WO2019123518A1 - Semiconductor device, method for manufacturing semiconductor device, and adhesive - Google Patents

Semiconductor device, method for manufacturing semiconductor device, and adhesive Download PDF

Info

Publication number
WO2019123518A1
WO2019123518A1 PCT/JP2017/045333 JP2017045333W WO2019123518A1 WO 2019123518 A1 WO2019123518 A1 WO 2019123518A1 JP 2017045333 W JP2017045333 W JP 2017045333W WO 2019123518 A1 WO2019123518 A1 WO 2019123518A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
adhesive
connection portion
less
heating
Prior art date
Application number
PCT/JP2017/045333
Other languages
French (fr)
Japanese (ja)
Inventor
一尊 本田
裕貴 柳田
恵子 上野
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to KR1020207018459A priority Critical patent/KR102455212B1/en
Priority to PCT/JP2017/045333 priority patent/WO2019123518A1/en
Priority to JP2019559883A priority patent/JP7176532B2/en
Priority to CN201780097759.8A priority patent/CN111480218B/en
Publication of WO2019123518A1 publication Critical patent/WO2019123518A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/89Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using at least one connector not provided for in any of the groups H01L24/81 - H01L24/86
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • C09J5/06Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers involving heating of the applied adhesive
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/75Apparatus for connecting with bump connectors or layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16135Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/16145Disposition the bump connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector

