を使用する方法が挙げられる。 The method for producing the adhesive film for semiconductor bonding of the present invention is not particularly limited. For example, a predetermined amount of other additives are blended in a thermosetting resin, a thermosetting agent, and a high molecular weight compound as necessary. Examples thereof include a method of coating the obtained resin composition on a release film and drying it to produce a film. The mixing method is not particularly limited, and examples thereof include a method using a homodisper, a universal mixer, a Banbury mixer, a kneader and the like.

本発明の半導体接合用接着フィルムは、半田電極付き半導体チップの該半田電極を有する面に半導体接合用接着フィルムを供給する工程1と、前記半田電極付き半導体チップを、前記半導体接合用接着フィルムを介して、対抗電極若しくは電極パッドを有する半導体チップ又は回路基板上に半田溶融温度未満の温度で仮接合する工程2と、半田溶融温度以上の温度に加熱したボンディングヘッドを接触させることにより半田接合する工程3を有する半導体装置の製造方法に用いられるものである。 The adhesive film for semiconductor bonding of the present invention includes a step 1 of supplying an adhesive film for semiconductor bonding to a surface of the semiconductor chip with solder electrodes having the solder electrode, and the semiconductor chip with solder electrodes is bonded to the adhesive film for semiconductor bonding. Then, solder bonding is performed by bringing a bonding head heated to a temperature equal to or higher than the solder melting temperature into contact with a semiconductor chip having a counter electrode or an electrode pad or a step 2 for temporary bonding at a temperature lower than the solder melting temperature. This is used in a method for manufacturing a semiconductor device having step 3.

上記半導体装置の製造方法では、まず、半田電極付き半導体チップの該半田電極を有する面に半導体接合用接着フィルムを供給する工程1を行う。
上記半田電極付き半導体チップは、例えば、シリコン、ガリウム砒素等の半導体からなり、半田からなる先端部を有する突起電極が表面に形成された半導体チップが挙げられる。なお、半田からなる先端部を有する突起電極は、先端部が半田からなっていれば、突起電極の一部が半田からなっていても、突起電極全体が半田からなってもよい。
In the method for manufacturing a semiconductor device, first, a step 1 of supplying an adhesive film for semiconductor bonding to a surface of the semiconductor chip with a solder electrode having the solder electrode is performed.
Examples of the semiconductor chip with a solder electrode include a semiconductor chip made of a semiconductor such as silicon or gallium arsenide, and a protruding electrode having a tip portion made of solder formed on the surface. It should be noted that the protruding electrode having the tip portion made of solder may be formed of a part of the protruding electrode, or the entire protruding electrode may be made of solder, as long as the tip portion is made of solder.

上記工程1において半導体接合用接着フィルムを供給する方法は特に限定されず、例えば、
半導体接合用接着フィルムを上記半田電極付き半導体チップ上に貼付する方法等が挙げられる。また、予め半田電極付き半導体ウエハに半導体接合用接着フィルムを常圧ラミネート、真空ラミネート等により貼付した後、ブレードダイシング、レーザーダイシング等により半導体チップに個片化する方法を用いることもできる。
The method of supplying the adhesive film for semiconductor bonding in the step 1 is not particularly limited. For example,
The method etc. which affix the adhesive film for semiconductor joining on the said semiconductor chip with a solder electrode are mentioned. Alternatively, a method of bonding a semiconductor bonding adhesive film to a semiconductor wafer with solder electrodes in advance by normal pressure lamination, vacuum lamination, or the like, and then separating the semiconductor chips into pieces by blade dicing, laser dicing, or the like can be used.

