JP2016200364A - Method for controlling over-cooling of aqueous solution, device for controlling over-cooling of aqueous solution, ice thermal storage device with aqueous solution, cooling device with aqueous solution and cooling system with aqueous solution - Google Patents

Method for controlling over-cooling of aqueous solution, device for controlling over-cooling of aqueous solution, ice thermal storage device with aqueous solution, cooling device with aqueous solution and cooling system with aqueous solution Download PDF

Info

Publication number
JP2016200364A
JP2016200364A JP2015082109A JP2015082109A JP2016200364A JP 2016200364 A JP2016200364 A JP 2016200364A JP 2015082109 A JP2015082109 A JP 2015082109A JP 2015082109 A JP2015082109 A JP 2015082109A JP 2016200364 A JP2016200364 A JP 2016200364A
Authority
JP
Japan
Prior art keywords
aqueous solution
supercooling
temperature
ice
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015082109A
Other languages
Japanese (ja)
Other versions
JP6094905B2 (en
Inventor
達 二宮
Tatsu Ninomiya
達 二宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Air Conditioning and Refrigeration Corp
Original Assignee
Mitsubishi Heavy Industries Air Conditioning and Refrigeration Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Air Conditioning and Refrigeration Corp filed Critical Mitsubishi Heavy Industries Air Conditioning and Refrigeration Corp
Priority to JP2015082109A priority Critical patent/JP6094905B2/en
Publication of JP2016200364A publication Critical patent/JP2016200364A/en
Application granted granted Critical
Publication of JP6094905B2 publication Critical patent/JP6094905B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for controlling over-cooling of aqueous solution and a device for controlling over-cooling aqueous solution capable of over-cooling aqueous solution in an aqueous solution circuit to prevent occurrence of unconditional releasing of over-cooling through evaporation latent heat of refrigerant when a refrigerator is re-started and capable of restricting closing of a flow passage in the aqueous solution circuit along with freezing of aqueous solution.SOLUTION: This invention comprises: a step for calculating a concentration of aqueous solution on the basis of a liquid plane of aqueous solution in an ice thermal storage tank 34 arranged in an aqueous solution circuit 14 to receive ice slurry when a refrigerator is restarted, and estimating a freezing temperature of the aqueous solution on the basis of the calculated concentration of aqueous solution; a step for initial setting an evaporating temperature TE of the refrigerant in such a way that a temperature difference between the estimated freezing temperature of the aqueous solution and the evaporating temperature TE may become a specified value ΔT; and a step for changing-over from the estimated freezing temperature of the aqueous solution to a measured temperature of the ice slurry generated through releasing of the over-cooling, and adjusting the evaporating temperature TE of the refrigerant in such a way that a temperature difference between the measured temperature of the ice slurry and the evaporating temperature TE of the refrigerant may become the specified value ΔT.SELECTED DRAWING: Figure 1

Description

本発明は、水溶液の過冷却制御方法および水溶液の過冷却制御装置、水溶液による氷蓄熱装置、水溶液による冷却装置、および水溶液による冷却システムに関し、より詳細には、冷凍機をリスタートする際、冷媒の気化潜熱により、不意の過冷却解除が生じないように水溶液回路中の水溶液を過冷却するとともに、過冷却開始後に水溶液をすみやかに強制的に過冷却解除して氷スラリー状態を生成しつつ、水溶液凍結に伴う水溶液回路中での流路の閉塞を抑制可能な水溶液の過冷却制御方法および水溶液の過冷却制御装置、冷凍機をリスタートする際、冷媒の気化潜熱により、不意の過冷却解除が生じないように水溶液回路中の水溶液を過冷却するとともに、過冷却開始後に水溶液をすみやかに強制的に過冷却解除して氷スラリー状態で効率的に熱輸送して氷蓄熱しつつ、水溶液凍結に伴う水溶液回路中での流路の閉塞を抑制可能な氷蓄熱装置、冷凍機をリスタートする際、冷媒の気化潜熱により、不意の過冷却解除が生じないように水溶液回路中の水溶液を過冷却するとともに、過冷却開始後に水溶液をすみやかに強制的に過冷却解除して氷スラリー状態で効率的に熱輸送して負荷側を冷却しつつ、水溶液凍結に伴う水溶液回路中での流路の閉塞を抑制可能な水溶液による冷却装置、および冷凍機をリスタートする際、冷媒の気化潜熱により、不意の過冷却解除が生じないように水溶液回路中の水溶液を過冷却するとともに、過冷却開始後に水溶液をすみやかに強制的に過冷却解除して氷スラリー状態で効率的に熱輸送することにより、氷蓄熱および/または負荷側を冷却しつつ、水溶液凍結に伴う水溶液回路中での流路の閉塞を抑制可能な水溶液による冷却システムに関する。   The present invention relates to an aqueous solution supercooling control method, an aqueous solution supercooling control device, an aqueous solution ice heat storage device, an aqueous solution cooling device, and an aqueous solution cooling system, and more particularly, when a refrigerator is restarted, a refrigerant The latent heat of vaporization causes supercooling of the aqueous solution in the aqueous solution circuit so as not to cause unexpected supercooling release, and immediately after the supercooling starts, the aqueous solution is forcibly canceled to generate an ice slurry state. Aqueous solution supercooling control method and aqueous solution supercooling control device that can suppress blockage of the flow path in the aqueous solution circuit due to freezing of the aqueous solution, and the unexpected supercooling release due to the latent heat of vaporization of the refrigerant when the refrigerator is restarted The water solution in the aqueous solution circuit is supercooled so that it does not occur. The ice heat storage device that can suppress the blockage of the flow path in the aqueous solution circuit due to freezing of the aqueous solution while transporting the heat to the ice, and when the refrigerator is restarted, sudden cooling release is caused by the latent heat of vaporization of the refrigerant While supercooling the aqueous solution in the aqueous solution circuit so as not to occur, and immediately forcibly canceling the supercooling immediately after the start of supercooling, efficiently transporting heat in an ice slurry state, cooling the load side, When restarting a cooling device with an aqueous solution that can suppress the blockage of the flow path in the aqueous solution circuit due to freezing of the aqueous solution, and when the refrigerator is restarted, in the aqueous solution circuit so that unexpected supercooling release does not occur due to the latent heat of vaporization of the refrigerant While cooling the aqueous solution and cooling the load side by cooling the aqueous solution quickly and forcibly after the start of supercooling, quickly forcibly canceling the supercooling and efficiently transporting heat in the ice slurry state, A cooling system with an aqueous solution capable of suppressing blocking of the channel in an aqueous solution circuit with the solution freezing.

真水を過冷却して過冷却水とし、その後過冷却水に振動等の衝撃を与えて過冷却状態を解除することにより、水に氷の細片が混合したシャーベット状の氷スラリーを生成する装置や方法は従来から実用に供されている。このような装置、方法によって生成された氷スラリーは流動性があって搬送が容易であり、かつ氷の潜熱を利用できるので、高密度熱搬送の効果によりエネルギー効率が良好であるという利点がある。
そのため、例えば特許文献1および特許文献2に開示されているように、ダイナミック式すなわち蓄熱槽(氷蓄槽)外部において生成した氷を蓄熱槽に供給するタイプの氷蓄熱装置用の冷熱源として広く実用に供されている。
A device that generates a sherbet-like ice slurry in which ice strips are mixed with water by supercooling fresh water into supercooled water and then applying a shock such as vibration to the supercooled water to release the supercooled state. And methods have been provided for practical use. The ice slurry produced by such an apparatus and method has fluidity and is easy to convey, and can utilize the latent heat of ice, and thus has the advantage of good energy efficiency due to the effect of high-density heat conveyance. .
Therefore, as disclosed in, for example, Patent Literature 1 and Patent Literature 2, it is widely used as a cold source for a dynamic type ice storage device that supplies ice generated outside a thermal storage tank (ice storage tank) to the thermal storage tank. It is used for practical use.

ところで、上述のように製氷用水を真水とするのではなく、溶質を溶媒に溶解した水溶液のブラインとすれば、真水を使用した場合と同様に顕熱、潜熱が大であるので、水溶液を冷熱の媒体とすれば氷点下温度の水溶液を蓄熱槽へ送ることができることから、この蓄熱槽に貯留された低温の水溶液は、蓄熱槽から例えば低温の空調設備へ送られてその冷熱源として有効に利用できる。   By the way, if the water for ice making is not pure water as described above, but if the brine is an aqueous solution in which a solute is dissolved in a solvent, the sensible heat and latent heat are large as in the case of using fresh water. If the medium is used, it is possible to send an aqueous solution at a sub-freezing temperature to the heat storage tank. it can.

しかしながら、従来の真水を製氷用水とする装置、方法では製氷量が大となってもその凍結温度に変化がないが、水溶液の場合は水溶液回路内全体における水溶液の総量に対する氷結部分(固体相)の割合が大になると、未氷結部分(液相)部分の濃度が大となり、水溶液濃度が大になると凍結点が低下する。   However, in conventional devices and methods that use fresh water as ice-making water, the freezing temperature does not change even if the amount of ice-making is large, but in the case of an aqueous solution, the frozen portion (solid phase) relative to the total amount of aqueous solution in the entire aqueous solution circuit When the ratio of the water content increases, the concentration of the unfrozen portion (liquid phase) increases, and when the concentration of the aqueous solution increases, the freezing point decreases.

したがって、水溶液回路により水溶液を循環せしめて使用する場合、蓄熱槽内での氷蓄量が小である製氷初期段階の水溶液凍結点と、蓄熱槽内での氷蓄量が大である製氷終期段階の水溶液凍結点とでは顕著な温度差がある。すなわち、製氷初期段階と製氷終期段階とでは、安定した過冷却を得るために設定すべき蒸発温度が異なり、凍結温度の変化に追従した蒸発温度制御を行う必要がある。   Therefore, when the aqueous solution is circulated through the aqueous solution circuit, the freezing point of the aqueous solution in the initial stage of ice making where the amount of ice stored in the heat storage tank is small, and the final stage of ice making where the amount of ice stored in the heat storage tank is large There is a significant temperature difference from the freezing point of the aqueous solution. That is, the evaporating temperature to be set in order to obtain stable supercooling is different between the initial stage of ice making and the final stage of ice making, and it is necessary to perform evaporating temperature control following changes in the freezing temperature.

冷媒の蒸発温度を製氷終期において安定した製氷ができるように低い温度に設定すると、製氷初期段階においては凍結温度と蒸発温度の差が大きくなり過冷却熱交換器内において伝熱面の温度が凍結温度より低くなりすぎることに起因して、過冷却状態を維持できずに過冷却熱交換器、より詳しくは、過冷却熱交換器の出口付近における管壁内面の最も温度が低くなる箇所で特に凍結する可能性が高まり、この水溶液の凍結によって過冷却用熱交換器の水溶液流路が閉塞して製氷が停止するという問題が生じるおそれがある。   If the evaporating temperature of the refrigerant is set to a low temperature so that stable ice making is possible at the end of ice making, the difference between the freezing temperature and the evaporating temperature becomes large in the initial ice making stage, and the temperature of the heat transfer surface is frozen in the supercooling heat exchanger. Due to the fact that the temperature is too low, the supercooling heat exchanger cannot be maintained, and more specifically, at the point where the temperature of the inner surface of the pipe wall near the outlet of the supercooling heat exchanger is the lowest. There is a possibility that the possibility of freezing is increased, and the aqueous solution flow path of the supercooling heat exchanger is blocked by the freezing of the aqueous solution, thereby causing a problem that ice making stops.

この点、特許文献3は、このような問題を解決するものであり、冷凍機から供給される冷媒の気化潜熱により製氷用水溶液を過冷却用熱交換器で過冷却して、その後水溶液の過冷却状態を解除することにより水溶液と氷の細片が混合した氷スラリーを生成して、蓄熱槽内に氷を氷蓄する氷蓄方法において、氷スラリー送管によって蓄熱槽へ送られる過冷却解除直後の氷スラリーの凍結温度と、過冷却熱交換器における冷媒蒸発温度との差を一定の値に保つようにする水溶液の過冷却による製氷方法を開示する。   In this regard, Patent Document 3 solves such a problem, and the ice-making aqueous solution is supercooled by the supercooling heat exchanger by the latent heat of vaporization of the refrigerant supplied from the refrigerator, and then the aqueous solution is excessively cooled. In the ice storage method of generating ice slurry mixed with aqueous solution and ice strips by releasing the cooling state and storing the ice in the heat storage tank, the supercooling release sent to the heat storage tank by the ice slurry feed tube Disclosed is an ice making method by supercooling an aqueous solution so that the difference between the freezing temperature of the ice slurry immediately after and the refrigerant evaporation temperature in the supercooling heat exchanger is maintained at a constant value.

また、特許文献3は、圧縮機とコンデンサを備える冷凍機から供給される冷媒の気化潜熱により製氷用の水溶液を過冷却する過冷却用熱交換器と、同熱交換器にて過冷却された水溶液の過冷却状態を解除して水溶液と氷の細片が混合した氷スラリーを生成する氷核発生器と、氷スラリーを受け入れる蓄熱槽とをこの順に備え、負荷側からの製氷用水溶液を蓄熱槽を介して過冷却用熱交換器に送る水溶液送管と、蓄熱槽内の冷水を負荷側へ送る氷スラリー送管とを備え、かつ、過冷却用熱交換器出口における過冷却解除直後の負荷側へ送られる前の氷スラリーの温度と過冷却熱交換器における過冷却水溶液との差が一定の値に保たれるように、冷媒蒸発温度の温度を調節する制御回路を備えてなる水溶液の過冷却による製氷装置を開示する。
このような構成により、過冷却用熱交換器に供給される水溶液の濃度が蓄熱槽内の製氷量の変化に伴って変動しても、安定した製氷を行なうことができ、したがって過冷却用熱交換器内における水溶液の凍結のような不具合が生じるおそれを軽減できる。
Patent Document 3 is a supercooling heat exchanger that supercools an aqueous solution for ice making by latent heat of vaporization of a refrigerant supplied from a refrigerator equipped with a compressor and a condenser, and is supercooled by the same heat exchanger. An ice core generator that generates ice slurry that releases the supercooled state of the aqueous solution and mixed with the aqueous solution and ice chips, and a heat storage tank that receives the ice slurry are provided in this order, and the aqueous solution for ice making from the load side is stored as heat. An aqueous solution feed pipe that is sent to the supercooling heat exchanger through the tank, and an ice slurry feed pipe that sends the cold water in the heat storage tank to the load side, and immediately after the supercooling release at the outlet of the supercooling heat exchanger An aqueous solution provided with a control circuit for adjusting the temperature of the refrigerant evaporation temperature so that the difference between the temperature of the ice slurry before being sent to the load side and the supercooled aqueous solution in the supercooling heat exchanger is maintained at a constant value. An ice making device by supercooling is disclosed.
With such a configuration, even if the concentration of the aqueous solution supplied to the supercooling heat exchanger fluctuates with the change in the amount of ice making in the heat storage tank, stable ice making can be performed. The possibility of problems such as freezing of the aqueous solution in the exchanger can be reduced.

しかしながら、特許文献3には、冷凍機をリスタートする際に、以下のような技術的問題点が存する。
より詳細には、製氷装置の運転モードには、たとえば、夜間電力利用による電力負荷の平準化に資するために、夜間蓄熱を行い、昼間は、この蓄熱を利用して、冷凍機を停止した状態で、蓄熱槽と負荷側との間で水溶液を循環させることにより、負荷側を冷却したり、あるいは、夜間蓄熱による蓄熱量が不足する場合に、蓄熱の冷熱を利用ながら、同時に冷凍機を運転し(以下、追っかけ運転と称する)しながら、負荷側を冷却する場合がある。この場合、冷凍機は負荷の大きさによって運転したり止めたりすることがある。
However, Patent Document 3 has the following technical problems when the refrigerator is restarted.
More specifically, in the operation mode of the ice making device, for example, in order to contribute to the leveling of the electric load due to the use of nighttime power, the nighttime heat storage is performed, and the refrigerator is stopped using this heat storage during the daytime. In the case where the load side is cooled by circulating the aqueous solution between the heat storage tank and the load side, or when the heat storage amount due to nighttime heat storage is insufficient, the refrigerator is operated at the same time using the cold energy of the heat storage However, there is a case where the load side is cooled (hereinafter referred to as a chasing operation). In this case, the refrigerator may be operated or stopped depending on the load.