Definitions

  • the present invention relates to a semiconductor device, a method of manufacturing a semiconductor device, and an adhesive.
  • FC connection method for directly connecting a circuit board or another semiconductor chip.
  • FC connection method for directly connecting a circuit board or another semiconductor chip.
  • COB Chip On Board
  • FC connection method for directly connecting a circuit board or another semiconductor chip.
  • FC connection method for example, a COB (Chip On Board) type connection method, which is a connection between a semiconductor chip and a printed circuit board, is an FC connection method.
  • the FC connection method is widely used also in a CoC (Chip On Chip) connection method in which bumps or wires are provided as connection portions on a semiconductor chip and connected between semiconductor chips.
  • connection portions such as solder, tin, gold, silver, copper and the like are often metal-joined from the viewpoint of connection reliability.
  • a semiconductor chip is first picked up by a collet from a diced semiconductor wafer and supplied to a pressing device.
  • the semiconductor chip is crimped to the printed circuit board or another semiconductor chip by a pressing device.
  • the temperature of the pressing device is increased so that the metal of one or both of these connections reaches a temperature above the melting point so that a metallurgical bond is formed.
  • the semiconductor chip is again supplied to the pressing device.
  • a semiconductor adhesive may be supplied in advance on the semiconductor chip to be picked up by the collet, in which case the pressing device is heated from the high temperature at which the metal of the connection portion is melted to continuously manufacture the semiconductor device. It is necessary to cool the adhesive-supplied semiconductor chip to a low temperature that can be supplied.
  • one pressing device temporarily crimps the semiconductor chip on the printed circuit board or another semiconductor chip at a relatively low temperature, and heats the obtained temporary crimped body at a high temperature using a pressing device different from the temporary crimping.
  • the step of temporarily pressure-bonding the semiconductor chip and the substrate or another semiconductor chip at a relatively low temperature using the first pressing device, and the second step different from the first pressing device And a step of obtaining a pressure-bonded body by applying pressure while heating at a temperature equal to or higher than the melting point of the metal of the connection portion of the semiconductor chip or the substrate using the pressure device; and a step of further heating the pressure-bonded body in a heating furnace.
  • the production efficiency can be further improved.
  • connection failure may occur or voids may remain in the adhesive. It became clear by the further examination of them. It is desirable that the voids be suppressed because the voids can be a source of reduced reliability.
  • an object of one aspect of the present invention involves bonding a semiconductor chip or a semiconductor wafer having a connection portion to another member having a connection portion via an adhesive and electrically connecting the connection portions.
  • Another object of the present invention is to provide a method of manufacturing a semiconductor device, which makes it possible to efficiently manufacture a large number of semiconductor devices while suppressing the generation of voids in an adhesive and ensuring an appropriate electrical connection.
  • One aspect of the present invention relates to a first member having a connection portion and a second member having a connection portion, the melting point of the connection portion of the first member and the second portion having a thermosetting adhesive.
  • a method of manufacturing a semiconductor device comprising the steps of obtaining a pressure-bonded body by pressing and heating the pressure-bonded body in a pressured atmosphere.
  • the first member may be a semiconductor chip or a semiconductor wafer
  • the second member may be a printed circuit board, a semiconductor chip or a semiconductor wafer.
  • the step of obtaining a temporary press-bonded body by pressing the first member and the second member via the thermosetting adhesive may be referred to as "first pressing step”.
  • the step of obtaining a crimped body by pressing the temporary crimped body while heating to a temperature equal to or higher than the melting point of at least one of the connecting portion of the first member and the connecting portion of the second member is referred to as "second crimping step”.
  • second crimping step Sometimes.
  • the step of further heating the crimped body in a pressurized atmosphere is sometimes referred to as the "third crimping step".
  • a combination of these three pressure bonding processes can efficiently produce a large number of semiconductor devices while suppressing the generation of voids in the adhesive and ensuring an appropriate electrical connection.
  • thermosetting adhesive in which a thermosetting adhesive is partially cured in the second pressure bonding step to obtain a pressure bonded body by heating and pressing the temporary pressure bonded body, and the pressure bonded body is heated in a pressure atmosphere
  • the thermosetting adhesive may be further cured.
  • the thermosetting adhesive in the second pressure bonding step, the thermosetting adhesive may be cured until the curing reaction rate becomes 30% or less.
  • the thermosetting adhesive in the third pressure bonding step, the thermosetting adhesive may be further cured until the curing reaction rate reaches 85% or more.
  • the plurality of pressure-bonded bodies may be heated at one time.
  • the heating temperature in the third pressure bonding step may be 130 ° C. or more and 300 ° C. or less.
  • the thermosetting adhesive may contain a thermosetting resin having a weight average molecular weight of less than 10000, a curing agent for the thermosetting resin, and a polymer component having a weight average molecular weight of 10000 or more.
  • thermosetting adhesive used in the method described above.
  • the minimum melt viscosity of the adhesive may be 3000 Pa ⁇ s or less.
  • the thermosetting adhesive may be in the form of a film.
  • a further aspect of the present invention comprises a first member having a connection, a second member having a connection, and an adhesive layer interposed therebetween, the connection of the first member And a connection portion of the second member are electrically connected by metal bonding.
  • the adhesive layer may be a cured product of a thermosetting adhesive, and the minimum melt viscosity of the thermosetting adhesive may be 3000 Pa ⁇ s or less.
  • the first member is a semiconductor chip or a semiconductor wafer
  • the second member is a printed circuit board, a semiconductor chip or a semiconductor wafer.
  • One aspect of the present invention is a semiconductor device including bonding a semiconductor chip or a semiconductor wafer having a connection portion to another member having the connection portion via an adhesive and electrically connecting the connection portions.
  • the method of manufacturing the semiconductor device it is possible to efficiently manufacture a large number of semiconductor devices while suppressing the generation of voids in the adhesive and ensuring an appropriate electrical connection.
  • compression-bonding body It is process drawing which shows one Embodiment of the process of heating and pressurizing a temporary press-fit body, and obtaining a press-fit body. It is a process chart showing an embodiment of a process of heating a crimped body under pressurization atmosphere. It is a schematic cross section which shows other one Embodiment of a semiconductor device. It is a schematic cross section which shows other one Embodiment of a semiconductor device. It is a schematic cross section which shows other one Embodiment of a semiconductor device. It is a schematic cross section which shows other one Embodiment of a semiconductor device. It is a schematic cross section which shows other one Embodiment of a semiconductor device.
  • FIG. 1, FIG. 2 and FIG. 3 are process drawings showing one embodiment of a method of manufacturing a semiconductor device.
  • the melting point of the connection portion of the first member and the second member of the first member having the connection portion and the second member having the connection portion via the thermosetting adhesive Obtaining a temporary pressure-bonded body in which the connection portion of the first member and the connection portion of the second member are disposed opposite to each other by pressure bonding at a temperature lower than the melting point of the connection portion of The temporary pressure-bonded body is interposed between a pair of opposing pressing members to heat the material while heating to a temperature equal to or higher than the melting point of at least one of the connection of the first member and the connection of the second member.
  • a second pressure-bonding step of obtaining a pressure-bonded body by pressing, and a third pressure-bonding step of heating the pressure-bonded body under a pressure atmosphere are included.
  • FIG. 1 shows a first pressure-bonding step of obtaining a temporary pressure-bonded body 4 by pressure-bonding the semiconductor chip 1 (first member) and the printed circuit board 2 (second member).
  • a semiconductor chip body 10 and a semiconductor chip 1 having a bump 30 as a connection portion, a substrate body 20, and a wired circuit board 2 having a wiring 16 as a connection portion Then, while arranging a thermosetting adhesive layer 40 between them, the laminate 3 is formed.
  • the semiconductor chip 1 is formed by dicing of a semiconductor wafer, then picked up and transported to the wiring circuit board 2 and aligned so that the bumps 30 as the connection portions and the wirings 16 are disposed to face each other.
  • the laminate 3 is formed on a stage 42 of a pressing device 43 having a pressure bonding head 41 and a stage 42 as a pair of opposing temporary pressure bonding pressing members.
  • the bumps 30 are provided on the wiring 15 provided on the semiconductor chip body 10.
  • the wires 16 of the printed circuit board 2 are provided at predetermined positions on the substrate body 20.
  • Each of the bumps 30 and the interconnections 16 has a surface formed of a metal material.
  • the thermosetting adhesive layer 40 may be a layer formed by attaching a film adhesive prepared in advance to the printed circuit board 2.
  • the film-like adhesive can be attached by a heat press, roll laminate, vacuum laminate or the like.
  • the supply area and thickness of the adhesive layer are appropriately set in accordance with the size of the semiconductor chip 1 or the printed circuit board 2, the height of the connection portion, and the like.
  • a film-like adhesive may be attached to the semiconductor chip 1.
  • the film-like adhesive may be attached to the semiconductor wafer, and then the semiconductor wafer may be diced to separate the semiconductor wafer, thereby producing the semiconductor chip 1 to which the film-like adhesive is attached.
  • the laminated body 3 is heated and pressed by being sandwiched between the stage 42 and the pressure bonding head 41 as a temporary pressure bonding pressing member, whereby the semiconductor chip 1 is The wiring circuit board 2 is temporarily pressure-bonded to obtain a temporary pressure-bonded body 4.
  • the pressure bonding head 41 is disposed on the semiconductor chip 1 side, and the stage 42 is disposed on the printed circuit board 2 side.
  • a flip chip bonder or the like can be used as a temporary pressure bonding pressing device having a stage and a pressure bonding head.
  • melting point of connection means the melting point of the metal material forming the surface of the connection.
  • the pressing member for temporary press-bonding is set to a low temperature so that heat is not transferred to the semiconductor chip or the like when picking up the semiconductor chip or the like as the first member.
  • the temporary pressing member may be heated to a high temperature to a certain extent in order to enhance the fluidity of the adhesive layer to the extent that the rolled-in voids can be eliminated during heating and pressing of the laminate for temporary pressing.
  • the difference between the temperature of the pressing member when picking up a semiconductor chip or the like and the temperature of the pressing member when heating and pressing the laminated body to obtain a temporary pressure-bonded body may be small.
  • the temperature difference may be 100 ° C. or less, or 60 ° C. or less. This temperature difference may be constant. When the temperature difference is 100 ° C. or less or 60 ° C. or less, the time required for cooling the temporary pressure bonding pressing member can be shortened.
  • the temperature of the pressing member for temporary pressure bonding when heating and pressing the laminate to obtain the temporary pressure bonded body may be a temperature lower than the reaction start temperature of the adhesive layer.
  • the reaction start temperature is obtained by using DSC (Perkin Elmer, DSC-Pyirs 1), and measuring the sample amount of adhesive 10 mg, heating rate 10 ° C./min, measurement atmosphere: under conditions of air or nitrogen. On-set temperature in the DSC thermogram.
  • the temperature of the stage 42 and / or the pressure bonding head 41 when the laminate is heated and pressed to obtain a temporary pressure bonded body is such that the adhesive adheres to the printed circuit board or semiconductor wafer etc. It can be set to a temperature at which the curing reaction does not proceed. From this point of view, the temperature of the stage 42 and / or the pressure bonding head 41 when heating and pressing the laminate to obtain a temporary pressure-bonded body may be 140 ° C. or less, 110 ° C. or less, or 80 ° C. or less. It may be 25 ° C. or higher. Thus, even if the first pressure bonding step is performed at a low temperature, a semiconductor device sufficient in terms of void suppression and connection can be obtained through the subsequent second pressure bonding step and third pressure bonding step. it can.
  • the pressure load for pressing the laminate 3 to obtain the temporary pressure-bonded body 4 is appropriately set in consideration of the number of bumps, absorption of bump height variations, and control of the amount of bump deformation.
  • the connection portion (bump 30) of the semiconductor chip 1 may be in contact with the connection portion (wiring 16) of the printed circuit board 2.
  • the pressing load for pressing the laminated body 3 to obtain the temporary pressure-bonded body 4 is, for example, 0.009 to 0. It may be 2N.
  • the time for pressurizing the laminate 3 to obtain the temporary pressure-bonded body 4 may be 5 seconds or less, 3 seconds or less, or 1 second or less from the viewpoint of improving productivity, and is 0.5 seconds or more. It is also good.
  • FIG. 2 shows a second pressure-bonding step of obtaining the pressure-bonded body 6 by pressurizing the temporary pressure-bonded body 4 while heating.
  • a pressing device 46 prepared separately from the pressing device 43 and having a stage 45 and a crimping head 44 oppositely disposed as a pressing member for full crimping. And heat and press the temporary pressure bonding body 4.
  • the temporary press-bonded body 4 is heated and pressurized by being pinched by the stage 45 and the press-contact head 44.
  • the pressure bonding head 44 is disposed on the semiconductor chip 1 side of the temporary pressure bonding body 4, and the stage 45 is disposed on the printed circuit board 2 side of the temporary pressure bonding body 4.
  • the melting point of the bump 30 as the connection portion of the semiconductor chip 1 or the wiring 16 as the connection portion of the printed circuit board 2 It is heated to a temperature equal to or higher than at least one of the melting points.
  • the oxide film on the surface of the connection portion may be removed by the second pressure bonding step. Therefore, the temperature of the stage 45 and / or the pressure bonding head 44 (that is, the heating temperature in the second pressure bonding step) can be set to a temperature at which the oxide film on the surface of the connection portion is efficiently removed. From such a viewpoint, the heating temperature in the second pressure bonding step may be 220 ° C. or more and 330 ° C. or less.
  • the metal material of the connection portion includes a solder
  • the heating temperature in the second pressure bonding step is 220 ° C. or higher, the solder of the connection portion is melted and a sufficient metal bond is easily formed.
  • the temperature is 330 ° C.
  • the heating temperature in the second pressure bonding step may be 220 ° C. or more even when the metal material of the connection portion includes Sn / Ag having a melting point of about 220 ° C.
  • the pressing load in the second pressure bonding step is appropriately set in consideration of oxide film removal on the surface of the connection portion, the number of bumps, absorption of bump height variations, control of the amount of bump deformation, and the like.
  • the pressing load may be, for example, 0.009 to 0.2 N per connection portion (bump) of the semiconductor chip. If the pressing load is 0.009 N or more, the oxide film formed on the connection portion is easily removed, and the adhesive is hardly trapped in the connection portion. In addition, when the pressing load is 0.2 N or less, it is difficult to cause a defect such as crushing or scattering of a bump containing solder or the like.
  • the adhesive may be partially cured by the second pressure-bonding step to such an extent that the adhesive has some fluidity in the third pressure-bonding step of heating the pressure-bonded body in a pressurized atmosphere.
  • the adhesive By causing the adhesive to flow as much as the adhesive in the third pressure bonding step, it is possible to further suppress the remaining of the voids in the adhesive layer.
  • the fillet around the connection portion can also be suppressed by setting the heat history applied to the adhesive in the second pressure bonding step to such an extent that the curing reaction rate remains small. From these viewpoints, the curing reaction rate of the adhesive after the second pressure bonding step may be 50% or less, 30% or less, 27% or less, or 25% or less.
  • the curing reaction rate of the adhesive after the second pressure bonding step is determined based on the change in the heating value due to the curing reaction, which is measured by differential scanning calorimetry.
  • the heat generation amount ⁇ H (J / g) due to the curing reaction of the adhesive before the first pressure bonding step is “ ⁇ H0”, and the heat generation amount ⁇ H (J / g) due to the curing reaction after the second pressure bonding step is “ ⁇ H2”
  • the curing reaction rate after the second pressure bonding step can be calculated by the following equation.
  • the curing reaction rate of the adhesive to be subjected to the first pressure bonding step is regarded as 0%.
  • Curing reaction rate (%) after the second pressure bonding step ( ⁇ H0 ⁇ H2) / ⁇ H0 ⁇ 100
  • the differential scanning calorimetry for measuring the calorific value due to the curing reaction can be performed at a temperature rising rate of 20 ° C./min, in the temperature range of 30 to 300 ° C. Instead of the actual pressure bonding process, using a hot plate, an oven, etc., measure the curing reaction rate using the adhesive after applying the heat history under the same conditions as the first pressure bonding process and the first pressure bonding process. Thus, the curing reaction rate after the second pressure bonding step can be estimated.
  • the curing reaction rate after the second pressure bonding step can be adjusted mainly based on the time of heating and pressing. For example, if the heating and pressing time in the second pressure bonding step is 3 seconds or less or 1 second or less, for example, the curing reaction rate becomes 50% or less, 30% or less, 27% or less, or 25% or less
  • the adhesive can be cured.
  • the temporary pressure-bonding pressing member and the pressure-bonding pressing member may be respectively installed in two or more separate devices, or both may be installed in one device.
  • the semiconductor device 100 is obtained through a third pressure bonding step of heating the pressure bonded body 6 in a pressure atmosphere in the heating furnace 60.
  • the plurality of pressure-bonded bodies 6 can be collectively heated in one heating furnace 60.
  • the heating furnace can easily and uniformly heat a large number of pressure-bonded bodies, thereby improving the productivity.
  • a heating furnace a reflow furnace, a pressure oven, etc. can be used.
  • fillet suppression means suppressing the fillet width to a small value, and the fillet width is the length of the adhesive that protrudes to the outer peripheral portion of the semiconductor device.
  • the fillet width can be measured, for example, on an image obtained by photographing an appearance image of a semiconductor device with a digital microscope (VHX-5000 manufactured by KEYENCE).
  • the length (fillet width) of the adhesive layer protruding from the four sides of the semiconductor chip is measured, and the average value is determined as a fillet value.
  • the fillet value may be 150 ⁇ m or less from the viewpoint of mounting a large number of semiconductor chips or the like on a semiconductor wafer or a printed circuit board or the like.
  • the pressure-bonded body is heated in a state in which the inside of the heating furnace 60 is in a pressurized atmosphere.
  • a pressurized atmosphere means a gaseous atmosphere having a pressure greater than or equal to atmospheric pressure.
  • the pressure in the heating furnace 60 may be 0.1 MPa or more and 0.8 MPa or less, or 0.2 MPa or more and 0.5 MPa or less. When the pressure is 0.1 MPa or more, the voids disappear particularly effectively. If the air pressure is 0.8 MPa or less, problems such as increased warpage of the semiconductor device are less likely to occur.
  • the heating temperature (atmosphere temperature in the heating furnace 60) in the third pressure bonding step may be a temperature at which the adhesive melts or a temperature above the glass transition temperature (Tg) of the adhesive, and the curing of the adhesive It may be the temperature at which The ambient temperature in the heating furnace 60 may be, for example, 130 ° C. or more and 300 ° C. or less, or 140 ° C. or more and 270 ° C. or less.
  • the temperature is 130 ° C. or higher, the adhesive is likely to be appropriately cured while having fluidity to some extent, and there is a tendency for voids to be particularly effectively suppressed by pressure.
  • the temperature is 300 ° C. or less, voids are particularly suppressed, and warpage of the semiconductor device is less likely to occur.
  • the highest reachable temperature may be in the above range.
  • the heating and pressing times in the third pressure bonding step are set to such an extent that the curing of the adhesive proceeds sufficiently.
  • the time during which the ambient temperature in the heating furnace 60 is 130 ° C. or more and 300 ° C. or less may be 1 minute or more and 120 minutes or less, or 5 minutes or more and 60 minutes or less.
  • the atmosphere in the heating furnace 60 may be heated.
  • the temperature raising rate in that case is not particularly limited, but may be 5 ° C./min or more and 300 ° C./min or less, or 10 ° C./min or more and 250 ° C./min or less.
  • the productivity is improved, and the void tends to be particularly effectively eliminated.
  • the temperature rise rate is 300 ° C./min or less, problems such as void formation due to rapid temperature rise hardly occur.
  • the curing reaction rate of the adhesive after the third pressure bonding step may be 80% or more, 85% or more, or 90% or more. When the curing reaction rate of the adhesive after the third pressure bonding step is 80% or more, the generation of voids resulting from spring back and the like can be more effectively suppressed.
  • the cure reaction rate of the adhesive after the third pressure bonding step is also determined based on the change in heating value due to the curing reaction, which is measured by differential scanning calorimetry.
  • the heat generation amount ⁇ H (J / g) due to the curing reaction of the adhesive before the first pressure bonding step is “ ⁇ H0”, and the heat generation amount ⁇ H (J / g) due to the curing reaction after the third pressure bonding step is “ ⁇ H3”
  • the conditions for differential scanning calorimetry are the same as in the method for determining the curing reaction rate after the second pressure bonding step.
  • the atmosphere in the heating furnace 60 is not particularly limited, but may be air, nitrogen, formic acid, or the like.
  • a semiconductor wafer may be used as at least one of the first member and the second member.
  • CoW Chip On Wafer
  • WoW Wafer On Wafer
  • FIG.4, FIG.5, FIG.6 and FIG. 7 are respectively sectional drawings which show one another embodiment of the semiconductor device which can be manufactured by the method based on the above-mentioned embodiment.
  • the semiconductor device 200 shown in FIG. 4 includes a semiconductor chip 1 (first member) having a semiconductor chip body 10, a printed circuit board 2 (second member) having a substrate body 20, and an adhesive interposed therebetween. And an agent layer 40.
  • the semiconductor chip has the bumps 32 disposed on the surface of the semiconductor chip on the side of the printed circuit board 2 as the connection portion.
  • the printed circuit board 2 has a bump 33 disposed on the surface of the substrate body 20 on the semiconductor chip side as a connection portion.
  • the bumps 32 of the semiconductor chip 1 and the bumps 33 of the printed circuit board 2 are electrically connected by metal bonding. That is, the semiconductor chip 1 and the printed circuit board 2 are flip chip connected by the bumps 32 and 33.
  • the bumps 32 and 33 are sealed from the external environment by being sealed by the adhesive layer 40.
  • FIG. 5 and 6 show a CoC type semiconductor device which is a connection body in which semiconductor chips are connected to each other.
  • the configuration of the semiconductor device 300 shown in FIG. 5 is the same as that of the semiconductor device 100 except that two semiconductor chips are flip chip connected as the first member and the second member via the wiring 15 and the bumps 30. It is.
  • the configuration of the semiconductor device 400 shown in FIG. 6 is the same as that of the semiconductor device 200 except that two semiconductor chips 1 are flip-chip connected via bumps 32.
  • connection portions such as the wiring 15 and the bumps 32 may be metal films (for example, gold plating) called pads, and post electrodes (For example, a copper pillar) may be used.
  • metal films for example, gold plating
  • post electrodes for example, a copper pillar
  • the connection portion may reach a temperature equal to or higher than the melting point of the solder having the lowest melting point among the metal materials forming the surface of the connection portion.
  • the semiconductor chip body 10 is not particularly limited, and various semiconductors such as an elemental semiconductor composed of the same kind of element such as silicon and germanium, and a compound semiconductor such as gallium arsenide and indium phosphide can be used.
  • the wiring circuit board 2 is not particularly limited, and has an insulating substrate mainly composed of glass epoxy, polyimide, polyester, ceramic, epoxy, bismaleimide triazine, etc. as a substrate main body, and a metal layer formed on the surface
  • insulating substrate mainly composed of glass epoxy, polyimide, polyester, ceramic, epoxy, bismaleimide triazine, etc.
  • a circuit board or the like on which a wiring (wiring pattern) is formed by printing a conductive material.
  • connection part may be composed of only a single component or may be composed of a plurality of components.
  • connection portion may have a structure in which these metals are stacked. Among metal materials, copper and solder are relatively inexpensive.
  • the connection portion may include solder from the viewpoint of improving connection reliability and suppressing warpage.
  • the material of the pad is, as a main component, gold, silver, copper, solder (for example, tin-silver, tin-lead, tin-bismuth, tin-copper, tin-silver-copper), tin, nickel Etc. are used.
  • the pad may be composed of only a single component or may be composed of a plurality of components.
  • the pad may have a structure in which these metals are stacked. From the viewpoint of connection reliability, the pad may contain gold or solder.
  • a metal layer as a component may be formed.
  • the metal layer may be composed of only a single component or may be composed of a plurality of components.
  • the metal layer may have a structure in which a plurality of metal layers are stacked.
  • the metal layer may comprise relatively inexpensive copper or solder.
  • the metal layer may contain a solder from the viewpoint of improving connection reliability and suppressing warpage.
  • Semiconductor devices such as semiconductor devices 100, 200, 300, and 400 are stacked and gold, silver, copper, solder (the main components are, for example, tin-silver, tin-lead, tin-bismuth, tin- Electrical connection may be made with copper, tin-silver-copper), tin, nickel or the like.
  • the metal for connection may be relatively inexpensive copper or solder.
  • an adhesive layer may be flip-chip connected or laminated between semiconductor chips, as in TSV technology, to form holes penetrating the semiconductor chips, and be connected to electrodes on the pattern surface.
  • FIG. 7 is a cross-sectional view showing another embodiment of the semiconductor device.
  • the semiconductor device 500 shown in FIG. 7 has a TSV structure in which a plurality of semiconductor chips are stacked.
  • the semiconductor chip 1 and the interposer 5 are flip chip by connecting the wiring 15 formed on the interposer main body 50 as a wiring circuit board to the bumps 30 of the semiconductor chip 1. It is connected.
  • An adhesive layer 40 is interposed between the semiconductor chip 1 and the interposer 5.
  • the semiconductor chip 1 is repeatedly stacked on the surface of the semiconductor chip 1 opposite to the interposer 5 via the wiring 15, the bumps 30 and the adhesive layer 40.
  • the wirings 15 on the pattern surface on the front and back of the semiconductor chip 1 are connected to each other by a through electrode 34 filled in a hole that penetrates the inside of the semiconductor chip main body 10.
  • a through electrode 34 copper, aluminum or the like can be used.
  • the semiconductor device of the TSV (Through-Silicon Via) structure as illustrated in FIG. 7 it is possible to acquire a signal also from the back surface of the semiconductor chip which is not normally used. Furthermore, since the through electrodes 34 are vertically passed through the semiconductor chip 1, the distance between the facing semiconductor chips 1 and the distance between the semiconductor chip 1 and the interposer 5 can be shortened, and flexible connection is possible.
  • a plurality of semiconductor chips 1 are stacked one by one and temporary temporary pressure bonding is performed, and then a pressure bonding body is obtained by the second pressure bonding step, and finally a plurality of semiconductor chips are collectively pressed. It may be heated under an atmosphere.
  • POP Package On Package
  • the adhesive contains a thermosetting resin and its curing agent.
  • the adhesive may further contain a polymer component having a weight average molecular weight of 10000 or more.
  • the weight average molecular weight of the thermosetting resin may be less than 10000.
  • the thermosetting resin having a weight average molecular weight of less than 10000 reacts with the curing agent to improve the curability of the adhesive. It is also advantageous in terms of void suppression and heat resistance.
  • thermosetting resin an epoxy resin and an acrylic resin are mentioned, for example.
  • the epoxy resin is not particularly limited as long as it has two or more epoxy groups in the molecule.
  • epoxy resin use bisphenol A type, bisphenol F type, naphthalene type, phenol novolak type, cresol novolak type, phenol aralkyl type, biphenyl type, triphenylmethane type, dicyclopentadiene type, various multifunctional epoxy resins, etc. Can. These can be used alone or as a mixture of two or more.
  • the acrylic resin is not particularly limited as long as it has one or more (meth) acrylic groups in the molecule.
  • an acrylic resin for example, bisphenol A type, bisphenol F type, naphthalene type, phenol novolak type, cresol novolak type, phenol aralkyl type, biphenyl type, triphenylmethane type, dicyclopentadiene type, fluorene type, adamantane type, various types A functional acrylic resin etc. can be used. These can be used alone or as a mixture of two or more.
  • “(meth) acrylic group” is used as a term that means either an acrylic group or a methacrylic group.
  • the acrylic resin may be solid at room temperature (25 ° C.). Solids are less likely to generate voids than liquid, and the viscosity (tack) of the B-stage adhesive before curing is small, and tends to be excellent in handling.
  • the number of (meth) acrylic groups contained in the acrylic resin may be 3 or less per molecule. If the number of (meth) acrylic groups is 3 or less, curing tends to proceed sufficiently in a short time until the remaining unreacted groups are reduced.
  • the content of the thermosetting resin in the adhesive is, for example, 10 to 50 parts by mass with respect to 100 parts by mass of the total mass of the adhesive (the mass of components other than the solvent).
  • the content of the thermosetting resin is 10 parts by mass or more, the flow of the adhesive after curing tends to be easily controlled.
  • the content of the thermosetting resin is 50 parts by mass or less, warpage of the semiconductor device tends to be suppressed.
  • the curing agent can be a compound that reacts with the thermosetting resin, a compound that functions as a catalyst for the curing reaction of the thermosetting resin, or a combination of these.
  • curing agents include phenol resin-based curing agents, acid anhydride-based curing agents, amine-based curing agents, imidazole-based curing agents, phosphine-based curing agents, azo compounds, and organic peroxides. Among these, an imidazole curing agent may be used.
  • the phenol resin-based curing agent is not particularly limited as long as it has two or more phenolic hydroxyl groups in the molecule, and examples thereof include phenol novolak, cresol novolac, phenol aralkyl resin, cresol naphthol formaldehyde polycondensate, Examples include triphenylmethane-type polyfunctional phenols and various polyfunctional phenol resins. These can be used alone or as a mixture of two or more.
  • the equivalent ratio (phenolic hydroxyl group / epoxy group, molar ratio) of the phenolic resin-based curing agent to the thermosetting resin is 0.3 to 1.5, 0 from the viewpoint of good curability, adhesiveness and storage stability. .4 to 1.0, or 0.5 to 1.0.
  • the equivalent ratio is 0.3 or more, the curability tends to be improved and the adhesive strength tends to be improved.
  • the equivalent ratio is 1.5 or less, the unreacted phenolic hydroxyl group does not remain excessively, and the water absorption is increased. It tends to be low and insulation reliability improves.
  • Examples of the acid anhydride curing agent include methylcyclohexanetetracarboxylic acid dianhydride, trimellitic anhydride, pyromellitic anhydride, benzophenonetetracarboxylic acid dianhydride, and ethylene glycol bisanhydrotrimellitate. These can be used alone or as a mixture of two or more.
  • the equivalent ratio (acid anhydride group / epoxy group, molar ratio) of the acid anhydride based curing agent to the thermosetting resin is 0.3 to 1.5 from the viewpoint of good curability, adhesiveness and storage stability. , 0.4 to 1.0, or 0.5 to 1.0. If the equivalent ratio is 0.3 or more, the curability tends to be improved and the adhesive strength tends to be improved, and if it is 1.5 or less, the unreacted acid anhydride does not remain excessively, and the water absorption rate is increased. It tends to be low and insulation reliability improves.
  • dicyandiamide As an amine curing agent, for example, dicyandiamide can be used.
  • the equivalent ratio (amine / epoxy group, molar ratio) of the amine curing agent to the thermosetting resin is 0.3 to 1.5, 0.4 to 1 from the viewpoint of good curability, adhesion and storage stability. .0, or 0.5 to 1.0.
  • the equivalent ratio is 0.3 or more, the curability tends to be improved and the adhesive strength tends to be improved, and when it is 1.5 or less, the unreacted amine does not remain excessively, and the insulation reliability is improved. There is a tendency to
  • imidazole-based curing agent examples include 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazole 1-cyano-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazole trimellitate, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2,4-diamino-6- [2′-methylimidazolyl -(1 ')-ethyl-s-triazine, 2,4-diamino-6- [2'-undecylimidazolyl- (1')]-ethyl-s-triazine, 2,4-diamino-6- [4 2'-Ethyl-4'-methylimidazolyl- (1 ')]-ethyl
  • the content of the imidazole-based curing agent may be 0.1 to 20 parts by mass, or 0.1 to 10 parts by mass with respect to 100 parts by mass of the thermosetting resin.
  • the content of the imidazole-based curing agent is 0.1 parts by mass or more, the curability tends to be improved, and when the content is 20 parts by mass or less, the adhesive does not cure before metal bonding is formed, There is a tendency for poor connection to be less likely to occur.
  • the phosphine-based curing agent includes, for example, triphenylphosphine, tetraphenylphosphonium tetraphenylborate, tetraphenylphosphonium tetra (4-methylphenyl) borate and tetraphenylphosphonium (4-fluorophenyl) borate.
  • the content of the phosphine-based curing agent may be 0.1 to 10 parts by mass, or 0.1 to 5 parts by mass with respect to 100 parts by mass of the thermosetting resin.
  • the content of the phosphine-based curing agent is 0.1 parts by mass or more, the curability tends to be improved, and when the content is 10 parts by mass or less, the adhesive does not cure before metal bonding is formed, There is a tendency for poor connection to be less likely to occur.
  • the phenol resin-based curing agent, the acid anhydride-based curing agent and the amine-based curing agent can be used alone or in combination of two or more.
  • the imidazole-based curing agent and the phosphine-based curing agent may be used alone, but may be used together with a phenol resin-based curing agent, an acid anhydride-based curing agent or an amine-based curing agent.
  • organic peroxides examples include ketone peroxides, peroxy ketals, hydroperoxides, dialkyl peroxides, diacyl peroxides, peroxy dicarbonates, and peroxy esters. From the viewpoint of storage stability, hydroperoxides, dialkyl peroxides, or peroxy esters may be selected. Furthermore, hydroperoxide or dialkyl peroxide may be selected from the viewpoint of heat resistance. These can be used alone or as a mixture of two or more.
  • the content of the organic peroxide may be 0.5 to 10% by mass, or 1 to 5% by mass with respect to the acrylic resin. When the content of the organic peroxide is 0.5% by mass or more, curing tends to proceed sufficiently. If the content of the organic peroxide is 10% by mass or less, the decrease in reliability due to the shortening of the molecular chain after curing or the remaining of the unreacted group tends to be suppressed.
  • the curing agent to be combined with the epoxy resin or the acrylic resin is not particularly limited as long as curing proceeds.
  • the curing agent to be combined with the epoxy resin is a combination of a phenol resin-based curing agent and an imidazole-based curing agent, a combination of an acid anhydride-based curing agent and an imidazole-based curing agent, and an amine from the viewpoint of handleability, storage stability and curability.
  • a combination of a system curing agent and an imidazole curing agent, or an imidazole curing agent alone may be used. If the connection is made in a short time, the productivity is improved, and therefore, an imidazole-based curing agent excellent in quick curing may be used alone.
  • the curing agent to be combined with the acrylic resin may be an organic peroxide from the viewpoint of handleability and storage stability.
  • the polymer component having a weight average molecular weight of 10000 or more can be a thermosetting resin, a thermoplastic resin, or a combination thereof.
  • the polymer component include epoxy resin, phenoxy resin, polyimide resin, polyamide resin, polycarbodiimide resin, cyanate ester resin, acrylic resin, polyester resin, polyethylene resin, polyether sulfone resin, polyether imide resin, polyvinyl acetal resin And urethane resins and acrylic rubbers.
  • An epoxy resin, a phenoxy resin, a polyimide resin, an acrylic resin, an acrylic rubber, a cyanate ester resin, or a polycarbodiimide resin which is excellent in heat resistance and film formation may be selected.
  • An epoxy resin, a phenoxy resin, a polyimide resin, an acrylic resin, or an acrylic rubber which is excellent in heat resistance and film formation may be selected.
  • These polymer components can be used alone or as a mixture or copolymer of two or more.
  • the polymer component having a weight average molecular weight of 10000 or more may be a thermosetting resin that reacts with the curing agent.
  • the mass ratio of the polymer component to the epoxy resin as the above-mentioned thermosetting resin is not particularly limited.
  • the weight ratio of the epoxy resin to the polymer component may be 0.01 to 5, 0.05 to 4, or 0.1 to 3 in order for the adhesive to maintain a film-like form.
  • the mass ratio is 0.01 or more, the curability is improved, and the adhesion tends to be further improved.
  • Favorable film formation property is easy to be obtained as this mass ratio is 5 or less.
  • the mass ratio of the polymer component and the acrylic resin as the above-mentioned thermosetting resin is not particularly limited.
  • the mass ratio of the acrylic resin to the polymer component may be 0.01 to 10, 0.05 to 5, or 0.1 to 5.
  • the mass ratio is 0.01 or more, the curability is improved, and the adhesion tends to be further improved.
  • Favorable film formation property is easy to be obtained as this mass ratio is 10 or less.
  • the glass transition temperature (Tg) of the polymer component may be 50 ° C. or more and 200 ° C. or less from the viewpoint of excellent adhesion to the printed circuit board or semiconductor chip of the adhesive.
  • Tg glass transition temperature
  • the tack (viscous) force of the adhesive tends to be moderately weak.
  • the Tg of the polymer component is 200 ° C. or less, the adhesive tends to embed irregularities such as bumps of a semiconductor chip, electrodes formed on a wiring circuit board, and a wiring pattern, and the effect of suppressing voids tends to be relatively large.
  • the Tg herein is measured using a DSC (DSC-7, manufactured by PerkinElmer, Inc.) at a sample amount of 10 mg, a temperature rising rate of 10 ° C./min, under conditions of an air atmosphere.
  • the weight average molecular weight of the polymer component is 10000 or more.
  • the weight average molecular weight of the polymer component may be 30,000 or more, 40000 or more, or 50000 or more, or 500,000 or less in order to exhibit good film-forming property alone.
  • the weight average molecular weight means a value in terms of standard polystyrene, which is measured by gel permeation chromatography (GPC).
  • the adhesive can contain a flux activator which is a compound that exhibits flux activity (activity to remove oxides and impurities).
  • Flux activators include nitrogen-containing compounds having non-covalent electron pairs such as imidazoles and amines, carboxylic acids, phenols and alcohols. The organic acid more strongly exhibits the flux activity than the alcohol etc., and the connectivity is improved.
  • the organic acid that can be used as a flux activator may be a carboxylic acid because the acid is unlikely to remain in the adhesive by reacting with an epoxy resin or the like.
  • the carboxylic acid may be solid from the viewpoint of heat resistance.
  • the melting point of the carboxylic acid may be 70 ° C. or more and 150 ° C. or less from the viewpoint of stability and handleability.
  • the filler may be an insulating inorganic filler, and examples thereof include glass, silica, alumina, titanium oxide, carbon black, mica, boron nitride and the like.
  • a filler selected from silica, alumina, titanium oxide and boron nitride, or silica, alumina and boron nitride may be used.
  • the filler may be a whisker, examples of which include aluminum borate, aluminum titanate, zinc oxide, calcium silicate, magnesium sulfate and boron nitride.
  • the filler may be a resin filler, examples of which include polyurethane, polyimide, methyl methacrylate resin, and methyl methacrylate-butadiene-styrene copolymer resin (MBS). These fillers may be used alone or in combination of two or more.
  • the shape, particle size and content of the filler are not particularly limited.
  • the resin filler can impart flexibility at a high temperature such as 260 ° C., as compared with the inorganic filler, and thus is suitable for improving the reflow resistance.
  • the resin filler is also advantageous in terms of film formability improvement.
  • the filler may be insulating.
  • the adhesive may be substantially free of a conductive metal filler such as a silver filler or a solder filler.
  • the filler may be surface-treated from the viewpoint of dispersibility and adhesion.
  • the filler is surface-treated with, for example, a glycidyl-based (epoxy-based), amine-based, phenyl-based, phenylamino-based, (meth) acrylic-based or vinyl-based surface treating agent.
  • the filler may be surface-treated with a glycidyl-based, phenylamino-based or (meth) acrylic-based surface treatment agent from the viewpoint of dispersibility, fluidity, and adhesive strength.
  • the surface treatment agent may be phenyl type, acrylic type or (meth) acrylic type.
  • the surface treatment agent may be a silane compound such as epoxysilane type, aminosilane type and acrylic silane type.
  • the average particle diameter of the filler may be 1.5 ⁇ m or less from the viewpoint of preventing biting at the time of flip chip connection, and may be 1.0 ⁇ m or less from the viewpoint of visibility and transparency.
  • the content of the filler may be 30 to 90% by mass, or 40 to 80% by mass, based on the mass of the solid content of the adhesive (the mass of components other than the solvent).
  • the content of the filler is 30% by mass or more, the heat dissipation property is high, and the void generation and the moisture absorption ratio tend to be small.
  • the adhesive has appropriate fluidity, and a decrease in connection reliability due to trapping of the filler in the connection portion tends to be suppressed.
  • the adhesive may further include other components such as an ion trapper, an antioxidant, a silane coupling agent, a titanium coupling agent, and a leveling agent.
  • an ion trapper such as an antioxidant, a silane coupling agent, a titanium coupling agent, and a leveling agent.
  • the minimum melt viscosity of the adhesive may be 3000 Pa ⁇ s or less, or 2700 Pa ⁇ s or less, or 300 Pa ⁇ s or more from the viewpoint of void suppression.
  • the minimum melt viscosity of the adhesive is the viscosity (complex viscosity) obtained when the viscoelasticity of the adhesive is measured in the temperature range of 30 to 300 ° C. under the conditions of temperature increase rate 10 ° C./min, frequency 10 Hz and rotational mode
  • the viscosity value is the lowest in terms of viscosity in relation to temperature).
  • a test piece for viscoelasticity measurement for example, a laminate obtained by laminating a plurality of film-like adhesives so as to have a thickness of 300 to 450 ⁇ m may be used.
  • ARES G2 manufactured by TA can be used as a viscosity measuring device.
  • the adhesive may be in the form of a film from the viewpoint of improving the production efficiency of the semiconductor device.
  • the film-like adhesive can be produced by a method of applying a resin varnish containing a thermosetting resin, a curing agent and, if necessary, other components to an equipment film and drying the coating.
  • the resin varnish is prepared by mixing a thermosetting resin curing agent and, if necessary, other components with an organic solvent, and dissolving or dispersing them by stirring or kneading.
  • the resin varnish is applied onto the release-treated substrate film using, for example, a knife coater, a roll coater, an applicator, a die coater, or a comma coater.
  • the organic solvent is reduced from the resin varnish coating by heating, that is, the coating is dried to form a film-like adhesive on the substrate film.
  • a film of resin varnish may be formed on a semiconductor wafer or the like by a method such as spin coating, and then a film-like adhesive may be formed on the semiconductor wafer by a method of drying the coating film.
  • the substrate film is not particularly limited as long as it has heat resistance that can withstand the heating conditions at the time of volatilizing the organic solvent, and a polyester film, a polypropylene film, a polyethylene terephthalate film, a polyimide film, a polyetherimide film, a poly An ether naphthalate film, a methyl pentene film, etc. can be illustrated.
  • the substrate film is not limited to a single layer film composed of these films, and may be a multilayer film composed of two or more materials.
  • the conditions for volatilizing the organic solvent from the resin varnish after application may be heating at 50 to 200 ° C. for 0.1 to 90 minutes.
  • the organic solvent may be removed to a residual amount of 1.5% by mass or less within a range not substantially affecting the preparation of voids and viscosity after mounting.
  • a semiconductor chip with solder bumps chip size: 7.3 mm ⁇ 7.3 mm ⁇ thickness 0.05 mm, solder bump melting point: about 220 ° C., bump height: about 45 ⁇ m in total of copper pillars and solder, bump number 1048 A pin, pitch 80 um, product name: WALTS-TEG CC80 (manufactured by WALTS) was attached to obtain a laminate.
  • the laminate is placed on a stage of a flip chip bonder (FCB3, manufactured by Panasonic Corporation) having a stage and a crimping head, and the laminate is pressed with a load of 25 N for 1 second by a thermal press sandwiched by the stage and the crimping head. While heating to 80 ° C., a temporary press-bonded body was obtained.
  • Second pressure bonding process The obtained temporary pressure bonding body is moved onto the stage of another flip chip bonder (FCB3, manufactured by Panasonic Corporation), and is sandwiched by the stage and the pressure bonding head, while being pressurized with a load of 25 N 230
  • the press-bonded body was obtained by a heat press which is heated at 1 ° C. for 1 second.
  • the crimped body was placed in an oven of a pressure reflow apparatus (manufactured by Shin Apex, product name: VSU 28).
  • the pressure in the oven was set to 0.4 MPa, and the temperature was raised from room temperature to 175 ° C. at a heating rate of 20 ° C./min.
  • the pressure-bonded body was heated for 10 minutes in a pressurized atmosphere while maintaining the pressure and the temperature to obtain a semiconductor device sample for evaluation.
  • Example 2 A semiconductor device sample for evaluation was obtained in the same manner as in Example 1 except that the heating temperature at the time of heating the pressure-bonded body in the oven of the pressure reflow apparatus was changed from 175 ° C. to 260 ° C.
  • Example 1 A temporary crimped body was obtained in the same manner as in Example 1. The obtained temporary pressure-bonded body was heated at 175 ° C. for 10 minutes under atmospheric pressure in an oven (manufactured by Yamato Scientific Co., Ltd., product name: DKN 402) to obtain a semiconductor device sample for evaluation.
  • Comparative example 2 A semiconductor device sample for evaluation was obtained in the same manner as in Comparative Example 1 except that the heating temperature at the time of heating the temporary pressure-bonded body at atmospheric pressure was changed from 175 ° C. to 260 ° C.
  • Example 3 A crimped body was obtained under the same conditions as in Example 1. The obtained crimped body was heated at 175 ° C. for 10 minutes under atmospheric pressure in an oven (manufactured by Yamato Scientific Co., Ltd., product name: DKN 402) to obtain a semiconductor device sample for evaluation.
  • Comparative example 4 A semiconductor device sample for evaluation was obtained in the same manner as in Comparative Example 3 except that the heating temperature when heating the pressure-bonded body using an oven was changed from 175 ° C. to 260 ° C.
  • Examples 1 and 2 both showed good results in terms of void suppression and connection securing. That is, according to the method of the present invention, it was confirmed that compatibility between void suppression and connection securing can be achieved.
  • the film adhesive has a total thickness of 300 to 450 ⁇ m while being heated to 60 ° C. using a roll laminator (HOT DOG Leon 13 DX, manufactured by Lamy Corporation). As shown, several sheets were stacked. The resulting laminate is used as a test piece, using a rotary rheometer (TA product, ARES G2), at a temperature rising rate of 10 ° C./min, frequency: 10 Hz, temperature range of 20 ° C. to 300 ° C. The change in viscosity (complex viscosity) was measured. The minimum value of viscosity at the measured viscosity change was taken as the lowest melt viscosity.
  • TA product ARES G2
  • the calorific value ⁇ H3 (J / g) due to the curing reaction of the adhesive corresponding after the third pressure bonding step was determined by differential scanning calorimetry under the same conditions as above using the sample taken from the film adhesive . From the obtained ⁇ H 0 and ⁇ H 3, the curing reaction rate after the third pressure bonding step was calculated by the following equation. Curing reaction rate (%) after the third pressure bonding step: ( ⁇ H 0 ⁇ H 3) / ⁇ H 0 ⁇ 100
  • Example 5 Fabrication of Semiconductor Device (Example 5) A semiconductor device sample for evaluation was obtained in the same manner as in Example 1 except that the time for heating and pressing the laminate in the first pressure bonding step was changed to 3 seconds.
  • Example 6 Evaluation was performed in the same manner as in Example 1 except that the time for heating and pressing the laminate in the first pressure bonding step was changed to 3 seconds, and the pressure in the oven was changed to 0.8 MPa in the third pressure bonding step.
  • the laminate was placed on a stage of a flip chip bonder (FCB3, manufactured by Panasonic Corporation) having a stage and a pressure bonding head.
  • a temporary press-bonded body was obtained by a heat press which is heated at a temperature of 80 ° C. while pressing with a load of 25 N for 3 seconds by clamping with a stage and a press-bonding head.
  • the obtained temporary crimped body was moved onto the stage of another flip chip bonder (FCB3, manufactured by Panasonic Corporation).
  • the semiconductor device sample for evaluation was obtained by heating at a temperature of 260 ° C. while pressing with a load of 25 N for 5 seconds.
  • the calorific value ⁇ H2 (J / g) due to the curing reaction of the adhesive corresponding to after the second pressure bonding step was determined by differential scanning calorimetry under the same conditions as above using the sample taken from the film adhesive . From the obtained ⁇ H 0 and ⁇ H 2, the curing reaction rate after the second pressure bonding step was calculated by the following equation. Curing reaction rate (%) after the second pressure bonding step: ( ⁇ H0- ⁇ H2) / ⁇ H0 ⁇ 100
  • SYMBOLS 1 ... semiconductor chip, 2 ... wiring circuit board, 3 ... laminated body, 4 ... temporary crimping body, 5 ... interposer, 6 ... crimping body, 10 ... semiconductor chip body, 15, 16 ... wiring, 20 ... board body, 30 , 32, 33: bump, 34: penetrating electrode, 40: adhesive layer, 41, 44: crimping head, 42, 45: stage, 43, 46: pressing device, 50: interposer body, 60: heating furnace, 100 , 200, 300, 400, 500 ... semiconductor devices.