上記半導体装置の製造方法では、次いで、半田電極付き半導体チップを、半導体接合用接着フィルムを介して、対抗電極若しくは電極パッドを有する半導体チップ又は回路基板上に半田溶融温度未満の温度で仮接合する工程2を行う。工程2において複数の半田電極付き半導体チップを仮固定した後、工程3において一括して半田接合することにより、大幅なプロセスを短縮することができる。特に、半導体チップを多段で積層する場合や、複数の半導体チップを一括接続する場合は、高生産性という点でこの工法が非常に有効である。
上記工程2は、例えば、フリップチップボンダ等の実装用装置を用いて行うことができる。
なお、半田溶融点は、通常、215〜235℃程度であり、工程2における仮固定は該半田溶融点未満の温度で行う。該半田溶融点未満の温度としては、100〜200℃程度であることが好ましい。
Next, in the semiconductor device manufacturing method, a semiconductor chip with solder electrodes is temporarily bonded to a semiconductor chip having a counter electrode or an electrode pad or a circuit board via a semiconductor bonding adhesive film at a temperature lower than the solder melting temperature. Step 2 is performed. By temporarily fixing a plurality of semiconductor chips with solder electrodes in step 2 and then soldering them together in step 3, a significant process can be shortened. In particular, this method is very effective in terms of high productivity when stacking semiconductor chips in multiple stages or when connecting a plurality of semiconductor chips at once.
The step 2 can be performed using a mounting apparatus such as a flip chip bonder, for example.
The solder melting point is usually about 215 to 235 ° C., and temporary fixing in step 2 is performed at a temperature lower than the solder melting point. The temperature below the solder melting point is preferably about 100 to 200 ° C.

上記半導体装置の製造方法では、次いで、半田溶融温度以上の温度に加熱したボンディングヘッドを接触させることにより半田接合する工程3を行う。
一般的に行われるプリヒート工程を行わずに、直接、半田溶融温度以上の温度に加熱したボンディングヘッドを接触させることにより、実装する度に毎回ボンディングヘッドを冷却/昇温することが不要となり、大幅なタクトが短縮して生産性が向上する。ここで、本発明の半導体接合用接着フィルムを用いることにより、半田溶融温度以上の温度に加熱したボンディングヘッドを直接接触させた場合でも、半田流れによる接合不良、ボイドの発生、及び、樹脂の噛み込みによる半田接合不良を防止することができる。
In the semiconductor device manufacturing method, next, the step 3 of solder bonding is performed by bringing a bonding head heated to a temperature equal to or higher than the solder melting temperature into contact.
By directly contacting the bonding head heated to a temperature equal to or higher than the solder melting temperature without performing the preheating process that is generally performed, it is not necessary to cool / heat the bonding head every time it is mounted. Tact time is shortened and productivity is improved. Here, by using the adhesive film for semiconductor bonding of the present invention, even when a bonding head heated to a temperature higher than the solder melting temperature is directly contacted, bonding failure due to solder flow, generation of voids, and resin biting It is possible to prevent a solder joint failure due to entrainment.

半田溶融点は、通常、215〜235℃程度であることから、工程3においてボンディングヘッドは、220〜300℃に加熱することが好ましい。220℃未満であると、突起電極が充分に溶融せず、電極接合が形成されないことがあり、300℃を超えると、接着剤から揮発成分が発生してボイドを増加させることがある。 Since the solder melting point is usually about 215 to 235 ° C., it is preferable that the bonding head is heated to 220 to 300 ° C. in Step 3. When the temperature is lower than 220 ° C., the protruding electrode may not be sufficiently melted and electrode bonding may not be formed. When the temperature exceeds 300 ° C., a volatile component may be generated from the adhesive to increase voids.

上記工程3において半田溶融温度以上の温度に加熱したボンディングヘッドを接触させた後の保持時間としては、好ましい下限が0.1秒、好ましい上限が10秒である。保持時間が0.1秒未満であると、突起電極が充分に溶融せず、電極接合が形成されないことがある。保持時間が10秒を超えると、長タクトとなり生産性が低下することがある。
上記工程3では、半導体チップに対して圧力をかけることが好ましい。圧力は、電極接合が形成される圧力であれば特に限定されないが、0.1〜4MPaが好ましい。
As the holding time after contacting the bonding head heated to a temperature equal to or higher than the solder melting temperature in the above step 3, a preferable lower limit is 0.1 second and a preferable upper limit is 10 seconds. If the holding time is less than 0.1 seconds, the protruding electrode may not be sufficiently melted and electrode bonding may not be formed. If the holding time exceeds 10 seconds, it may become a long tact and the productivity may decrease.
In the step 3, it is preferable to apply pressure to the semiconductor chip. Although a pressure will not be specifically limited if it is a pressure in which electrode joining is formed, 0.1-4 Mpa is preferable.

上記半導体装置の製造方法では、更に、上記工程3の後に、加圧雰囲気下で加熱してボイドを除去する工程4を行ってもよい。工程4を行うことにより、仮に半導体接合用接着フィルムに空気が巻き込まれた場合であっても、ボイドを除去することができる。
なお、加圧雰囲気下とは、常圧(大気圧)より高い圧力雰囲気下を意味する。
In the manufacturing method of the semiconductor device, after the step 3, the step 4 of removing voids by heating in a pressurized atmosphere may be performed. By performing step 4, even if air is caught in the adhesive film for semiconductor bonding, the void can be removed.
The pressurized atmosphere means a pressure atmosphere higher than normal pressure (atmospheric pressure).