その際、冷凍機をいったん停止したことに伴い、蓄熱槽内の氷は、一部または全部氷解するとともに、氷スラリーの生成が中断されることにより系統内の水溶液の凍結温度(濃度)が不明となるとともに、水溶液の過冷却状態が再び未過冷却状態となり、そのために、制御回路により、氷核発生器出口における過冷却解除直後の負荷側へ送られる前の氷スラリーの温度と蒸発温度過冷却水溶液の温度との差が一定の値に保たれるように、過冷却熱交換器における冷媒蒸発温度を調節 蒸発圧力調整弁の開度を調節するとしても、水溶液を再度過冷却状態とするために、リスタートの際、冷媒の蒸発温度を何度に設定するべきかが不明となる。
この場合、リスタートの際、冷凍機を停止する直前の冷媒の蒸発温度に設定すると、リスタート初期段階においては氷の一部または全部が解氷して水溶液の凍結温度が上昇している場合には、凍結温度と蒸発温度(厳密には冷却伝熱面の温度)の差が所定より大きくなり、伝達面近傍において水溶液の局部的な過冷却度の拡大を生じさせることにより、過冷却状態を維持できずに過冷却熱交換器、より詳しくは過冷却熱交換器の出口における管壁内面の最も温度が低くなる箇所で特に凍結する可能性が高く、この水溶液の凍結によって過冷却用熱交換器の水溶液流路が閉塞して製氷が停止するという問題が生じるおそれがある。
At that time, as the refrigerator is stopped, the ice in the heat storage tank is partially or completely defrosted and the freezing temperature (concentration) of the aqueous solution in the system is unknown by interrupting the generation of ice slurry. As a result, the supercooled state of the aqueous solution becomes an unsupercooled state again, so that the temperature of the ice slurry and the evaporation temperature before being sent to the load side immediately after the supercooling is released by the control circuit at the outlet of the ice nuclei generator are controlled. Adjust the refrigerant evaporation temperature in the supercooling heat exchanger so that the difference from the temperature of the cooling water solution is maintained at a constant value. Therefore, at the time of restart, it is unclear how many times the refrigerant evaporation temperature should be set.
In this case, at the time of restarting, if the refrigerant evaporating temperature is set immediately before stopping the refrigerator, in the initial stage of restarting, a part or all of the ice is defrosted and the freezing temperature of the aqueous solution is increased In this case, the difference between the freezing temperature and the evaporation temperature (strictly speaking, the temperature of the cooling heat transfer surface) becomes larger than a predetermined value, and the local supercooling degree of the aqueous solution is increased in the vicinity of the transfer surface, thereby In particular, there is a high possibility of freezing at the place where the temperature of the inner wall of the tube wall at the outlet of the supercooling heat exchanger is the lowest at the outlet of the supercooling heat exchanger. There is a possibility that the aqueous solution flow path of the exchanger is blocked and ice making stops.

このような問題は氷蓄熱装置に利用される製氷方法、装置にだけ生じるものではなく、例えば氷スラリーを直接空調用の熱交換器等の負荷側熱交換器に送って冷熱を利用する場合にも同様に生じる問題である。

特開平5−180467 特開平5−296503 特許第4623995号
Such a problem does not occur only in the ice making method and apparatus used in the ice heat storage device. For example, when the ice slurry is directly sent to a load side heat exchanger such as a heat exchanger for air conditioning to use cold heat. Is a similar problem.

JP 5-180467 JP 5-296503 A Japanese Patent No. 4623995

以上の技術的問題点に鑑み、本発明の目的は、冷凍機をリスタートする際、冷媒の気化潜熱により、不意の過冷却解除が生じないように水溶液回路中の水溶液を過冷却するとともに、過冷却開始後に水溶液をすみやかに強制的に過冷却解除して氷スラリー状態を生成しつつ、水溶液凍結に伴う水溶液回路中での流路の閉塞を抑制可能な水溶液の過冷却制御方法および水溶液の過冷却制御装置を提供することにある。
以上の技術的問題点に鑑み、本発明の目的は、冷凍機をリスタートする際、冷媒の気化潜熱により、不意の過冷却解除が生じないように水溶液回路中の水溶液を過冷却するとともに、過冷却開始後に水溶液をすみやかに強制的に過冷却解除して氷スラリー状態で効率的に熱輸送して氷蓄熱しつつ、水溶液凍結に伴う水溶液回路中での流路の閉塞を抑制可能な水溶液による氷蓄熱装置を提供することにある。
以上の技術的問題点に鑑み、本発明の目的は、冷凍機をリスタートする際、冷媒の気化潜熱により、不意の過冷却解除が生じないように水溶液回路中の水溶液を過冷却するとともに、過冷却開始後に水溶液をすみやかに強制的に過冷却解除して氷スラリー状態で効率的に熱輸送して負荷側を冷却しつつ、水溶液凍結に伴う水溶液回路中での流路の閉塞を抑制可能な水溶液による冷却装置を提供することにある。
以上の技術的問題点に鑑み、本発明の目的は、冷凍機をリスタートする際、冷媒の気化潜熱により、不意の過冷却解除が生じないように水溶液回路中の水溶液を過冷却するとともに、過冷却開始後に水溶液をすみやかに強制的に過冷却解除して氷スラリー状態で効率的に熱輸送することにより、氷蓄熱および/または負荷側を冷却しつつ、水溶液凍結に伴う水溶液回路中での流路の閉塞を抑制可能な水溶液による冷却システムを提供することにある。
In view of the above technical problems, the purpose of the present invention is to supercool the aqueous solution in the aqueous solution circuit so that the unexpected supercooling release does not occur due to the latent heat of vaporization of the refrigerant when restarting the refrigerator. A method for controlling supercooling of an aqueous solution capable of suppressing clogging of the flow path in the aqueous solution circuit due to freezing of the aqueous solution while quickly forcibly releasing the supercooling immediately after the start of supercooling to generate an ice slurry state, and the aqueous solution The object is to provide a supercooling control device.
In view of the above technical problems, the purpose of the present invention is to supercool the aqueous solution in the aqueous solution circuit so that the unexpected supercooling release does not occur due to the latent heat of vaporization of the refrigerant when restarting the refrigerator. Aqueous solution that can forcibly cancel supercooling immediately after the start of supercooling, efficiently transport heat in an ice slurry state, and store the ice while suppressing the blockage of the flow path in the aqueous solution circuit due to aqueous solution freezing It is to provide an ice heat storage device.
In view of the above technical problems, the purpose of the present invention is to supercool the aqueous solution in the aqueous solution circuit so that the unexpected supercooling release does not occur due to the latent heat of vaporization of the refrigerant when restarting the refrigerator. Immediately after the supercooling starts, the supercooling is forcibly canceled and the heat is efficiently transported in the ice slurry state to cool the load side and blockage of the flow path in the aqueous solution circuit due to aqueous solution freezing can be suppressed. Another object is to provide a cooling device using an aqueous solution.
In view of the above technical problems, the purpose of the present invention is to supercool the aqueous solution in the aqueous solution circuit so that the unexpected supercooling release does not occur due to the latent heat of vaporization of the refrigerant when restarting the refrigerator. Immediately after the supercooling starts, the aqueous solution is forcibly released and the heat is efficiently transported in the ice slurry state, while cooling the ice heat storage and / or the load side, An object of the present invention is to provide a cooling system using an aqueous solution capable of suppressing clogging of a flow path.

上記課題を達成するために、本発明の水溶液の過冷却制御方法は、
冷凍機による冷媒の気化潜熱により水溶液回路中の水溶液を過冷却し、水溶液回路の過冷却部より下流において、過冷却した水溶液を過冷却解除することにより、氷スラリーを生成する水溶液の過冷却制御方法であって、目標過冷却度を達成するまで、過冷却部より下流における水溶液凍結温度と、冷媒の蒸発温度との温度差が一定値ΔTとなるように、冷媒の蒸発温度を調整する水溶液の過冷却制御方法において、
冷凍機をリスタートする際、
水溶液回路中に設けた、氷スラリーを受け入れる水溶液タンク内の水溶液の液面に基づいて、水溶液濃度を算出し、算出した水溶液濃度に基づいて、水溶液の凍結温度を予測する段階と、
予測した水溶液の凍結温度と、冷媒の蒸発温度との温度差が一定値ΔTとなるように、冷媒の蒸発温度を初期設定する段階を有し、それにより、水溶液回路の過冷却部において過冷却解除が生じないように水溶液を過冷却し、
水溶液回路中の水溶液が過冷却開始した後、過冷却部より下流において水溶液の過冷却解除を達成するまで、過冷却度が目標過冷却度に近づく過程において、強制的な過冷却解除動作を行ってから過冷却解除達成の有無を判定するサイクルを繰り返す段階と、
予測した水溶液の凍結温度から、過冷却解除により生成される氷スラリーの測定温度に切り替えて、氷スラリーの測定温度と冷媒の蒸発温度との温度差が前記一定値ΔTとなるように、冷媒の蒸発温度を調整しつつ、氷スラリーによる熱輸送を行う段階とを有する、構成としている。
In order to achieve the above object, the method for controlling supercooling of an aqueous solution of the present invention comprises:
Supercooling control of the aqueous solution that generates ice slurry by supercooling the aqueous solution in the aqueous solution circuit by the latent heat of vaporization of the refrigerant in the refrigerator and releasing the supercooled aqueous solution downstream from the supercooling part of the aqueous solution circuit An aqueous solution that adjusts the evaporation temperature of the refrigerant so that the temperature difference between the aqueous solution freezing temperature downstream of the supercooling section and the evaporation temperature of the refrigerant becomes a constant value ΔT until the target degree of supercooling is achieved. In the subcooling control method,
When restarting the refrigerator,
Calculating the concentration of the aqueous solution based on the level of the aqueous solution in the aqueous solution tank that receives the ice slurry provided in the aqueous solution circuit, and predicting the freezing temperature of the aqueous solution based on the calculated aqueous solution concentration;
A step of initially setting the evaporation temperature of the refrigerant so that the temperature difference between the predicted freezing temperature of the aqueous solution and the evaporation temperature of the refrigerant becomes a constant value ΔT; Supercool the aqueous solution to prevent release,
After the supercooling of the aqueous solution in the aqueous solution circuit starts, the forced supercooling release operation is performed while the supercooling degree approaches the target supercooling degree until the supercooling release of the aqueous solution is achieved downstream from the supercooling section. Repeating the cycle of determining whether or not the supercooling release has been achieved,
By switching from the predicted freezing temperature of the aqueous solution to the measurement temperature of the ice slurry generated by the release of the supercooling, the temperature difference between the measurement temperature of the ice slurry and the evaporation temperature of the refrigerant becomes the constant value ΔT. And adjusting the evaporation temperature and carrying out heat transport using ice slurry.

水溶液回路の過冷却部においては、水溶液の目標過冷却達成までに過冷却解除が発生しないように、水溶液の凍結温度と、冷媒の蒸発温度との温度差が一定値ΔTとなるように、水溶液を冷却するとともに、いったん、目標過冷却度を達成したら、過冷却部の下流側において、すみやかに過冷却解除を行い、氷スラリーを生成する。
特に、冷凍機をリスタートする際、氷スラリーにより生成した水溶液タンク内の氷が氷解しており、その分、水溶液の凍結温度が上がっていることから、水溶液の凍結温度が不明で有り、水溶液タンク内の水溶液の液位より、水溶液の濃度を介して水溶液の凍結温度を予測して、予測した水溶液の凍結温度と、冷媒の蒸発温度との温度差が一定値ΔTとなるように、水溶液を過冷却する。
次いで、水溶液回路中の水溶液が過冷却開始した後、過冷却部より下流の所定の位置において水溶液の過冷却解除を達成するまで、過冷却度が目標過冷却度に近づく過程において、強制的な過冷却解除動作を行ってから過冷却解除達成の有無を判定するサイクルを繰り返す。
水溶液の過冷却解除を達成してからは、予測した水溶液の凍結温度から、過冷却解除により生成される氷スラリーの測定温度に切り替えて、氷スラリーの測定温度と冷媒の蒸発温度との温度差が前記一定値ΔTとなるように、冷媒の蒸発温度を調整しつつ、氷スラリーを生成する。
以上のように、水溶液の過冷却を達成するまでは、思わぬ過冷却解除が発生しないようにしつつ水溶液を冷却し、いったん、水溶液の過冷却が開始したら、水溶液の正確な凍結温度により蒸発温度の調整を行うことにより、水溶液を過冷却部下流で過冷却解除して、氷スラリー状態を生成しつつ、水溶液凍結に伴う水溶液回路中での流路の閉塞を抑制可能である。
In the supercooling section of the aqueous solution circuit, the aqueous solution is set so that the temperature difference between the freezing temperature of the aqueous solution and the evaporation temperature of the refrigerant becomes a constant value ΔT so that the supercooling release does not occur until the target supercooling of the aqueous solution is achieved. In addition, once the target degree of supercooling is achieved, the supercooling is immediately released on the downstream side of the supercooling section to generate ice slurry.
In particular, when restarting the refrigerator, the ice in the aqueous solution tank generated by the ice slurry is thawed, and the freezing temperature of the aqueous solution is increased accordingly, so the freezing temperature of the aqueous solution is unknown, and the aqueous solution From the liquid level of the aqueous solution in the tank, the freezing temperature of the aqueous solution is predicted via the concentration of the aqueous solution, and the aqueous solution is set so that the temperature difference between the predicted freezing temperature of the aqueous solution and the evaporation temperature of the refrigerant becomes a constant value ΔT. Overcool.
Next, after the aqueous solution in the aqueous solution circuit starts to be supercooled, in a process in which the supercooling degree approaches the target supercooling degree until the supercooling release of the aqueous solution is achieved at a predetermined position downstream from the supercooling unit, After performing the supercooling release operation, the cycle for determining whether or not the supercooling release has been achieved is repeated.
After achieving the supercooling release of the aqueous solution, switch from the predicted freezing temperature of the aqueous solution to the measurement temperature of the ice slurry produced by the supercooling release, and the temperature difference between the ice slurry measurement temperature and the refrigerant evaporation temperature The ice slurry is generated while adjusting the evaporation temperature of the refrigerant so that the value becomes the constant value ΔT.
As described above, until the supercooling of the aqueous solution is achieved, the aqueous solution is cooled while preventing unexpected supercooling release.Once the supercooling of the aqueous solution starts, the evaporation temperature is determined by the exact freezing temperature of the aqueous solution. By adjusting the above, it is possible to suppress the supercooling of the aqueous solution downstream of the supercooling unit to generate an ice slurry state, and to suppress the blockage of the flow path in the aqueous solution circuit accompanying the freezing of the aqueous solution.

また、前記蒸発温度初期設定段階は、水溶液回路の過冷却部において過冷却解除が生じないように、予測した水溶液の凍結温度に対して所定温度上げた温度と、冷媒の蒸発温度との温度差が一定値ΔTとなるように、設定するのがよい。
さらに、水溶液の過冷却解除動作は、水溶液回路の過冷却部より下流に設けた過冷却解除器により、水溶液中に氷核を発生させることにより行い、
前記過冷却解除動作を繰り返す段階は、予測した水溶液の凍結温度と、前記過冷却解除器出口の水溶液温度との温度差が、強制的に過冷却解除をするに十分な値となってから行うのがよい。
Further, the evaporation temperature initial setting step includes a temperature difference between a temperature increased by a predetermined temperature with respect to the predicted freezing temperature of the aqueous solution and the evaporation temperature of the refrigerant so that the supercooling is not canceled in the supercooling portion of the aqueous solution circuit. Is preferably set to be a constant value ΔT.
Furthermore, the supercooling release operation of the aqueous solution is performed by generating ice nuclei in the aqueous solution by the supercooling release unit provided downstream from the supercooling part of the aqueous solution circuit,
The step of repeating the supercooling release operation is performed after the temperature difference between the predicted freezing temperature of the aqueous solution and the aqueous solution temperature at the outlet of the supercooling releaser becomes a value sufficient to forcibly release the supercooling. It is good.