Abstract

Disclosed is a method for manufacturing a semiconductor device, the method including: a step for pressure-bonding a first member having a connecting portion and a second member having a connecting portion at a temperature lower than the melting point of the connecting portion of the first member and the melting point of the connecting portion of the second member by using a thermosetting adhesive to thereby obtain a temporarily pressure-bonded body in which the connecting portion of the first member and the connecting portion of the second member are disposed facing each other; a step for obtaining a pressure-bonded body by sandwiching the temporarily pressure-bonded body between a pair of the pressing members disposed facing each other and by pressurizing the same while heating to a temperature higher than the melting point of at least one among the connecting portion of the first member and the connecting portion of the second member; and a step for further heating the pressure-bonded body in a pressurized atmosphere. The first member is a semiconductor chip or a semiconductor wafer, and the second member is a wiring circuit board, a semiconductor chip or a semiconductor wafer.

Description

半導体装置、半導体装置の製造方法及び接着剤Semiconductor device, method of manufacturing semiconductor device, and adhesive
 本発明は、半導体装置、半導体装置の製造方法及び接着剤に関する。 The present invention relates to a semiconductor device, a method of manufacturing a semiconductor device, and an adhesive.
 従来、半導体チップと基板を接続する際には、金ワイヤ等の金属細線を用いるワイヤーボンディング方式が広く適用されてきた。 Conventionally, when connecting a semiconductor chip and a substrate, a wire bonding method using metal thin wires such as gold wires has been widely applied.
 近年、半導体装置に対する高機能、高集積、高速化等の要求に対応するため、半導体チップ又は配線回路基板にバンプと呼ばれる導電性突起を接続部として設け、接続部同士の接続によって半導体チップと配線回路基板又は他の半導体チップとを直接接続するフリップチップ接続方式(FC接続方式)が広く採用されている。例えば、半導体チップと配線回路基板間の接続であるCOB(Chip On Board)型の接続方式は、FC接続方式である。FC接続方式は、半導体チップ上にバンプ又は配線を接続部として設け、半導体チップ間で接続するCoC(Chip On Chip)型接続方式にも広く用いられている。 In recent years, in order to meet the demand for high performance, high integration, high speed, etc., for semiconductor devices, conductive bumps called bumps are provided as connecting portions on a semiconductor chip or wiring circuit board, and semiconductor chips and wiring are connected by connecting the connecting portions. A flip chip connection method (FC connection method) for directly connecting a circuit board or another semiconductor chip is widely adopted. For example, a COB (Chip On Board) type connection method, which is a connection between a semiconductor chip and a printed circuit board, is an FC connection method. The FC connection method is widely used also in a CoC (Chip On Chip) connection method in which bumps or wires are provided as connection portions on a semiconductor chip and connected between semiconductor chips.
 FC接続方式においては、一般に、接続部の信頼性の観点から、はんだ、スズ、金、銀、銅等の接続部を金属接合させることが多い。 In the FC connection method, in general, connection portions such as solder, tin, gold, silver, copper and the like are often metal-joined from the viewpoint of connection reliability.
特開2008-294382号公報JP, 2008-294382, A
 FC接続方式の半導体装置の組立では、一般的にまず、ダイシングした半導体ウエハから半導体チップを、コレットでピックアップして押圧装置に供給する。次いで、押圧装置で半導体チップを配線回路基板又は他の半導体チップと圧着する。圧着の際、金属結合が形成されるように、これらの一方又は両方の接続部の金属が融点以上に達するように押圧装置の温度を上昇させる。その後、高温の押圧装置を冷却してから、再び半導体チップを押圧装置に供給する。コレットでピックアップされる半導体チップ上に予め半導体接着剤が供給されていてもよく、その場合、連続して半導体装置を製造するために、押圧装置を、接続部の金属が溶融する高温から、半導体接着剤が供給された半導体チップを供給可能な低温まで冷却する必要がある。 In the assembly of a semiconductor device of the FC connection type, generally, a semiconductor chip is first picked up by a collet from a diced semiconductor wafer and supplied to a pressing device. Next, the semiconductor chip is crimped to the printed circuit board or another semiconductor chip by a pressing device. During crimping, the temperature of the pressing device is increased so that the metal of one or both of these connections reaches a temperature above the melting point so that a metallurgical bond is formed. Thereafter, after the high temperature pressing device is cooled, the semiconductor chip is again supplied to the pressing device. A semiconductor adhesive may be supplied in advance on the semiconductor chip to be picked up by the collet, in which case the pressing device is heated from the high temperature at which the metal of the connection portion is melted to continuously manufacture the semiconductor device. It is necessary to cool the adhesive-supplied semiconductor chip to a low temperature that can be supplied.
 そこで、一つの押圧装置で半導体チップを配線回路基板又は他の半導体チップを比較的低温で仮圧着し、得られた仮圧着体を、仮圧着とは別の押圧装置を用いて高温で加熱しながら加圧して、半導体チップが配線回路基板又は他の半導体チップと接着するとともに電気的に接続された接続体を得る方法を採用することにより、押圧装置の昇温と冷却を繰り返す必要がなく、生産効率が向上することが期待される。 Therefore, one pressing device temporarily crimps the semiconductor chip on the printed circuit board or another semiconductor chip at a relatively low temperature, and heats the obtained temporary crimped body at a high temperature using a pressing device different from the temporary crimping. However, it is not necessary to repeat heating and cooling of the pressing device by adopting a method of applying pressure and bonding the semiconductor chip to the printed circuit board or another semiconductor chip and obtaining a connected body electrically connected. It is expected that production efficiency will improve.
 しかし、このような方法によってもなお、生産効率の点で必ずしも十分ではない。大量の半導体装置を連続的に製造する場合、多数の押圧装置を必要とするため、生産効率の向上には限界があった。 However, even such a method is not always sufficient in terms of production efficiency. When a large number of semiconductor devices are continuously manufactured, a large number of pressing devices are required, and there is a limit to improvement in production efficiency.
 本発明者らの検討によれば、第一の押圧装置を用いて半導体チップと基板又は他の半導体チップとを比較的低温で仮圧着する工程と、第一の押圧装置とは別の第二の押圧装置を用いて、半導体チップ又は基板の接続部の金属の融点以上の温度で加熱しながら加圧することで圧着体を得る工程と、圧着体を加熱炉内で更に加熱する工程とを含む方法によって、生産効率の更なる向上を図ることができる。ところが、この方法で特に高密度、薄型化、及び小型化した半導体装置を製造する場合に、接続不良が発生したり、接着剤中にボイドが残存したりする可能性があることが、本発明者らの更なる検討により明らかとなった。ボイドは、信頼性低下の原因になる得るため、ボイドが抑制されることが望ましい。 According to the study of the present inventors, the step of temporarily pressure-bonding the semiconductor chip and the substrate or another semiconductor chip at a relatively low temperature using the first pressing device, and the second step different from the first pressing device And a step of obtaining a pressure-bonded body by applying pressure while heating at a temperature equal to or higher than the melting point of the metal of the connection portion of the semiconductor chip or the substrate using the pressure device; and a step of further heating the pressure-bonded body in a heating furnace. By the method, the production efficiency can be further improved. However, in the case of manufacturing a semiconductor device with high density, thickness reduction, and miniaturization particularly by this method, there is a possibility that connection failure may occur or voids may remain in the adhesive. It became clear by the further examination of them. It is desirable that the voids be suppressed because the voids can be a source of reduced reliability.
 そこで本発明の一側面の目的は、接続部を有する半導体チップ又は半導体ウエハを、接続部を有する他の部材と、接着剤を介して接着するとともに接続部同士を電気的に接続することを含む、半導体装置を製造する方法に関して、接着剤中のボイドの発生を抑制し、且つ適切な電気的接続を確保しながら、多数の半導体装置を効率的に製造することを可能にすることにある。 Therefore, an object of one aspect of the present invention involves bonding a semiconductor chip or a semiconductor wafer having a connection portion to another member having a connection portion via an adhesive and electrically connecting the connection portions. Another object of the present invention is to provide a method of manufacturing a semiconductor device, which makes it possible to efficiently manufacture a large number of semiconductor devices while suppressing the generation of voids in an adhesive and ensuring an appropriate electrical connection.
 本発明の一側面は、接続部を有する第一の部材と接続部を有する第二の部材とを、熱硬化性の接着剤を介して、前記第一の部材の接続部の融点及び前記第二の部材の接続部の融点よりも低い温度で圧着することによって、前記第一の部材の接続部と前記第二の部材の接続部とが対向配置されている仮圧着体を得る工程と、仮圧着体を、対向配置された一対の押圧部材の間に挟むことにより、前記第一の部材の接続部又は前記第二の部材の接続部のうち少なくとも一方の融点以上の温度に加熱しながら加圧することによって、圧着体を得る工程と、圧着体を加圧雰囲気下で加熱する工程と、を備える、半導体装置を製造する方法を提供する。前記第一の部材が半導体チップ又は半導体ウエハで、前記第二の部材が配線回路基板、半導体チップ又は半導体ウエハであってもよい。 One aspect of the present invention relates to a first member having a connection portion and a second member having a connection portion, the melting point of the connection portion of the first member and the second portion having a thermosetting adhesive. Obtaining a temporary pressure-bonded body in which the connection portion of the first member and the connection portion of the second member are disposed to be opposed by pressure bonding at a temperature lower than the melting point of the connection portion of the two members; By holding the temporary pressure-bonded body between a pair of opposed pressing members, the temporary pressure-bonded body is heated to a temperature equal to or higher than the melting point of at least one of the connection portion of the first member and the connection portion of the second member. A method of manufacturing a semiconductor device is provided, comprising the steps of obtaining a pressure-bonded body by pressing and heating the pressure-bonded body in a pressured atmosphere. The first member may be a semiconductor chip or a semiconductor wafer, and the second member may be a printed circuit board, a semiconductor chip or a semiconductor wafer.
 ここで、本明細書において、第一の部材と第二の部材とを熱硬化性の接着剤を介して圧着することによって仮圧着体を得る工程を「第一の圧着工程」ということがある。仮圧着体を第一の部材の接続部又は第二の部材の接続部のうち少なくとも一方の融点以上の温度に加熱しながら加圧することによって圧着体を得る工程を「第二の圧着工程」ということがある。圧着体を加圧雰囲気下で更に加熱する工程を「第三の圧着工程」ということがある。これら3つの圧着工程の組み合わせにより、接着剤中のボイドの発生を抑制し、且つ適切な電気的接続を確保しながら、多数の半導体装置を効率的に製造することができる。 Here, in the present specification, the step of obtaining a temporary press-bonded body by pressing the first member and the second member via the thermosetting adhesive may be referred to as "first pressing step". . The step of obtaining a crimped body by pressing the temporary crimped body while heating to a temperature equal to or higher than the melting point of at least one of the connecting portion of the first member and the connecting portion of the second member is referred to as "second crimping step". Sometimes. The step of further heating the crimped body in a pressurized atmosphere is sometimes referred to as the "third crimping step". A combination of these three pressure bonding processes can efficiently produce a large number of semiconductor devices while suppressing the generation of voids in the adhesive and ensuring an appropriate electrical connection.
 仮圧着体を加熱しながら加圧することによって圧着体を得る第二の圧着工程において、熱硬化性の接着剤を部分的に硬化させ、圧着体を加圧雰囲気下で加熱する第三の圧着工程において、熱硬化性の接着剤を更に硬化させてよい。この場合、第二の圧着工程において、熱硬化性の接着剤を硬化反応率が30%以下となるまで硬化させてよい。また、第三の圧着工程において、熱硬化性の接着剤を硬化反応率が85%以上となるまで更に硬化させてよい。 Third pressure bonding step in which a thermosetting adhesive is partially cured in the second pressure bonding step to obtain a pressure bonded body by heating and pressing the temporary pressure bonded body, and the pressure bonded body is heated in a pressure atmosphere The thermosetting adhesive may be further cured. In this case, in the second pressure bonding step, the thermosetting adhesive may be cured until the curing reaction rate becomes 30% or less. In the third pressure bonding step, the thermosetting adhesive may be further cured until the curing reaction rate reaches 85% or more.
 圧着体を加圧雰囲気下で加熱する第三の圧着工程において、複数の圧着体を一括して加熱してよい。第三の圧着工程における加熱温度が、130℃以上300℃以下であってもよい。 In the third pressure-bonding step of heating the pressure-bonded body in a pressurized atmosphere, the plurality of pressure-bonded bodies may be heated at one time. The heating temperature in the third pressure bonding step may be 130 ° C. or more and 300 ° C. or less.
 熱硬化性の接着剤は、重量平均分子量10000未満の熱硬化性樹脂と、熱硬化性樹脂の硬化剤と、重量平均分子量10000以上の高分子成分と、を含有してよい。 The thermosetting adhesive may contain a thermosetting resin having a weight average molecular weight of less than 10000, a curing agent for the thermosetting resin, and a polymer component having a weight average molecular weight of 10000 or more.
 本発明の別の一側面は、上述した方法に用いられる熱硬化性の接着剤に関する。この接着剤の最低溶融粘度は、3000Pa・s以下であってもよい。また、熱硬化性の接着剤がフィルム状であってよい。 Another aspect of the present invention relates to a thermosetting adhesive used in the method described above. The minimum melt viscosity of the adhesive may be 3000 Pa · s or less. The thermosetting adhesive may be in the form of a film.
 本発明の更に別の一側面は、接続部を有する第一の部材と、接続部を有する第二の部材と、これらの間に介在する接着剤層とを備え、第一の部材の接続部と第二の部材の接続部とが金属接合によって電気的に接続されている、半導体装置を提供する。接着剤層が、熱硬化性の接着剤の硬化物からなり、熱硬化性の接着剤の最低溶融粘度が、3000Pa・s以下であってもよい。第一の部材が半導体チップ又は半導体ウエハで、第二の部材が配線回路基板、半導体チップ又は半導体ウエハである、半導体装置である。 A further aspect of the present invention comprises a first member having a connection, a second member having a connection, and an adhesive layer interposed therebetween, the connection of the first member And a connection portion of the second member are electrically connected by metal bonding. The adhesive layer may be a cured product of a thermosetting adhesive, and the minimum melt viscosity of the thermosetting adhesive may be 3000 Pa · s or less. The first member is a semiconductor chip or a semiconductor wafer, and the second member is a printed circuit board, a semiconductor chip or a semiconductor wafer.
 本発明の一側面は、接続部を有する半導体チップ又は半導体ウエハを、接続部を有する他の部材と、接着剤を介して接着するとともに接続部同士を電気的に接続することを含む、半導体装置を製造する方法に関して、接着剤中のボイドの発生を抑制し、且つ適切な電気的接続を確保しながら、多数の半導体装置を効率的に製造することを可能にする。 One aspect of the present invention is a semiconductor device including bonding a semiconductor chip or a semiconductor wafer having a connection portion to another member having the connection portion via an adhesive and electrically connecting the connection portions. With respect to the method of manufacturing the semiconductor device, it is possible to efficiently manufacture a large number of semiconductor devices while suppressing the generation of voids in the adhesive and ensuring an appropriate electrical connection.
第一の部材と第二の部材とを圧着し仮圧着体を得る工程の一実施形態を示す工程図である。It is process drawing which shows one Embodiment of the process of crimp-bonding a 1st member and a 2nd member, and obtaining a temporary crimping | compression-bonding body. 仮圧着体を加熱及び加圧して圧着体を得る工程の一実施形態を示す工程図である。It is process drawing which shows one Embodiment of the process of heating and pressurizing a temporary press-fit body, and obtaining a press-fit body. 圧着体を加圧雰囲気下で加熱する工程の一実施形態を示す工程図である。It is a process chart showing an embodiment of a process of heating a crimped body under pressurization atmosphere. 半導体装置の他の一実施形態を示す模式断面図である。It is a schematic cross section which shows other one Embodiment of a semiconductor device. 半導体装置の他の一実施形態を示す模式断面図である。It is a schematic cross section which shows other one Embodiment of a semiconductor device. 半導体装置の他の一実施形態を示す模式断面図である。It is a schematic cross section which shows other one Embodiment of a semiconductor device. 半導体装置の他の一実施形態を示す模式断面図である。It is a schematic cross section which shows other one Embodiment of a semiconductor device.
 以下、本発明のいくつかの実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。 Hereinafter, some embodiments of the present invention will be described in detail. However, the present invention is not limited to the following embodiments.
(半導体装置の製造方法)
 図1、図2及び図3は、半導体装置を製造する方法の一実施形態を示す工程図である。本実施形態に係る方法は、接続部を有する第一の部材と接続部を有する第二の部材とを、熱硬化性の接着剤を介して、第一の部材の接続部の融点及び第二の部材の接続部の融点よりも低い温度で圧着することによって、第一の部材の接続部と第二の部材の接続部とが対向配置されている仮圧着体を得る第一の圧着工程と、仮圧着体を、対向配置された一対の押圧部材の間に挟むことにより、第一の部材の接続部又は第二の部材の接続部のうち少なくとも一方の融点以上の温度に加熱しながら加圧することによって、圧着体を得る第二の圧着工程と、圧着体を加圧雰囲気下で加熱する第三の圧着工程とを含む。
(Method of manufacturing semiconductor device)
FIG. 1, FIG. 2 and FIG. 3 are process drawings showing one embodiment of a method of manufacturing a semiconductor device. In the method according to the present embodiment, the melting point of the connection portion of the first member and the second member of the first member having the connection portion and the second member having the connection portion via the thermosetting adhesive. Obtaining a temporary pressure-bonded body in which the connection portion of the first member and the connection portion of the second member are disposed opposite to each other by pressure bonding at a temperature lower than the melting point of the connection portion of The temporary pressure-bonded body is interposed between a pair of opposing pressing members to heat the material while heating to a temperature equal to or higher than the melting point of at least one of the connection of the first member and the connection of the second member. A second pressure-bonding step of obtaining a pressure-bonded body by pressing, and a third pressure-bonding step of heating the pressure-bonded body under a pressure atmosphere are included.
 図1は、半導体チップ1(第一の部材)と配線回路基板2(第二の部材)とを圧着し、仮圧着体4を得る第一の圧着工程を示す。まず、図1の(a)に示されるように、半導体チップ本体10、及び接続部としてのバンプ30を有する半導体チップ1を、基板本体20、及び接続部としての配線16を有する配線回路基板2に、これらの間に熱硬化性の接着剤層40を配置しながら重ねあわせて、積層体3を形成させる。半導体チップ1は、半導体ウエハのダイシングによって形成された後、ピックアップされて配線回路基板2上まで搬送され、接続部としてのバンプ30と配線16とが対向配置されるように、位置合わせされる。積層体3は、対向配置された一対の仮圧着用押圧部材としての圧着ヘッド41及びステージ42を有する押圧装置43のステージ42上で形成される。バンプ30は、半導体チップ本体10上に設けられた配線15上に設けられている。配線回路基板2の配線16は、基板本体20上の所定の位置に設けられている。バンプ30及び配線16は、それぞれ、金属材料によって形成された表面を有する。 FIG. 1 shows a first pressure-bonding step of obtaining a temporary pressure-bonded body 4 by pressure-bonding the semiconductor chip 1 (first member) and the printed circuit board 2 (second member). First, as shown in FIG. 1A, a semiconductor chip body 10 and a semiconductor chip 1 having a bump 30 as a connection portion, a substrate body 20, and a wired circuit board 2 having a wiring 16 as a connection portion Then, while arranging a thermosetting adhesive layer 40 between them, the laminate 3 is formed. The semiconductor chip 1 is formed by dicing of a semiconductor wafer, then picked up and transported to the wiring circuit board 2 and aligned so that the bumps 30 as the connection portions and the wirings 16 are disposed to face each other. The laminate 3 is formed on a stage 42 of a pressing device 43 having a pressure bonding head 41 and a stage 42 as a pair of opposing temporary pressure bonding pressing members. The bumps 30 are provided on the wiring 15 provided on the semiconductor chip body 10. The wires 16 of the printed circuit board 2 are provided at predetermined positions on the substrate body 20. Each of the bumps 30 and the interconnections 16 has a surface formed of a metal material.
 熱硬化性の接着剤層40は、予め準備されたフィルム状の接着剤を配線回路基板2に貼り付けることによって形成された層であってもよい。フィルム状の接着剤は、加熱プレス、ロールラミネート、真空ラミネート等によって貼り付けることができる。接着剤層の供給面積及び厚みは、半導体チップ1又は配線回路基板2のサイズ、接続部の高さ等に応じて適宜設定される。フィルム状の接着剤を半導体チップ1に貼付してもよい。フィルム状の接着剤を半導体ウエハに貼付し、その後、半導体ウエハをダイシングして半導体ウエハを個片化することによって、フィルム状の接着剤が貼付された半導体チップ1を作製してもよい。 The thermosetting adhesive layer 40 may be a layer formed by attaching a film adhesive prepared in advance to the printed circuit board 2. The film-like adhesive can be attached by a heat press, roll laminate, vacuum laminate or the like. The supply area and thickness of the adhesive layer are appropriately set in accordance with the size of the semiconductor chip 1 or the printed circuit board 2, the height of the connection portion, and the like. A film-like adhesive may be attached to the semiconductor chip 1. The film-like adhesive may be attached to the semiconductor wafer, and then the semiconductor wafer may be diced to separate the semiconductor wafer, thereby producing the semiconductor chip 1 to which the film-like adhesive is attached.
 続いて、図1の(b)に示されるように、積層体3を、仮圧着用押圧部材としてのステージ42及び圧着ヘッド41の間に挟むことによって加熱及び加圧し、それにより半導体チップ1を配線回路基板2を仮圧着し、仮圧着体4を得る。図1の実施形態の場合、圧着ヘッド41は、半導体チップ1側に配置され、ステージ42は、配線回路基板2側に配置されている。ステージ及び圧着ヘッドを有する仮圧着用押圧装置としては、フリップチップボンダー等を用いることができる。 Subsequently, as shown in (b) of FIG. 1, the laminated body 3 is heated and pressed by being sandwiched between the stage 42 and the pressure bonding head 41 as a temporary pressure bonding pressing member, whereby the semiconductor chip 1 is The wiring circuit board 2 is temporarily pressure-bonded to obtain a temporary pressure-bonded body 4. In the case of the embodiment of FIG. 1, the pressure bonding head 41 is disposed on the semiconductor chip 1 side, and the stage 42 is disposed on the printed circuit board 2 side. A flip chip bonder or the like can be used as a temporary pressure bonding pressing device having a stage and a pressure bonding head.
 ステージ42及び圧着ヘッド41のうち少なくとも一方が、仮圧着のために積層体3を加熱及び加圧する時に、半導体チップ1の接続部としてのバンプ30の融点、及び配線回路基板2の接続部としての配線16の融点よりも低い温度に加熱される。本明細書において、「接続部の融点」は、接続部の表面を形成している金属材料の融点を意味する。 When at least one of the stage 42 and the pressure bonding head 41 heats and presses the laminate 3 for temporary pressure bonding, the melting point of the bumps 30 as the connection portion of the semiconductor chip 1 and the connection portion of the printed circuit board 2 It is heated to a temperature lower than the melting point of the wiring 16. As used herein, “melting point of connection” means the melting point of the metal material forming the surface of the connection.
 仮圧着体を得る工程では、第一の部材としての半導体チップ等をピックアップする際に熱が半導体チップ等へ転写しないように、仮圧着用押圧部材が低温に設定される。仮圧着のために積層体を加熱及び加圧する間、巻き込まれたボイドを排除できる程度に接着剤層の流動性を高めるために、仮圧着用押圧部材をある程度高温に加熱してもよい。冷却時間を短縮するため、半導体チップ等をピックアップする時の押圧部材の温度と、仮圧着体を得るために積層体を加熱及び加圧する時の押圧部材の温度との差は小さくてもよい。この温度差は100℃以下、又は60℃以下であってもよい。この温度差は一定であってもよい。温度差が100℃以下又は60℃以下であると、仮圧着用押圧部材の冷却にかかる時間を短くすることができる。 In the step of obtaining the temporary press-bonded body, the pressing member for temporary press-bonding is set to a low temperature so that heat is not transferred to the semiconductor chip or the like when picking up the semiconductor chip or the like as the first member. The temporary pressing member may be heated to a high temperature to a certain extent in order to enhance the fluidity of the adhesive layer to the extent that the rolled-in voids can be eliminated during heating and pressing of the laminate for temporary pressing. In order to shorten the cooling time, the difference between the temperature of the pressing member when picking up a semiconductor chip or the like and the temperature of the pressing member when heating and pressing the laminated body to obtain a temporary pressure-bonded body may be small. The temperature difference may be 100 ° C. or less, or 60 ° C. or less. This temperature difference may be constant. When the temperature difference is 100 ° C. or less or 60 ° C. or less, the time required for cooling the temporary pressure bonding pressing member can be shortened.
 仮圧着体を得るために積層体を加熱及び加圧する時の仮圧着用押圧部材の温度は、接着剤層の反応開始温度よりも低い温度であってもよい。反応開始温度とは、DSC(パーキンエルマー社製、DSC-Pyirs1)を用いて、接着剤のサンプル量10mg、昇温速度10℃/分、測定雰囲気:空気又は窒素の条件で測定したときに得られるDSCサーモグラムにおけるOn-set温度をいう。 The temperature of the pressing member for temporary pressure bonding when heating and pressing the laminate to obtain the temporary pressure bonded body may be a temperature lower than the reaction start temperature of the adhesive layer. The reaction start temperature is obtained by using DSC (Perkin Elmer, DSC-Pyirs 1), and measuring the sample amount of adhesive 10 mg, heating rate 10 ° C./min, measurement atmosphere: under conditions of air or nitrogen. On-set temperature in the DSC thermogram.
 以上の観点から、仮圧着体を得るために積層体を加熱及び加圧する時のステージ42及び/又は圧着ヘッド41の温度は、接着剤が配線回路基板又は半導体ウエハ等に密着し、かつ接着剤の硬化反応が進行しない温度に設定することができる。この観点から、仮圧着体を得るために積層体を加熱及び加圧する時のステージ42及び/又は圧着ヘッド41の温度は、140℃以下、110℃以下、又は80℃以下であってもよく、25℃以上であってもよい。このように第一の圧着工程を低温で行ったとしても、これに続く第二の圧着工程及び第三の圧着工程を経ることにより、ボイド抑制及び接続の点で十分な半導体装置を得ることができる。 From the above point of view, the temperature of the stage 42 and / or the pressure bonding head 41 when the laminate is heated and pressed to obtain a temporary pressure bonded body is such that the adhesive adheres to the printed circuit board or semiconductor wafer etc. It can be set to a temperature at which the curing reaction does not proceed. From this point of view, the temperature of the stage 42 and / or the pressure bonding head 41 when heating and pressing the laminate to obtain a temporary pressure-bonded body may be 140 ° C. or less, 110 ° C. or less, or 80 ° C. or less. It may be 25 ° C. or higher. Thus, even if the first pressure bonding step is performed at a low temperature, a semiconductor device sufficient in terms of void suppression and connection can be obtained through the subsequent second pressure bonding step and third pressure bonding step. it can.
 仮圧着体4を得るために積層体3を加圧するための押圧荷重は、バンプ数、バンプの高さばらつきの吸収、及びバンプ変形量の制御を考慮して適宜設定される。仮圧着体4において、半導体チップ1の接続部(バンプ30)と配線回路基板2の接続部(配線16)とが接触していてもよい。これにより、この後の工程において金属結合が形成され易く、また、接着剤の噛み込みが少ない傾向がある。接続部同士を充分に接触させる観点から、仮圧着体4を得るために積層体3を加圧するための押圧荷重は、例えば、半導体チップ1のバンプ30の1個あたり、0.009~0.2Nであってもよい。 The pressure load for pressing the laminate 3 to obtain the temporary pressure-bonded body 4 is appropriately set in consideration of the number of bumps, absorption of bump height variations, and control of the amount of bump deformation. In the temporary press-bonded body 4, the connection portion (bump 30) of the semiconductor chip 1 may be in contact with the connection portion (wiring 16) of the printed circuit board 2. As a result, metal bonding is likely to be formed in the subsequent steps, and the biting of the adhesive tends to be small. The pressing load for pressing the laminated body 3 to obtain the temporary pressure-bonded body 4 is, for example, 0.009 to 0. It may be 2N.