上記工程4において加圧雰囲気下で加熱する方法として、例えば、加圧オーブン(例えば、PCO−083TA(NTTアトバンステクノロジ社製))を用いる方法等が挙げられる。
上記加圧オーブンの圧力の好ましい下限は0.2MPa、好ましい上限は10MPaである。圧力が0.2MPa未満であると、ボイドを充分に除去できないことがある。圧力が10MPaを超えると、半導体接合用接着フィルムの変形が生じ、半導体装置の信頼性に悪影響を及ぼすことがある。圧力のより好ましい下限は0.3MPa、より好ましい上限は1MPaである。
Examples of the method of heating in a pressurized atmosphere in the above step 4 include a method using a pressure oven (for example, PCO-083TA (manufactured by NTT Atvans Technology)).
The preferable lower limit of the pressure of the pressure oven is 0.2 MPa, and the preferable upper limit is 10 MPa. If the pressure is less than 0.2 MPa, the void may not be sufficiently removed. When the pressure exceeds 10 MPa, the adhesive film for semiconductor bonding is deformed, which may adversely affect the reliability of the semiconductor device. The more preferable lower limit of the pressure is 0.3 MPa, and the more preferable upper limit is 1 MPa.

上記工程4において加圧雰囲気下で加熱する際の加熱温度の好ましい下限は60℃、好ましい上限は150℃である。ただし、加圧雰囲気下で加熱する際には、一定温度及び一定圧力で保持してもよいし、昇温及び/又は昇圧しながら段階的に温度及び/又は圧力を変化させてもよい。
また、ボイドをより確実に除去するためには、加圧雰囲気下で加熱する際の加熱時間は、10分以上であることが好ましい。
The preferable lower limit of the heating temperature when heating in a pressurized atmosphere in Step 4 is 60 ° C., and the preferable upper limit is 150 ° C. However, when heating in a pressurized atmosphere, it may be held at a constant temperature and a constant pressure, or the temperature and / or pressure may be changed step by step while raising the temperature and / or raising the pressure.
Moreover, in order to remove a void more reliably, it is preferable that the heating time at the time of heating in a pressurized atmosphere is 10 minutes or more.

上記半導体装置の製造方法では、更に、工程3(又は必要に応じて工程4)を行った後、半導体接合用接着フィルムを完全に硬化させる工程5を行ってもよい。
上記半導体接合用接着フィルムを完全に硬化させる方法として、例えば、工程4を行った後に加圧雰囲気下でそのまま温度を上げて半導体接合用接着フィルムを完全に硬化させる方法、常圧下で加熱して完全に硬化させる方法等が挙げられる。上記半導体接合用接着フィルムを完全に硬化させる際の加熱温度は特に限定されないが、150〜200℃程度が好ましい。
In the manufacturing method of the semiconductor device, after performing Step 3 (or Step 4 as necessary), Step 5 for completely curing the adhesive film for semiconductor bonding may be performed.
As a method for completely curing the adhesive film for semiconductor bonding, for example, a method for completely curing the adhesive film for semiconductor bonding by raising the temperature as it is in a pressurized atmosphere after performing Step 4 and heating under normal pressure. Examples include a method of completely curing. Although the heating temperature at the time of completely hardening the said adhesive film for semiconductor joining is not specifically limited, About 150-200 degreeC is preferable.