さらにまた、水溶液の過冷却解除の達成は、前記過冷却解除器上流の水溶液温度と、前記過冷却解除器下流の水溶液温度との温度差が所定温度となることにより判定する、のがよい。
加えて、水溶液の目標過冷却度は、過冷却部において水溶液を過冷却するまでに過冷却解除が発生せず、水溶液の過冷却開始後、過冷却部より下流において、水溶液を強制的に過冷却解除するに十分な値に設定するのがよい。
また、過冷却した水溶液の過冷却解除は、過冷却した水溶液に振動を伝えて、水溶液中に氷核を発生させる氷核発生器により行い、
氷核発生器の上流側の水溶液温度と、氷核発生器の下流側の水溶液温度との温度差が、所定値以上となるまで、氷核発生器を稼動して保持する段階を繰り返すのがよい。
Furthermore, the achievement of the supercooling release of the aqueous solution is preferably determined by a temperature difference between the aqueous solution temperature upstream of the supercooling releaser and the aqueous solution temperature downstream of the supercooling releaser becoming a predetermined temperature.
In addition, the target supercooling degree of the aqueous solution is such that the supercooling release does not occur until the aqueous solution is supercooled in the supercooling unit, and after the supercooling of the aqueous solution starts, the aqueous solution is forced to be It should be set to a value sufficient to release the cooling.
In addition, the supercooling of the supercooled aqueous solution is canceled by an ice nucleus generator that transmits vibrations to the supercooled aqueous solution and generates ice nuclei in the aqueous solution.
It is possible to repeat the step of operating and holding the ice nucleus generator until the temperature difference between the temperature of the aqueous solution upstream of the ice nucleus generator and the temperature of the aqueous solution downstream of the ice nucleus generator exceeds a predetermined value. Good.

さらに、過冷却した水溶液の過冷却解除は、過冷却した水溶液に振動を伝えて、水溶液中に氷核を発生させる氷核発生器により行い、
氷核発生器の上流側の水溶液温度と、氷核発生器の下流側の水溶液温度との温度差が、所定値以上となるまで、氷核発生器の上流側の水溶液温度が所定温度低下するたびに、氷核発生器を稼動する段階を繰り返すのでもよい。
さらにまた、過冷却した水溶液の過冷却解除は、過冷却した水溶液に振動を伝えて、水溶液中に氷核を発生させる氷核発生器により行い、
氷核発生器の上流側の水溶液温度と、氷核発生器の下流側の水溶液温度との温度差が、所定値以上となるまで、設定された初期蒸発温度を下げて保持した後、氷核発生器を稼動する段階を繰り返すのでもよい。
Furthermore, the supercooling of the supercooled aqueous solution is canceled by an ice nucleus generator that transmits vibrations to the supercooled aqueous solution and generates ice nuclei in the aqueous solution.
The temperature of the aqueous solution upstream of the ice nucleus generator decreases by a predetermined temperature until the temperature difference between the temperature of the aqueous solution upstream of the ice nucleus generator and the temperature of the aqueous solution downstream of the ice nucleus generator becomes a predetermined value or more. Each time, the stage of operating the ice nucleus generator may be repeated.
Furthermore, the supercooling of the supercooled aqueous solution is canceled by an ice nucleus generator that transmits vibrations to the supercooled aqueous solution and generates ice nuclei in the aqueous solution.
After lowering the set initial evaporation temperature until the temperature difference between the aqueous solution temperature upstream of the ice nucleus generator and the aqueous solution temperature downstream of the ice nucleus generator exceeds a predetermined value, the ice nucleus is maintained. The step of operating the generator may be repeated.

上記課題を達成するために、本発明の水溶液の過冷却制御装置は、
圧縮機とコンデンサを備える冷凍機から供給される冷媒の気化潜熱により水溶液を過冷却する過冷却熱交換器と、水溶液の過冷却状態を解除する過冷却解除器と、水溶液を受け入れる水溶液タンクとが、この順に、水溶液配管を介して接続された水溶液回路と、
水溶液の凍結温度に応じて冷媒蒸発温度を調節する制御回路とを有する、水溶液の過冷却制御装置において、前記制御回路はさらに、
前記水溶液タンク内の水溶液の液位に基づいて、水溶液凍結温度を予測する予測演算器と、
前記過冷却解除器と前記水溶液タンクとの間の水溶液温度と、冷媒の蒸発温度との温度差が一定値ΔTとなるように、冷媒の蒸発温度を調整する蒸発温度調整手段と、
前記過冷却解除器と前記水溶液タンクとの間の水溶液温度について、予測した水溶液の凍結温度と過冷却解除により生成される氷スラリーの測定温度との間で切り替える切り替え手段と、
前記過冷却熱交換器と前記過冷却解除器との間の水溶液温度と、前記過冷却解除器と前記水溶液タンクとの間の水溶液温度との温度差を算出する温度差算出手段とを有し、
前記蒸発温度調整手段は、前記温度差算出手段によって算出される温度差が所定値となるまで、前記予測演算器により予測した水溶液の凍結温度と冷媒の蒸発温度との温度差が一定値ΔTとなるように、冷媒の蒸発温度を調整し、前記温度差算出手段によって算出される温度差が所定値となったら、前記切り替え手段によって予測した水溶液の凍結温度から過冷却解除により生成される氷スラリーの測定温度に切り替えて、過冷却解除により生成される氷スラリーの測定温度と、冷媒の蒸発温度との温度差が一定値ΔTとなるように、冷媒の蒸発温度を調整する、構成としている。
To achieve the above object, the supercooling control device for an aqueous solution of the present invention comprises:
A supercooling heat exchanger that supercools the aqueous solution by the latent heat of vaporization of refrigerant supplied from a compressor and a refrigerator that includes a condenser, a supercooling release unit that releases the supercooling state of the aqueous solution, and an aqueous solution tank that receives the aqueous solution In this order, an aqueous solution circuit connected via an aqueous solution pipe,
And a control circuit that adjusts the refrigerant evaporation temperature according to the freezing temperature of the aqueous solution.
A predictive calculator for predicting the freezing temperature of the aqueous solution based on the liquid level of the aqueous solution in the aqueous solution tank;
Evaporating temperature adjusting means for adjusting the evaporating temperature of the refrigerant so that a temperature difference between the aqueous solution temperature between the supercooling releaser and the aqueous solution tank and the evaporating temperature of the refrigerant becomes a constant value ΔT;
A switching means for switching between the predicted freezing temperature of the aqueous solution and the measured temperature of the ice slurry generated by releasing the supercooling for the aqueous solution temperature between the supercooling releaser and the aqueous solution tank,
Temperature difference calculating means for calculating a temperature difference between the aqueous solution temperature between the supercooling heat exchanger and the supercooling releaser and the aqueous solution temperature between the supercooling releaser and the aqueous solution tank; ,
The evaporating temperature adjusting means determines that the temperature difference between the freezing temperature of the aqueous solution predicted by the predictive calculator and the evaporating temperature of the refrigerant is a constant value ΔT until the temperature difference calculated by the temperature difference calculating means reaches a predetermined value. As described above, the ice slurry generated by the supercooling release from the freezing temperature of the aqueous solution predicted by the switching unit when the evaporation temperature of the refrigerant is adjusted and the temperature difference calculated by the temperature difference calculating unit becomes a predetermined value. The refrigerant evaporating temperature is adjusted so that the temperature difference between the measured temperature of the ice slurry generated by the supercooling release and the evaporating temperature of the refrigerant becomes a constant value ΔT.

さらに、前記過冷却解除器は、過冷却した水溶液に振動を伝えて、水溶液中に氷核を発生させる氷核発生器であり、
前記過冷却熱交換器と前記氷核発生器との間水溶液温度と、前記氷核発生器と前記水溶液タンクとの間の水溶液温度との温度差が、0.5℃以上となるまで、氷核発生器を30秒稼動して1分間保持する段階を繰り返すのがよい。
また、前記過冷却解除器は、過冷却した水溶液に振動を伝えて、水溶液中に氷核を発生させる氷核発生器であり、
前記過冷却熱交換器と前記氷核発生器との間水溶液温度と、前記氷核発生器と前記水溶液タンクとの間の水溶液温度との温度差が、0.5℃以上となるまで、前記氷核発生器の上流側の水溶液温度が所定温度低下するたびに、前記氷核発生器を30秒稼動する段階を繰り返すのでもよい。
Furthermore, the supercooling release device is an ice nucleus generator that transmits vibrations to the supercooled aqueous solution and generates ice nuclei in the aqueous solution.
Until the temperature difference between the aqueous solution temperature between the supercooling heat exchanger and the ice nucleus generator and the aqueous solution temperature between the ice nucleus generator and the aqueous solution tank reaches 0.5 ° C. or more, ice It is preferable to repeat the step of operating the nucleator for 30 seconds and holding for 1 minute.
The supercooling release device is an ice nucleus generator that transmits vibrations to the supercooled aqueous solution to generate ice nuclei in the aqueous solution.
Until the temperature difference between the aqueous solution temperature between the supercooling heat exchanger and the ice nucleus generator and the aqueous solution temperature between the ice nucleus generator and the aqueous solution tank is 0.5 ° C. or more, Each time the temperature of the aqueous solution on the upstream side of the ice nucleus generator decreases by a predetermined temperature, the step of operating the ice nucleus generator for 30 seconds may be repeated.

さらにまた、前記過冷却解除器は、過冷却した水溶液に振動を伝えて、水溶液中に氷核を発生させる氷核発生器であり、
前記過冷却熱交換器と前記氷核発生器との間水溶液温度と、前記氷核発生器と前記水溶液タンクとの間の水溶液温度との温度差が、0.5℃以上となるまで、設定された初期蒸発温度を0.1℃下げて1分間保持した後、前記氷核発生器を20秒稼動する段階を繰り返すのでもよい。
Furthermore, the supercooling release device is an ice nucleus generator that transmits vibrations to the supercooled aqueous solution and generates ice nuclei in the aqueous solution.
Set until the temperature difference between the aqueous solution temperature between the supercooling heat exchanger and the ice nucleus generator and the aqueous solution temperature between the ice nucleus generator and the aqueous solution tank is 0.5 ° C. or more. After the initial evaporation temperature is lowered by 0.1 ° C. and held for 1 minute, the step of operating the ice nucleus generator for 20 seconds may be repeated.

上記課題を達成するために、本発明の冷却装置は、
請求項9ないし請求項12のいずれか1項に記載の水溶液の過冷却制御装置を有する冷却装置であって、
前記過冷却解除器により過冷却解除されることにより生成された氷スラリーを負荷冷却側に送る氷スラリー送り管と、負荷冷却側から水溶液を前記水溶液タンクに戻す水溶液戻し管とを有する、構成としている。
In order to achieve the above object, the cooling device of the present invention comprises:
A cooling device comprising the supercooling control device for an aqueous solution according to any one of claims 9 to 12,
An ice slurry feed pipe that sends ice slurry generated by being overcooled by the supercool release unit to the load cooling side, and an aqueous solution return pipe that returns the aqueous solution from the load cooling side to the aqueous solution tank. Yes.

上記課題を達成するために、本発明の冷却システムは、
請求項9ないし請求項12のいずれか1項に記載の過冷却制御装置を有する冷却システムであって、
前記水溶液タンクは、前記過冷却解除器により生成された氷スラリーを受け入れて、内部に氷を氷蓄する氷蓄熱槽であり、
前記過冷却解除器と前記氷蓄熱槽との間に、負荷冷却器が設置され、
前記過冷却解除器と前記負荷冷却器との間に三方切り替え弁と、前記三方切り替え弁と前記蓄熱槽とを接続する負荷冷却器バイパス管とが設けられ、
前記三方切り替え弁の切り替えにより、前記過冷却解除器により過冷却解除されることにより生成された氷スラリーにより前記負荷冷却器を冷却するか、前記負荷冷却器バイパス管を介して、前記過冷却解除器により過冷却解除されることにより生成された氷スラリーにより前記蓄熱槽内に氷を製氷するかを選択可能とした、構成としている。
さらに、過冷却解除後の氷スラリーの温度と過冷却熱交換器における冷媒蒸発温度との温度差を、前記過冷却熱交換器における冷媒の蒸発圧力を制御して一定の値に保つようにするのがよい。
In order to achieve the above object, the cooling system of the present invention comprises:
A cooling system comprising the supercooling control device according to any one of claims 9 to 12,
The aqueous solution tank is an ice heat storage tank that receives the ice slurry generated by the supercool releaser and stores ice inside.
A load cooler is installed between the supercooling releaser and the ice heat storage tank,
A three-way switching valve between the supercooling releaser and the load cooler, and a load cooler bypass pipe connecting the three-way switching valve and the heat storage tank are provided,
By switching the three-way switching valve, the load cooler is cooled by ice slurry generated by the supercooling release by the supercooling releaser, or the supercooling release is performed via the load cooler bypass pipe It is possible to select whether to make ice in the heat storage tank with ice slurry generated by releasing the supercooling by the vessel.
Furthermore, the temperature difference between the temperature of the ice slurry after the release of supercooling and the refrigerant evaporation temperature in the supercooling heat exchanger is maintained at a constant value by controlling the evaporation pressure of the refrigerant in the supercooling heat exchanger. It is good.

また、前記過冷却熱交換器の冷媒出口と圧縮機の吸入口との間の冷媒復管の途中に、前記制御回路からの制御信号に基づいて開度が調節される制御弁を設け、この制御弁の開度調節により冷媒の蒸発温度が調節されるようにするのがよい。 In addition, a control valve whose opening degree is adjusted based on a control signal from the control circuit is provided in the middle of the refrigerant return pipe between the refrigerant outlet of the supercooling heat exchanger and the suction port of the compressor. It is preferable that the evaporation temperature of the refrigerant be adjusted by adjusting the opening of the control valve.

発明の実施の形態BEST MODE FOR CARRYING OUT THE INVENTION

以下に、本発明の実施形態について、図面を参照しながら詳細に説明する。
図1は、本冷却システムの構成図を示す。
冷却システム10は、冷凍回路12および水溶液回路14を有し、冷凍回路12および水溶液回路14は、氷核融解熱交換器54および過冷却熱交換器24(後に説明)において、冷媒と水溶液との間で熱交換している。
冷凍回路12は、圧縮機28、空冷凝縮器30、受液器76、氷核融解熱交換器54、膨張弁72、過冷却熱交換器24、蒸発圧力調整弁74がこの順に、冷媒配管13を介して接続され循環回路を形成している。冷媒は、たとえば、R134aである。
一方、水溶液回路14は、氷核融解部、過冷却部16、過冷却解除部18、負荷冷却部20および蓄熱部22とから概略構成され、氷蓄熱槽34、水溶液液送ポンプ92、氷核融解熱交換器54、氷核滞留フィルター56、過冷却熱交換器24、過冷却解除器32(氷核発生器78)、および負荷冷却器20がこの順に、水溶液配管36を介して接続され循環回路を形成している。
Embodiments of the present invention will be described below in detail with reference to the drawings.
FIG. 1 shows a configuration diagram of the present cooling system.
The cooling system 10 includes a refrigeration circuit 12 and an aqueous solution circuit 14, and the refrigeration circuit 12 and the aqueous solution circuit 14 are used in an ice core melting heat exchanger 54 and a supercooling heat exchanger 24 (described later) for the refrigerant and the aqueous solution. Heat is exchanged between them.
In the refrigeration circuit 12, the compressor 28, the air-cooled condenser 30, the receiver 76, the ice core melting heat exchanger 54, the expansion valve 72, the supercooling heat exchanger 24, and the evaporation pressure adjusting valve 74 are arranged in this order in the refrigerant pipe 13. To form a circulation circuit. The refrigerant is, for example, R134a.
On the other hand, the aqueous solution circuit 14 is roughly composed of an ice nucleus melting part, a supercooling part 16, a supercooling release part 18, a load cooling part 20, and a heat storage part 22, and includes an ice heat storage tank 34, an aqueous solution liquid feed pump 92, an ice nucleus. The melting heat exchanger 54, the ice nucleus retention filter 56, the supercooling heat exchanger 24, the supercooling releaser 32 (ice nucleus generator 78), and the load cooler 20 are connected in this order via the aqueous solution pipe 36 and circulated. A circuit is formed.

氷蓄熱槽34は、過冷却解除器32により生成された氷スラリーを受け入れて、内部に氷を蓄氷するものであり、過冷却解除器32と氷蓄熱槽34との間に、負荷冷却器20が設置され、過冷却解除器32と負荷冷却器20との間に三方切り替え弁48と、三方切り替え弁48と氷蓄熱槽34とを接続する負荷冷却器バイパス管60とが設けられ、三方切り替え弁48の切り替えにより、過冷却解除器32により過冷却解除されることにより生成された氷スラリーにより負荷冷却器20を冷却するか、負荷冷却器バイパス管60を介して、過冷却解除器32により過冷却解除されることにより生成された氷スラリーにより氷蓄熱槽34内に氷を氷蓄するかを選択可能としている。
なお、負荷冷却器20は、たとえば、物流冷蔵庫荷捌き室(CAないしCDは、トラックの後部をつける開口部を示す)の0℃空調として用いられる。
The ice heat storage tank 34 receives the ice slurry generated by the supercool release unit 32 and stores ice therein, and the load cooler is interposed between the supercool release unit 32 and the ice heat storage tank 34. 20, a three-way switching valve 48 and a load cooler bypass pipe 60 connecting the three-way switching valve 48 and the ice heat storage tank 34 are provided between the supercooling releaser 32 and the load cooler 20. By switching the switching valve 48, the load cooler 20 is cooled by the ice slurry generated by the supercooling release by the supercooling releaser 32, or via the load cooler bypass pipe 60. It is possible to select whether ice is stored in the ice heat storage tank 34 by the ice slurry generated by releasing the supercooling.
The load cooler 20 is used, for example, as 0 ° C. air conditioning in a distribution refrigerator handling room (CA or CD indicates an opening for attaching the rear part of the truck).