 仮圧着体4を得るために積層体3を加圧する時間は、生産性向上の観点から、5秒以下、3秒以下、又は1秒以下であってもよく、0.5秒以上であってもよい。 The time for pressurizing the laminate 3 to obtain the temporary pressure-bonded body 4 may be 5 seconds or less, 3 seconds or less, or 1 second or less from the viewpoint of improving productivity, and is 0.5 seconds or more. It is also good.
 図2は、仮圧着体4を加熱しながら加圧することによって、圧着体6を得る第二の圧着工程を示す。図2の(a)及び(b)に示されるように、押圧装置43とは別に準備された、本圧着用押圧部材としての対向配置されたステージ45及び圧着ヘッド44を有する押圧装置46を用いて、仮圧着体4を加熱及び加圧する。仮圧着体4を、ステージ45及び圧着ヘッド44で挟むことによって加熱及び加圧する。図2の実施形態の場合、圧着ヘッド44は、仮圧着体4の半導体チップ1側に配置され、ステージ45は、仮圧着体4の配線回路基板2側に配置されている。 FIG. 2 shows a second pressure-bonding step of obtaining the pressure-bonded body 6 by pressurizing the temporary pressure-bonded body 4 while heating. As shown in (a) and (b) of FIG. 2, using a pressing device 46 prepared separately from the pressing device 43 and having a stage 45 and a crimping head 44 oppositely disposed as a pressing member for full crimping. And heat and press the temporary pressure bonding body 4. The temporary press-bonded body 4 is heated and pressurized by being pinched by the stage 45 and the press-contact head 44. In the case of the embodiment of FIG. 2, the pressure bonding head 44 is disposed on the semiconductor chip 1 side of the temporary pressure bonding body 4, and the stage 45 is disposed on the printed circuit board 2 side of the temporary pressure bonding body 4.
 ステージ45又は圧着ヘッド44のうち少なくとも一方が、仮圧着体4を加熱及び加圧するときに、半導体チップ1の接続部としてのバンプ30の融点、又は配線回路基板2の接続部としての配線16の融点のうち少なくともいずれか一方の融点以上の温度に加熱される。 When at least one of the stage 45 and the pressure bonding head 44 heats and presses the temporary pressure bonding body 4, the melting point of the bump 30 as the connection portion of the semiconductor chip 1 or the wiring 16 as the connection portion of the printed circuit board 2 It is heated to a temperature equal to or higher than at least one of the melting points.
 第二の圧着工程により、通常、接続部表面の酸化膜が除去されてもよい。したがって、ステージ45及び/又は圧着ヘッド44の温度(すなわち、第二の圧着工程における加熱温度)は、接続部表面の酸化膜が効率的に除去される温度以上に設定することができる。係る観点から、第二の圧着工程における加熱温度は、220℃以上330℃以下であってもよい。接続部の金属材料がはんだを含む場合、第二の圧着工程における加熱温度が220℃以上であると、接続部のはんだが溶融して、充分な金属結合が形成され易い。温度が330℃以下であると、ボイドが発生し難く、また、はんだが飛散し難い。第二の圧着工程の加熱温度は、接続部の金属材料が融点約220℃のSn/Agを含む場合も、220℃以上であってもよい。 Generally, the oxide film on the surface of the connection portion may be removed by the second pressure bonding step. Therefore, the temperature of the stage 45 and / or the pressure bonding head 44 (that is, the heating temperature in the second pressure bonding step) can be set to a temperature at which the oxide film on the surface of the connection portion is efficiently removed. From such a viewpoint, the heating temperature in the second pressure bonding step may be 220 ° C. or more and 330 ° C. or less. When the metal material of the connection portion includes a solder, if the heating temperature in the second pressure bonding step is 220 ° C. or higher, the solder of the connection portion is melted and a sufficient metal bond is easily formed. When the temperature is 330 ° C. or less, voids are less likely to occur, and the solder is less likely to scatter. The heating temperature in the second pressure bonding step may be 220 ° C. or more even when the metal material of the connection portion includes Sn / Ag having a melting point of about 220 ° C.
 第二の圧着工程における押圧荷重は、接続部表面の酸化膜除去、バンプの数、バンプの高さばらつきの吸収、及びバンプ変形量の制御等を考慮して適宜設定される。押圧荷重が、大きいと、酸化膜が除去され易い傾向がある。押圧荷重は、例えば、半導体チップの接続部(バンプ)1個あたり、0.009~0.2Nであってもよい。この押圧荷重が0.009N以上であると、接続部に形成された酸化膜が除去され易く、また、接着剤が接続部にトラップされ難い。また、押圧荷重が0.2N以下であると、はんだ等を含むバンプが潰れたり、飛散したりするといった不具合が生じ難い。 The pressing load in the second pressure bonding step is appropriately set in consideration of oxide film removal on the surface of the connection portion, the number of bumps, absorption of bump height variations, control of the amount of bump deformation, and the like. When the pressing load is large, the oxide film tends to be easily removed. The pressing load may be, for example, 0.009 to 0.2 N per connection portion (bump) of the semiconductor chip. If the pressing load is 0.009 N or more, the oxide film formed on the connection portion is easily removed, and the adhesive is hardly trapped in the connection portion. In addition, when the pressing load is 0.2 N or less, it is difficult to cause a defect such as crushing or scattering of a bump containing solder or the like.
 接着剤は、圧着体を加圧雰囲気下で加熱する第三の圧着工程においてある程度流動性を有する程度に、第二の圧着工程によって部分的に硬化されてもよい。第三の圧着工程で接着剤がある程接流動することで、接着剤層中のボイドの残存をより一層抑制することができる。また、第二の圧着工程において接着剤に加えられる熱履歴を硬化反応率が小さく留まる程度にすることで、接続部周囲のフィレットを抑制することもできる。これらの観点から、第二の圧着工程後の接着剤の硬化反応率は、50%以下、30%以下、27%以下、又は25%以下であってもよい。 The adhesive may be partially cured by the second pressure-bonding step to such an extent that the adhesive has some fluidity in the third pressure-bonding step of heating the pressure-bonded body in a pressurized atmosphere. By causing the adhesive to flow as much as the adhesive in the third pressure bonding step, it is possible to further suppress the remaining of the voids in the adhesive layer. Moreover, the fillet around the connection portion can also be suppressed by setting the heat history applied to the adhesive in the second pressure bonding step to such an extent that the curing reaction rate remains small. From these viewpoints, the curing reaction rate of the adhesive after the second pressure bonding step may be 50% or less, 30% or less, 27% or less, or 25% or less.
 第二の圧着工程後の接着剤の硬化反応率は、示差走査熱量測定によって測定される、硬化反応による発熱量の変化に基づいて決定される。第一の圧着工程前の接着剤の硬化反応による発熱量ΔH(J/g)を「ΔH0」とし、第二の圧着工程後の硬化反応による発熱量ΔH(J/g)を「ΔH2」とし、以下の式で第二の圧着工程後の硬化反応率を算出することができる。ここでは、第一の圧着工程に供される接着剤の硬化反応率が、0%とみなされる。
第二の圧着工程後の硬化反応率(%)=(ΔH0-ΔH2)/ΔH0×100
硬化反応による発熱量を測定するための示差走査熱量測定は、昇温速度20℃/分、30~300℃の温度範囲で行うことができる。実際の圧着工程に代えて、ホットプレート、オーブン等を用いて、第一の圧着工程及び第一の圧着工程と同じ条件で熱履歴を加えた後の接着剤を用いて硬化反応率を測定することにより、第二の圧着工程後の硬化反応率を見積もることができる。
The curing reaction rate of the adhesive after the second pressure bonding step is determined based on the change in the heating value due to the curing reaction, which is measured by differential scanning calorimetry. The heat generation amount ΔH (J / g) due to the curing reaction of the adhesive before the first pressure bonding step is “ΔH0”, and the heat generation amount ΔH (J / g) due to the curing reaction after the second pressure bonding step is “ΔH2” The curing reaction rate after the second pressure bonding step can be calculated by the following equation. Here, the curing reaction rate of the adhesive to be subjected to the first pressure bonding step is regarded as 0%.
Curing reaction rate (%) after the second pressure bonding step = (ΔH0−ΔH2) / ΔH0 × 100
The differential scanning calorimetry for measuring the calorific value due to the curing reaction can be performed at a temperature rising rate of 20 ° C./min, in the temperature range of 30 to 300 ° C. Instead of the actual pressure bonding process, using a hot plate, an oven, etc., measure the curing reaction rate using the adhesive after applying the heat history under the same conditions as the first pressure bonding process and the first pressure bonding process. Thus, the curing reaction rate after the second pressure bonding step can be estimated.
 第二の圧着工程後の硬化反応率は、主として、加熱及び加圧の時間に基づいて調節することができる。例えば、第二の圧着工程における加熱及び加圧の時間が3秒以下、又は1秒以下であると、例えば硬化反応率が50%以下、30%以下、27%以下、又は25%以下になるまで接着剤を硬化させることができる。 The curing reaction rate after the second pressure bonding step can be adjusted mainly based on the time of heating and pressing. For example, if the heating and pressing time in the second pressure bonding step is 3 seconds or less or 1 second or less, for example, the curing reaction rate becomes 50% or less, 30% or less, 27% or less, or 25% or less The adhesive can be cured.
 仮圧着用押圧部材及び圧着用押圧部材は、2つ以上の別々の装置にそれぞれ設置されていてもよく、両方が1つの装置内に設置されていてもよい。 The temporary pressure-bonding pressing member and the pressure-bonding pressing member may be respectively installed in two or more separate devices, or both may be installed in one device.
 続いて、図3に示すように、圧着体6を、加熱炉60内の加圧雰囲気下で加熱する第三の圧着工程を経て、半導体装置100が得られる。1つの加熱炉60内で複数の圧着体6を一括して加熱することができる。押圧部材を用いて複数の圧着体を一括して加圧すると、複数の圧着体を均一に加熱することが困難である。これに対して、加熱炉は、多数の圧着体を容易に均一に加熱することができ、これにより生産性が向上する。加熱炉としては、リフロ炉、加圧オーブン等を用いることができる。 Subsequently, as shown in FIG. 3, the semiconductor device 100 is obtained through a third pressure bonding step of heating the pressure bonded body 6 in a pressure atmosphere in the heating furnace 60. The plurality of pressure-bonded bodies 6 can be collectively heated in one heating furnace 60. When a plurality of pressure-bonded bodies are collectively pressurized using a pressing member, it is difficult to uniformly heat the plurality of pressure-bonded bodies. On the other hand, the heating furnace can easily and uniformly heat a large number of pressure-bonded bodies, thereby improving the productivity. As a heating furnace, a reflow furnace, a pressure oven, etc. can be used.
 圧着体を加圧雰囲気下で加熱すると、圧着体を押圧部材を用いて加熱及び加圧場合と比較して、フィレットが抑制される傾向がある。フィレット抑制は、小型化及び高密度化した半導体装置の製造において、特に重要である。ここで、フィレット抑制とは、フィレット幅を小さく抑制することを意味し、フィレット幅は、半導体装置の外周部にはみ出した接着剤の長さである。フィレット幅は、例えば、半導体装置の外観画像を、デジタルマイクロスコープ(KEYENCE製、VHX-5000)によって撮影し、得られた画像上で計測することができる。半導体チップの周囲4辺からはみ出した接着剤層の長さ(フィレット幅)を計測し、その平均値がフィレット値として求められる。フィレット値は、半導体ウエハ又は配線回路基板等の上に多くの半導体チップ等を搭載する観点から、150μm以下であってもよい。 When the crimped body is heated in a pressurized atmosphere, the fillet tends to be suppressed as compared with the case where the crimped body is heated and pressurized using the pressing member. Fillet suppression is particularly important in the manufacture of miniaturized and densified semiconductor devices. Here, fillet suppression means suppressing the fillet width to a small value, and the fillet width is the length of the adhesive that protrudes to the outer peripheral portion of the semiconductor device. The fillet width can be measured, for example, on an image obtained by photographing an appearance image of a semiconductor device with a digital microscope (VHX-5000 manufactured by KEYENCE). The length (fillet width) of the adhesive layer protruding from the four sides of the semiconductor chip is measured, and the average value is determined as a fillet value. The fillet value may be 150 μm or less from the viewpoint of mounting a large number of semiconductor chips or the like on a semiconductor wafer or a printed circuit board or the like.
 加熱炉60内を加圧雰囲気とした状態で、圧着体が加熱される。本明細書において、「加圧雰囲気」は、大気圧以上の気圧を有する気体雰囲気を意味する。加熱炉60内の気圧は0.1MPa以上0.8MPa以下、又は0.2MPa以上0.5MPa以下であってもよい。気圧が0.1MPa以上であると、ボイドが特に効果的に消失する。気圧が0.8MPa以下であると、半導体装置の反りが大きくなる等の不具合が生じ難い。 The pressure-bonded body is heated in a state in which the inside of the heating furnace 60 is in a pressurized atmosphere. As used herein, "a pressurized atmosphere" means a gaseous atmosphere having a pressure greater than or equal to atmospheric pressure. The pressure in the heating furnace 60 may be 0.1 MPa or more and 0.8 MPa or less, or 0.2 MPa or more and 0.5 MPa or less. When the pressure is 0.1 MPa or more, the voids disappear particularly effectively. If the air pressure is 0.8 MPa or less, problems such as increased warpage of the semiconductor device are less likely to occur.
 第三の圧着工程における加熱温度(加熱炉60内の雰囲気温度)は、接着剤が溶融する温度、又は、接着剤のガラス転移温度(Tg)以上の温度であってもよく、接着剤の硬化が進行する温度であってもよい。加熱炉60内の雰囲気温度は、例えば、130℃以上300℃以下、又は140℃以上270℃以下であってもよい。この温度が130℃以上であると、接着剤がある程度流動性を有しながら適切に硬化し易く、加圧によってボイドが特に効果的に抑制される傾向がある。温度が300℃以下であると、ボイドが特に抑制され、半導体装置の反りが生じ難い。後述のように加熱炉60内の雰囲気を昇温する場合、最高到達温度が上記範囲内であってもよい。 The heating temperature (atmosphere temperature in the heating furnace 60) in the third pressure bonding step may be a temperature at which the adhesive melts or a temperature above the glass transition temperature (Tg) of the adhesive, and the curing of the adhesive It may be the temperature at which The ambient temperature in the heating furnace 60 may be, for example, 130 ° C. or more and 300 ° C. or less, or 140 ° C. or more and 270 ° C. or less. When the temperature is 130 ° C. or higher, the adhesive is likely to be appropriately cured while having fluidity to some extent, and there is a tendency for voids to be particularly effectively suppressed by pressure. When the temperature is 300 ° C. or less, voids are particularly suppressed, and warpage of the semiconductor device is less likely to occur. When raising the atmosphere in the heating furnace 60 as described later, the highest reachable temperature may be in the above range.
 第三の圧着工程における加熱及び加圧の時間は、接着剤の硬化が十分に進行する程度に、設定される。例えば、加熱炉60内の雰囲気温度が130℃以上300℃以下である時間が、1分以上120分以下、又は5分以上60分以下であってもよい。 The heating and pressing times in the third pressure bonding step are set to such an extent that the curing of the adhesive proceeds sufficiently. For example, the time during which the ambient temperature in the heating furnace 60 is 130 ° C. or more and 300 ° C. or less may be 1 minute or more and 120 minutes or less, or 5 minutes or more and 60 minutes or less.
 第三の圧着工程の間、加熱炉60内の雰囲気を昇温してもよい。その場合の昇温速度は、特に制限はないが、5℃/分以上300℃/分以下、又は10℃/分以上250℃/分以下であってもよい。昇温速度が5℃/分以上であると、生産性が向上するとともに、ボイドが特に効果的に消失する傾向がある。昇温速度が300℃/分以下であると、急昇温によるボイド発生等の不具合が生じ難い。 During the third pressure bonding step, the atmosphere in the heating furnace 60 may be heated. The temperature raising rate in that case is not particularly limited, but may be 5 ° C./min or more and 300 ° C./min or less, or 10 ° C./min or more and 250 ° C./min or less. When the temperature rise rate is 5 ° C./min or more, the productivity is improved, and the void tends to be particularly effectively eliminated. If the temperature rise rate is 300 ° C./min or less, problems such as void formation due to rapid temperature rise hardly occur.
 第三の圧着工程によって接着剤を更に硬化させて、半導体チップ1(第一の部材)と配線回路基板2(第二の部材)とが硬化した接着剤層40によって強固に接着された接続体(半導体装置100)を形成することができる。第三の圧着工程後の接着剤の硬化反応率は、80%以上、85%以上、又は90%以上であってもよい。第三の圧着工程後の接着剤の硬化反応率が80%以上であると、スプリングバック等に起因するボイドの発生をより効果的に抑制することができる。 A connection body in which the adhesive is further adhered by the adhesive layer 40 in which the semiconductor chip 1 (first member) and the printed circuit board 2 (second member) are cured by further curing the adhesive in the third pressure bonding step. (Semiconductor device 100) can be formed. The curing reaction rate of the adhesive after the third pressure bonding step may be 80% or more, 85% or more, or 90% or more. When the curing reaction rate of the adhesive after the third pressure bonding step is 80% or more, the generation of voids resulting from spring back and the like can be more effectively suppressed.
 第三の圧着工程後の接着剤の硬化反応率も、示差走査熱量測定によって測定される、硬化反応による発熱量の変化に基づいて決定される。第一の圧着工程前の接着剤の硬化反応による発熱量ΔH(J/g)を「ΔH0」とし、第三の圧着工程後の硬化反応による発熱量ΔH(J/g)を「ΔH3」とし、以下の式で第二の圧着工程後の硬化反応率を算出することができる。
第三の圧着工程後の硬化反応率(%)=(ΔH0-ΔH3)/ΔH0×100
示差走査熱量測定の条件は、第二の圧着工程後の硬化反応率の決定方法と同様である。
The cure reaction rate of the adhesive after the third pressure bonding step is also determined based on the change in heating value due to the curing reaction, which is measured by differential scanning calorimetry. The heat generation amount ΔH (J / g) due to the curing reaction of the adhesive before the first pressure bonding step is “ΔH0”, and the heat generation amount ΔH (J / g) due to the curing reaction after the third pressure bonding step is “ΔH3” The curing reaction rate after the second pressure bonding step can be calculated by the following equation.
Curing reaction rate (%) after the third pressure bonding step = (ΔH0−ΔH3) / ΔH0 × 100
The conditions for differential scanning calorimetry are the same as in the method for determining the curing reaction rate after the second pressure bonding step.
 加熱炉60内の雰囲気は、特に制限はないが、空気、窒素、又は蟻酸等であってもよい。 The atmosphere in the heating furnace 60 is not particularly limited, but may be air, nitrogen, formic acid, or the like.
 生産性向上の観点から、第一の部材又は第二の部材のうち少なくとも一方として半導体ウエハを用いてもよい。その例としては、半導体ウエハに半導体チップを接続した後に個片化するCoW(Chip On Wafer)、半導体ウエハ同士を圧着した後に個片化するWoW(Wafer On Wafer)がある。 From the viewpoint of improving productivity, a semiconductor wafer may be used as at least one of the first member and the second member. As an example thereof, there are CoW (Chip On Wafer) in which a semiconductor chip is connected to a semiconductor wafer and then singulated, and WoW (Wafer On Wafer) in which semiconductor wafers are pressure bonded to each other.
(半導体装置)
 図4、図5、図6及び図7は、それぞれ、上述の実施形態に係る方法によって製造することができる半導体装置の他の一実施形態を示す断面図である。
(Semiconductor device)
FIG.4, FIG.5, FIG.6 and FIG. 7 are respectively sectional drawings which show one another embodiment of the semiconductor device which can be manufactured by the method based on the above-mentioned embodiment.
 図4に示す半導体装置200は、半導体チップ本体10を有する半導体チップ1(第一の部材)と、基板本体20を有する配線回路基板2(第二の部材)と、これらの間に介在する接着剤層40とを備える。半導体装置200の場合、半導体チップは、接続部として、半導体チップの配線回路基板2側の面に配置されたバンプ32を有する。配線回路基板2は、接続部として、基板本体20の半導体チップ側の面上に配置されたバンプ33を有する。半導体チップ1のバンプ32と、配線回路基板2のバンプ33とは、金属接合によって電気的に接続されている。すなわち、半導体チップ1及び配線回路基板2は、バンプ32,33によりフリップチップ接続されている。バンプ32,33は、接着剤層40によって封止されることで、外部環境から遮断されている。 The semiconductor device 200 shown in FIG. 4 includes a semiconductor chip 1 (first member) having a semiconductor chip body 10, a printed circuit board 2 (second member) having a substrate body 20, and an adhesive interposed therebetween. And an agent layer 40. In the case of the semiconductor device 200, the semiconductor chip has the bumps 32 disposed on the surface of the semiconductor chip on the side of the printed circuit board 2 as the connection portion. The printed circuit board 2 has a bump 33 disposed on the surface of the substrate body 20 on the semiconductor chip side as a connection portion. The bumps 32 of the semiconductor chip 1 and the bumps 33 of the printed circuit board 2 are electrically connected by metal bonding. That is, the semiconductor chip 1 and the printed circuit board 2 are flip chip connected by the bumps 32 and 33. The bumps 32 and 33 are sealed from the external environment by being sealed by the adhesive layer 40.
 図5及び図6は、半導体チップ同士が接続された接続体であるCoC型の半導体装置を示す。図5に示す半導体装置300の構成は、2つの半導体チップが第一の部材及び第二の部材として、配線15及びバンプ30を介してフリップチップ接続されている点を除き、半導体装置100と同様である。図6に示す半導体装置400の構成は、2つの半導体チップ1がバンプ32を介してフリップチップ接続されている点を除き、半導体装置200と同様である。 5 and 6 show a CoC type semiconductor device which is a connection body in which semiconductor chips are connected to each other. The configuration of the semiconductor device 300 shown in FIG. 5 is the same as that of the semiconductor device 100 except that two semiconductor chips are flip chip connected as the first member and the second member via the wiring 15 and the bumps 30. It is. The configuration of the semiconductor device 400 shown in FIG. 6 is the same as that of the semiconductor device 200 except that two semiconductor chips 1 are flip-chip connected via bumps 32.
 図3~図6に示される半導体装置100、200、300、及び400において、配線15、バンプ32等の接続部は、パッドと呼ばれる金属膜(例えば、金めっき)であってもよく、ポスト電極(例えば、銅ピラー)であってもよい。例えば、図2の(b)において、一方の半導体チップが接続部として銅ピラー及び接続バンプ(はんだ:スズ-銀)を有し、他方の半導体チップが接続部として金めっきを有していてもよい。この場合、接続部が、接続部の表面を形成している金属材料のうち最も融点が低いはんだの融点以上の温度に達すればよい。 In the semiconductor devices 100, 200, 300, and 400 shown in FIGS. 3 to 6, the connection portions such as the wiring 15 and the bumps 32 may be metal films (for example, gold plating) called pads, and post electrodes (For example, a copper pillar) may be used. For example, in (b) of FIG. 2, even if one semiconductor chip has copper pillars and connection bumps (solder: tin-silver) as connection parts and the other semiconductor chip has gold plating as connection parts. Good. In this case, the connection portion may reach a temperature equal to or higher than the melting point of the solder having the lowest melting point among the metal materials forming the surface of the connection portion.
 半導体チップ本体10としては、特に制限はなく、シリコン、ゲルマニウム等の同一種類の元素から構成される元素半導体、ガリウムヒ素、インジウムリン等の化合物半導体などの各種半導体を用いることができる。 The semiconductor chip body 10 is not particularly limited, and various semiconductors such as an elemental semiconductor composed of the same kind of element such as silicon and germanium, and a compound semiconductor such as gallium arsenide and indium phosphide can be used.
 配線回路基板2としては、特に制限はなく、ガラスエポキシ、ポリイミド、ポリエステル、セラミック、エポキシ、ビスマレイミドトリアジン等を主な成分とする絶縁基板を基板本体として有し、その表面に形成された金属層の不要な箇所をエッチング除去して配線(配線パターン)が形成された回路基板、上記絶縁基板の表面に金属めっき等によって配線(配線パターン)が形成された回路基板、上記絶縁基板の表面に導電性物質を印刷して配線(配線パターン)が形成された回路基板などを用いることができる。 The wiring circuit board 2 is not particularly limited, and has an insulating substrate mainly composed of glass epoxy, polyimide, polyester, ceramic, epoxy, bismaleimide triazine, etc. as a substrate main body, and a metal layer formed on the surface A circuit board on which wiring (wiring pattern) is formed by etching away unnecessary portions of the circuit, a circuit board on which wiring (wiring pattern) is formed on the surface of the insulating substrate by metal plating, etc., conductive on the surface of the insulating substrate It is possible to use a circuit board or the like on which a wiring (wiring pattern) is formed by printing a conductive material.
 配線15及び16、バンプ30、バンプ32及び33等の接続部の材質としては、主成分として、金、銀、銅、はんだ(主成分は、例えば、スズ-銀、スズ-鉛、スズ-ビスマス、スズ-銅、スズ-銀-銅)、スズ、ニッケル等が用いられる。接続部は単一の成分のみで構成されていてもよく、複数の成分から構成されていてもよい。接続部は、これらの金属が積層された構造を有していてもよい。金属材料のうち、銅、はんだが、比較的安価である。接続信頼性の向上及び反り抑制の観点から、接続部がはんだを含んでいてもよい。 Gold, silver, copper, solder (main components are, for example, tin-silver, tin-lead, tin-bismuth, etc.) as the main components of the connection parts such as the wirings 15 and 16, the bumps 30, the bumps 32 and 33, etc. , Tin-copper, tin-silver-copper), tin, nickel and the like are used. The connection part may be composed of only a single component or may be composed of a plurality of components. The connection portion may have a structure in which these metals are stacked. Among metal materials, copper and solder are relatively inexpensive. The connection portion may include solder from the viewpoint of improving connection reliability and suppressing warpage.
 パッドの材質としては、主成分として、金、銀、銅、はんだ(主成分は、例えば、スズ-銀、スズ-鉛、スズ-ビスマス、スズ-銅、スズ-銀-銅)、スズ、ニッケル等が用いられる。パッドは単一の成分のみで構成されていてもよく、複数の成分から構成されていてもよい。パッドは、これらの金属が積層された構造を有していてもよい。接続信頼性の観点から、パッドが金又ははんだを含んでいてもよい。 The material of the pad is, as a main component, gold, silver, copper, solder (for example, tin-silver, tin-lead, tin-bismuth, tin-copper, tin-silver-copper), tin, nickel Etc. are used. The pad may be composed of only a single component or may be composed of a plurality of components. The pad may have a structure in which these metals are stacked. From the viewpoint of connection reliability, the pad may contain gold or solder.
 配線15,16(配線パターン)の表面には、金、銀、銅、はんだ(主成分は、例えば、スズ-銀、スズ-鉛、スズ-ビスマス、スズ-銅)、スズ、ニッケル等を主成分とする金属層が形成されていてもよい。この金属層は単一の成分のみで構成されていてもよく、複数の成分から構成されていてもよい。金属層が複数の金属層が積層された構造を有していてもよい。金属層が、比較的安価な銅又ははんだを含んでいてもよい。接続信頼性の向上及び反り抑制の観点から、金属層が、はんだを含んでいてもよい。 Gold, silver, copper, solder (main components are, for example, tin-silver, tin-lead, tin-bismuth, tin-copper), tin, nickel, etc. on the surfaces of the wirings 15 and 16 (wiring pattern) A metal layer as a component may be formed. The metal layer may be composed of only a single component or may be composed of a plurality of components. The metal layer may have a structure in which a plurality of metal layers are stacked. The metal layer may comprise relatively inexpensive copper or solder. The metal layer may contain a solder from the viewpoint of improving connection reliability and suppressing warpage.
 半導体装置100、200、300、400のような半導体装置(パッケージ)を積層して、金、銀、銅、はんだ(主成分は、例えば、スズ-銀、スズ-鉛、スズ-ビスマス、スズ-銅、スズ-銀-銅)、スズ、ニッケル等で電気的に接続してもよい。接続するための金属は、比較的安価な銅又ははんだであってもよい。例えば、TSV技術で見られるような、接着剤層を半導体チップ間に介して、フリップチップ接続又は積層し、半導体チップを貫通する孔を形成し、パターン面の電極とつなげてもよい。 Semiconductor devices (packages) such as semiconductor devices 100, 200, 300, and 400 are stacked and gold, silver, copper, solder (the main components are, for example, tin-silver, tin-lead, tin-bismuth, tin- Electrical connection may be made with copper, tin-silver-copper), tin, nickel or the like. The metal for connection may be relatively inexpensive copper or solder. For example, an adhesive layer may be flip-chip connected or laminated between semiconductor chips, as in TSV technology, to form holes penetrating the semiconductor chips, and be connected to electrodes on the pattern surface.
 図7は、半導体装置の他の一実施形態を示す断面図である。図7に示す半導体装置500は、複数の半導体チップが積層されたTSV構造を有する。図7に示す半導体装置500では、配線回路基板としてのインターポーザー本体50上に形成された配線15が半導体チップ1のバンプ30と接続されることにより、半導体チップ1とインターポーザー5とがフリップチップ接続されている。半導体チップ1とインターポーザー5との間には接着剤層40が介在している。半導体チップ1におけるインターポーザー5と反対側の表面上に、配線15、バンプ30及び接着剤層40を介して半導体チップ1が繰り返し積層されている。半導体チップ1の表裏におけるパターン面の配線15は、半導体チップ本体10の内部を貫通する孔内に充填された貫通電極34により互いに接続されている。貫通電極34の材質としては、銅、アルミニウム等を用いることができる。 FIG. 7 is a cross-sectional view showing another embodiment of the semiconductor device. The semiconductor device 500 shown in FIG. 7 has a TSV structure in which a plurality of semiconductor chips are stacked. In the semiconductor device 500 shown in FIG. 7, the semiconductor chip 1 and the interposer 5 are flip chip by connecting the wiring 15 formed on the interposer main body 50 as a wiring circuit board to the bumps 30 of the semiconductor chip 1. It is connected. An adhesive layer 40 is interposed between the semiconductor chip 1 and the interposer 5. The semiconductor chip 1 is repeatedly stacked on the surface of the semiconductor chip 1 opposite to the interposer 5 via the wiring 15, the bumps 30 and the adhesive layer 40. The wirings 15 on the pattern surface on the front and back of the semiconductor chip 1 are connected to each other by a through electrode 34 filled in a hole that penetrates the inside of the semiconductor chip main body 10. As a material of the through electrode 34, copper, aluminum or the like can be used.