半田電極付き半導体チップの該半田電極を有する面に半導体接合用接着フィルムを供給する工程1と、上記半田電極付き半導体チップを、上記半導体接合用接着フィルムを介して、対抗電極若しくは電極パッドを有する半導体チップ又は回路基板上に半田溶融温度未満の温度で仮接合する工程2と、半田溶融温度以上の温度に加熱したボンディングヘッドを接触させることにより半田接合する工程3を有する半導体装置の製造方法であって、上記半導体接合用接着フィルムは、少なくとも、熱硬化性樹脂、熱硬化剤及び高分子量化合物を含有し、60℃〜300℃の温度範囲における最低溶融粘度(VA)が100〜700Pa・s、かつ、最低溶融粘度到達温度より10℃高い温度における溶融粘度(VB)と最低溶融粘度(VA)との比(VB/VA)が1.2以上、2.5未満であるものである半導体装置の製造方法もまた、本発明の1つである。 Step 1 of supplying a semiconductor bonding adhesive film to the surface having the solder electrode of the semiconductor chip with solder electrode, and the semiconductor chip with solder electrode having a counter electrode or an electrode pad through the semiconductor bonding adhesive film A method of manufacturing a semiconductor device, comprising: a step 2 of temporary bonding on a semiconductor chip or a circuit board at a temperature lower than a solder melting temperature; and a step 3 of solder bonding by bringing a bonding head heated to a temperature higher than the solder melting temperature into contact. And the said adhesive film for semiconductor joining contains a thermosetting resin, a thermosetting agent, and a high molecular weight compound at least, and the minimum melt viscosity (VA) in the temperature range of 60 to 300 degreeC is 100 to 700 Pa.s. And the ratio of the melt viscosity (VB) to the minimum melt viscosity (VA) at a temperature 10 ° C. higher than the minimum melt viscosity attainment temperature. VB / VA) is 1.2 or more, a method of manufacturing a semiconductor device are those less than 2.5 it is also one of the present invention.

本発明によれば、大幅にタクトを短縮して生産性を向上させることができ、高い信頼性で接合できる半導体接合用接着フィルム、及び、半導体装置の製造方法を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, tact can be reduced significantly and productivity can be improved, and the adhesive film for semiconductor joining which can be joined with high reliability, and the manufacturing method of a semiconductor device can be provided.

以下に実施例を挙げて本発明の態様を更に詳しく説明するが、本発明はこれら実施例にのみ限定されるものではない。 Hereinafter, embodiments of the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.

(実施例1〜6、比較例1〜4)
(1)半導体接合用接着フィルムの作製
表1に記載の各材料を、表2記載の配合組成に従って溶媒としてのMEKに添加し、ホモディスパーを用いて攪拌混合することにより接着剤溶液を製造した。得られた接着剤溶液を、アプリケーターを用いて離型PETフィルム上に乾燥後の厚みが30μmとなるように塗工し、乾燥させることにより、接着フィルムを製造した。使用時まで、得られた接着剤層の表面を離型PETフィルム(保護フィルム)で保護した。
(Examples 1-6, Comparative Examples 1-4)
(1) Preparation of adhesive film for semiconductor bonding Each material described in Table 1 was added to MEK as a solvent according to the composition described in Table 2, and an adhesive solution was manufactured by stirring and mixing using a homodisper. . The obtained adhesive solution was coated on a release PET film using an applicator so that the thickness after drying was 30 μm and dried to produce an adhesive film. Until use, the surface of the obtained adhesive layer was protected with a release PET film (protective film).

(2)半導体装置の製造
先端部が半田からなるバンプが50μmピッチでペリフェラル状に形成されたウエハ(WALTS−TEG MB50−0101JY、半田溶融点235℃、ウォルツ社製)を用意した。接着フィルムの片面の保護フィルムを剥がし、真空ラミネーター(ATM−812M、タカトリ社製)を用いて、ステージ温度80℃、真空度100Paでウエハのバンプが形成された面に接着フィルムを貼り合わせた。
(2) Manufacture of Semiconductor Device A wafer (WALTS-TEG MB50-0101JY, solder melting point 235 ° C., manufactured by Waltz Co., Ltd.) in which bumps made of solder are formed in a peripheral shape at a pitch of 50 μm was prepared. The protective film on one side of the adhesive film was peeled off, and the adhesive film was bonded to the surface on which the bumps of the wafer were formed at a stage temperature of 80 ° C. and a vacuum of 100 Pa using a vacuum laminator (ATM-812M, manufactured by Takatori).

接着フィルムの他面の離型PETフィルムを剥がし、露出した接着剤面に、研削用保護テープ(エレップホルダーBT3100P、日東電工社製)をラミネートした。次いで、研削装置(DFG8560、ディスコ社製)を用いて、厚みが100μmとなるまでウエハの裏面を研削した。ウエハの研削した面にダイシングテープを貼り付け、研削用保護テープを剥離した。その後、ダイシング装置(DFD651、ディスコ社製)を用いて、送り速度20mm/秒でウエハをダイシングして、厚みが30μmの接着剤層が付着した接着剤層付き半導体チップ(7.6mm×7.6mm)を得た。 The release PET film on the other surface of the adhesive film was peeled off, and a protective tape for grinding (Elep Holder BT3100P, manufactured by Nitto Denko Corporation) was laminated on the exposed adhesive surface. Next, the back surface of the wafer was ground using a grinding apparatus (DFG8560, manufactured by Disco Corporation) until the thickness reached 100 μm. A dicing tape was applied to the ground surface of the wafer, and the protective tape for grinding was peeled off. Thereafter, the wafer was diced using a dicing apparatus (DFD651, manufactured by Disco Corporation) at a feed rate of 20 mm / sec, and a semiconductor chip with an adhesive layer (7.6 mm × 7. 6 mm).