図2および図3に示すように、蓄熱媒体(以下、水溶液)にはプロピレングリコール系(以下、PG系)の水溶液を使用しているため、濃度と凍結温度は氷蓄量に伴って変化する。水溶液の初期濃度は、氷蓄熱槽34の運用IPF範囲と、放熱終了時の蓄熱温度(凍結温度)、および水溶液の物性によって求められる。本実施形態では、氷蓄熱槽34の運用IPFを10〜45%、放熱終了時(氷蓄熱槽IPF10%)の蓄熱温度を−4℃と想定しており、この条件から算出される初期の水溶液濃度は約17.7wt%(凍結温度≒−3.5℃)、蓄熱終了時の(氷蓄熱槽34IPF45%)の凍結温度は約−7.3℃となる。
なお、市販のPG系水溶液では、使用可能濃度範囲が設けられているが、下限濃度未満で使用する場合には、添加されている防錆剤や防腐食剤などが薄まって効果が不十分となるため、追加調整を要する場合がある。
As shown in FIGS. 2 and 3, since a propylene glycol (hereinafter referred to as PG) aqueous solution is used as the heat storage medium (hereinafter referred to as an aqueous solution), the concentration and the freezing temperature vary with the amount of ice stored. . The initial concentration of the aqueous solution is determined by the operating IPF range of the ice heat storage tank 34, the heat storage temperature (freezing temperature) at the end of heat radiation, and the physical properties of the aqueous solution. In this embodiment, it is assumed that the operation IPF of the ice heat storage tank 34 is 10 to 45%, and the heat storage temperature at the end of heat radiation (ice heat storage tank IPF 10%) is −4 ° C., and the initial aqueous solution calculated from this condition The concentration is about 17.7 wt% (freezing temperature ≒ -3.5 ° C), and the freezing temperature at the end of heat storage (ice heat storage tank 34IPF45%) is about -7.3 ° C.
In addition, the commercially available PG-based aqueous solution has a usable concentration range, but when used below the lower limit concentration, the added rust preventive or anticorrosive agent is diluted and the effect is insufficient. Therefore, additional adjustment may be required.

図1において、符号24は過冷却用熱交換器、符号32は氷核発生器78を具備する過冷却解除器をそれぞれ示し、氷蓄熱槽34の下部(液相側)に一端が接続された水溶液管36が、水溶液液送ポンプ92、氷核融解熱交換器54および氷核滞留フィルター56を介して過冷却用熱交換器24の水溶液入口に接続され、同出口に一端が接続された水溶液管36の他端が過冷却解除器32を介して負荷冷却器20に接続されている。
圧縮機28の吐出口に一端が接続された冷媒管13の他端が、空冷凝縮器30、受液器76、氷核融解熱交換器54および膨張弁72を介して過冷却用熱交換器24の冷媒入口に接続され、同出口に一端が接続された冷媒管13の他端が圧縮機28の吸入口に接続されて、冷凍回路12を構成している。
In FIG. 1, reference numeral 24 denotes a supercooling heat exchanger, and reference numeral 32 denotes a supercooling release unit having an ice core generator 78, and one end is connected to the lower part (liquid phase side) of the ice heat storage tank 34. An aqueous solution pipe 36 is connected to an aqueous solution inlet of the supercooling heat exchanger 24 via an aqueous solution feed pump 92, an ice nucleus melting heat exchanger 54 and an ice nucleus retention filter 56, and one end connected to the outlet. The other end of the pipe 36 is connected to the load cooler 20 via the supercool releaser 32.
The other end of the refrigerant pipe 13, one end of which is connected to the discharge port of the compressor 28, is connected to the supercooling heat exchanger via the air-cooled condenser 30, the liquid receiver 76, the ice nucleus melting heat exchanger 54 and the expansion valve 72. The refrigeration circuit 12 is configured by connecting the other end of the refrigerant pipe 13 connected to the refrigerant inlet 24 and having one end connected to the outlet to the suction port of the compressor 28.

水溶液液送ポンプ92の駆動により氷蓄熱槽34から水溶液管36を経て過冷却熱交換器24に送られた水溶液は、水溶液の凍結温度よりも2℃低温の過冷却状態に冷却され(過冷却度2K)、過冷却解除器32に送られるようにしている。   The aqueous solution sent from the ice heat storage tank 34 through the aqueous solution pipe 36 to the supercooling heat exchanger 24 by driving the aqueous solution feed pump 92 is cooled to a supercooled state 2 ° C. lower than the freezing temperature of the aqueous solution (supercooled). 2K), it is sent to the supercooling releaser 32.

過冷却解除器32において、過冷却状態の水溶液は、氷核発生器78により振動、衝撃等の物理的作用を与えられてその過冷却状態が解除され、水溶液(液相)と氷の細片(固体相)とが混合したシャーベット状の氷スラリーとなり、後に説明する三方切り替え弁48により、水溶液管36によって負荷冷却器20に熱輸送されるか、負荷冷却器バイパス管60によって氷蓄熱槽34へ送られ、氷蓄熱槽34内に貯留される。   In the supercooling releaser 32, the supercooled aqueous solution is subjected to physical action such as vibration and impact by the ice nucleus generator 78 to release the supercooled state, and the aqueous solution (liquid phase) and ice strips are released. It becomes a sherbet-like ice slurry mixed with (solid phase) and is thermally transported to the load cooler 20 by the aqueous solution pipe 36 by a three-way switching valve 48 described later, or the ice heat storage tank 34 by the load cooler bypass pipe 60. To be stored in the ice heat storage tank 34.

本実施形態の冷却システム10において、水溶液回路14の過冷却解除器32の出口側に、氷スラリーの温度すなわち過冷却用熱交換器24に供給される製氷用水溶液の現在の濃度に対応する水溶液の凍結温度を検出する温度センサ98を設けるとともに、過冷却解除器32の入口側に、水溶液温度を検出する温度センサ96を設け、冷凍回路12の冷媒管13における過冷却用熱交換器24の冷媒出口近傍に、冷媒圧力を検出する圧力センサ94と蒸発圧力調整弁74をこの順に設けてあって、これら温度センサ98、96、圧力センサ94および蒸発圧力調整弁74は、温度センサと圧力センサからの信号に基づいて蒸発圧力調整弁74の開度を調節する制御回路82に接続されている。   In the cooling system 10 of this embodiment, the aqueous solution corresponding to the temperature of the ice slurry, that is, the current concentration of the aqueous solution for ice making supplied to the supercooling heat exchanger 24, on the outlet side of the supercooling releaser 32 of the aqueous solution circuit 14. And a temperature sensor 96 for detecting the aqueous solution temperature on the inlet side of the supercooling releaser 32, and the supercooling heat exchanger 24 in the refrigerant pipe 13 of the refrigeration circuit 12. In the vicinity of the refrigerant outlet, a pressure sensor 94 for detecting the refrigerant pressure and an evaporating pressure adjusting valve 74 are provided in this order. These temperature sensors 98 and 96, the pressure sensor 94 and the evaporating pressure adjusting valve 74 are the temperature sensor and the pressure sensor. Is connected to a control circuit 82 that adjusts the opening degree of the evaporation pressure adjusting valve 74 based on the signal from.

すなわち、過冷却解除後の氷スラリーの温度と過冷却熱交換器24における冷媒蒸発温度TEとの温度差を、過冷却熱交換器24における冷媒の蒸発圧力を制御して一定の値に保つようにしている。
より詳細には、過冷却熱交換器24の冷媒出口と圧縮機28の吸入口との間の冷媒管13の途中に、制御回路82(図4参照)からの制御信号に基づいて開度が調節される蒸発圧力調整弁74を設け、この蒸発圧力調整弁74の開度調節により冷媒の蒸発温度TEが調節されるようにしている。
That is, the temperature difference between the temperature of the ice slurry after the supercooling is released and the refrigerant evaporation temperature TE in the supercooling heat exchanger 24 is controlled to keep the refrigerant evaporation pressure in the supercooling heat exchanger 24 at a constant value. I have to.
More specifically, the opening degree is set in the middle of the refrigerant pipe 13 between the refrigerant outlet of the supercooling heat exchanger 24 and the suction port of the compressor 28 based on a control signal from the control circuit 82 (see FIG. 4). An evaporation pressure adjustment valve 74 to be adjusted is provided, and the evaporation temperature TE of the refrigerant is adjusted by adjusting the opening degree of the evaporation pressure adjustment valve 74.

具体的には、水溶液の過冷却制御装置は、圧縮機28と空冷凝縮器30を備える冷凍機から供給される冷媒の気化潜熱により水溶液を過冷却する過冷却熱交換器24と、水溶液の過冷却状態を解除する過冷却解除器32と、水溶液を受け入れる氷蓄熱槽34とが、この順に、水溶液配管36を介して接続された水溶液回路14と、水溶液の凍結温度に応じて冷媒蒸発温度TEを調節する制御回路82とを有する。   Specifically, the supercooling control device for the aqueous solution includes a supercooling heat exchanger 24 that supercools the aqueous solution by the latent heat of vaporization of the refrigerant supplied from the refrigerator that includes the compressor 28 and the air-cooled condenser 30, and a supercooling solution for the aqueous solution. The supercooling releaser 32 for releasing the cooling state and the ice heat storage tank 34 for receiving the aqueous solution are connected in this order via the aqueous solution pipe 36, and the refrigerant evaporation temperature TE according to the freezing temperature of the aqueous solution. And a control circuit 82 for adjusting.

図4に示すように、制御回路82はさらに、氷蓄熱槽34内の水溶液の液位LSに基づいて、水溶液凍結温度を予測する予測演算器84と、過冷却解除器32と三方切り替え弁48との間の水溶液温度と、冷媒の蒸発温度TEとの温度差が一定値ΔT1となるように、冷媒の蒸発温度TEを調整する蒸発温度TE調整手段86と、過冷却解除器32と三方切り替え弁48との間の水溶液温度について、予測した水溶液の凍結温度と過冷却解除により生成される氷スラリーの測定温度との間で切り替える切り替え手段88と、過冷却熱交換器24と過冷却解除器32との間の水溶液温度と、過冷却解除器32と三方切り替え弁48との間の水溶液温度との温度差ΔT3を算出する温度差算出手段90とを有する。 As shown in FIG. 4, the control circuit 82 further predicts the aqueous solution freezing temperature based on the liquid level LS of the aqueous solution in the ice heat storage tank 34, the subcool release unit 32, and the three-way switching valve 48. Three-way switching between the evaporating temperature TE adjusting means 86 for adjusting the evaporating temperature TE of the refrigerant and the supercooling releaser 32 so that the temperature difference between the evaporating water temperature and the evaporating temperature TE of the refrigerant becomes a constant value ΔT1. Switching means 88 for switching between the predicted aqueous solution temperature between the valve 48 and the predicted temperature of the ice slurry generated by the release of supercooling, the supercooling heat exchanger 24 and the supercooling releaser Temperature difference calculating means 90 for calculating a temperature difference ΔT3 between the aqueous solution temperature between the supercooling releaser 32 and the three-way switching valve 48.

蒸発温度TE調整手段86は、温度差算出手段90によって算出される温度差ΔT3が所定値となるまで、予測演算器84により予測した水溶液の凍結温度と冷媒の蒸発温度TEとの温度差が一定値ΔT1となるように、冷媒の蒸発温度TEを調整し、温度差算出手段90によって算出される温度差が所定値となったら、切り替え手段88によって予測した水溶液の凍結温度から過冷却解除により生成される氷スラリーの測定温度に切り替えて、過冷却解除により生成される氷スラリーの測定温度と、冷媒の蒸発温度TEとの温度差が一定値ΔT1となるように、冷媒の蒸発温度TEを調整するようにしている。一定値ΔT1は、たとえば、3Kである。 The evaporating temperature TE adjusting means 86 has a constant temperature difference between the freezing temperature of the aqueous solution predicted by the predictive calculator 84 and the evaporating temperature TE of the refrigerant until the temperature difference ΔT3 calculated by the temperature difference calculating means 90 reaches a predetermined value. The refrigerant evaporating temperature TE is adjusted so as to have a value ΔT1, and when the temperature difference calculated by the temperature difference calculating means 90 reaches a predetermined value, it is generated by releasing the supercooling from the freezing temperature of the aqueous solution predicted by the switching means 88. The refrigerant evaporation temperature TE is adjusted so that the temperature difference between the measurement temperature of the ice slurry generated by the release of the supercooling and the evaporation temperature TE of the refrigerant becomes a constant value ΔT1. Like to do. The constant value ΔT1 is 3K, for example.

採用する水溶液の種類あるいは過冷却熱交換器のタイプに応じて、ΔT1を設定するのが好ましい。たとえば、アルコール系水溶液の場合には、過冷却熱交換器により過冷却状態を維持しがたく、不意の過冷却解除を生じる可能性があることから、ΔT1を3Kより小さくするのがよく、たとえば、プロピレングリコール系またはエチレングリコール系水溶液の場合には、過冷却熱交換器により過冷却状態を維持しやすく、不意の過冷却解除を生じる可能性が低いことから、ΔT1を3Kより大きくしてもよい。 ΔT1 is preferably set in accordance with the type of aqueous solution to be used or the type of the supercooling heat exchanger. For example, in the case of an alcohol-based aqueous solution, it is difficult to maintain a supercooled state by a supercooling heat exchanger, and unexpected supercooling may be canceled. Therefore, ΔT1 should be smaller than 3K. In the case of a propylene glycol-based or ethylene glycol-based aqueous solution, it is easy to maintain a supercooled state by a supercooling heat exchanger, and it is unlikely to cause unexpected supercooling release. Therefore, even if ΔT1 is made larger than 3K Good.

また、たとえば、シェルアンドチューブ式熱交換器の場合には、熱交換効率が比較的低く、そのため不意の過冷却解除を生じる可能性が低いことから、ΔT1を3Kより大きくしてもよく、たとえば、プレート式熱交換器の場合には、熱交換効率が比較的高く、そのため不意の過冷却解除を生じる可能性があることから、ΔT1を3Kより小さくするのがよい。
このように、過冷却熱交換器において、熱流束が比較的大きな条件で熱交換する際には、不意の過冷却解除を防止するために、ΔT1を3Kより小さくするのがよい。
Also, for example, in the case of a shell and tube heat exchanger, the heat exchange efficiency is relatively low, and therefore, the possibility of unexpected supercooling cancellation is low, so ΔT1 may be larger than 3K. In the case of a plate heat exchanger, the heat exchange efficiency is relatively high, and therefore, unexpected supercooling may be canceled. Therefore, ΔT1 should be smaller than 3K.
Thus, in the supercooling heat exchanger, when heat exchange is performed under a condition where the heat flux is relatively large, ΔT1 is preferably set to be smaller than 3K in order to prevent unexpected overcooling cancellation.

より詳しくは、氷蓄熱槽34における貯氷量が増大して製氷用として過冷却用熱交換器24に供給される水溶液の濃度が高くなると、水溶液の凍結温度が低下し、したがって過冷却解除直後の氷スラリー温度と冷媒蒸発温度TEの差が小となるので、蒸発圧力調整弁74の開度を大きくすることにより蒸発圧力を小すなわち冷媒の蒸発温度TEを降下させる。   More specifically, when the amount of ice stored in the ice heat storage tank 34 increases and the concentration of the aqueous solution supplied to the supercooling heat exchanger 24 for ice making increases, the freezing temperature of the aqueous solution decreases, and therefore immediately after the supercooling is released. Since the difference between the ice slurry temperature and the refrigerant evaporation temperature TE becomes small, the evaporation pressure is reduced, that is, the refrigerant evaporation temperature TE is lowered by increasing the opening of the evaporation pressure adjusting valve 74.