 図7に例示されるようなTSV(Through-Silicon Via)構造の半導体装置によれば、通常は使用されない半導体チップの裏面からも信号を取得することができる。更には、半導体チップ1内に貫通電極34を垂直に通すため、対向する半導体チップ1間、並びに、半導体チップ1及びインターポーザー5間の距離を短くし、柔軟な接続が可能である。 According to the semiconductor device of the TSV (Through-Silicon Via) structure as illustrated in FIG. 7, it is possible to acquire a signal also from the back surface of the semiconductor chip which is not normally used. Furthermore, since the through electrodes 34 are vertically passed through the semiconductor chip 1, the distance between the facing semiconductor chips 1 and the distance between the semiconductor chip 1 and the interposer 5 can be shortened, and flexible connection is possible.
 図7の半導体装置500の場合、複数の半導体チップ1を一つずつ積み重ねて順次仮圧着し、その後、第二の圧着工程によって圧着体を得て、最後に一括で複数の半導体チップを加圧雰囲気下で加熱してもよい。 In the case of the semiconductor device 500 of FIG. 7, a plurality of semiconductor chips 1 are stacked one by one and temporary temporary pressure bonding is performed, and then a pressure bonding body is obtained by the second pressure bonding step, and finally a plurality of semiconductor chips are collectively pressed. It may be heated under an atmosphere.
 多層の半導体チップを有する半導体装置の他の例として、チップスタック型パッケージ、POP(Package On Package)もあり、これもTSVと同様の方法により製造することができる。 As another example of the semiconductor device having a multilayer semiconductor chip, there is also a chip stack type package, POP (Package On Package), which can also be manufactured by the same method as TSV.
 これらは半導体装置のさらなる小型化及び薄型化による実装面積の削減、高機能化、ノイズ低減、省電力化にも有効である。 These are also effective for reducing the mounting area by further reducing the size and thickness of the semiconductor device, enhancing the function, reducing noise, and saving power.
(接着剤)
 以下、上述の半導体装置の製造方法で用いることのできる接着剤(熱硬化性の接着剤)について説明する。
(adhesive)
Hereinafter, an adhesive (thermosetting adhesive) that can be used in the above-described method of manufacturing a semiconductor device will be described.
 一実施形態に係る接着剤は、熱硬化性樹脂、及びその硬化剤を含有する。接着剤は、重量平均分子量10000以上の高分子成分を更に含有してもよい。 The adhesive according to one embodiment contains a thermosetting resin and its curing agent. The adhesive may further contain a polymer component having a weight average molecular weight of 10000 or more.
<熱硬化性樹脂>
 熱硬化性樹脂の重量平均分子量は、10000未満であってもよい。重量平均分子量10000未満の熱硬化性樹脂が硬化剤と反応することで、接着剤の硬化性が向上する。また、ボイドの抑制、及び耐熱性の点でも有利である。
<Thermosetting resin>
The weight average molecular weight of the thermosetting resin may be less than 10000. The thermosetting resin having a weight average molecular weight of less than 10000 reacts with the curing agent to improve the curability of the adhesive. It is also advantageous in terms of void suppression and heat resistance.
 熱硬化性樹脂としては、例えば、エポキシ樹脂、及びアクリル樹脂が挙げられる。 As a thermosetting resin, an epoxy resin and an acrylic resin are mentioned, for example.
 エポキシ樹脂は、分子内に2個以上のエポキシ基を有するものであれば特に制限はない。エポキシ樹脂としては、ビスフェノールA型、ビスフェノールF型、ナフタレン型、フェノールノボラック型、クレゾールノボラック型、フェノールアラルキル型、ビフェニル型、トリフェニルメタン型、ジシクロペンタジエン型、各種多官能エポキシ樹脂等を用いることができる。これらは単独又は2種以上の混合体として用いることができる。 The epoxy resin is not particularly limited as long as it has two or more epoxy groups in the molecule. As epoxy resin, use bisphenol A type, bisphenol F type, naphthalene type, phenol novolak type, cresol novolak type, phenol aralkyl type, biphenyl type, triphenylmethane type, dicyclopentadiene type, various multifunctional epoxy resins, etc. Can. These can be used alone or as a mixture of two or more.
 アクリル樹脂は、分子内に1個以上の(メタ)アクリル基を有するものであれば特に制限はない。アクリル樹脂として、例えば、ビスフェノールA型、ビスフェノールF型、ナフタレン型、フェノールノボラック型、クレゾールノボラック型、フェノールアラルキル型、ビフェニル型、トリフェニルメタン型、ジシクロペンタジエン型、フルオレン型、アダマンタン型、各種多官能アクリル樹脂等を用いることができる。これらは単独又は2種以上の混合体として用いることができる。本明細書において、「(メタ)アクリル基」はアクリル基又はメタクリル基のいずれかを意味する用語として用いられる。 The acrylic resin is not particularly limited as long as it has one or more (meth) acrylic groups in the molecule. As an acrylic resin, for example, bisphenol A type, bisphenol F type, naphthalene type, phenol novolak type, cresol novolak type, phenol aralkyl type, biphenyl type, triphenylmethane type, dicyclopentadiene type, fluorene type, adamantane type, various types A functional acrylic resin etc. can be used. These can be used alone or as a mixture of two or more. In the present specification, “(meth) acrylic group” is used as a term that means either an acrylic group or a methacrylic group.
 アクリル樹脂は、室温(25℃)で固形であってもよい。液状に比べて固形の方が、ボイドが発生しにくく、また、硬化前のBステージの接着剤の粘性(タック)が小さく、取り扱いに優れる傾向がある。 The acrylic resin may be solid at room temperature (25 ° C.). Solids are less likely to generate voids than liquid, and the viscosity (tack) of the B-stage adhesive before curing is small, and tends to be excellent in handling.
 アクリル樹脂が有する(メタ)アクリル基の数は、1分子当たり3以下であってもよい。(メタ)アクリル基の数が3以下であると、未反応基の残存が少なくなるまで短時間で硬化が十分に進行し易い傾向がある。 The number of (meth) acrylic groups contained in the acrylic resin may be 3 or less per molecule. If the number of (meth) acrylic groups is 3 or less, curing tends to proceed sufficiently in a short time until the remaining unreacted groups are reduced.
 接着剤における熱硬化性樹脂の含有量は、接着剤の全体質量(溶剤以外の成分の質量)100質量部に対して、例えば10~50質量部である。熱硬化性樹脂の含有量が10質量部以上であると、硬化後の接着剤の流動を容易に制御することができる傾向がある。熱硬化性樹脂の含有量が50質量部以下であると、半導体装置の反りが抑制される傾向がある。 The content of the thermosetting resin in the adhesive is, for example, 10 to 50 parts by mass with respect to 100 parts by mass of the total mass of the adhesive (the mass of components other than the solvent). When the content of the thermosetting resin is 10 parts by mass or more, the flow of the adhesive after curing tends to be easily controlled. When the content of the thermosetting resin is 50 parts by mass or less, warpage of the semiconductor device tends to be suppressed.
<硬化剤>
 硬化剤は、熱硬化性樹脂と反応する化合物、熱硬化性樹脂の硬化反応の触媒として機能する化合物、又はこれらの組み合わせであることができる。硬化剤の例としては、フェノール樹脂系硬化剤、酸無水物系硬化剤、アミン系硬化剤、イミダゾール系硬化剤、ホスフィン系硬化剤、アゾ化合物、及び有機過酸化物が挙げられる。これらの中でも、イミダゾール系硬化剤を用いてもよい。
<Hardening agent>
The curing agent can be a compound that reacts with the thermosetting resin, a compound that functions as a catalyst for the curing reaction of the thermosetting resin, or a combination of these. Examples of curing agents include phenol resin-based curing agents, acid anhydride-based curing agents, amine-based curing agents, imidazole-based curing agents, phosphine-based curing agents, azo compounds, and organic peroxides. Among these, an imidazole curing agent may be used.
 フェノール樹脂系硬化剤は、分子内に2個以上のフェノール性水酸基を有するものであれば特に制限はなく、その例としては、フェノールノボラック、クレゾールノボラック、フェノールアラルキル樹脂、クレゾールナフトールホルムアルデヒド重縮合物、トリフェニルメタン型多官能フェノール及び各種多官能フェノール樹脂が挙げられる。これらは単独で又は2種以上の混合物として用いることができる。 The phenol resin-based curing agent is not particularly limited as long as it has two or more phenolic hydroxyl groups in the molecule, and examples thereof include phenol novolak, cresol novolac, phenol aralkyl resin, cresol naphthol formaldehyde polycondensate, Examples include triphenylmethane-type polyfunctional phenols and various polyfunctional phenol resins. These can be used alone or as a mixture of two or more.
 熱硬化性樹脂に対するフェノール樹脂系硬化剤の当量比(フェノール性水酸基/エポキシ基、モル比)は、良好な硬化性、接着性及び保存安定性の観点から、0.3~1.5、0.4~1.0、又は0.5~1.0であってもよい。当量比が0.3以上であると、硬化性が向上し接着力が向上する傾向があり、1.5以下であると未反応のフェノール性水酸基が過剰に残存することがなく、吸水率が低く抑えられ、絶縁信頼性が向上する傾向がある。 The equivalent ratio (phenolic hydroxyl group / epoxy group, molar ratio) of the phenolic resin-based curing agent to the thermosetting resin is 0.3 to 1.5, 0 from the viewpoint of good curability, adhesiveness and storage stability. .4 to 1.0, or 0.5 to 1.0. When the equivalent ratio is 0.3 or more, the curability tends to be improved and the adhesive strength tends to be improved. When the equivalent ratio is 1.5 or less, the unreacted phenolic hydroxyl group does not remain excessively, and the water absorption is increased. It tends to be low and insulation reliability improves.
 酸無水物系硬化剤としては、例えば、メチルシクロヘキサンテトラカルボン酸二無水物、無水トリメリット酸、無水ピロメリット酸、ベンゾフェノンテトラカルボン酸二無水物及びエチレングリコールビスアンヒドロトリメリテートが挙げられる。これらは単独で又は2種以上の混合物として用いることができる。 Examples of the acid anhydride curing agent include methylcyclohexanetetracarboxylic acid dianhydride, trimellitic anhydride, pyromellitic anhydride, benzophenonetetracarboxylic acid dianhydride, and ethylene glycol bisanhydrotrimellitate. These can be used alone or as a mixture of two or more.
 熱硬化性樹脂に対する酸無水物系硬化剤の当量比(酸無水物基/エポキシ基、モル比)は、良好な硬化性、接着性及び保存安定性の観点から、0.3~1.5、0.4~1.0、又は0.5~1.0であってもよい。当量比が0.3以上であると、硬化性が向上し接着力が向上する傾向があり、1.5以下であると未反応の酸無水物が過剰に残存することがなく、吸水率が低く抑えられ、絶縁信頼性が向上する傾向がある。 The equivalent ratio (acid anhydride group / epoxy group, molar ratio) of the acid anhydride based curing agent to the thermosetting resin is 0.3 to 1.5 from the viewpoint of good curability, adhesiveness and storage stability. , 0.4 to 1.0, or 0.5 to 1.0. If the equivalent ratio is 0.3 or more, the curability tends to be improved and the adhesive strength tends to be improved, and if it is 1.5 or less, the unreacted acid anhydride does not remain excessively, and the water absorption rate is increased. It tends to be low and insulation reliability improves.
 アミン系硬化剤としては、例えば、ジシアンジアミドを用いることができる。 As an amine curing agent, for example, dicyandiamide can be used.
 熱硬化性樹脂に対するアミン系硬化剤の当量比(アミン/エポキシ基、モル比)は、良好な硬化性、接着性及び保存安定性の観点から0.3~1.5、0.4~1.0、又は0.5~1.0であってもよい。当量比が0.3以上であると、硬化性が向上し接着力が向上する傾向があり、1.5以下であると未反応のアミンが過剰に残存することがなく、絶縁信頼性が向上する傾向がある。 The equivalent ratio (amine / epoxy group, molar ratio) of the amine curing agent to the thermosetting resin is 0.3 to 1.5, 0.4 to 1 from the viewpoint of good curability, adhesion and storage stability. .0, or 0.5 to 1.0. When the equivalent ratio is 0.3 or more, the curability tends to be improved and the adhesive strength tends to be improved, and when it is 1.5 or less, the unreacted amine does not remain excessively, and the insulation reliability is improved. There is a tendency to
 イミダゾール系硬化剤としては、例えば、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノ-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾールトリメリテイト、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-ウンデシルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加体、2-フェニルイミダゾールイソシアヌル酸付加体、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、及び、エポキシ樹脂とイミダゾール類の付加体が挙げられる。優れた硬化性、保存安定性及び接続信頼性の観点から、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノ-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾールトリメリテイト、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加体、2-フェニルイミダゾールイソシアヌル酸付加体、2-フェニル-4,5-ジヒドロキシメチルイミダゾール及び2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾールからイミダゾール系硬化剤を選択してもよい。これらは単独で又は2種以上を併用して用いることができる。これらを含むマイクロカプセルを潜在性硬化剤として用いることもできる。 Examples of the imidazole-based curing agent include 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazole 1-cyano-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazole trimellitate, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2,4-diamino-6- [2′-methylimidazolyl -(1 ')-ethyl-s-triazine, 2,4-diamino-6- [2'-undecylimidazolyl- (1')]-ethyl-s-triazine, 2,4-diamino-6- [4 2'-Ethyl-4'-methylimidazolyl- (1 ')]-ethyl-s-triazine, 2, -Diamino-6- [2'-methylimidazolyl- (1 ')]-ethyl-s-triazine isocyanuric acid adduct, 2-phenylimidazole isocyanuric acid adduct, 2-phenyl-4,5-dihydroxymethylimidazole, 2 And -phenyl-4-methyl-5-hydroxymethylimidazole, and adducts of epoxy resins and imidazoles. From the viewpoint of excellent curability, storage stability and connection reliability, 1-cyanoethyl-2-undecylimidazole, 1-cyano-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazole trimellitate, 1- Cyanoethyl-2-phenylimidazolium trimellitate, 2,4-diamino-6- [2′-methylimidazolyl- (1 ′)]-ethyl-s-triazine, 2,4-diamino-6- [2′- Ethyl-4'-methylimidazolyl- (1 ')]-ethyl-s-triazine, 2,4-diamino-6- [2'-methylimidazolyl- (1')]-ethyl-s-triazine isocyanuric acid adduct , 2-phenylimidazole isocyanuric acid adduct, 2-phenyl-4,5-dihydroxymethylimidazole and 2-phenyl-4- From chill-5-hydroxymethylimidazole may select the imidazole curing agent. These can be used alone or in combination of two or more. Microcapsules containing these can also be used as latent hardeners.
 イミダゾール系硬化剤の含有量は、熱硬化性樹脂100質量部に対して、0.1~20質量部、又は0.1~10質量部であってもよい。イミダゾール系硬化剤の含有量が0.1質量部以上であると硬化性が向上する傾向があり、20質量部以下であると金属接合が形成される前に接着剤が硬化することがなく、接続不良が発生しにくい傾向がある。 The content of the imidazole-based curing agent may be 0.1 to 20 parts by mass, or 0.1 to 10 parts by mass with respect to 100 parts by mass of the thermosetting resin. When the content of the imidazole-based curing agent is 0.1 parts by mass or more, the curability tends to be improved, and when the content is 20 parts by mass or less, the adhesive does not cure before metal bonding is formed, There is a tendency for poor connection to be less likely to occur.
 ホスフィン系硬化剤としては、例えば、トリフェニルホスフィン、テトラフェニルホスホニウムテトラフェニルボレート、テトラフェニルホスホニウムテトラ(4-メチルフェニル)ボレート及びテトラフェニルホスホニウム(4-フルオロフェニル)ボレートが挙げられる。 The phosphine-based curing agent includes, for example, triphenylphosphine, tetraphenylphosphonium tetraphenylborate, tetraphenylphosphonium tetra (4-methylphenyl) borate and tetraphenylphosphonium (4-fluorophenyl) borate.
 ホスフィン系硬化剤の含有量は、熱硬化性樹脂100質量部に対して、0.1~10質量部、又は0.1~5質量部であってもよい。ホスフィン系硬化剤の含有量が0.1質量部以上であると硬化性が向上する傾向があり、10質量部以下であると金属接合が形成される前に接着剤が硬化することがなく、接続不良が発生しにくい傾向がある。 The content of the phosphine-based curing agent may be 0.1 to 10 parts by mass, or 0.1 to 5 parts by mass with respect to 100 parts by mass of the thermosetting resin. When the content of the phosphine-based curing agent is 0.1 parts by mass or more, the curability tends to be improved, and when the content is 10 parts by mass or less, the adhesive does not cure before metal bonding is formed, There is a tendency for poor connection to be less likely to occur.
 フェノール樹脂系硬化剤、酸無水物系硬化剤及びアミン系硬化剤は、それぞれ1種を単独で又は2種以上の混合物として用いることができる。イミダゾール系硬化剤及びホスフィン系硬化剤はそれぞれ単独で用いてもよいが、フェノール樹脂系硬化剤、酸無水物系硬化剤又はアミン系硬化剤と共に用いてもよい。 The phenol resin-based curing agent, the acid anhydride-based curing agent and the amine-based curing agent can be used alone or in combination of two or more. The imidazole-based curing agent and the phosphine-based curing agent may be used alone, but may be used together with a phenol resin-based curing agent, an acid anhydride-based curing agent or an amine-based curing agent.
 有機過酸化物としては、例えば、ケトンパーオキサイド、パーオキシケタール、ハイドロパーオキサイド、ジアルキルパーオキサイド、ジアシルパーオキサイド、パーオキシジカーボネイト、パーオキシエステル等が挙げられる。保存安定性の観点から、ハイドロパーオキサイド、ジアルキルパーオキサイド、又はパーオキシエステルを選択してもよい。さらに、耐熱性の観点から、ハイドロパーオキサイド、又はジアルキルパーオキサイドを選択してもよい。これらは単独又は2種以上の混合体として用いることができる。 Examples of organic peroxides include ketone peroxides, peroxy ketals, hydroperoxides, dialkyl peroxides, diacyl peroxides, peroxy dicarbonates, and peroxy esters. From the viewpoint of storage stability, hydroperoxides, dialkyl peroxides, or peroxy esters may be selected. Furthermore, hydroperoxide or dialkyl peroxide may be selected from the viewpoint of heat resistance. These can be used alone or as a mixture of two or more.
 有機過酸化物の含有量は、アクリル樹脂に対して0.5~10質量%、又は1~5質量%であってもよい。有機過酸化物の含有量が0.5質量%以上であると、十分に硬化が進行し易い傾向がある。有機過酸化物の含有量が10質量%以下であると、硬化後の分子鎖が短くなったり、未反応基が残存したりすることによる信頼性の低下を抑制できる傾向がある。 The content of the organic peroxide may be 0.5 to 10% by mass, or 1 to 5% by mass with respect to the acrylic resin. When the content of the organic peroxide is 0.5% by mass or more, curing tends to proceed sufficiently. If the content of the organic peroxide is 10% by mass or less, the decrease in reliability due to the shortening of the molecular chain after curing or the remaining of the unreacted group tends to be suppressed.
 エポキシ樹脂又はアクリル樹脂と組み合わせられる硬化剤は、硬化が進行すれば特に制限はない。エポキシ樹脂と組み合わせられる硬化剤は、取り扱い性、保存安定性、硬化性の観点から、フェノール樹脂系硬化剤及びイミダゾール系硬化剤の組み合わせ、酸無水物系硬化剤及びイミダゾール系硬化剤の組み合わせ、アミン系硬化剤及びイミダゾール系硬化剤の組み合わせ、又はイミダゾール系硬化剤単独であってもよい。短時間で接続すると生産性が向上することから、速硬化性に優れたイミダゾール系硬化剤を単独で用いてもよい。短時間で硬化すると低分子成分等の揮発分が抑制できることから、ボイド発生抑制も可能である。なお、アクリル樹脂と組み合わせられる硬化剤は、取り扱い性、保存安定性の観点から、有機過酸化物であってもよい。 The curing agent to be combined with the epoxy resin or the acrylic resin is not particularly limited as long as curing proceeds. The curing agent to be combined with the epoxy resin is a combination of a phenol resin-based curing agent and an imidazole-based curing agent, a combination of an acid anhydride-based curing agent and an imidazole-based curing agent, and an amine from the viewpoint of handleability, storage stability and curability. A combination of a system curing agent and an imidazole curing agent, or an imidazole curing agent alone may be used. If the connection is made in a short time, the productivity is improved, and therefore, an imidazole-based curing agent excellent in quick curing may be used alone. When curing is performed in a short time, volatile components such as low molecular weight components can be suppressed, and void generation can also be suppressed. The curing agent to be combined with the acrylic resin may be an organic peroxide from the viewpoint of handleability and storage stability.
<重量平均分子量10000以上の高分子成分>
 重量平均分子量10000以上の高分子成分は、熱硬化性樹脂、熱可塑性樹脂又はこれらの組み合わせであることができる。高分子成分の例としては、エポキシ樹脂、フェノキシ樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリカルボジイミド樹脂、シアネートエステル樹脂、アクリル樹脂、ポリエステル樹脂、ポリエチレン樹脂、ポリエーテルスルホン樹脂、ポリエーテルイミド樹脂、ポリビニルアセタール樹脂、ウレタン樹脂、アクリルゴム等が挙げられる。耐熱性およびフィルム形成性に優れるエポキシ樹脂、フェノキシ樹脂、ポリイミド樹脂、アクリル樹脂、アクリルゴム、シアネートエステル樹脂、又はポリカルボジイミド樹脂を選択してもよい。耐熱性、フィルム形成性に優れるエポキシ樹脂、フェノキシ樹脂、ポリイミド樹脂、アクリル樹脂、又はアクリルゴムを選択してもよい。これらの高分子成分は単独又は2種以上の混合体又は共重合体として用いることもできる。重量平均分子量10000以上の高分子成分は、硬化剤と反応する熱硬化性樹脂であってもよい。
<Polymer Component of Weight Average Molecular Weight 10000 or More>
The polymer component having a weight average molecular weight of 10000 or more can be a thermosetting resin, a thermoplastic resin, or a combination thereof. Examples of the polymer component include epoxy resin, phenoxy resin, polyimide resin, polyamide resin, polycarbodiimide resin, cyanate ester resin, acrylic resin, polyester resin, polyethylene resin, polyether sulfone resin, polyether imide resin, polyvinyl acetal resin And urethane resins and acrylic rubbers. An epoxy resin, a phenoxy resin, a polyimide resin, an acrylic resin, an acrylic rubber, a cyanate ester resin, or a polycarbodiimide resin which is excellent in heat resistance and film formation may be selected. An epoxy resin, a phenoxy resin, a polyimide resin, an acrylic resin, or an acrylic rubber which is excellent in heat resistance and film formation may be selected. These polymer components can be used alone or as a mixture or copolymer of two or more. The polymer component having a weight average molecular weight of 10000 or more may be a thermosetting resin that reacts with the curing agent.
 高分子成分と上述の熱硬化性樹脂としてのエポキシ樹脂との質量比は、特に制限されない。接着剤がフィルム状の形態を保持するために、高分子成分に対するエポキシ樹脂の質量比は、0.01~5、0.05~4、又は0.1~3であってもよい。この質量比が0.01以上であると硬化性が向上し、接着力がより向上する傾向がある。この質量比が5以下であると、良好なフィルム形成性が得られ易い。 The mass ratio of the polymer component to the epoxy resin as the above-mentioned thermosetting resin is not particularly limited. The weight ratio of the epoxy resin to the polymer component may be 0.01 to 5, 0.05 to 4, or 0.1 to 3 in order for the adhesive to maintain a film-like form. When the mass ratio is 0.01 or more, the curability is improved, and the adhesion tends to be further improved. Favorable film formation property is easy to be obtained as this mass ratio is 5 or less.
 高分子成分と上述の熱硬化性樹脂としてのアクリル樹脂の質量比は、特に制限されない。高分子成分に対するアクリル樹脂の質量比は、0.01~10、0.05~5、又は0.1~5であってもよい。この質量比が0.01以上であると硬化性が向上し、接着力がより向上する傾向がある。この質量比が10以下であると、良好なフィルム形成性が得られ易い。 The mass ratio of the polymer component and the acrylic resin as the above-mentioned thermosetting resin is not particularly limited. The mass ratio of the acrylic resin to the polymer component may be 0.01 to 10, 0.05 to 5, or 0.1 to 5. When the mass ratio is 0.01 or more, the curability is improved, and the adhesion tends to be further improved. Favorable film formation property is easy to be obtained as this mass ratio is 10 or less.
 高分子成分のガラス転移温度(Tg)は、接着剤の配線回路基板又は半導体チップへの貼付性に優れる観点から、50℃以上200℃以下であってもよい。高分子成分のTgが50℃以上であると、接着剤のタック(粘性)力が適度に弱くなる傾向がある。高分子成分のTgが200℃以下であると、半導体チップのバンプ、配線回路基板に形成された電極及び配線パターン等の凹凸を接着剤が埋め込み易く、ボイド抑制の効果が相対的に大きくなる傾向がある。ここでのTgは、DSC(株式会社パーキンエルマー社製、DSC-7型)を用いて、サンプル量10mg、昇温速度10℃/分、空気雰囲気下の条件で測定される。 The glass transition temperature (Tg) of the polymer component may be 50 ° C. or more and 200 ° C. or less from the viewpoint of excellent adhesion to the printed circuit board or semiconductor chip of the adhesive. When the Tg of the polymer component is 50 ° C. or more, the tack (viscous) force of the adhesive tends to be moderately weak. When the Tg of the polymer component is 200 ° C. or less, the adhesive tends to embed irregularities such as bumps of a semiconductor chip, electrodes formed on a wiring circuit board, and a wiring pattern, and the effect of suppressing voids tends to be relatively large. There is. The Tg herein is measured using a DSC (DSC-7, manufactured by PerkinElmer, Inc.) at a sample amount of 10 mg, a temperature rising rate of 10 ° C./min, under conditions of an air atmosphere.
 高分子成分の重量平均分子量は、10000以上である。単独で良好なフィルム形成性を示すために、高分子成分の重量平均分子量は30000以上、40000以上、又は50000以上であってもよく、500000以下であってもよい。本明細書において、重量平均分子量とは、ゲル浸透クロマトグラフィー(GPC)で測定される、標準ポリスチレン換算の値を意味する。 The weight average molecular weight of the polymer component is 10000 or more. The weight average molecular weight of the polymer component may be 30,000 or more, 40000 or more, or 50000 or more, or 500,000 or less in order to exhibit good film-forming property alone. In the present specification, the weight average molecular weight means a value in terms of standard polystyrene, which is measured by gel permeation chromatography (GPC).
 接着剤は、フラックス活性(酸化物及び不純物を除去する活性)を示す化合物であるフラックス活性剤を含有することができる。フラックス活性剤としては、イミダゾール類及びアミン類のように非共有電子対を有する含窒素化合物、カルボン酸類、フェノール類及びアルコール類が挙げられる。アルコール等に比べて有機酸の方がフラックス活性を強く発現し、接続性が向上する。 The adhesive can contain a flux activator which is a compound that exhibits flux activity (activity to remove oxides and impurities). Flux activators include nitrogen-containing compounds having non-covalent electron pairs such as imidazoles and amines, carboxylic acids, phenols and alcohols. The organic acid more strongly exhibits the flux activity than the alcohol etc., and the connectivity is improved.
 フラックス活性剤として用いられ得る有機酸は、エポキシ樹脂等と反応することで接着剤中に酸が残存し難いことから、カルボン酸であってもよい。カルボン酸は、耐熱性の観点から、固形であってもよい。カルボン酸の融点は、安定性及び取り扱い性の観点から、70℃以上150℃以下であってもよい。 The organic acid that can be used as a flux activator may be a carboxylic acid because the acid is unlikely to remain in the adhesive by reacting with an epoxy resin or the like. The carboxylic acid may be solid from the viewpoint of heat resistance. The melting point of the carboxylic acid may be 70 ° C. or more and 150 ° C. or less from the viewpoint of stability and handleability.
 粘度及び硬化物の物性を制御するため、並びに、半導体チップ同士又は半導体チップと配線回路基板とを接続した際のボイドの発生及び吸湿率の抑制のために、接着剤がフィラを含有してもよい。フィラは絶縁性無機フィラであってもよくその例としては、ガラス、シリカ、アルミナ、酸化チタン、カーボンブラック、マイカ、窒化ホウ素等が挙げられる。これらの中でも、シリカ、アルミナ、酸化チタン、及び窒化ホウ素、又は、シリカ、アルミナ、及び窒化ホウ素から選ばれるフィラを用いてもよい。フィラはウィスカーであってもよく、その例としては、ホウ酸アルミニウム、チタン酸アルミニウム、酸化亜鉛、珪酸カルシウム、硫酸マグネシウム、窒化ホウ素が挙げられる。フィラは樹脂フィラであってもよく、その例としては、ポリウレタン、ポリイミド、メタクリル酸メチル樹脂、メタクリル酸メチル-ブタジエン-スチレン共重合樹脂(MBS)が挙げられる。これらのフィラは単独又は2種以上の組み合わせとして用いることもできる。フィラの形状、粒径、および含有量については、特に制限されない。 Even if the adhesive contains a filler, in order to control the viscosity and physical properties of the cured product, and to suppress the generation of voids and moisture absorption when the semiconductor chips or the semiconductor chips and the wiring circuit board are connected to each other. Good. The filler may be an insulating inorganic filler, and examples thereof include glass, silica, alumina, titanium oxide, carbon black, mica, boron nitride and the like. Among these, a filler selected from silica, alumina, titanium oxide and boron nitride, or silica, alumina and boron nitride may be used. The filler may be a whisker, examples of which include aluminum borate, aluminum titanate, zinc oxide, calcium silicate, magnesium sulfate and boron nitride. The filler may be a resin filler, examples of which include polyurethane, polyimide, methyl methacrylate resin, and methyl methacrylate-butadiene-styrene copolymer resin (MBS). These fillers may be used alone or in combination of two or more. The shape, particle size and content of the filler are not particularly limited.
 樹脂フィラは無機フィラに比べて、260℃等の高温で柔軟性を付与することができるため、耐リフロ性向上に適している。樹脂フィラは、フィルム形成性向上の点でも有利である。 The resin filler can impart flexibility at a high temperature such as 260 ° C., as compared with the inorganic filler, and thus is suitable for improving the reflow resistance. The resin filler is also advantageous in terms of film formability improvement.
 絶縁信頼性の観点から、フィラは絶縁性であってもよい。接着剤は、銀フィラ、はんだフィラ等導電性の金属フィラを実質的に含有していなくてもよい。 From the viewpoint of insulation reliability, the filler may be insulating. The adhesive may be substantially free of a conductive metal filler such as a silver filler or a solder filler.