Ni/Au電極を有する基板(WALTS−KIT MB50−0101JY、ウォルツ社製)を用意した。フリップチップボンダ(FC−3000、東レエンジニアリング社製)を用いて、ボンディングステージ温度100℃の条件下で、接触温度100℃、実装温度100℃、実装荷重1.7MPaで5秒間荷重をかけ、得られた接着剤層付き半導体チップを基板上に仮圧着した。その後さらに、基板上に仮圧着した半導体チップにおいて、フリップチップボンダ(FC−3000、東レエンジニアリング社製)を用いて、ボンディングステージ温度100℃の条件下で、接触温度280℃、実装温度280℃、実装荷重1.7MPaで5秒間荷重をかけ、本圧着を行った。その後、常圧190℃オーブンで30分間保持することにより、接着剤層を完全に硬化させて、半導体装置を得た。 A substrate having a Ni / Au electrode (WALTS-KIT MB50-0101JY, manufactured by Waltz) was prepared. Using a flip chip bonder (FC-3000, manufactured by Toray Engineering Co., Ltd.), applying a load for 5 seconds at a contact temperature of 100 ° C., a mounting temperature of 100 ° C., and a mounting load of 1.7 MPa under the condition of a bonding stage temperature of 100 ° C. The obtained semiconductor chip with an adhesive layer was temporarily pressure-bonded onto the substrate. Thereafter, in a semiconductor chip temporarily bonded onto the substrate, using a flip chip bonder (FC-3000, manufactured by Toray Engineering Co., Ltd.), under a bonding stage temperature of 100 ° C., a contact temperature of 280 ° C., a mounting temperature of 280 ° C., A final pressure bonding was performed by applying a load for 5 seconds at a mounting load of 1.7 MPa. Thereafter, the adhesive layer was completely cured by holding in an oven at 190 ° C. for 30 minutes to obtain a semiconductor device.

<評価>
実施例、比較例で得られた半導体装置について以下の評価を行った。
結果を表2に示した。
<Evaluation>
The following evaluation was performed about the semiconductor device obtained by the Example and the comparative example.
The results are shown in Table 2.

(1)初期導通の評価
半導体チップと基板の電気端子間に形成されたデイジーテェインについて、抵抗計(3541、HIOIKI社製)を用いて4端子法により導通確認を行った。4辺のペリフェラル電極のうち、4辺とも導通が確認できたものを良品として「○」と、4辺のうち1辺以上において導通が確認できなかったものを不良品として「×」と評価した。
(1) Evaluation of initial conduction About the daisy chain formed between the semiconductor chip and the electric terminal of the substrate, the conduction was confirmed by a four-terminal method using an ohmmeter (3541, manufactured by HIOIKI). Of the peripheral electrodes on the four sides, those that could be confirmed to be conductive on all four sides were evaluated as “good”, and those that could not be confirmed on one or more of the four sides were evaluated as “x” as defective. .

(2)半田流れの評価
半導体装置の半田接合部をX透過装置(MF100C、日立エンジニアリング・アンド・サービス社製)により観察し、半田流れの有無を確認した。半田が半田接合部にのみ存在した場合を良品として「○」と、接合時に押し流された半田が、半田接合部以外の箇所に島状に存在した場合を不良品として「×」と評価した。
(2) Evaluation of solder flow The solder joint portion of the semiconductor device was observed with an X transmission device (MF100C, manufactured by Hitachi Engineering & Service Co., Ltd.) to confirm the presence or absence of solder flow. The case where the solder was present only in the solder joint was evaluated as “Good” as a good product, and the case where the solder swept away during the joining was present in an island shape other than the solder joint was evaluated as “Poor” as a defective product.