一方、氷蓄熱槽34における貯氷量が減少して製氷用として過冷却用熱交換器24に供給される水溶液の濃度が低くなると、水溶液の凍結温度が上昇し、したがって過冷却解除直後の氷スラリー温度と冷媒蒸発温度TEの差が大となるので、蒸発圧力調整弁74の開度を小さくすることにより蒸発圧力を大すなわち冷媒の蒸発温度TEを上昇させる。   On the other hand, when the amount of ice stored in the ice heat storage tank 34 decreases and the concentration of the aqueous solution supplied to the supercooling heat exchanger 24 for ice making decreases, the freezing temperature of the aqueous solution rises, and thus the ice slurry immediately after the supercooling is released. Since the difference between the temperature and the refrigerant evaporation temperature TE becomes large, the evaporation pressure is increased, that is, the refrigerant evaporation temperature TE is increased by reducing the opening of the evaporation pressure adjusting valve 74.

このように、水溶液の凍結温度(過冷却解除直後の氷スラリーの温度)変化に対応して冷媒蒸発温度TEが調節されることにより、過冷却用熱交換器24の水溶液出口における過冷却水溶液の温度すなわち水溶液の最低温度も冷媒蒸発温度TEに対応して変化し、水溶液の凍結温度と過冷却熱交換器24における冷媒蒸発温度TEとの差が一定となるように制御される。   As described above, the refrigerant evaporation temperature TE is adjusted in accordance with the change in the freezing temperature of the aqueous solution (the temperature of the ice slurry immediately after the release of the supercooling), whereby the supercooled aqueous solution at the aqueous solution outlet of the supercooling heat exchanger 24 is adjusted. The temperature, that is, the minimum temperature of the aqueous solution also changes corresponding to the refrigerant evaporation temperature TE, and is controlled so that the difference between the freezing temperature of the aqueous solution and the refrigerant evaporation temperature TE in the supercooling heat exchanger 24 is constant.

過冷却解除器32は、過冷却した水溶液に振動を伝えて、水溶液中に氷核を発生させる氷核発生器78を具備し、過冷却熱交換器24と過冷却解除器32との間の水溶液温度と、過冷却解除器32と三方切り替え弁48との間の水溶液温度との温度差が、0.5℃以上となるまで、過冷却解除器32を30秒稼動して1分間保持する段階を繰り返す。
変形例として、過冷却熱交換器24と過冷却解除器32との間の水溶液温度と、過冷却解除器32と三方弁48との間の水溶液温度との温度差が、0.5℃以上となるまで、過冷却解除器32の上流側の水溶液温度が所定温度低下するたびに、過冷却解除器32を30秒稼動する段階を繰り返すのでもよい。所定温度は、たとえば、0.1℃である。
別の変形例として、過冷却熱交換器24と過冷却解除器32との間水溶液温度と、過冷却解除器32と三方弁48との間の水溶液温度との温度差が、0.5℃以上となるまで、設定された初期蒸発温度TEを0.1℃下げて1分間保持した後、過冷却解除器32を20秒稼動する段階を繰り返すのでもよい。
いずれにせよ、いったん、水溶液の過冷却が開始したら、なるべく早く、強制的に過冷却を解除することにより、氷スラリーを生成するようにするのが好ましい。
The supercooling releaser 32 includes an ice core generator 78 that transmits vibrations to the supercooled aqueous solution to generate ice nuclei in the aqueous solution, and is provided between the supercooling heat exchanger 24 and the supercooling releaser 32. The supercooling releaser 32 is operated for 30 seconds and held for 1 minute until the temperature difference between the aqueous solution temperature and the aqueous solution temperature between the supercooling releaser 32 and the three-way switching valve 48 becomes 0.5 ° C. or more. Repeat the steps.
As a modification, the temperature difference between the aqueous solution temperature between the supercooling heat exchanger 24 and the supercooling releaser 32 and the aqueous solution temperature between the supercooling releaser 32 and the three-way valve 48 is 0.5 ° C. or more. Until the temperature of the aqueous solution on the upstream side of the supercooling releaser 32 decreases by a predetermined temperature, the step of operating the supercooling releaser 32 for 30 seconds may be repeated. The predetermined temperature is, for example, 0.1 ° C.
As another modification, the temperature difference between the aqueous solution temperature between the supercooling heat exchanger 24 and the supercooling releaser 32 and the aqueous solution temperature between the supercooling releaser 32 and the three-way valve 48 is 0.5 ° C. Until the above is reached, after the set initial evaporation temperature TE is lowered by 0.1 ° C. and held for 1 minute, the stage of operating the supercooling releaser 32 for 20 seconds may be repeated.
In any case, once supercooling of the aqueous solution is started, it is preferable to generate ice slurry by forcibly releasing supercooling as soon as possible.

本冷却システム10は「蓄熱(氷蓄)運転」と「放熱(追かけ)運転」の2つの動作パターン統一で構成されており、いずれも、圧縮機28の稼動を前提として、氷スラリーにより氷蓄熱槽34または負荷冷却器20に熱輸送しており、三方切り替え弁48の流路方向選択のみによって切替わるようにしている。
氷蓄熱槽34を起点とした動作フローを、以下の(1)〜(5)に示す。
(1) 氷蓄熱槽34から取水された水溶液が、氷核融解熱交換器54に送水される。取水口には、メッシュサイズの異なる金網68が、数百ミリ程度の間隔で二重に設けられており、過冷却熱交換器24において過冷却の妨げとなる氷晶の流出を抑制している。また、取水温度は、蓄熱運転中であれば、その時点の水溶液濃度に応じた凍結温度とほぼ同じ温度となり、放熱運転中であれば、これより2K程度高い温度になる。
This cooling system 10 is configured by unifying two operation patterns of “heat storage (ice storage) operation” and “heat radiation (chase) operation”, both of which are based on the operation of the compressor 28 and ice by ice slurry. Heat is transferred to the heat storage tank 34 or the load cooler 20 and is switched only by selecting the flow direction of the three-way switching valve 48.
The operation flow starting from the ice heat storage tank 34 is shown in the following (1) to (5).
(1) The aqueous solution taken from the ice heat storage tank 34 is sent to the ice nucleus melting heat exchanger 54. The water intake 68 is provided with double metal meshes 68 having different mesh sizes at intervals of about several hundred millimeters to suppress the outflow of ice crystals that hinder supercooling in the supercooling heat exchanger 24. . In addition, the intake water temperature is substantially the same as the freezing temperature corresponding to the concentration of the aqueous solution at that time during the heat storage operation, and is about 2K higher than this during the heat dissipation operation.

(2) 蓄熱運転中は、氷核融解熱交換器54により水溶液を、凍結温度+0.5Kまで加熱する。
これは水溶液中に残留した、過冷却の妨げとなる微細な氷晶(氷核)を融解するためであり、過冷却熱交換器24内での凍結による、流路の閉塞を防止する効果が達成される。
氷核除去フィルター56には、氷晶の大きさが一定以下になるまで滞留させる役割があり、小さくなって通過した氷晶は、過冷却熱交換器24に達するまでにおいて、0.5Kの温度差によって完全に融解することが可能である。
(2) During the heat storage operation, the aqueous solution is heated to the freezing temperature + 0.5K by the ice nucleus melting heat exchanger 54.
This is to melt the fine ice crystals (ice nuclei) remaining in the aqueous solution and hinder supercooling, and has the effect of preventing the blockage of the flow path due to freezing in the supercooling heat exchanger 24. Achieved.
The ice core removal filter 56 has a role of retaining the ice crystals until the size of the ice crystals becomes a certain value or less, and the ice crystals that have passed through the ice crystals have a temperature difference of 0.5 K before reaching the supercooling heat exchanger 24. Can be completely melted.

加熱源には、冷凍サイクルにおける、高温高圧過冷却域の顕熱を利用しており、加えた熱量は、冷凍能力(冷凍効果)の増加で相殺されるため、エネルギーロスは生じない。
また、放熱運転中や蓄熱運転中であっても、取水温度が凍結温度+0.5Kよりも高い場合には、高温高圧冷媒液の流路(図1参照)を切替えて、氷核融解熱交換器54をバイパスさせることにより、無用に冷却前の水溶液温度を上昇させないようにしてもよい。これは、冷却熱量増大による過冷却熱交換器24の大型化の抑制と、冷却温度幅の増加により、過冷却の安定性が損なわれることを防止する効果を達成する。
As the heat source, sensible heat in the high-temperature and high-pressure supercooling region in the refrigeration cycle is used, and the amount of added heat is offset by an increase in refrigeration capacity (refrigeration effect), so no energy loss occurs.
Even during heat dissipation operation or heat storage operation, if the intake water temperature is higher than the freezing temperature + 0.5K, the flow path of the high-temperature and high-pressure refrigerant liquid (see Fig. 1) is switched to exchange the ice nucleation heat. By bypassing the vessel 54, the aqueous solution temperature before cooling may not be unnecessarily increased. This achieves the effect of preventing the supercooling stability from being impaired by suppressing the increase in size of the supercooling heat exchanger 24 due to an increase in the amount of cooling heat and increasing the cooling temperature range.

(3)過冷却状態となった水溶液は、過冷却解除器32内で過冷却解除され、過冷却分の熱量に相当した氷晶を含む氷スラリーとなる。
システム起動後の初期段階では、過冷却解除器32内に氷核となる氷晶が存在していないため、過冷却解除器32内での自発的な過冷却解除は生じない。このため、過冷却熱交換器24出口の水溶液が、所定の過冷却度に達した時点で、過冷却解除器32の氷核発生器78により振動を与えることにより、強制的に過冷却解除を促している。過冷却が解除されると水溶液氷スラリー(以下、氷スラリー)の温度は凍結温度まで上昇するため、これを温度センサ98により検知して過冷却解除器32は停止させる。一旦、過冷却解除器32内に氷晶が存在する状態となれば、以降はこの氷晶が核となって、水溶液の過冷却解除器32への流入と同時に連続して自発的な過冷却解除が継続される。
(3) The supercooled aqueous solution is released from supercooling in the supercooling releaser 32, and becomes ice slurry containing ice crystals corresponding to the amount of heat of the supercooling.
In the initial stage after the system is started, since there are no ice crystals serving as ice nuclei in the supercooling releaser 32, spontaneous supercooling release in the supercooling releaser 32 does not occur. For this reason, when the aqueous solution at the outlet of the supercooling heat exchanger 24 reaches a predetermined degree of supercooling, the ice core generator 78 of the supercooling releaser 32 is vibrated to forcibly cancel the supercooling. Urging. When the supercooling is released, the temperature of the aqueous ice slurry (hereinafter referred to as ice slurry) rises to the freezing temperature. This is detected by the temperature sensor 98 and the supercool releaser 32 stops. Once the ice crystals are present in the supercooling releaser 32, the ice crystals become nuclei thereafter, and spontaneously supercooling continuously as soon as the aqueous solution flows into the supercooling releaser 32. Release continues.

(4)図6ないし図9に示すように、生成した氷スラリーは、三方切り替え弁48の流路切替えにより、蓄熱運転中であれば氷蓄熱槽34へ、また、放熱運転中であれば負荷冷却器20へ送られる。
より詳細には、図6および図7は、氷蓄熱運転を行っている場合、図8および図9は、冷却運転を行っている場合であり、図6および図7において共通に、水溶液は、氷蓄熱槽34から冷水搬送ポンプ92により氷核融解熱交換器54および氷核除去フィルター56を介して、過冷却熱交換器24に到り、ここで冷媒の気化潜熱により過冷却され、過冷却解除器32において、過冷却解除され、氷スラリーが形成され、三方切り替え弁48により、負荷冷却器バイパス管60を介して氷蓄熱槽34に送られ、それに対して、図8および図9においては、氷蓄熱槽34から過冷却解除器32において、過冷却解除され、氷スラリーが形成される点では、図6および図7と同様であるが、三方切り替え弁48により、負荷冷却器20に送られ、散布ノズル62を通じて氷蓄熱槽34に戻される。
図6と図7との違いは、図6は、冷凍機をリスタートした直後の過冷却解除達成前の運転であり、そのために、水溶液の凍結温度と冷媒の蒸発温度TEとの温度差が所定値(例:3K)に保たれるように、目標蒸発温度TE(蒸発圧力調整弁の開度)を可変するのに、水溶液の凍結温度として、予測温度(T1´)を用いており、図7は、過冷却解除達成後の運転であり、水溶液の凍結温度として、測定温度(T1)を用いており、図8と図9との違いは、図6と図7との違いと同様である。
本冷却システムでは、放熱運転中の冷却熱媒に氷スラリーを用いているため、高密度な冷熱搬送により、搬送動力が低減されるだけでなく、負荷冷却器20の熱媒側温度が低く維持されるため、熱交換効率が向上し、負荷冷却器20の小型化を図れる効果を奏する。
(5)負荷冷却器20へ送られた氷スラリーは、空調負荷を受けて氷晶が融解し、顕熱も僅かに上昇して氷蓄熱槽34へ流入する。戻し口には散水スプレー62が設けられており、水溶液が氷蓄熱槽34内へ均等に散水されるように配置されている。なお、参照番号64は、散水量を増すための循環系統であり、解氷促進ポンプ66により氷蓄熱槽34から取水され水溶液配管36からの水溶液と合流して散水されている。
氷蓄熱槽34で氷蓄に偏りが生じると、水溶液は蓄氷が少ない(通水抵抗が小さい)ルートへ流れやすくなり、蓄氷と十分に熱交換しないまま取水口へショートサーキットしてしまうため、所定の放熱が得られなくなる問題が生じる。このような場合には、適宜の判断で部分的な散水を行う機能を付加させるのが好ましい。
(4) As shown in FIG. 6 to FIG. 9, the generated ice slurry is loaded into the ice heat storage tank 34 when the heat storage operation is being performed, or is loaded when the heat dissipation operation is being performed, by switching the flow path of the three-way switching valve 48. It is sent to the cooler 20.
More specifically, FIGS. 6 and 7 show the case where the ice heat storage operation is performed, and FIGS. 8 and 9 show the case where the cooling operation is performed. In FIG. 6 and FIG. From the ice heat storage tank 34 to the supercooling heat exchanger 24 via the ice core melting heat exchanger 54 and the ice core removal filter 56 by the cold water transfer pump 92, it is supercooled by the latent heat of vaporization of the refrigerant and supercooled. In the releaser 32, the supercooling is released and ice slurry is formed, which is sent to the ice heat storage tank 34 via the load cooler bypass pipe 60 by the three-way switching valve 48, whereas in FIGS. 6 is similar to that in FIGS. 6 and 7 in that the supercooling is released from the ice heat storage tank 34 in the supercooling releaser 32, and ice slurry is formed. And scattered It returned to the ice heat storage tank 34 through the nozzle 62.
The difference between FIG. 6 and FIG. 7 is that FIG. 6 is the operation before the achievement of the supercooling release immediately after restarting the refrigerator. For this reason, the temperature difference between the freezing temperature of the aqueous solution and the evaporation temperature TE of the refrigerant is The predicted temperature (T1 ′) is used as the freezing temperature of the aqueous solution to vary the target evaporation temperature TE (opening of the evaporation pressure adjusting valve) so as to be kept at a predetermined value (eg, 3K), FIG. 7 shows the operation after the supercooling release is achieved, and the measured temperature (T1) is used as the freezing temperature of the aqueous solution. The difference between FIG. 8 and FIG. 9 is the same as the difference between FIG. 6 and FIG. It is.
In this cooling system, since ice slurry is used as the cooling heat medium during the heat radiation operation, not only the conveyance power is reduced by the high-density cooling and heat conveyance, but also the temperature on the heat medium side of the load cooler 20 is kept low. Therefore, the heat exchange efficiency is improved, and the load cooler 20 can be reduced in size.
(5) The ice slurry sent to the load cooler 20 receives an air conditioning load, the ice crystals melt, the sensible heat rises slightly, and flows into the ice heat storage tank 34. A water spray 62 is provided at the return port, and is arranged so that the aqueous solution is uniformly sprinkled into the ice heat storage tank 34. Reference numeral 64 is a circulation system for increasing the amount of water sprayed. Water is taken from the ice heat storage tank 34 by the ice melting promotion pump 66 and joined with the aqueous solution from the aqueous solution pipe 36 to be sprinkled.
If the ice storage is biased in the ice storage tank 34, the aqueous solution tends to flow to a route with little ice storage (low water resistance) and short circuit to the water intake without sufficient heat exchange with the ice storage. There arises a problem that predetermined heat radiation cannot be obtained. In such a case, it is preferable to add a function of performing partial watering by appropriate judgment.