 分散性及び接着力向上の観点から、フィラは、表面処理されていてもよい。フィラは、例えばグリシジル系(エポキシ系)、アミン系、フェニル系、フェニルアミノ系また、(メタ)アクリル系、ビニル系の表面処理剤によって表面処理される。分散性、流動性、接着力の観点から、グリシジル系、フェニルアミノ系、又は(メタ)アクリル系の表面処理剤によってフィラが表面処理されていてもよい。保存安定性の観点から、表面処理剤はフェニル系、アクリル系、又は(メタ)アクリル系であってもよい。表面処理のし易さから、表面処理剤はエポキシシラン系、アミノシラン系、アクリルシラン系等のシラン化合物であってもよい。 The filler may be surface-treated from the viewpoint of dispersibility and adhesion. The filler is surface-treated with, for example, a glycidyl-based (epoxy-based), amine-based, phenyl-based, phenylamino-based, (meth) acrylic-based or vinyl-based surface treating agent. The filler may be surface-treated with a glycidyl-based, phenylamino-based or (meth) acrylic-based surface treatment agent from the viewpoint of dispersibility, fluidity, and adhesive strength. From the viewpoint of storage stability, the surface treatment agent may be phenyl type, acrylic type or (meth) acrylic type. From the ease of surface treatment, the surface treatment agent may be a silane compound such as epoxysilane type, aminosilane type and acrylic silane type.
 フィラの平均粒径は、フリップチップ接続時のかみ込み防止の観点から、1.5μm以下であってもよく、視認性及び透明性の観点から、1.0μm以下であってもよい。 The average particle diameter of the filler may be 1.5 μm or less from the viewpoint of preventing biting at the time of flip chip connection, and may be 1.0 μm or less from the viewpoint of visibility and transparency.
 フィラの含有量は、接着剤の固形分質量(溶剤以外の成分の質量)を基準として、30~90質量%、又は40~80質量%であってもよい。フィラの含有量が30質量%以上であると、放熱性が高く、また、ボイド発生、吸湿率が小さくなる傾向がある。フィラの含有量が90質量%以下であると、接着剤が適度な流動性を有し、接続部へのフィラの噛み込み(トラッピング)による接続信頼性の低下が抑制される傾向がある。 The content of the filler may be 30 to 90% by mass, or 40 to 80% by mass, based on the mass of the solid content of the adhesive (the mass of components other than the solvent). When the content of the filler is 30% by mass or more, the heat dissipation property is high, and the void generation and the moisture absorption ratio tend to be small. When the content of the filler is 90% by mass or less, the adhesive has appropriate fluidity, and a decrease in connection reliability due to trapping of the filler in the connection portion tends to be suppressed.
 接着剤は、イオントラッパー、酸化防止剤、シランカップリング剤、チタンカップリング剤、及びレベリング剤等の他の成分を更に含んでもよい。これらは1種を単独で用いてもよいし、2種以上組み合わせて用いてもよい。これらの配合量については、各添加剤の効果が発現するように適宜調整すればよい。 The adhesive may further include other components such as an ion trapper, an antioxidant, a silane coupling agent, a titanium coupling agent, and a leveling agent. One of these may be used alone, or two or more of these may be used in combination. About these compounding quantities, what is necessary is just to adjust suitably so that the effect of each additive may be revealed.
 接着剤の最低溶融粘度は、ボイド抑制の観点から、3000Pa・s以下、又は2700Pa・s以下であってもよく、300Pa・s以上であってもよい。接着剤の最低溶融粘度は、昇温速度10℃/分、周波数10Hz、回転モードの条件で、30~300℃の温度範囲で接着剤の粘弾性を測定したときに得られる粘度(複素粘性率)と温度との関係において、最も粘度の低い粘度の値である。粘弾性測定の試験片として、例えば、複数のフィルム状の接着剤を厚さが300~450μmになるように積層して得られる積層体を用いてもよい。粘度測定装置として、例えばTA製、ARES G2を用いることができる。 The minimum melt viscosity of the adhesive may be 3000 Pa · s or less, or 2700 Pa · s or less, or 300 Pa · s or more from the viewpoint of void suppression. The minimum melt viscosity of the adhesive is the viscosity (complex viscosity) obtained when the viscoelasticity of the adhesive is measured in the temperature range of 30 to 300 ° C. under the conditions of temperature increase rate 10 ° C./min, frequency 10 Hz and rotational mode The viscosity value is the lowest in terms of viscosity in relation to temperature). As a test piece for viscoelasticity measurement, for example, a laminate obtained by laminating a plurality of film-like adhesives so as to have a thickness of 300 to 450 μm may be used. As a viscosity measuring device, for example, ARES G2 manufactured by TA can be used.
 接着剤は、半導体装置の生産効率向上の観点から、フィルム状であってもよい。フィルム状の接着剤は、熱硬化性樹脂、硬化剤、及び必要によりその他の成分を含む樹脂ワニスを機材フィルムに塗布し、塗膜を乾燥する方法によって製造することができる。 The adhesive may be in the form of a film from the viewpoint of improving the production efficiency of the semiconductor device. The film-like adhesive can be produced by a method of applying a resin varnish containing a thermosetting resin, a curing agent and, if necessary, other components to an equipment film and drying the coating.
 樹脂ワニスは、熱硬化性樹脂硬化剤、及び必要によりその他の成分を有機溶媒と混合し、それらを攪拌又は混錬により溶解又は分散させて、調製される。樹脂ワニスは、離型処理を施した基材フィルム上に、例えばナイフコーター、ロールコーター、アプリケーター、ダイコーター、又はコンマコーターを用いて塗布される。その後、加熱により樹脂ワニスの塗膜から有機溶媒を減少させて、すなわち塗膜を乾燥させて、基材フィルム上にフィルム状の接着剤を形成する。樹脂ワニスの膜を半導体ウエハ等の上にスピンコート等の方法によって形成し、その後、塗膜を乾燥する方法で、半導体ウエハ上にフィルム状の接着剤を形成してもよい。 The resin varnish is prepared by mixing a thermosetting resin curing agent and, if necessary, other components with an organic solvent, and dissolving or dispersing them by stirring or kneading. The resin varnish is applied onto the release-treated substrate film using, for example, a knife coater, a roll coater, an applicator, a die coater, or a comma coater. Thereafter, the organic solvent is reduced from the resin varnish coating by heating, that is, the coating is dried to form a film-like adhesive on the substrate film. A film of resin varnish may be formed on a semiconductor wafer or the like by a method such as spin coating, and then a film-like adhesive may be formed on the semiconductor wafer by a method of drying the coating film.
 基材フィルムとしては、有機溶媒を揮発させる際の加熱条件に耐え得る耐熱性を有するものであれば特に制限はなく、ポリエステルフィルム、ポリプロピレンフィルム、ポリエチレンテレフタレートフィルム、ポリイミドフィルム、ポリエーテルイミドフィルム、ポリエーテルナフタレートフィルム、メチルペンテンフィルム等が例示できる。基材フィルムは、これらのフィルムからなる単層のものに限られず、2種以上の材料からなる多層フィルムであってもよい。 The substrate film is not particularly limited as long as it has heat resistance that can withstand the heating conditions at the time of volatilizing the organic solvent, and a polyester film, a polypropylene film, a polyethylene terephthalate film, a polyimide film, a polyetherimide film, a poly An ether naphthalate film, a methyl pentene film, etc. can be illustrated. The substrate film is not limited to a single layer film composed of these films, and may be a multilayer film composed of two or more materials.
 塗布後の樹脂ワニスから有機溶媒を揮発させる際の条件は、具体的には、50~200℃、0.1~90分間の加熱であってもよい。実装後のボイド及び粘度調製に実質的に影響しない範囲で、残存量が1.5質量%以下になるまで有機溶媒を除去してもよい。 Specifically, the conditions for volatilizing the organic solvent from the resin varnish after application may be heating at 50 to 200 ° C. for 0.1 to 90 minutes. The organic solvent may be removed to a residual amount of 1.5% by mass or less within a range not substantially affecting the preparation of voids and viscosity after mounting.
 以下、本発明を実施例を挙げてより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 EXAMPLES Hereinafter, the present invention will be more specifically described by way of examples, but the present invention is not limited to these examples.
検討1
(1-1)フィルム状接着剤
 以下に示す材料を用いて、表1に示す組成を有するフィルム状接着剤(厚さ0.045mm)を作製した。
(i)重量平均分子量10000未満の熱硬化性樹脂
(エポキシ樹脂)
・トリフェノールメタン骨格含有多官能固形エポキシ樹脂(三菱ケミカル株式会社製、製品名:EP1032H60、重量平均分子量:800~2000)
・ビスフェノールF型液状エポキシ樹脂(三菱ケミカル株式会社製、製品名:YL983U、重量平均分子量:約336)
・可とう性半固形状エポキシ樹脂(三菱ケミカル株式会社製、製品名:YL7175-1000、重量平均分子量:1000~5000)
(ii)硬化剤
・2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加体(四国化成工業株式会社製、製品名:2MAOK-PW)
(iii)重量平均分子量10000以上の高分子成分
・フェノキシ樹脂(新日鉄住金化学株式会社製、製品名:ZX1356-2、Tg:約71℃、重量平均分子量:約63000、以下「ZX1356」という。)
(iv)フラックス剤(カルボン酸)
・2-メチルグルタル酸(シグマ-アルドリッチ製、融点約77℃)
(v)フィラ
(無機フィラ)
・シリカフィラ(株式会社アドマテックス製、製品名:SE2050、平均粒径0.5μm)
・フィニル表面処理ナノシリカフィラ(株式会社アドマテックス製、製品名:YA050C-SP(以下「SPナノシリカ」という。)、平均粒径約50nm)
(樹脂フィラ)
・有機フィラ(ダウ・ケミカル日本株式会社製、製品名:EXL-2655、コアシェルタイプ有機微粒子)
Examination 1
(1-1) Film Adhesive A film adhesive (thickness 0.045 mm) having the composition shown in Table 1 was produced using the materials shown below.
(I) Thermosetting resin (epoxy resin) having a weight average molecular weight of less than 10000
・ Triphenol methane skeleton-containing polyfunctional solid epoxy resin (Mitsubishi Chemical Corporation, product name: EP1032H60, weight average molecular weight: 800 to 2000)
-Bisphenol F type liquid epoxy resin (Mitsubishi Chemical Corporation, product name: YL 983 U, weight average molecular weight: about 336)
Flexible semi-solid epoxy resin (Mitsubishi Chemical Corporation, product name: YL7175-1000, weight average molecular weight: 1000-5000)
(Ii) Hardening agent 2,4-diamino-6- [2′-methylimidazolyl- (1 ′)]-ethyl-s-triazine isocyanuric acid adduct (manufactured by Shikoku Kasei Kogyo Co., Ltd., product name: 2MAOK-PW )
(Iii) Polymer component having a weight average molecular weight of 10000 or more phenoxy resin (manufactured by Nippon Steel Sumikin Chemical Co., Ltd., product name: ZX 1356-2, Tg: about 71 ° C., weight average molecular weight: about 63000, hereinafter referred to as “ZX1356”)
(Iv) Flux agent (carboxylic acid)
2-Methylglutaric acid (Sigma-Aldrich, melting point about 77 ° C)
(V) Filler (inorganic filler)
・ Silica filler (made by Admatex Co., Ltd., product name: SE2050, average particle diameter 0.5 μm)
・ Finil surface-treated nano silica filler (Admatex Co., Ltd., product name: YA050C-SP (hereinafter referred to as “SP nano silica”), average particle diameter about 50 nm)
(Resin filler)
・ Organic filler (Dow Chemical Japan Ltd. product name: EXL-2655, core-shell type organic fine particles)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(1-2)半導体装置の作製
(実施例1)
第一の圧着工程
 作製したフィルム状接着剤を切り抜き、8mm×8mm×厚さ0.045mmのサイズを有するフィルム状接着剤を準備した。これを半導体チップ(10mm、厚さ0.1mm、接続部金属:Au、製品名:WALTS-TEG IP80、WALTS製)に貼付した。そこに、はんだバンプ付き半導体チップ(チップサイズ:7.3mm×7.3mm×厚み0.05mm、はんだバンプ融点:約220℃、バンプ高さ:銅ピラーとはんだの合計で約45μm、バンプ数1048ピン、ピッチ80um、製品名:WALTS-TEG CC80、WALTS製)を貼付し、積層体を得た。積層体を、ステージ及び圧着ヘッドを有するフリップチップボンダー(FCB3、パナソニック株式会社製)のステージ上に設置し、ステージ及び圧着ヘッドで挟む熱プレスにより、1秒間、25Nの荷重で積層体を加圧しながら80℃に加熱して、仮圧着体を得た。
(1-2) Fabrication of Semiconductor Device (Example 1)
First pressure bonding step The produced film adhesive was cut out to prepare a film adhesive having a size of 8 mm × 8 mm × thickness 0.045 mm. This was attached to a semiconductor chip (10 mm, thickness 0.1 mm, connection metal: Au, product name: WALTS-TEG IP80, manufactured by WALTS). There, a semiconductor chip with solder bumps (chip size: 7.3 mm × 7.3 mm × thickness 0.05 mm, solder bump melting point: about 220 ° C., bump height: about 45 μm in total of copper pillars and solder, bump number 1048 A pin, pitch 80 um, product name: WALTS-TEG CC80 (manufactured by WALTS) was attached to obtain a laminate. The laminate is placed on a stage of a flip chip bonder (FCB3, manufactured by Panasonic Corporation) having a stage and a crimping head, and the laminate is pressed with a load of 25 N for 1 second by a thermal press sandwiched by the stage and the crimping head. While heating to 80 ° C., a temporary press-bonded body was obtained.
第二の圧着工程
 得られた仮圧着体を、別のフリップチップボンダー(FCB3、パナソニック株式会社製)のステージ上に移動させ、ステージ及び圧着ヘッドで挟むことにより、25Nの荷重で加圧しながら230℃で1秒間加熱する熱プレスにより、圧着体を得た。
Second pressure bonding process The obtained temporary pressure bonding body is moved onto the stage of another flip chip bonder (FCB3, manufactured by Panasonic Corporation), and is sandwiched by the stage and the pressure bonding head, while being pressurized with a load of 25 N 230 The press-bonded body was obtained by a heat press which is heated at 1 ° C. for 1 second.
第三の圧着工程
 圧着体を加圧リフロ装置(シンアペックス製、製品名:VSU28)のオーブン内に設置した。オーブン内の圧力を0.4MPaに設定し、室温から昇温速度20℃/分で175℃まで昇温した。次いで圧力及び温度を維持しながら圧着体を加圧雰囲気下で10分間加熱して、評価用の半導体装置サンプルを得た。
Third Crimping Process The crimped body was placed in an oven of a pressure reflow apparatus (manufactured by Shin Apex, product name: VSU 28). The pressure in the oven was set to 0.4 MPa, and the temperature was raised from room temperature to 175 ° C. at a heating rate of 20 ° C./min. Subsequently, the pressure-bonded body was heated for 10 minutes in a pressurized atmosphere while maintaining the pressure and the temperature to obtain a semiconductor device sample for evaluation.
(実施例2)
 圧着体を加圧リフロ装置のオーブン内で加熱する際の加熱温度を175℃から260℃に変更したこと以外は、実施例1と同様にして、評価用の半導体装置サンプルを得た。
(Example 2)
A semiconductor device sample for evaluation was obtained in the same manner as in Example 1 except that the heating temperature at the time of heating the pressure-bonded body in the oven of the pressure reflow apparatus was changed from 175 ° C. to 260 ° C.
(比較例1)
 実施例1と同様にして仮圧着体を得た。得られた仮圧着体を、オーブン装置(ヤマト科学株式会社製、製品名:DKN402)内で、大気圧下、175℃で10分間加熱して、評価用の半導体装置サンプルを得た。
(Comparative example 1)
A temporary crimped body was obtained in the same manner as in Example 1. The obtained temporary pressure-bonded body was heated at 175 ° C. for 10 minutes under atmospheric pressure in an oven (manufactured by Yamato Scientific Co., Ltd., product name: DKN 402) to obtain a semiconductor device sample for evaluation.
(比較例2)
 仮圧着体を大気圧下で加熱する際の加熱温度を175℃から260℃に変更したこと以外は、比較例1と同様にして、評価用の半導体装置サンプルを得た。
(Comparative example 2)
A semiconductor device sample for evaluation was obtained in the same manner as in Comparative Example 1 except that the heating temperature at the time of heating the temporary pressure-bonded body at atmospheric pressure was changed from 175 ° C. to 260 ° C.
(比較例3)
 実施例1と同様の条件で圧着体を得た。得られた圧着体をオーブン装置(ヤマト科学株式会社製、製品名:DKN402)内で、大気圧下、175℃で10分間加熱して、評価用の半導体装置サンプルを得た。
(Comparative example 3)
A crimped body was obtained under the same conditions as in Example 1. The obtained crimped body was heated at 175 ° C. for 10 minutes under atmospheric pressure in an oven (manufactured by Yamato Scientific Co., Ltd., product name: DKN 402) to obtain a semiconductor device sample for evaluation.
(比較例4)
 オーブン装置を用いて圧着体を加熱する際の加熱温度を175℃から260℃に変更したこと以外は比較例3と同様にして、評価用の半導体装置サンプルを得た。
(Comparative example 4)
A semiconductor device sample for evaluation was obtained in the same manner as in Comparative Example 3 except that the heating temperature when heating the pressure-bonded body using an oven was changed from 175 ° C. to 260 ° C.
(1-3)接続評価
 マルチメータ(ADVANTEST製、製品名:R6871E)を用いてサンプルの初期導通の可否を測定した。以下の基準で接続性を判定した。結果を表2に示した。
A:ペリフェラル部分の初期接続抵抗値が30Ω以上35Ω以下
B:初期接続抵抗値が30Ω未満若しくは35Ωを超える、又は未接続
(1-3) Connection Evaluation Whether the initial conduction of the sample was possible was measured using a multimeter (manufactured by ADVANTEST, product name: R6871E). The connectivity was judged based on the following criteria. The results are shown in Table 2.
A: Initial connection resistance value of peripheral part is 30 Ω or more and 35 Ω or less B: Initial connection resistance value is less than 30 Ω or more than 35 Ω or not connected
(1-4)ボイド評価
 超音波映像診断装置(製品名:Insight-300、インサイト製)により、サンプルの外観画像を撮影した。得られた画像から、スキャナ(製品名:GT-9300UF、セイコーエプソン株式会社製)でチップ上の接着剤層の部分を取り込んだ。画像処理ソフトAdobe Photoshopを用いて、色調補正、二階調化によりボイド部分を識別し、接着剤層の面積を100%として、ヒストグラムによりボイド部分の占める割合(ボイド発生率)を算出した。以下の基準によりボイドの発生状態を評価した。結果を表2に示した。
A:ボイド発生率が5%以下
B:ボイド発生率が5%より多い
(1-4) Void evaluation The external appearance image of the sample was taken with an ultrasonic diagnostic imaging apparatus (product name: Insight-300, manufactured by Insight). From the obtained image, a portion of the adhesive layer on the chip was taken in with a scanner (product name: GT-9300UF, manufactured by Seiko Epson Corporation). Using the image processing software Adobe Photoshop, the void portion was identified by color tone correction and two gradations, the area of the adhesive layer was 100%, and the percentage of void portion (void occurrence rate) was calculated by a histogram. The occurrence of voids was evaluated according to the following criteria. The results are shown in Table 2.
A: Void generation rate is 5% or less B: Void generation rate is more than 5%
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例1及び2は、いずれもボイド抑制と、接続確保の点で良好な結果を示した。すなわち、本発明の方法によれば、ボイド抑制と接続確保の両立が可能であることが確認された。 Examples 1 and 2 both showed good results in terms of void suppression and connection securing. That is, according to the method of the present invention, it was confirmed that compatibility between void suppression and connection securing can be achieved.
検討2
(2-1)フィルム状接着剤
 検討1のフィルム状接着剤作製に用いた材料と同様の材料を用いて、表3に示す組成を有するフィルム状接着剤(厚さ0.040~0.045mm)を作製した。
Examination 2
(2-1) Film Adhesive The film adhesive (having a thickness of 0.040 to 0.045 mm) having the composition shown in Table 3 using the same material as the material used for producing the film adhesive of Study 1. ) Was produced.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
(2-2)半導体装置の作製とその評価
 実施例1と同様の条件で、評価用の半導体装置サンプルを得た。得られたサンプルの接続及びボイドを検討1と同様の方法で評価した。結果を表4に示した。
(2-2) Fabrication of Semiconductor Device and Evaluation Thereof A semiconductor device sample for evaluation was obtained under the same conditions as in Example 1. The connection and void of the obtained sample were evaluated in the same manner as in Study 1. The results are shown in Table 4.
(2-3)最低溶融粘度
 フィルム状接着剤を、ロールラミネータ((株)ラミーコーポレーション製、HOT DOG Leon 13DX)を用いて、60℃に加熱しながら、全体の厚さが300~450μmになるように複数枚積層した。得られた積層体を試験片として、回転式レオメータ(TA製、ARES G2)を用いて、昇温速度10℃/分、周波数:10Hz、回転モードの条件で、20℃~300℃の温度範囲における粘度(複素粘性率)の変化を測定した。測定された粘度変化における粘度の最小値を最低溶融粘度とした。
(2-3) Minimum Melt Viscosity The film adhesive has a total thickness of 300 to 450 μm while being heated to 60 ° C. using a roll laminator (HOT DOG Leon 13 DX, manufactured by Lamy Corporation). As shown, several sheets were stacked. The resulting laminate is used as a test piece, using a rotary rheometer (TA product, ARES G2), at a temperature rising rate of 10 ° C./min, frequency: 10 Hz, temperature range of 20 ° C. to 300 ° C. The change in viscosity (complex viscosity) was measured. The minimum value of viscosity at the measured viscosity change was taken as the lowest melt viscosity.
(2-6)第三の圧着工程後の硬化反応率
 第一の圧着工程に用いられる前のフィルム状接着剤から10mgのサンプルを採取し、DSC(パーキンエルマー社製DSC-7型)を用いて、昇温速度20℃/分で、30~300℃の温度範囲の示差走査熱量測定を行った。得られたDSCサーモグラムから、初期の硬化反応による発熱量ΔH0(J/g)を求めた。
 フィルム状接着剤に、ホットプレート及びオーブンを用いて、実施例1と同様の第一、第二及び第三の圧着工程に相当する熱履歴を加えた。その後、フィルム状接着剤から採取したサンプルを用いた上記と同様の条件の示差走査熱量測定により、第三の圧着工程後に相当する接着剤の硬化反応による発熱量ΔH3(J/g)を求めた。得られたΔH0及びΔH3から、第三の圧着工程後の硬化反応率を以下の式で算出した。
第三の圧着工程後の硬化反応率(%):(ΔH0-ΔH3)/ΔH0×100
(2-6) Curing reaction rate after the third pressure bonding step A 10 mg sample is taken from the film adhesive before being used in the first pressure bonding step, and a DSC (DSC-7 manufactured by Perkin Elmer) is used. Then, differential scanning calorimetry at a temperature range of 30 to 300 ° C. was performed at a temperature rising rate of 20 ° C./min. From the DSC thermogram obtained, the calorific value ΔH0 (J / g) due to the initial curing reaction was determined.
To the film adhesive was added a heat history corresponding to the first, second and third pressure bonding steps as in Example 1 using a hot plate and an oven. Then, the calorific value ΔH3 (J / g) due to the curing reaction of the adhesive corresponding after the third pressure bonding step was determined by differential scanning calorimetry under the same conditions as above using the sample taken from the film adhesive . From the obtained ΔH 0 and ΔH 3, the curing reaction rate after the third pressure bonding step was calculated by the following equation.
Curing reaction rate (%) after the third pressure bonding step: (ΔH 0 −ΔH 3) / ΔH 0 × 100
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 実施例3及び4は、いずれもボイド抑制と、接続確保の点で良好な評価結果を示した。 Examples 3 and 4 all showed good evaluation results in terms of void suppression and connection securing.
検討3
(3-1)フィルム状接着剤
 検討1のフィルム状接着剤作製において用いた材料と同様の材料を用いて、表5に示す組成を有するフィルム状接着剤(厚さ0.045mm)を作製した。
Examination 3
(3-1) Film Adhesive The film adhesive (thickness 0.045 mm) having the composition shown in Table 5 was produced using the same material as the material used in the production of the film adhesive of Study 1. .
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
(3-2)半導体装置の作製
(実施例5)
 第一の圧着工程において積層体を加熱及び加圧する時間を3秒に変更したこと以外は実施例1と同様にして、評価用の半導体装置サンプルを得た。
(3-2) Fabrication of Semiconductor Device (Example 5)
A semiconductor device sample for evaluation was obtained in the same manner as in Example 1 except that the time for heating and pressing the laminate in the first pressure bonding step was changed to 3 seconds.
(実施例6)
 第一の圧着工程において積層体を加熱及び加圧する時間を3秒間に変更し、第三の圧着工程においてオーブン内の圧力を0.8MPaに変更したこと以外は実施例1と同様にして、評価用の半導体装置サンプルを得た。
(Example 6)
Evaluation was performed in the same manner as in Example 1 except that the time for heating and pressing the laminate in the first pressure bonding step was changed to 3 seconds, and the pressure in the oven was changed to 0.8 MPa in the third pressure bonding step. Semiconductor device samples for
(比較例5)
 フィルム状接着剤を切り抜き、8mm×8mm×厚さ0.045mmのサイズを有するフィルム状接着剤を準備した。これを半導体チップ(10mm、厚さ0.1mm厚、接続部金属:Au、製品名:WALTS-TEG IP80、WALTS製)上に貼付した。そこに、はんだバンプ付き半導体チップ(チップサイズ:7.3mm×7.3mm×厚さ0.05mm、バンプ融点:約220℃バンプ高さ:銅ピラーとはんだの合計で約45μm、バンプ数1048ピン、ピッチ80um、製品名:WALTS-TEG CC80、WALTS製)を貼付し、積層体を得た。積層体を、ステージ及び圧着ヘッドを有するフリップチップボンダー(FCB3、パナソニック株式会社製)のステージ上に設置した。ステージ及び圧着ヘッドで挟むことにより、3秒間、25Nの荷重で加圧しながら温度80℃で加熱する熱プレスにより、仮圧着体を得た。得られた仮圧着体を別のフリップチップボンダー(FCB3、パナソニック株式会社製)のステージ上に移動した。仮圧着体をステージ及び圧着ヘッドで挟むことにより、5秒間、25Nの荷重で加圧しながら温度260℃で加熱して、評価用の半導体装置サンプルを得た。
(Comparative example 5)
The film adhesive was cut out, and a film adhesive having a size of 8 mm × 8 mm × thickness 0.045 mm was prepared. This was attached on a semiconductor chip (10 mm, thickness 0.1 mm, connection metal: Au, product name: WALTS-TEG IP80, manufactured by WALTS). Semiconductor chip with solder bumps (chip size: 7.3mm x 7.3mm x thickness 0.05mm, bump melting point: about 220 ° C bump height: about 45μm in total of copper pillar and solder, bump number 1048 pins , Pitch 80 um, product name: WALTS-TEG CC80, manufactured by WALTS), and a laminate was obtained. The laminate was placed on a stage of a flip chip bonder (FCB3, manufactured by Panasonic Corporation) having a stage and a pressure bonding head. A temporary press-bonded body was obtained by a heat press which is heated at a temperature of 80 ° C. while pressing with a load of 25 N for 3 seconds by clamping with a stage and a press-bonding head. The obtained temporary crimped body was moved onto the stage of another flip chip bonder (FCB3, manufactured by Panasonic Corporation). By holding the temporary pressure-bonded body between the stage and the pressure-bonding head, the semiconductor device sample for evaluation was obtained by heating at a temperature of 260 ° C. while pressing with a load of 25 N for 5 seconds.
(3-3)評価
 検討1と同様の方法により、得られた半導体装置サンプルの接続及びボイドを評価した。結果を表6に示した。
(3-3) Evaluation The connection and void of the obtained semiconductor device sample were evaluated in the same manner as in Study 1. The results are shown in Table 6.
(3-4)第二の圧着工程後の硬化反応率
 第一の圧着工程に用いられる前のフィルム状接着剤から10mgのサンプルを採取し、DSC(パーキンエルマー社製DSC-7型)を用いて、昇温速度20℃/分で、30~300℃の温度範囲の示差走査熱量測定を行った。得られたDSCサーモグラムから、初期の硬化反応による発熱量ΔH0(J/g)を求めた。
 フィルム状接着剤に、ホットプレート及びオーブンを用いて、実施例5及び6と同様の第一及び第二の圧着工程に相当する熱履歴を加えた。その後、フィルム状接着剤から採取したサンプルを用いた上記と同様の条件の示差走査熱量測定により、第二の圧着工程後に相当する接着剤の硬化反応による発熱量ΔH2(J/g)を求めた。得られたΔH0及びΔH2から、第二の圧着工程後の硬化反応率を以下の式で算出した。
第二の圧着工程後の硬化反応率(%):(ΔH0-ΔH2)/ΔH0×100
(3-4) Curing reaction rate after the second pressure bonding step A 10 mg sample is taken from the film adhesive before being used in the first pressure bonding step, and a DSC (DSC-7 manufactured by Perkin Elmer) is used. Then, differential scanning calorimetry at a temperature range of 30 to 300 ° C. was performed at a temperature rising rate of 20 ° C./min. From the DSC thermogram obtained, the calorific value ΔH0 (J / g) due to the initial curing reaction was determined.
To the film adhesive was added a heat history corresponding to the first and second pressure bonding steps as in Examples 5 and 6 using a hot plate and an oven. Then, the calorific value ΔH2 (J / g) due to the curing reaction of the adhesive corresponding to after the second pressure bonding step was determined by differential scanning calorimetry under the same conditions as above using the sample taken from the film adhesive . From the obtained ΔH 0 and ΔH 2, the curing reaction rate after the second pressure bonding step was calculated by the following equation.
Curing reaction rate (%) after the second pressure bonding step: (ΔH0-ΔH2) / ΔH0 × 100
(3-5)フィレット評価
 半導体装置サンプルの外観画像を、デジタルマイクロスコープ(KEYENCE製、VHX-5000)によって撮影した。得られた画像より、半導体チップの周囲4辺それぞれからはみ出した接着剤層の長さ(半導体チップの主面に平行な方向における長さ)を計測し、計測値の平均値をフィレット値として記録した。
(3-5) Fillet Evaluation An appearance image of a semiconductor device sample was taken with a digital microscope (VHX-5000 manufactured by KEYENCE). From the obtained image, measure the length (length in the direction parallel to the main surface of the semiconductor chip) of the adhesive layer protruding from each of the four peripheral sides of the semiconductor chip, and record the average value of the measured values as the fillet value. did.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 実施例1及び2は、いずれもボイド抑制と、接続確保の点で良好な評価結果を示した。 Examples 1 and 2 all showed good evaluation results in terms of void suppression and connection securing.
 1…半導体チップ、2…配線回路基板、3…積層体、4…仮圧着体、5…インターポーザー、6…圧着体、10…半導体チップ本体、15,16…配線、20…基板本体、30,32,33…バンプ、34…貫通電極、40…接着剤層、41,44…圧着ヘッド、42,45…ステージ、43,46…押圧装置、50…インターポーザー本体、60…加熱炉、100,200,300,400,500…半導体装置。 DESCRIPTION OF SYMBOLS 1 ... semiconductor chip, 2 ... wiring circuit board, 3 ... laminated body, 4 ... temporary crimping body, 5 ... interposer, 6 ... crimping body, 10 ... semiconductor chip body, 15, 16 ... wiring, 20 ... board body, 30 , 32, 33: bump, 34: penetrating electrode, 40: adhesive layer, 41, 44: crimping head, 42, 45: stage, 43, 46: pressing device, 50: interposer body, 60: heating furnace, 100 , 200, 300, 400, 500 ... semiconductor devices.