(3)半田接合性の評価
研磨機を用いて半導体装置を断面研磨し、マイクロスコープを用いて半田接合部の接合状態を観察した。上下電極間に樹脂(接着剤)の噛み込み及び半田流れによる半田流失がなく、接合状態が良好であった場合を良品として「○」と、上下電極間にわずかに樹脂(接着剤)の噛み込みがあるものの、半田流れによる半田流失がなく、接合状態が比較的良好であった場合を一応の良品として「△」と、上下電極間に樹脂(接着剤)の噛み込み又は半田流れによる半田流失があり、上下電極が全く接合していなかった場合を不良品として「×」と評価した。
(3) Evaluation of solder jointability The semiconductor device was subjected to cross-sectional polishing using a polishing machine, and the joining state of the solder joint portion was observed using a microscope. “Good” indicates that the resin (adhesive) is not caught between the upper and lower electrodes and the solder is not lost due to solder flow, and the bonding state is good. If there is no solder loss due to the solder flow and the bonding state is relatively good, “△” is given as a non-defective product and solder due to the resin (adhesive) biting between the upper and lower electrodes or solder flow A case where there was a loss and the upper and lower electrodes were not joined at all was evaluated as “x” as a defective product.

(4)ボイドの評価
研磨機を用いて半導体装置を水平研磨(半導体チップ面に対して水平に研磨)し、マイクロスコープを用いてボイドの観察を行った。ペリフェラルバンプよりも内側の面内にボイドが無く、またペリフェラルバンプ近傍の基板レジスト開口部にもボイドが観察されなかったものを良品として「○」と、ペリフェラルバンプよりも内側の面内にボイドは無いが、ペリフェラルバンプ近傍の基板レジスト開口部に僅かにボイドが観察されたものを一応の良品として「△」と、ペリフェラルバンプよりも内側の面内にボイドが存在し、ペリフェラルバンプ近傍の基板レジスト開口部にもボイドが多数観察されたものを不良品として「×」と評価した。
(4) Evaluation of voids The semiconductor device was horizontally polished (polished horizontally with respect to the semiconductor chip surface) using a polishing machine, and the voids were observed using a microscope. If there is no void in the inner surface of the peripheral bump, and no void was observed in the opening of the substrate resist near the peripheral bump, “Good” indicates that the void is in the inner surface of the peripheral bump. Although there is no void in the substrate resist opening in the vicinity of the peripheral bump, “△” is given as a good product, and there is a void in the inner surface of the peripheral bump, and the substrate resist in the vicinity of the peripheral bump. A sample in which many voids were observed in the opening was evaluated as “x” as a defective product.

Figure 2016201418
Figure 2016201418

Figure 2016201418
Figure 2016201418

本発明によれば、大幅にタクトを短縮して生産性を向上させることができ、高い信頼性で接合できる半導体接合用接着フィルム、及び、半導体装置の製造方法を提供することができる。
ADVANTAGE OF THE INVENTION According to this invention, tact can be reduced significantly and productivity can be improved, and the adhesive film for semiconductor joining which can be joined with high reliability, and the manufacturing method of a semiconductor device can be provided.

Claims (2)