本冷却システム10では、常に水溶液の凍結温度と冷媒の蒸発温度TEとを検出、または予測して両者の温度差を算出しており、この値が所定値(例:3K)に保たれるように、目標蒸発温度TE(蒸発圧力調整弁の開度)を可変するフィードバック制御を行っている。
すなわち、水溶液の過冷却制御方法は、冷凍機による冷媒の気化潜熱により水溶液回路14中の水溶液を過冷却し、水溶液回路14の過冷却部16より下流において、過冷却した水溶液を過冷却解除することにより、氷スラリーを生成して、熱輸送する水溶液の過冷却制御方法であって、目標過冷却度を達成するまで、過冷却部16より下流における水溶液凍結温度と、冷媒の蒸発温度TEとの温度差が一定値ΔTとなるように、冷媒の蒸発温度TEを調整する。
なお、水溶液の目標過冷却度は、過冷却部16において水溶液を過冷却するまでに過冷却解除が発生せず、水溶液の過冷却開始後、過冷却部16より下流において、水溶液を強制的に過冷却解除するに十分な値に設定する。目標過冷却度は、たとえば、1Kないし2K程度である。
The cooling system 10 always detects or predicts the freezing temperature of the aqueous solution and the evaporation temperature TE of the refrigerant to calculate the temperature difference between the two, and this value is maintained at a predetermined value (eg, 3K). In addition, feedback control is performed to vary the target evaporation temperature TE (opening of the evaporation pressure adjusting valve).
That is, in the supercooling control method of the aqueous solution, the aqueous solution in the aqueous solution circuit 14 is supercooled by the latent heat of vaporization of the refrigerant by the refrigerator, and the supercooled aqueous solution is released from the supercooling portion 16 downstream of the aqueous solution circuit 14. This is a method for controlling the supercooling of the aqueous solution that generates ice slurry and transports heat, and the aqueous solution freezing temperature downstream of the supercooling unit 16 and the evaporation temperature TE of the refrigerant until the target supercooling degree is achieved. The evaporation temperature TE of the refrigerant is adjusted so that the temperature difference becomes a constant value ΔT.
Note that the target supercooling degree of the aqueous solution is such that the supercooling release does not occur until the aqueous solution is supercooled in the supercooling unit 16, and the aqueous solution is forced to flow downstream from the supercooling unit 16 after the supercooling of the aqueous solution starts. Set to a value that is sufficient to release overcooling. The target degree of supercooling is, for example, about 1K to 2K.

より詳細には、図5に示すように、冷凍機をリスタートする際、水溶液回路14中に設けた、氷スラリーを受け入れる氷蓄熱槽34内の水溶液の液面LSに基づいて、水溶液濃度を算出し、算出した水溶液濃度に基づいて、水溶液の凍結温度を予測する(ステップ1)。より具体的には、氷蓄熱槽34では、蓄熱(氷)量が増加すると液面は低下傾向となる。この関係性を利用して、氷蓄熱槽34側面に設けた液位センサ80により、蓄熱(氷)量を判定し、概略の凍結温度(T1´)を予測して、蒸発温度TEの制御を行う初期蒸発温度を決定する(ステップ2およびステップ3)。次いで、温度センサ96、98および圧力センサ94により過冷却解除器出口側水溶液温度T1、過冷却解除器入口側水溶液温度T3、および冷媒蒸発圧力PEを測定開始(ステップ4)したうえで、氷蓄熱運転から冷却運転の選択をし(ステップ5)、それに応じて、三方切り替え弁48を切り替え(ステップ6)、水溶液液送ポンプ92を起動してから(ステップ7)、冷凍機をオンとする(ステップ8)。 More specifically, as shown in FIG. 5, when the refrigerator is restarted, the aqueous solution concentration is determined based on the liquid level LS of the aqueous solution in the ice heat storage tank 34 that receives the ice slurry provided in the aqueous solution circuit 14. The freezing temperature of the aqueous solution is predicted based on the calculated aqueous solution concentration (Step 1). More specifically, in the ice heat storage tank 34, the liquid level tends to decrease as the amount of heat storage (ice) increases. Using this relationship, the liquid level sensor 80 provided on the side of the ice heat storage tank 34 determines the amount of heat storage (ice), predicts the approximate freezing temperature (T1 '), and controls the evaporation temperature TE. The initial evaporation temperature to be performed is determined (step 2 and step 3). Next, the temperature sensors 96 and 98 and the pressure sensor 94 start measuring the supercooling releaser outlet side aqueous solution temperature T1, the supercooling releaser inlet side aqueous solution temperature T3, and the refrigerant evaporation pressure PE (step 4), and then store the ice heat. The operation is selected from the cooling operation (step 5), the three-way switching valve 48 is switched accordingly (step 6), the aqueous solution feed pump 92 is activated (step 7), and the refrigerator is turned on (step 7). Step 8).

次いで、予測した水溶液の凍結温度T1´と、冷媒の蒸発温度TEとの温度差が一定値ΔT1となるように、冷媒の蒸発圧力を調整することにより蒸発温度TEを調整し、それにより、水溶液回路14の過冷却部16において不意の過冷却解除が生じないようにしている(ステップ9およびステップ10)。その際、装置起動後、予測される凍結温度より僅かに高い温度(例:0.3K)を、予測の精度を安全側で加味した仮の凍結温度(T1´)と見なし、蒸発温度TEを目標値に制御した冷却運転を行う。これにより、水溶液回路14の過冷却部において不意の過冷却解除が確実に生じないようにしている。 Next, the evaporation temperature TE is adjusted by adjusting the evaporation pressure of the refrigerant so that the temperature difference between the predicted freezing temperature T1 ′ of the aqueous solution and the evaporation temperature TE of the refrigerant becomes a constant value ΔT1, and thereby the aqueous solution Unexpected overcool release is prevented from occurring in the supercooling section 16 of the circuit 14 (step 9 and step 10). At that time, after starting up the apparatus, the temperature slightly higher than the predicted freezing temperature (eg, 0.3K) is regarded as the temporary freezing temperature (T1 ′) taking into account the accuracy of the prediction on the safe side, and the evaporation temperature TE is set as the target. Cooling operation controlled to the value is performed. As a result, unintentional release of supercooling from the supercooling part of the aqueous solution circuit 14 is prevented from occurring reliably.

次いで、予測した水溶液の凍結温度と、過冷却解除器32出口の水溶液温度との温度差が、強制的に過冷却解除をするに十分な値ΔT2となってから、過冷却解除動作を繰り返す(ステップ11およびステップ12)。ΔT2は、たとえば、0.5Kである。なお、アルコール系水溶液の場合、強制的に過冷却解除を行うタイミングとして、ΔT2を0.5Kより小さく設定してもよい。
水溶液の過冷却解除動作は、水溶液回路14の過冷却部16より下流に設けた過冷却解除器32により、水溶液中に氷核を発生させることにより行い、なお、過冷却解除器32を振動させても、過冷却解除器32の出口温度が上昇しない場合には、過冷却解除が達成できていないと判定し、適宜に間隔(時間間隔または過冷却度拡大)をあけて、同様の動作を過冷却が解除されるまで繰り返し行う。
次いで、水溶液回路14中の水溶液が過冷却開始した後、過冷却部16より下流において水溶液の過冷却解除を達成するまで、過冷却度が目標過冷却度に近づく過程において、強制的な過冷却解除動作を行ってから過冷却解除達成の有無を判定するサイクルを繰り返す(ステップ13ないしステップ14)。
Subsequently, after the temperature difference between the predicted freezing temperature of the aqueous solution and the aqueous solution temperature at the outlet of the supercooling releaser 32 becomes a value ΔT2 sufficient to forcibly cancel the supercooling, the supercooling release operation is repeated ( Step 11 and Step 12). ΔT2 is, for example, 0.5K. In the case of an alcohol-based aqueous solution, ΔT2 may be set smaller than 0.5K as the timing for forcibly canceling the supercooling.
The supercooling release operation of the aqueous solution is performed by generating ice nuclei in the aqueous solution by the supercooling releaser 32 provided downstream of the supercooling unit 16 of the aqueous solution circuit 14, and the supercooling releaser 32 is vibrated. However, if the outlet temperature of the supercooling releaser 32 does not rise, it is determined that the supercooling release has not been achieved, and the same operation is performed with an appropriate interval (time interval or supercooling degree expanded). Repeat until the supercooling is released.
Then, after the aqueous solution in the aqueous solution circuit 14 starts supercooling, forced subcooling is performed in the process in which the supercooling degree approaches the target supercooling degree until the supercooling release of the aqueous solution is achieved downstream from the supercooling unit 16. After performing the release operation, a cycle for determining whether or not the supercooling release is achieved is repeated (steps 13 to 14).

水溶液の過冷却解除の達成は、過冷却解除器32出口の水溶液測定温度と、過冷却解除器32入口の水溶液測定温度との温度差がΔT3となることにより判定する。ΔT3は、たとえば、0.5Kである。
次いで、過冷却解除器32内で過冷却が解除されると、生成した氷スラリーの温度は凍結温度まで上昇するため、過冷却解除器32出口で正確な凍結温度の検出が可能となり、以降は、T1を用いたより高精度な蒸発温度TE制御に切替える(ステップ15)。
すなわち、予測した水溶液の凍結温度から、過冷却解除により生成される氷スラリーの測定温度に切り替えて、氷スラリーの測定温度と冷媒の蒸発温度TEとの温度差が一定値ΔT1となるように、冷媒の蒸発温度TEを調整しつつ、氷スラリーによる熱輸送を行う(ステップ16およびステップ17)。
The achievement of the supercooling release of the aqueous solution is determined by the difference in temperature between the measured aqueous solution temperature at the outlet of the supercooling releaser 32 and the measured aqueous solution temperature at the inlet of the supercooling releaser 32 being ΔT3. ΔT3 is, for example, 0.5K.
Next, when the supercooling is released in the supercooling releaser 32, the temperature of the generated ice slurry rises to the freezing temperature, so that the accurate freezing temperature can be detected at the outlet of the supercooling releaser 32, and thereafter , Switching to higher-precision evaporation temperature TE control using T1 (step 15).
That is, switching from the predicted freezing temperature of the aqueous solution to the measured temperature of the ice slurry generated by the release of supercooling, so that the temperature difference between the measured temperature of the ice slurry and the evaporation temperature TE of the refrigerant becomes a constant value ΔT1. While adjusting the evaporation temperature TE of the refrigerant, heat transport using ice slurry is performed (steps 16 and 17).

製氷運転を開始した後は、蓄熱量の増加に伴って水溶液が濃縮し、凍結温度が低下するが、このような蒸発温度TEのフィードバック制御により、氷スラリーの測定温度と冷媒の蒸発温度TEとの温度差がΔT1に保たれた状態で、連続的に過冷却製氷が行われる。蓄熱終了(満氷)に対応した凍結温度に達した場合は装置を停止する。以上の蒸発温度TE制御により、水溶液を用いた安定した過冷却製氷の継続が可能となる。 After the ice making operation is started, the aqueous solution is concentrated as the amount of heat storage increases, and the freezing temperature is lowered. By such feedback control of the evaporation temperature TE, the measured temperature of the ice slurry and the evaporation temperature TE of the refrigerant In the state where the temperature difference is maintained at ΔT1, supercooled ice making is continuously performed. When the freezing temperature corresponding to the end of heat storage (full ice) is reached, the device is stopped. With the above evaporation temperature TE control, it is possible to continue stable supercooled ice making using an aqueous solution.

図10は、本実施形態の冷却システム10による水溶液過冷却製氷運転の実測データ例を示す。
図10によれば、過冷却解除後における、過冷却熱交換器入口水溶液温度、過冷却熱交換器出口水溶液温度、過冷却解除器出口水溶液温度および過冷却熱交換器冷媒蒸発温度TEの時間変化が示されている。
過冷却解除器出口水溶液温度がほぼステップ状に温度上昇することにより、過冷却解除が開始され、蓄熱(氷)量の増加に伴い水溶液が濃縮するため、過冷却解除器出口水溶液温度(凍結温度)が低下し、凍結温度の低下に応じて、過冷却解除器出口水溶液温度と過冷却熱交換器冷媒蒸発温度TEとの温度差がΔT1になるように蒸発温度TEが制御されていることがわかる。
FIG. 10 shows an example of actual measurement data of the aqueous solution supercooling ice making operation by the cooling system 10 of the present embodiment.
According to FIG. 10, changes over time of the supercooling heat exchanger inlet aqueous solution temperature, the supercooling heat exchanger outlet aqueous solution temperature, the supercooling release outlet aqueous solution temperature, and the supercooling heat exchanger refrigerant evaporation temperature TE after the supercooling release. It is shown.
When the temperature of the aqueous solution at the outlet of the supercooling releaser rises almost stepwise, the release of supercooling is started and the aqueous solution is concentrated as the amount of heat storage (ice) increases. The evaporation temperature TE is controlled so that the temperature difference between the supercooling releaser outlet aqueous solution temperature and the supercooling heat exchanger refrigerant evaporation temperature TE becomes ΔT1 as the freezing temperature decreases. Recognize.

以上の構成によれば、水溶液回路14の過冷却部16においては、水溶液の過冷却達成までに 不意の過冷却解除が発生しないように、水溶液の凍結温度と、冷媒の蒸発温度TEとの温度差が一定値ΔT1となるように、水溶液を冷却するとともに、いったん、目標過冷却度を達成したら、過冷却部16の下流側において、すみやかに過冷却解除を行い、氷スラリーを生成する。 According to the above configuration, in the supercooling section 16 of the aqueous solution circuit 14, the temperature between the freezing temperature of the aqueous solution and the evaporation temperature TE of the refrigerant is prevented so that the unexpected supercooling release does not occur until the supercooling of the aqueous solution is achieved. The aqueous solution is cooled so that the difference becomes a constant value ΔT1, and once the target degree of supercooling is achieved, the supercooling is immediately released downstream of the supercooling unit 16 to generate ice slurry.

特に、冷凍機をリスタートする際、氷スラリーにより生成した氷蓄熱槽34内の氷が氷解しており、その分、水溶液の凍結温度が上がっていることから、水溶液の凍結温度が不明で有り、氷蓄熱槽34内の水溶液の液位より、水溶液の濃度を介して水溶液の凍結温度を予測して、予測した水溶液の凍結温度と、冷媒の蒸発温度TEとの温度差が一定値ΔT1となるように、水溶液を過冷却する。
次いで、水溶液回路14中の水溶液が過冷却開始した後、過冷却部16より下流において水溶液の過冷却解除を達成するまで、過冷却度が目標過冷却度に近づく過程において、強制的な過冷却解除動作を行ってから過冷却解除達成の有無を判定するサイクルを繰り返す。
In particular, when the refrigerator is restarted, the ice in the ice heat storage tank 34 generated by the ice slurry has melted, and the freezing temperature of the aqueous solution has increased accordingly, so the freezing temperature of the aqueous solution is unknown. The freezing temperature of the aqueous solution is predicted from the liquid level of the aqueous solution in the ice heat storage tank 34 via the concentration of the aqueous solution, and the temperature difference between the predicted freezing temperature of the aqueous solution and the evaporation temperature TE of the refrigerant is a constant value ΔT1. The aqueous solution is supercooled so that
Then, after the aqueous solution in the aqueous solution circuit 14 starts supercooling, forced subcooling is performed in the process in which the supercooling degree approaches the target supercooling degree until the supercooling release of the aqueous solution is achieved downstream from the supercooling unit 16. After performing the release operation, the cycle for determining whether or not the supercooling release is achieved is repeated.

水溶液の過冷却解除を達成してからは、予測した水溶液の凍結温度から、過冷却解除により生成される氷スラリーの測定温度に切り替えて、氷スラリーの測定温度と冷媒の蒸発温度TEとの温度差が一定値ΔT1となるように、冷媒の蒸発温度TEを調整しつつ、氷スラリーを生成する。
以上のように、水溶液の過冷却を達成するまでは、思わぬ過冷却解除が発生しないようにしつつ水溶液を冷却し、いったん、水溶液の過冷却が開始したら、水溶液の正確な凍結温度により蒸発温度TEの調整を行うことにより、水溶液を過冷却部下流で過冷却解除して、氷スラリー状態を生成しつつ、水溶液凍結に伴う水溶液回路14中での流路の閉塞を抑制可能である。
After achieving the supercooling release of the aqueous solution, switch from the predicted freezing temperature of the aqueous solution to the measurement temperature of the ice slurry generated by the supercooling release, and the temperature between the ice slurry measurement temperature and the refrigerant evaporation temperature TE Ice slurry is generated while adjusting the evaporation temperature TE of the refrigerant so that the difference becomes a constant value ΔT1.
As described above, until the supercooling of the aqueous solution is achieved, the aqueous solution is cooled while preventing unexpected supercooling release.Once the supercooling of the aqueous solution starts, the evaporation temperature is determined by the exact freezing temperature of the aqueous solution. By adjusting the TE, it is possible to release the supercooling downstream of the supercooling unit and generate an ice slurry state, while suppressing the blockage of the flow path in the aqueous solution circuit 14 due to the aqueous solution freezing.