Claims (11)

  1.  接続部を有する第一の部材と接続部を有する第二の部材とを、熱硬化性の接着剤を介して、前記第一の部材の接続部の融点及び前記第二の部材の接続部の融点よりも低い温度で圧着することによって、前記第一の部材の接続部と前記第二の部材の接続部とが対向配置されている仮圧着体を得る工程と、
     前記仮圧着体を、対向配置された一対の押圧部材の間に挟むことにより、前記第一の部材の接続部又は前記第二の部材の接続部のうち少なくとも一方の融点以上の温度に加熱しながら加圧することによって、圧着体を得る工程と、
     前記圧着体を、加圧雰囲気下で更に加熱する工程と、
    を備え、
     前記第一の部材が半導体チップ又は半導体ウエハで、前記第二の部材が配線回路基板、半導体チップ又は半導体ウエハである、半導体装置を製造する方法。
    The melting point of the connection portion of the first member and the connection portion of the second member of the first member having the connection portion and the second member having the connection portion via a thermosetting adhesive Obtaining a temporary crimped body in which the connection portion of the first member and the connection portion of the second member are disposed to be opposed by pressure bonding at a temperature lower than the melting point;
    By holding the temporary pressure-bonded body between a pair of opposing pressing members, the temporary pressure-bonded body is heated to a temperature equal to or higher than the melting point of at least one of the connection of the first member and the connection of the second member. Obtaining a crimped body by applying pressure while
    Further heating the crimped body in a pressurized atmosphere;
    Equipped with
    A method of manufacturing a semiconductor device, wherein the first member is a semiconductor chip or a semiconductor wafer, and the second member is a printed circuit board, a semiconductor chip or a semiconductor wafer.
  2.  前記仮圧着体を加熱しながら加圧することによって前記圧着体を得る前記工程において、前記熱硬化性の接着剤を部分的に硬化させ、
     前記圧着体を加圧雰囲気下で加熱する前記工程において、前記熱硬化性の接着剤を更に硬化させる、請求項1に記載の方法。
    Partially curing the thermosetting adhesive in the step of obtaining the crimped body by applying heat and pressure to the temporary crimped body;
    The method according to claim 1, wherein the thermosetting adhesive is further cured in the step of heating the pressure-bonded body under a pressure atmosphere.
  3.  前記仮圧着体を加熱しながら加圧することによって前記圧着体を得る前記工程において、前記熱硬化性の接着剤を、硬化反応率が30%以下となるまで硬化させる、請求項2に記載の方法。 The method according to claim 2, wherein in the step of obtaining the pressure-bonded body by heating and pressurizing the temporary pressure-bonded body, the thermosetting adhesive is cured until a curing reaction rate becomes 30% or less. .
  4.  前記圧着体を加圧雰囲気下で加熱する前記工程において、前記熱硬化性の接着剤の硬化反応率が85%以上となるまで更に硬化させる、請求項2又は3に記載の方法。 The method according to claim 2 or 3, wherein, in the step of heating the pressure-bonded body in a pressurized atmosphere, the curing reaction rate of the thermosetting adhesive is further cured to 85% or more.
  5.  前記圧着体を加圧雰囲気下で加熱する前記工程において、複数の前記圧着体を一括して加熱する、請求項1~4のいずれか一項に記載の方法。 The method according to any one of claims 1 to 4, wherein, in the step of heating the crimped body in a pressurized atmosphere, a plurality of the crimped bodies are heated at one time.
  6.  前記圧着体を加圧雰囲気下で加熱する前記工程における加熱温度が、130℃以上300℃以下である、請求項1~5のいずれか一項に記載の方法。 The method according to any one of claims 1 to 5, wherein a heating temperature in the step of heating the pressure-bonded body in a pressurized atmosphere is 130 ° C or more and 300 ° C or less.
  7.  前記熱硬化性の接着剤が、重量平均分子量10000未満の熱硬化性樹脂と、前記熱硬化性樹脂の硬化剤と、重量平均分子量10000以上の高分子成分と、を含有する、請求項1~6のいずれか一項に記載の方法。 The said thermosetting adhesive contains a thermosetting resin having a weight average molecular weight of less than 10000, a curing agent for the thermosetting resin, and a polymer component having a weight average molecular weight of 10000 or more. The method according to any one of 6.
  8.  前記熱硬化性の接着剤の最低溶融粘度が、3000Pa・s以下である、請求項1~7のいずれか一項に記載の方法。 The method according to any one of claims 1 to 7, wherein the minimum melt viscosity of the thermosetting adhesive is 3000 Pa · s or less.
  9.  請求項1~7のいずれか一項に記載の方法に用いられるための熱硬化性の接着剤であって、
     最低溶融粘度が3000Pa・s以下である、熱硬化性の接着剤。
    A thermosetting adhesive for use in the method according to any one of the preceding claims, comprising:
    A thermosetting adhesive having a minimum melt viscosity of 3000 Pa · s or less.
  10.  フィルム状である、請求項9に記載の熱硬化性の接着剤。 The thermosetting adhesive according to claim 9, which is in the form of a film.
  11.  接続部を有する第一の部材と、接続部を有する第二の部材と、これらの間に介在する接着剤層とを備え、前記第一の部材の接続部と前記第二の部材の接続部とが金属接合によって電気的に接続されている、半導体装置であって、
     前記接着剤層が、熱硬化性の接着剤の硬化物からなり、
     前記熱硬化性の接着剤の最低溶融粘度が、3000Pa・s以下であり、
     前記第一の部材が半導体チップ又は半導体ウエハで、前記第二の部材が配線回路基板、半導体チップ又は半導体ウエハである、半導体装置。
    A first member having a connection portion, a second member having a connection portion, and an adhesive layer interposed therebetween, the connection portion of the first member and the connection portion of the second member And a semiconductor device electrically connected by metal bonding,
    The adhesive layer comprises a cured product of a thermosetting adhesive,
    The minimum melt viscosity of the thermosetting adhesive is 3000 Pa · s or less,
    The semiconductor device, wherein the first member is a semiconductor chip or a semiconductor wafer, and the second member is a wired circuit board, a semiconductor chip or a semiconductor wafer.
PCT/JP2017/045333 2017-12-18 2017-12-18 Semiconductor device, method for manufacturing semiconductor device, and adhesive WO2019123518A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020207018459A KR102455212B1 (en) 2017-12-18 2017-12-18 Semiconductor device, semiconductor device manufacturing method and adhesive
PCT/JP2017/045333 WO2019123518A1 (en) 2017-12-18 2017-12-18 Semiconductor device, method for manufacturing semiconductor device, and adhesive
JP2019559883A JP7176532B2 (en) 2017-12-18 2017-12-18 Semiconductor device, method for manufacturing semiconductor device, and adhesive
CN201780097759.8A CN111480218B (en) 2017-12-18 2017-12-18 Semiconductor device, method for manufacturing semiconductor device, and adhesive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/045333 WO2019123518A1 (en) 2017-12-18 2017-12-18 Semiconductor device, method for manufacturing semiconductor device, and adhesive