半田電極付き半導体チップの該半田電極を有する面に半導体接合用接着フィルムを供給する工程1と、前記半田電極付き半導体チップを、前記半導体接合用接着フィルムを介して、対抗電極若しくは電極パッドを有する半導体チップ又は回路基板上に半田溶融温度未満の温度で仮接合する工程2と、半田溶融温度以上の温度に加熱したボンディングヘッドを接触させることにより半田接合する工程3を有する半導体装置の製造方法に用いられる半導体接合用接着フィルムであって、
少なくとも、熱硬化性樹脂、熱硬化剤及び高分子量化合物を含有し、
60℃〜300℃の温度範囲における最低溶融粘度(VA)が100〜700Pa・s、かつ、最低溶融粘度到達温度より10℃高い温度における溶融粘度(VB)と最低溶融粘度(VA)との比(VB/VA)が1.2以上、2.5未満である
ことを特徴とする半導体接合用接着フィルム。
Step 1 of supplying a semiconductor bonding adhesive film to the surface having the solder electrode of the semiconductor chip with solder electrode, and the semiconductor chip with solder electrode having a counter electrode or an electrode pad through the adhesive film for semiconductor bonding A method for manufacturing a semiconductor device, comprising: a step 2 for temporary bonding on a semiconductor chip or a circuit board at a temperature lower than a solder melting temperature; and a step 3 for solder bonding by bringing a bonding head heated to a temperature higher than the solder melting temperature into contact. A semiconductor bonding adhesive film used,
Containing at least a thermosetting resin, a thermosetting agent and a high molecular weight compound,
Ratio of melt viscosity (VB) and minimum melt viscosity (VA) at a temperature that is 100 to 700 Pa · s at a minimum melt viscosity (VA) in a temperature range of 60 ° C. to 300 ° C. and 10 ° C. higher than the minimum melt viscosity attainment temperature (VB / VA) is 1.2 or more and less than 2.5, an adhesive film for semiconductor bonding.
半田電極付き半導体チップの該半田電極を有する面に半導体接合用接着フィルムを供給する工程1と、前記半田電極付き半導体チップを、前記半導体接合用接着フィルムを介して、対抗電極若しくは電極パッドを有する半導体チップ又は回路基板上に半田溶融温度未満の温度で仮接合する工程2と、半田溶融温度以上の温度に加熱したボンディングヘッドを接触させることにより半田接合する工程3を有する半導体装置の製造方法であって、
前記半導体接合用接着フィルムは、少なくとも、熱硬化性樹脂、熱硬化剤及び高分子量化合物を含有し、60℃〜300℃の温度範囲における最低溶融粘度(VA)が100〜700Pa・s、かつ、最低溶融粘度到達温度より10℃高い温度における溶融粘度(VB)と最低溶融粘度(VA)との比(VB/VA)が1.2以上、2.5未満である
ことを特徴とする半導体装置の製造方法。
Step 1 of supplying a semiconductor bonding adhesive film to the surface having the solder electrode of the semiconductor chip with solder electrode, and the semiconductor chip with solder electrode having a counter electrode or an electrode pad through the adhesive film for semiconductor bonding A method of manufacturing a semiconductor device, comprising: a step 2 of temporary bonding on a semiconductor chip or a circuit board at a temperature lower than a solder melting temperature; and a step 3 of solder bonding by bringing a bonding head heated to a temperature higher than the solder melting temperature into contact. There,
The semiconductor bonding adhesive film contains at least a thermosetting resin, a thermosetting agent, and a high molecular weight compound, and has a minimum melt viscosity (VA) in a temperature range of 60 ° C. to 300 ° C. of 100 to 700 Pa · s, and A ratio of melt viscosity (VB) to minimum melt viscosity (VA) (VB / VA) at a temperature 10 ° C. higher than the minimum melt viscosity attainment temperature is 1.2 or more and less than 2.5 Manufacturing method.
JP2015079356A 2015-04-08 2015-04-08 Adhesive film for semiconductor bonding and method for manufacturing semiconductor device Expired - Fee Related JP6438340B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015079356A JP6438340B2 (en) 2015-04-08 2015-04-08 Adhesive film for semiconductor bonding and method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015079356A JP6438340B2 (en) 2015-04-08 2015-04-08 Adhesive film for semiconductor bonding and method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JP2016201418A true JP2016201418A (en) 2016-12-01
JP6438340B2 JP6438340B2 (en) 2018-12-12

Family

ID=57422674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015079356A Expired - Fee Related JP6438340B2 (en) 2015-04-08 2015-04-08 Adhesive film for semiconductor bonding and method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP6438340B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019123518A1 (en) * 2017-12-18 2019-06-27 日立化成株式会社 Semiconductor device, method for manufacturing semiconductor device, and adhesive
JP2019110187A (en) * 2017-12-18 2019-07-04 東レエンジニアリング株式会社 Mounting device and mounting method
CN111149195A (en) * 2017-09-28 2020-05-12 株式会社新川 Method for setting heating condition of semiconductor wafer during bonding, method for measuring viscosity of non-conductive film, and bonding apparatus
JP2022100210A (en) * 2020-12-23 2022-07-05 ドゥーサン コーポレイション Underfill film for semiconductor package and manufacturing method of semiconductor package using the same
JP7524839B2 (en) 2021-06-22 2024-07-30 味の素株式会社 Resin sheet for semiconductor chip adhesion