以上、本発明の実施形態を詳細に説明したが、本発明の範囲から逸脱しない範囲内において、当業者であれば、種々の修正あるいは変更が可能である。
たとえば、本実施形態において、負荷冷却運転および氷蓄熱運転いずれにおいても、水溶液の強制的な過冷却解除により氷スラリー形態で熱輸送を行うものとして説明したが、それに限定されることなく、負荷冷却運転においては、氷スラリー形態でなく冷水形態で熱輸送をしてもよい。その場合、水溶液回路において、冷凍機をオフにして冷水を負荷冷却器20に熱輸送してもよいし、または、負荷冷却器20と氷蓄熱槽34との間に、水溶液回路とは独立に、氷蓄熱槽34から負荷冷却器20への冷水送り管と、負荷冷却器20から氷蓄熱槽34への冷水戻し管とを設けたうえで、冷凍機をオフにして冷水を負荷冷却器20と氷蓄熱槽34との間で循環させてもよい。
The embodiments of the present invention have been described in detail above, but various modifications or changes can be made by those skilled in the art without departing from the scope of the present invention.
For example, in this embodiment, the load cooling operation and the ice heat storage operation have been described as performing heat transport in the form of an ice slurry by forcibly releasing the supercooling of the aqueous solution. In operation, heat transport may be carried out in the form of cold water rather than in the form of ice slurry. In that case, in the aqueous solution circuit, the refrigerator may be turned off and the cold water may be heat transported to the load cooler 20, or between the load cooler 20 and the ice heat storage tank 34, independently of the aqueous solution circuit. In addition, a cold water feed pipe from the ice heat storage tank 34 to the load cooler 20 and a cold water return pipe from the load cooler 20 to the ice heat storage tank 34 are provided, and then the refrigerator is turned off to supply cold water to the load cooler 20. And the ice heat storage tank 34 may be circulated.

たとえば、本実施形態において、負荷冷却運転および氷蓄熱運転いずれにおいても、水溶液の強制的な過冷却解除により氷スラリー形態で熱輸送を行い、水溶液回路において、三方切り替え弁による切替により、冷凍機をオンにした状態で負荷冷却運転および氷蓄熱運転を選択的に行ういわゆる追っかけ運転を行うものとして説明したが、それに限定されることなく、水溶液回路において、負荷冷却器20と氷蓄熱槽34とを並列的に配置して、水溶液の流量配分の調整により、負荷冷却運転および氷蓄熱運転を同時運転するのでもよい。
たとえば、本実施形態において、氷蓄熱運転において、水溶液の強制的な過冷却解除により氷スラリー形態で熱輸送を行うものとして説明したが、それに限定されることなく、例えば、氷蓄熱を行うことなく、氷スラリーを直接空調用の熱交換器等の負荷側熱交換器に送って冷熱を利用する場合にも適用可能である。
For example, in this embodiment, in both the load cooling operation and the ice heat storage operation, heat transfer is performed in the form of ice slurry by forcibly releasing the supercooling of the aqueous solution, and in the aqueous solution circuit, the refrigerator is switched by switching with a three-way switching valve. Although the load cooling operation and the ice heat storage operation are selectively performed in the on state, the so-called chasing operation is described. However, the load cooler 20 and the ice heat storage tank 34 are not limited to the aqueous solution circuit. The load cooling operation and the ice heat storage operation may be simultaneously performed by arranging in parallel and adjusting the flow rate distribution of the aqueous solution.
For example, in the present embodiment, the ice heat storage operation has been described as performing heat transport in the form of ice slurry by forcibly releasing the supercooling of the aqueous solution, but the present invention is not limited thereto, for example, without performing ice heat storage. The present invention is also applicable to the case where ice slurry is directly sent to a load-side heat exchanger such as a heat exchanger for air conditioning to use cold energy.

たとえば、本実施形態において、冷却システム10として、氷スラリーによる熱輸送形態により冷却運転および蓄熱運転を行う場合として説明したが、それに限定されることなく、過冷却の際、思わぬ過冷却解除を発生せず、強制的な過冷却解除の際、円滑な過冷却解除を達成し、氷スラリーを生成する限りにおいて、生成した氷スラリーをそのまま利用したり、あるいは氷スラリーによる効率的な熱輸送形態を利用する限り、氷スラリーによる熱輸送形態を冷却運転または蓄熱運転のいずれかに利用するのでもよい。 For example, in the present embodiment, the cooling system 10 has been described as the case where the cooling operation and the heat storage operation are performed in the form of heat transport using ice slurry. As long as smooth supercooling release is achieved and ice slurry is generated when forced supercooling is cancelled, the generated ice slurry can be used as it is, or an efficient heat transport mode using ice slurry. As long as this is utilized, the heat transfer mode using ice slurry may be utilized for either the cooling operation or the heat storage operation.

本発明の実施形態に係わる水溶液による冷却システム10の全体構成図である。1 is an overall configuration diagram of an aqueous cooling system 10 according to an embodiment of the present invention. 本発明の実施形態に係わる水溶液による冷却システム10の氷蓄熱槽34のIPF,水溶液濃度および凍結温度の関係を示す表である。It is a table | surface which shows the relationship between IPF of the ice thermal storage tank 34 of the cooling system 10 by the aqueous solution concerning embodiment of this invention, aqueous solution density | concentration, and freezing temperature. 本発明の実施形態に係わる水溶液による冷却システム10の氷蓄熱槽34のIPF,水溶液濃度および凍結温度の関係を示すグラフである。It is a graph which shows the relationship of IPF, aqueous solution density | concentration, and freezing temperature of the ice thermal storage tank 34 of the cooling system 10 by the aqueous solution concerning embodiment of this invention. 本発明の実施形態に係わる水溶液による冷却システム10の制御回路の構成図である。It is a block diagram of the control circuit of the cooling system 10 by the aqueous solution concerning embodiment of this invention. 本発明の実施形態に係わる水溶液による冷却システム10の水溶液の過冷却制御フローを示すフロー図である。It is a flowchart which shows the supercooling control flow of the aqueous solution of the cooling system 10 by the aqueous solution concerning embodiment of this invention. 本発明の実施形態に係わる水溶液による冷却システム10の冷却運転1を示す図1と同様な図である。It is a figure similar to FIG. 1 which shows the cooling operation 1 of the cooling system 10 by the aqueous solution concerning embodiment of this invention. 本発明の実施形態に係わる水溶液による冷却システム10の冷却運転2を示す図1と同様な図である。It is a figure similar to FIG. 1 which shows the cooling operation 2 of the cooling system 10 by the aqueous solution concerning embodiment of this invention. 本発明の実施形態に係わる水溶液による冷却システム10の氷蓄熱運転1を示す図1と同様な図である。It is a figure similar to FIG. 1 which shows the ice thermal storage driving | operation 1 of the cooling system 10 by the aqueous solution concerning embodiment of this invention. 本発明の実施形態に係わる水溶液による冷却システム10の氷蓄熱運転2を示す図1と同様な図である。It is a figure similar to FIG. 1 which shows the ice thermal storage driving | operation 2 of the cooling system 10 by the aqueous solution concerning embodiment of this invention. 本発明の実施形態に係わる水溶液による冷却システム10による製氷運転実測データ、横軸に時間、縦軸に温度により示すグラフである。It is the graph which shows the ice making operation actual measurement data by the cooling system 10 by the aqueous solution concerning embodiment of this invention, time is shown on a horizontal axis, and temperature is shown on the vertical axis | shaft.

T1 過冷却解除器出口側水溶液温度
T1´予測した水溶液の凍結温度
T3 過冷却解除器入口側水溶液温度
ΔT1 T1´(T1)―TE
ΔT2 T1´―T1
ΔT3 T3 ―T1
PE 冷媒蒸気圧力
TE 冷媒蒸気温度
LS 水溶液液位
10 冷却システム
12 冷凍回路
14 水溶液回路
16 過冷却部
18 過冷却解除部
20 負荷冷却部
22 蓄熱部
24 過冷却熱交換器
26 過冷却制御装置
28 圧縮機
30 空冷凝縮器
32 過冷却解除器
34 氷蓄熱槽
36 水溶液配管
48 三方切り替え弁
54 氷核融解熱交換器
56 氷核除去フィルター
60 負荷冷却器バイパス管
62 散布ノズル
64 バイパス管
66 解氷促進ポンプ
68 金網
70 調整弁
72 膨張弁
74 蒸発圧力調整弁
76 受液器
78 氷核発生器
80 液位計
82 制御回路
84 予測演算器
86 蒸発温度調整手段
88 切り替え手段
90 温度差算出手段
92 冷水搬送ポンプ
94 圧力センサ
96 温度センサ
98 温度センサ
T1 supercooling releaser outlet side aqueous solution temperature T1 'predicted aqueous solution freezing temperature T3 supercooling releaser inlet side aqueous solution temperature ΔT1 T1' (T1) -TE
ΔT2 T1'-T1
ΔT3 T3 -T1
PE Refrigerant vapor pressure TE Refrigerant vapor temperature LS Aqueous solution level 10 Cooling system 12 Refrigeration circuit 14 Aqueous circuit 16 Supercooling unit 18 Supercooling release unit 20 Load cooling unit 22 Thermal storage unit 24 Supercooling heat exchanger 26 Supercooling control device 28 Compression Machine 30 Air-cooled condenser 32 Supercooling release unit 34 Ice storage tank 36 Aqueous solution piping 48 Three-way switching valve 54 Ice nucleation heat exchanger 56 Ice nucleation filter 60 Load cooler bypass pipe 62 Spray nozzle 64 Bypass pipe 66 De-icing promotion pump 68 Wire mesh 70 Adjusting valve 72 Expansion valve 74 Evaporating pressure adjusting valve 76 Receiving device 78 Ice core generator 80 Liquid level meter 82 Control circuit 84 Prediction computing unit 86 Evaporating temperature adjusting means 88 Switching means 90 Temperature difference calculating means 92 Cold water transport pump 94 Pressure sensor 96 Temperature sensor 98 Temperature sensor

Claims (16)

冷凍機による冷媒の気化潜熱により水溶液回路中の水溶液を過冷却し、水溶液回路の過冷却部より下流において、過冷却した水溶液を過冷却解除することにより、氷スラリーを生成する水溶液の過冷却制御方法であって、目標過冷却度を達成するまで、過冷却部より下流における水溶液凍結温度と、冷媒の蒸発温度との温度差が一定値ΔTとなるように、冷媒の蒸発温度を調整する水溶液の過冷却制御方法において、
冷凍機をリスタートする際、
水溶液回路中に設けた、氷スラリーを受け入れる水溶液タンク内の水溶液の液面に基づいて、水溶液濃度を算出し、算出した水溶液濃度に基づいて、水溶液の凍結温度を予測する段階と、
予測した水溶液の凍結温度と、冷媒の蒸発温度との温度差が一定値ΔTとなるように、冷媒の蒸発温度を初期設定する段階を有し、それにより、水溶液回路の過冷却部において過冷却解除が生じないように水溶液を過冷却し、
水溶液回路中の水溶液が過冷却開始した後、過冷却部より下流において水溶液の過冷却解除を達成するまで、過冷却度が目標過冷却度に近づく過程において、強制的な過冷却解除動作を行ってから過冷却解除達成の有無を判定するサイクルを繰り返す段階と、
予測した水溶液の凍結温度から、過冷却解除により生成される氷スラリーの測定温度に切り替えて、氷スラリーの測定温度と冷媒の蒸発温度との温度差が前記一定値ΔTとなるように、冷媒の蒸発温度を調整する段階とを有する、ことを特徴とする水溶液の過冷却制御方法。
Supercooling control of the aqueous solution that generates ice slurry by supercooling the aqueous solution in the aqueous solution circuit by the latent heat of vaporization of the refrigerant in the refrigerator and releasing the supercooled aqueous solution downstream from the supercooling part of the aqueous solution circuit An aqueous solution that adjusts the evaporation temperature of the refrigerant so that the temperature difference between the aqueous solution freezing temperature downstream of the supercooling section and the evaporation temperature of the refrigerant becomes a constant value ΔT until the target degree of supercooling is achieved. In the subcooling control method,
When restarting the refrigerator,
Calculating the concentration of the aqueous solution based on the level of the aqueous solution in the aqueous solution tank that receives the ice slurry provided in the aqueous solution circuit, and predicting the freezing temperature of the aqueous solution based on the calculated aqueous solution concentration;
A step of initially setting the evaporation temperature of the refrigerant so that the temperature difference between the predicted freezing temperature of the aqueous solution and the evaporation temperature of the refrigerant becomes a constant value ΔT; Supercool the aqueous solution to prevent release,
After the supercooling of the aqueous solution in the aqueous solution circuit starts, the forced supercooling release operation is performed while the supercooling degree approaches the target supercooling degree until the supercooling release of the aqueous solution is achieved downstream from the supercooling section. Repeating the cycle of determining whether or not the supercooling release has been achieved,
By switching from the predicted freezing temperature of the aqueous solution to the measurement temperature of the ice slurry generated by the release of the supercooling, the temperature difference between the measurement temperature of the ice slurry and the evaporation temperature of the refrigerant becomes the constant value ΔT. Adjusting the evaporation temperature, and a method for controlling supercooling of an aqueous solution.
前記蒸発温度初期設定段階は、水溶液回路の過冷却部において過冷却解除が生じないように、予測した水溶液の凍結温度に対して所定温度上げた温度と、冷媒の蒸発温度との温度差が一定値ΔTとなるように、設定する、請求項1に記載の水溶液の過冷却制御方法。   In the initial stage of evaporating temperature, the temperature difference between the temperature increased by a predetermined temperature relative to the predicted freezing temperature of the aqueous solution and the evaporating temperature of the refrigerant is constant so that the supercooling release of the supercooling portion of the aqueous solution circuit does not occur. The method for controlling supercooling of an aqueous solution according to claim 1, wherein the method is set so as to have a value ΔT. 水溶液の過冷却解除動作は、水溶液回路の過冷却部より下流に設けた過冷却解除器により、水溶液中に氷核を発生させることにより行い、
前記過冷却解除動作を繰り返す段階は、予測した水溶液の凍結温度と、前記過冷却解除器出口の水溶液温度との温度差が、強制的に過冷却解除をするに十分な値となってから行う、請求項2に記載の水溶液の過冷却制御方法。
The supercooling release operation of the aqueous solution is performed by generating ice nuclei in the aqueous solution by the supercooling release unit provided downstream from the supercooling part of the aqueous solution circuit,
The step of repeating the supercooling release operation is performed after the temperature difference between the predicted freezing temperature of the aqueous solution and the aqueous solution temperature at the outlet of the supercooling releaser becomes a value sufficient to forcibly release the supercooling. The method for controlling supercooling of an aqueous solution according to claim 2.
水溶液の過冷却解除の達成は、前記過冷却解除器上流の水溶液温度と、前記過冷却解除器下流の水溶液温度との温度差が所定温度となることにより判定する、請求項3に記載の水溶液の過冷却制御方法。 The aqueous solution according to claim 3, wherein the achievement of the supercooling cancellation of the aqueous solution is determined by a temperature difference between the aqueous solution temperature upstream of the supercooling releaser and the aqueous solution temperature downstream of the supercooling releaser becoming a predetermined temperature. Subcooling control method. 水溶液の目標過冷却度は、過冷却部において水溶液を過冷却するまでに過冷却解除が発生せず、水溶液の過冷却開始後、過冷却部より下流において、水溶液を強制的に過冷却解除するに十分な値に設定する、請求項1ないし請求項4のいずれか1項に記載の水溶液の過冷却制御方法。 The target supercooling degree of the aqueous solution is such that the supercooling is not canceled until the aqueous solution is supercooled in the supercooling part, and the supercooling is forcibly released downstream from the supercooling part after the supercooling of the aqueous solution starts. The method for controlling supercooling of an aqueous solution according to any one of claims 1 to 4, wherein the subcooling control method is set to a value sufficient for the above. 過冷却した水溶液の過冷却解除は、過冷却した水溶液に振動を伝えて、水溶液中に氷核を発生させる氷核発生器により行い、
氷核発生器の上流側の水溶液温度と、氷核発生器の下流側の水溶液温度との温度差が、所定値以上となるまで、氷核発生器を稼動して保持する段階を繰り返す、請求項1に記載の水溶液の過冷却制御方法。
The supercooling of the supercooled aqueous solution is canceled by an ice nucleus generator that transmits vibrations to the supercooled aqueous solution and generates ice nuclei in the aqueous solution.
Repeating the step of operating and holding the ice nucleus generator until the temperature difference between the temperature of the aqueous solution upstream of the ice nucleus generator and the temperature of the aqueous solution downstream of the ice nucleus generator exceeds a predetermined value. Item 2. A method for controlling supercooling of an aqueous solution according to Item 1.
過冷却した水溶液の過冷却解除は、過冷却した水溶液に振動を伝えて、水溶液中に氷核を発生させる氷核発生器により行い、
氷核発生器の上流側の水溶液温度と、氷核発生器の下流側の水溶液温度との温度差が、所定値以上となるまで、氷核発生器の上流側の水溶液温度が所定温度低下するたびに、氷核発生器を稼動する段階を繰り返す、請求項1に記載の水溶液の過冷却制御方法。
The supercooling of the supercooled aqueous solution is canceled by an ice nucleus generator that transmits vibrations to the supercooled aqueous solution and generates ice nuclei in the aqueous solution.
The temperature of the aqueous solution upstream of the ice nucleus generator decreases by a predetermined temperature until the temperature difference between the temperature of the aqueous solution upstream of the ice nucleus generator and the temperature of the aqueous solution downstream of the ice nucleus generator becomes a predetermined value or more. The method for controlling supercooling of an aqueous solution according to claim 1, wherein the step of operating the ice nucleus generator is repeated each time.
過冷却した水溶液の過冷却解除は、過冷却した水溶液に振動を伝えて、水溶液中に氷核を発生させる氷核発生器により行い、
氷核発生器の上流側の水溶液温度と、氷核発生器の下流側の水溶液温度との温度差が、所定値以上となるまで、設定された初期蒸発温度を下げて保持した後、氷核発生器を稼動する段階を繰り返す、請求項1に記載の水溶液の過冷却制御方法。
The supercooling of the supercooled aqueous solution is canceled by an ice nucleus generator that transmits vibrations to the supercooled aqueous solution and generates ice nuclei in the aqueous solution.
After lowering the set initial evaporation temperature until the temperature difference between the aqueous solution temperature upstream of the ice nucleus generator and the aqueous solution temperature downstream of the ice nucleus generator exceeds a predetermined value, the ice nucleus is maintained. The method of controlling supercooling of an aqueous solution according to claim 1, wherein the step of operating the generator is repeated.
圧縮機とコンデンサを備える冷凍機から供給される冷媒の気化潜熱により水溶液を過冷却する過冷却熱交換器と、水溶液の過冷却状態を解除する過冷却解除器と、水溶液を受け入れる水溶液タンクとが、この順に、水溶液配管を介して接続された水溶液回路と、
水溶液の凍結温度に応じて冷媒蒸発温度を調節する制御回路とを有する、水溶液の過冷却制御装置において、前記制御回路はさらに、
前記水溶液タンク内の水溶液の液位に基づいて、水溶液凍結温度を予測する予測演算器と、
前記過冷却解除器と前記水溶液タンクとの間の水溶液温度と、冷媒の蒸発温度との温度差が一定値ΔTとなるように、冷媒の蒸発温度を調整する蒸発温度調整手段と、
前記過冷却解除器と前記水溶液タンクとの間の水溶液温度について、予測した水溶液の凍結温度と過冷却解除により生成される氷スラリーの測定温度との間で切り替える切り替え手段と、
前記過冷却熱交換器と前記過冷却解除器との間の水溶液温度と、前記過冷却解除器と前記水溶液タンクとの間の水溶液温度との温度差を算出する温度差算出手段とを有し、
前記蒸発温度調整手段は、前記温度差算出手段によって算出される温度差が所定値となるまで、前記予測演算器により予測した水溶液の凍結温度と冷媒の蒸発温度との温度差が一定値ΔTとなるように、冷媒の蒸発温度を調整し、前記温度差算出手段によって算出される温度差が所定値となったら、前記切り替え手段によって予測した水溶液の凍結温度から過冷却解除により生成される氷スラリーの測定温度に切り替えて、過冷却解除により生成される氷スラリーの測定温度と、冷媒の蒸発温度との温度差が一定値ΔTとなるように、冷媒の蒸発温度を調整する、
ことを特徴とする水溶液の過冷却制御装置。
A supercooling heat exchanger that supercools the aqueous solution by the latent heat of vaporization of refrigerant supplied from a compressor and a refrigerator that includes a condenser, a supercooling release unit that releases the supercooling state of the aqueous solution, and an aqueous solution tank that receives the aqueous solution In this order, an aqueous solution circuit connected via an aqueous solution pipe,
And a control circuit that adjusts the refrigerant evaporation temperature according to the freezing temperature of the aqueous solution.
A predictive calculator for predicting the freezing temperature of the aqueous solution based on the liquid level of the aqueous solution in the aqueous solution tank;
Evaporating temperature adjusting means for adjusting the evaporating temperature of the refrigerant so that a temperature difference between the aqueous solution temperature between the supercooling releaser and the aqueous solution tank and the evaporating temperature of the refrigerant becomes a constant value ΔT;
A switching means for switching between the predicted freezing temperature of the aqueous solution and the measured temperature of the ice slurry generated by releasing the supercooling for the aqueous solution temperature between the supercooling releaser and the aqueous solution tank,
Temperature difference calculating means for calculating a temperature difference between the aqueous solution temperature between the supercooling heat exchanger and the supercooling releaser and the aqueous solution temperature between the supercooling releaser and the aqueous solution tank; ,
The evaporating temperature adjusting means determines that the temperature difference between the freezing temperature of the aqueous solution predicted by the predictive calculator and the evaporating temperature of the refrigerant is a constant value ΔT until the temperature difference calculated by the temperature difference calculating means reaches a predetermined value. As described above, the ice slurry generated by the supercooling release from the freezing temperature of the aqueous solution predicted by the switching unit when the evaporation temperature of the refrigerant is adjusted and the temperature difference calculated by the temperature difference calculating unit becomes a predetermined value. Switching to the measured temperature, and adjusting the evaporation temperature of the refrigerant so that the temperature difference between the measured temperature of the ice slurry generated by the supercooling release and the evaporation temperature of the refrigerant becomes a constant value ΔT.
A supercooling control device for an aqueous solution.
前記過冷却解除器は、過冷却した水溶液に振動を伝えて、水溶液中に氷核を発生させる氷核発生器であり、
前記過冷却熱交換器と前記氷核発生器との間水溶液温度と、前記氷核発生器と前記水溶液タンクとの間の水溶液温度との温度差が、所定値以上となるまで、氷核発生器を稼動して保持する段階を繰り返す、請求項9に記載の水溶液の過冷却制御装置。
The supercooling release device is an ice nucleus generator that transmits vibrations to the supercooled aqueous solution to generate ice nuclei in the aqueous solution.
Generation of ice nuclei until the temperature difference between the aqueous solution temperature between the supercooling heat exchanger and the ice nucleus generator and the aqueous solution temperature between the ice nucleus generator and the aqueous solution tank reaches a predetermined value or more. The supercooling control device for an aqueous solution according to claim 9, wherein the step of operating and holding the vessel is repeated.
前記過冷却解除器は、過冷却した水溶液に振動を伝えて、水溶液中に氷核を発生させる氷核発生器であり、
前記過冷却熱交換器と前記氷核発生器との間水溶液温度と、前記氷核発生器と前記水溶液タンクとの間の水溶液温度との温度差が、所定値以上となるまで、前記氷核発生器の上流側の水溶液温度が所定温度低下するたびに、前記氷核発生器を稼動する段階を繰り返す、請求項9に記載の水溶液の過冷却制御装置。
The supercooling release device is an ice nucleus generator that transmits vibrations to the supercooled aqueous solution to generate ice nuclei in the aqueous solution.
Until the temperature difference between the aqueous solution temperature between the supercooling heat exchanger and the ice nucleus generator and the aqueous solution temperature between the ice nucleus generator and the aqueous solution tank reaches a predetermined value or more, the ice nucleus The supercooling control device for an aqueous solution according to claim 9, wherein the step of operating the ice nucleus generator is repeated each time the temperature of the aqueous solution upstream of the generator decreases by a predetermined temperature.
前記過冷却解除器は、過冷却した水溶液に振動を伝えて、水溶液中に氷核を発生させる氷核発生器であり、
前記過冷却熱交換器と前記氷核発生器との間水溶液温度と、前記氷核発生器と前記水溶液タンクとの間の水溶液温度との温度差が、所定値以上となるまで、設定された初期蒸発温度を下げて保持した後、前記氷核発生器を稼動する段階を繰り返す、請求項9に記載の水溶液の過冷却制御装置。
The supercooling release device is an ice nucleus generator that transmits vibrations to the supercooled aqueous solution to generate ice nuclei in the aqueous solution.
The temperature difference between the aqueous solution temperature between the supercooling heat exchanger and the ice nucleus generator and the aqueous solution temperature between the ice nucleus generator and the aqueous solution tank was set until a predetermined value or more was reached. The supercooling control device for an aqueous solution according to claim 9, wherein the step of operating the ice nucleus generator is repeated after lowering and maintaining the initial evaporation temperature.
請求項9ないし請求項12のいずれか1項に記載の水溶液の過冷却制御装置を有する冷却装置であって、
前記過冷却解除器により過冷却解除されることにより生成された氷スラリーを負荷冷却側に送る氷スラリー送り管と、負荷冷却側から水溶液を前記水溶液タンクに戻す水溶液戻し管とを有することを特徴とする冷却装置。
A cooling device comprising the supercooling control device for an aqueous solution according to any one of claims 9 to 12,
An ice slurry feed pipe that sends ice slurry generated by being overcooled by the supercool release unit to a load cooling side, and an aqueous solution return pipe that returns the aqueous solution from the load cooling side to the aqueous solution tank. And cooling device.
請求項9ないし請求項12のいずれか1項に記載の過冷却制御装置を有する冷却システムであって、
前記水溶液タンクは、前記過冷却解除器により生成された氷スラリーを受け入れて、内部に蓄氷する氷蓄熱槽であり、
前記過冷却解除器と前記氷蓄熱槽との間に、負荷冷却器が設置され、
前記過冷却解除器と前記負荷冷却器との間に三方切り替え弁と、前記三方切り替え弁と前記蓄熱槽とを接続する負荷冷却器バイパス管とが設けられ、
前記三方切り替え弁の切り替えにより、前記過冷却解除器により過冷却解除されることにより生成された氷スラリーにより前記負荷冷却器を冷却するか、前記負荷冷却器バイパス管を介して、前記過冷却解除器により過冷却解除されることにより生成された氷スラリーにより前記蓄熱槽内に氷を氷蓄するかを選択可能とした、ことを特徴とする冷却システム。
A cooling system comprising the supercooling control device according to any one of claims 9 to 12,
The aqueous solution tank is an ice heat storage tank that receives the ice slurry generated by the supercool releaser and stores ice therein,
A load cooler is installed between the supercooling releaser and the ice heat storage tank,
A three-way switching valve between the supercooling releaser and the load cooler, and a load cooler bypass pipe connecting the three-way switching valve and the heat storage tank are provided,
By switching the three-way switching valve, the load cooler is cooled by ice slurry generated by the supercooling release by the supercooling releaser, or the supercooling release is performed via the load cooler bypass pipe A cooling system characterized in that it is possible to select whether to store ice in the heat storage tank by means of ice slurry generated by releasing supercooling by a vessel.
過冷却解除後の氷スラリーの温度と過冷却熱交換器における冷媒蒸発温度との温度差を、前記過冷却熱交換器における冷媒の蒸発圧力を制御して一定の値に保つようにしたことを特徴とする請求項14に記載の冷却システム。   The temperature difference between the temperature of the ice slurry after the release of supercooling and the refrigerant evaporation temperature in the supercooling heat exchanger is controlled to maintain a constant value by controlling the evaporation pressure of the refrigerant in the supercooling heat exchanger. 15. A cooling system according to claim 14 characterized in that: 前記過冷却熱交換器の冷媒出口と圧縮機の吸入口との間の冷媒復管の途中に、前記制御回路からの制御信号に基づいて開度が調節される制御弁を設け、この制御弁の開度調節により冷媒の蒸発温度が調節されるようにした請求項15に記載の冷却システム。   A control valve whose opening degree is adjusted based on a control signal from the control circuit is provided in the middle of the refrigerant return pipe between the refrigerant outlet of the supercooling heat exchanger and the suction port of the compressor. The cooling system according to claim 15, wherein the evaporating temperature of the refrigerant is adjusted by adjusting the opening degree.
JP2015082109A 2015-04-13 2015-04-13 Aqueous solution supercooling control method, aqueous solution supercooling control device, cooling device, and cooling system Active JP6094905B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015082109A JP6094905B2 (en) 2015-04-13 2015-04-13 Aqueous solution supercooling control method, aqueous solution supercooling control device, cooling device, and cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015082109A JP6094905B2 (en) 2015-04-13 2015-04-13 Aqueous solution supercooling control method, aqueous solution supercooling control device, cooling device, and cooling system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017022096A Division JP6337412B2 (en) 2017-02-09 2017-02-09 Aqueous solution supercooling control method, aqueous solution supercooling control device, cooling device, and cooling system

Publications (2)

Publication Number Publication Date
JP2016200364A true JP2016200364A (en) 2016-12-01
JP6094905B2 JP6094905B2 (en) 2017-03-15

Family

ID=57424045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015082109A Active JP6094905B2 (en) 2015-04-13 2015-04-13 Aqueous solution supercooling control method, aqueous solution supercooling control device, cooling device, and cooling system

Country Status (1)

Country Link
JP (1) JP6094905B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110173779A (en) * 2019-05-29 2019-08-27 中国科学院广州能源研究所 A kind of big temperature difference cold supply system of combined type and its control method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04263724A (en) * 1991-02-13 1992-09-18 Mitsubishi Electric Corp Ice heat accumulator
JP2005300043A (en) * 2004-04-13 2005-10-27 Kansai Electric Power Co Inc:The Ice thermal storage system
JP4623995B2 (en) * 2004-04-13 2011-02-02 関西電力株式会社 Ice making method and ice making apparatus by supercooling brine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04263724A (en) * 1991-02-13 1992-09-18 Mitsubishi Electric Corp Ice heat accumulator
JP2005300043A (en) * 2004-04-13 2005-10-27 Kansai Electric Power Co Inc:The Ice thermal storage system
JP4623995B2 (en) * 2004-04-13 2011-02-02 関西電力株式会社 Ice making method and ice making apparatus by supercooling brine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110173779A (en) * 2019-05-29 2019-08-27 中国科学院广州能源研究所 A kind of big temperature difference cold supply system of combined type and its control method

Also Published As

Publication number Publication date
JP6094905B2 (en) 2017-03-15

Similar Documents

Publication Publication Date Title
EP2766668B1 (en) Thermal energy storage in a chiller system
JP6337412B2 (en) Aqueous solution supercooling control method, aqueous solution supercooling control device, cooling device, and cooling system
JP2018021745A (en) Quick freezing method and quick freezing equipment
JP2006234238A (en) Refrigerating device and its control method
JP6094905B2 (en) Aqueous solution supercooling control method, aqueous solution supercooling control device, cooling device, and cooling system
WO2021070806A1 (en) Hydrogen cooling device, hydrogen supply system, and refrigerator
JP2006010181A (en) Deicing operation method of automatic ice making machine
JP4623995B2 (en) Ice making method and ice making apparatus by supercooling brine
JP5881379B2 (en) Fishing boat refrigeration equipment
JP4514804B2 (en) Ice making and air conditioning system using supercooled water
JP2009168445A (en) Ice thermal storage method
JP4381039B2 (en) Ice heat storage device and ice heat storage method
WO2013099200A1 (en) Refrigeration device and method for detecting filling of wrong refrigerant
CN111602015B (en) Ice making system and method for controlling evaporating temperature of same
JP2009222379A (en) Automatic ice maker
JP4399309B2 (en) Ice heat storage device
KR20200130841A (en) Vapor compression device
RU2776886C2 (en) Steam compression device
JP2016118385A (en) Refrigeration shipping boat
JP2984465B2 (en) Ice storage device
JP4507274B2 (en) Ice storage type cold water system
JP4453467B2 (en) Ice storage type cold water apparatus and operation control method thereof
JP2006112652A (en) Ice making method and device for heat storage
JP2021173449A (en) Heat storage system
JP4548481B2 (en) Container refrigeration equipment

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170202

R150 Certificate of patent or registration of utility model

Ref document number: 6094905

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250