Publications (1)

Publication Number Publication Date
WO2019123518A1 true WO2019123518A1 (en) 2019-06-27

Family

ID=66993300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/045333 WO2019123518A1 (en) 2017-12-18 2017-12-18 Semiconductor device, method for manufacturing semiconductor device, and adhesive

Country Status (4)

Country Link
JP (1) JP7176532B2 (en)
KR (1) KR102455212B1 (en)
CN (1) CN111480218B (en)
WO (1) WO2019123518A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220015979A (en) * 2020-07-31 2022-02-08 주식회사 엘지화학 Manufacturing method for semiconductor package, semiconductor package manufactured by the same and manufacturing apparatus for semiconductor package
KR20230107467A (en) 2020-11-13 2023-07-17 가부시끼가이샤 레조낙 Manufacturing method of semiconductor device and adhesive used therein

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011007531A1 (en) * 2009-07-17 2011-01-20 住友ベークライト株式会社 Method for manufacturing electronic component and electronic component
JP2013168536A (en) * 2012-02-16 2013-08-29 Sumitomo Bakelite Co Ltd Method of manufacturing semiconductor device
JP2014107355A (en) * 2012-11-26 2014-06-09 Sekisui Chem Co Ltd Method for manufacturing semiconductor device
WO2016148121A1 (en) * 2015-03-19 2016-09-22 ナミックス株式会社 Method for manufacturing flip chip package, flip chip package, and resin composition for pre-application type underfills
JP2016201418A (en) * 2015-04-08 2016-12-01 積水化学工業株式会社 Adhesive film for joining semiconductor, and manufacturing method of semiconductor device
JP2017162927A (en) * 2016-03-08 2017-09-14 日立化成株式会社 Semiconductor device manufacturing method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5912611B2 (en) * 2004-03-22 2016-04-27 日立化成株式会社 Film adhesive
JP5217260B2 (en) 2007-04-27 2013-06-19 住友ベークライト株式会社 Semiconductor wafer bonding method and semiconductor device manufacturing method
WO2009072497A1 (en) * 2007-12-03 2009-06-11 Hitachi Chemical Company, Ltd. Circuit member connecting adhesive and semiconductor device
JP5976716B2 (en) * 2008-12-24 2016-08-24 日東電工株式会社 Thermosetting die bond film
JP5471163B2 (en) * 2009-08-25 2014-04-16 住友ベークライト株式会社 Manufacturing method of semiconductor device
EP2881979A4 (en) * 2012-08-06 2016-07-20 Sekisui Chemical Co Ltd Method for manufacturing semiconductor device and adhesive for mounting flip chip
JP6257303B2 (en) * 2013-12-17 2018-01-10 デクセリアルズ株式会社 Manufacturing method of connecting body, connecting method, and connecting body
JP2015216317A (en) * 2014-05-13 2015-12-03 日東電工株式会社 Method for manufacturing semiconductor device
JP6544146B2 (en) * 2015-08-27 2019-07-17 日立化成株式会社 Semiconductor device and method of manufacturing the same
KR102064584B1 (en) * 2015-10-29 2020-01-10 히타치가세이가부시끼가이샤 Adhesives for semiconductors, semiconductor devices and methods of manufacturing the same
WO2017195517A1 (en) * 2016-05-09 2017-11-16 日立化成株式会社 Method for manufacturing semiconductor device
JP2017220519A (en) * 2016-06-06 2017-12-14 日立化成株式会社 Semiconductor device manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011007531A1 (en) * 2009-07-17 2011-01-20 住友ベークライト株式会社 Method for manufacturing electronic component and electronic component
JP2013168536A (en) * 2012-02-16 2013-08-29 Sumitomo Bakelite Co Ltd Method of manufacturing semiconductor device
JP2014107355A (en) * 2012-11-26 2014-06-09 Sekisui Chem Co Ltd Method for manufacturing semiconductor device
WO2016148121A1 (en) * 2015-03-19 2016-09-22 ナミックス株式会社 Method for manufacturing flip chip package, flip chip package, and resin composition for pre-application type underfills
JP2016201418A (en) * 2015-04-08 2016-12-01 積水化学工業株式会社 Adhesive film for joining semiconductor, and manufacturing method of semiconductor device
JP2017162927A (en) * 2016-03-08 2017-09-14 日立化成株式会社 Semiconductor device manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220015979A (en) * 2020-07-31 2022-02-08 주식회사 엘지화학 Manufacturing method for semiconductor package, semiconductor package manufactured by the same and manufacturing apparatus for semiconductor package
KR102516288B1 (en) * 2020-07-31 2023-03-31 주식회사 엘지화학 Manufacturing method for semiconductor package, semiconductor package manufactured by the same and manufacturing apparatus for semiconductor package
KR20230107467A (en) 2020-11-13 2023-07-17 가부시끼가이샤 레조낙 Manufacturing method of semiconductor device and adhesive used therein

Also Published As

Publication number Publication date
KR102455212B1 (en) 2022-10-17
CN111480218B (en) 2023-07-21
CN111480218A (en) 2020-07-31
JPWO2019123518A1 (en) 2020-12-17
JP7176532B2 (en) 2022-11-22
KR20200100668A (en) 2020-08-26

Similar Documents

Publication Publication Date Title
JP6504263B2 (en) Adhesive for semiconductor, semiconductor device and method for manufacturing the same
TWI721150B (en) Manufacturing method of semiconductor device
JP2017220519A (en) Semiconductor device manufacturing method
JP2017045891A (en) Semiconductor device and method of manufacturing the same
JP2019137866A (en) Adhesive for semiconductor, semiconductor device, and manufacturing method therefor
JP2024023787A (en) Manufacturing method of semiconductor device
WO2019123518A1 (en) Semiconductor device, method for manufacturing semiconductor device, and adhesive
JP2017122193A (en) Semiconductor adhesive and method for producing semiconductor device
JP6859708B2 (en) How to manufacture semiconductor devices
JP6544146B2 (en) Semiconductor device and method of manufacturing the same
TWI820200B (en) Semiconductor device and manufacturing method thereof
JP7172167B2 (en) Semiconductor device manufacturing method and semiconductor adhesive used therefor
JP2017171817A (en) Adhesive for semiconductor, semiconductor device and method for manufacturing semiconductor device
JP6690308B2 (en) Method for manufacturing semiconductor device
JP2021024963A (en) Semiconductor bonding agent, semiconductor bonding agent film producing method, and semiconductor device producing method
WO2022102181A1 (en) Semiconductor device manufacturing method and adhesive used therein
JP7238453B2 (en) Adhesive for semiconductor
JP2019125691A (en) Manufacturing method of semiconductor device and adhesive for semiconductor
JP2022043572A (en) Semiconductor device manufacturing method
JP2019160839A (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17935815

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019559883

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17935815

Country of ref document: EP

Kind code of ref document: A1