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012234804A (en) * 2011-04-21 2012-11-29 Sumitomo Electric Ind Ltd Film shaped anisotropic conductive adhesive
JP2013102092A (en) * 2011-11-09 2013-05-23 Sekisui Chem Co Ltd Semiconductor device manufacturing method
WO2013133015A1 (en) * 2012-03-07 2013-09-12 東レ株式会社 Method and apparatus for manufacturing semiconductor device
JP2015056479A (en) * 2013-09-11 2015-03-23 デクセリアルズ株式会社 Underfill material, and method for manufacturing semiconductor device using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012234804A (en) * 2011-04-21 2012-11-29 Sumitomo Electric Ind Ltd Film shaped anisotropic conductive adhesive
JP2013102092A (en) * 2011-11-09 2013-05-23 Sekisui Chem Co Ltd Semiconductor device manufacturing method
WO2013133015A1 (en) * 2012-03-07 2013-09-12 東レ株式会社 Method and apparatus for manufacturing semiconductor device
JP2015056479A (en) * 2013-09-11 2015-03-23 デクセリアルズ株式会社 Underfill material, and method for manufacturing semiconductor device using the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111149195A (en) * 2017-09-28 2020-05-12 株式会社新川 Method for setting heating condition of semiconductor wafer during bonding, method for measuring viscosity of non-conductive film, and bonding apparatus
WO2019123518A1 (en) * 2017-12-18 2019-06-27 日立化成株式会社 Semiconductor device, method for manufacturing semiconductor device, and adhesive
JP2019110187A (en) * 2017-12-18 2019-07-04 東レエンジニアリング株式会社 Mounting device and mounting method
JPWO2019123518A1 (en) * 2017-12-18 2020-12-17 昭和電工マテリアルズ株式会社 Semiconductor devices, manufacturing methods and adhesives for semiconductor devices
JP7023700B2 (en) 2017-12-18 2022-02-22 東レエンジニアリング株式会社 Mounting device and mounting method
JP7176532B2 (en) 2017-12-18 2022-11-22 昭和電工マテリアルズ株式会社 Semiconductor device, method for manufacturing semiconductor device, and adhesive
JP2022100210A (en) * 2020-12-23 2022-07-05 ドゥーサン コーポレイション Underfill film for semiconductor package and manufacturing method of semiconductor package using the same
JP7220260B2 (en) 2020-12-23 2023-02-09 ドゥーサン コーポレイション Semiconductor package underfill film and semiconductor package manufacturing method using the same
US11942336B2 (en) 2020-12-23 2024-03-26 Doosan Corporation Underfill film for semiconductor package and method for manufacturing semiconductor package using the same
JP7524839B2 (en) 2021-06-22 2024-07-30 味の素株式会社 Resin sheet for semiconductor chip adhesion

Also Published As

Publication number Publication date
JP6438340B2 (en) 2018-12-12

Similar Documents

Publication Publication Date Title
TWI594344B (en) Semiconductor device manufacturing method and flip chip mounting adhesive
JP5788107B2 (en) Adhesive for semiconductor
JP6438340B2 (en) Adhesive film for semiconductor bonding and method for manufacturing semiconductor device
JP6009860B2 (en) Manufacturing method of semiconductor device
JP6030233B2 (en) Adhesive film for semiconductor chip with through electrode and method for producing adhesive film for semiconductor chip with through electrode
JP5646021B2 (en) Semiconductor package
JP5989397B2 (en) Semiconductor device manufacturing method and semiconductor bonding adhesive
JP2013102092A (en) Semiconductor device manufacturing method
JP2012216831A (en) Semiconductor chip packaging body manufacturing method
JP2014107355A (en) Method for manufacturing semiconductor device
JP2014107354A (en) Method for manufacturing semiconductor device
JP5914226B2 (en) Manufacturing method of semiconductor device and adhesive for flip chip mounting
JP2013214619A (en) Semiconductor device manufacturing method
JP5688278B2 (en) Manufacturing method of semiconductor package
JP2014068007A (en) Semiconductor device manufacturing method
JP2015002338A (en) Method for manufacturing semiconductor device
JP2014068004A (en) Semiconductor device manufacturing method
JP5592820B2 (en) Semiconductor chip mounting method, laminated sheet, and semiconductor chip mounting body
JP2014116503A (en) Semiconductor device manufacturing method
JP6009743B2 (en) Manufacturing method of semiconductor package
JP2014103313A (en) Film-like adhesive for semiconductor junction, and manufacturing method of semiconductor device
JP2016096305A (en) Adhesive agent for bonding semiconductor and adhesive film for bonding semiconductor
JP2015216273A (en) Thermosetting resin composition, and method for manufacturing semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181116

R151 Written notification of patent or utility model registration

Ref document number: 6438340

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees