JP2009222379A - Automatic ice maker - Google Patents

Automatic ice maker Download PDF

Info

Publication number
JP2009222379A
JP2009222379A JP2009028888A JP2009028888A JP2009222379A JP 2009222379 A JP2009222379 A JP 2009222379A JP 2009028888 A JP2009028888 A JP 2009028888A JP 2009028888 A JP2009028888 A JP 2009028888A JP 2009222379 A JP2009222379 A JP 2009222379A
Authority
JP
Japan
Prior art keywords
ice making
ice
refrigerant
water
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009028888A
Other languages
Japanese (ja)
Other versions
JP5448482B2 (en
Inventor
Masashi Inada
雅司 稲田
Terumichi Hara
輝道 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP2009028888A priority Critical patent/JP5448482B2/en
Publication of JP2009222379A publication Critical patent/JP2009222379A/en
Application granted granted Critical
Publication of JP5448482B2 publication Critical patent/JP5448482B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To effectively use energy by utilizing cold of a liquid refrigerant which becomes excess in a later phase of ice making process. <P>SOLUTION: In a refrigerating device 12, a bypass tube 52 diverging from a discharging pipe 30 between a drier 34 and a heat exchanging part 46 is connected to a return tube 38 between the heat exchanging part 46 and a compressor 28. The bypass tube 52 is arranged with a heat exchanging pipe 54 arranged in a water supply tank 24 and an adjustment valve 56. An ice-making part 10 is arranged with a temperature sensor 50, and when the temperature sensor 50 detects set temperature, a control means operates the adjustment valve 56. When the adjustment valve 56 is operated, a part of the liquid refrigerant which has passed the drier 34 diverges to the bypass tube 52 and heat-exchanges with ice-making water in the heat exchanging pipe 54 to cool the ice-making water. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、蒸発器に冷媒を循環供給することで冷却される製氷部に、製氷水を供給して氷塊を製造する自動製氷機に関するものである。   The present invention relates to an automatic ice making machine that supplies ice making water to an ice making section that is cooled by circulatingly supplying a refrigerant to an evaporator to produce ice blocks.

下向きに開口させた多数の製氷小室内で製氷水の氷結を行なって、多数の氷塊(例えば角氷)を連続的に製造する噴射式の自動製氷機(例えば、特許文献1参照)が、喫茶店やレストラン、その他の厨房施設で好適に使用されている。この自動製氷機は、下方に開口する多数の製氷小室が画成された製氷部の上面に、冷凍装置を構成する蒸発器が密着的に蛇行配置され、製氷工程に際しては蒸発器で冷媒を気化させることで製氷部を冷却し、除氷工程に際しては蒸発器にホットガスを供給することで製氷部を加熱するよう構成されている。   A jet automatic ice making machine (see, for example, Patent Document 1) that freezes ice-making water in a number of ice-making chambers opened downward and continuously produces a large number of ice blocks (for example, ice cubes) is disclosed in a coffee shop. It is preferably used in restaurants, other kitchen facilities. In this automatic ice maker, the evaporator that constitutes the refrigeration system is closely and meanderingly arranged on the upper surface of the ice making section where a number of ice making chambers that open downward are defined, and the evaporator vaporizes the refrigerant during the ice making process. Thus, the ice making unit is cooled, and the ice making unit is heated by supplying hot gas to the evaporator during the deicing process.

前記自動製氷機では、製氷工程において前記製氷部の下方に配設された製氷水タンクに貯留されている製氷水を、各製氷小室に噴射供給すると共に、製氷小室で氷結しない未氷結水を製氷水タンクに回収して再び各製氷小室に噴射供給する循環が繰り返される。そして、前記製氷小室に所定の氷塊が生成したことを製氷完了検知手段が検知すると、製氷小室への製氷水の噴射供給を停止すると共に、前記冷凍装置の弁切換えにより蒸発器にホットガスを循環供給する除氷工程に移行する。除氷工程では、ホットガスにより製氷部が加熱されて温度が上昇し、前記氷塊における製氷小室の内壁面との氷結部が融解されると、該氷塊は自重で落下して貯氷室に貯留される。そして、製氷部からの氷塊の離脱を除氷完了検知手段が検知することで、除氷工程から製氷工程に移行し、再び製氷が開始されるようになっている。   In the automatic ice making machine, ice making water stored in an ice making water tank disposed below the ice making unit in the ice making process is supplied to each ice making chamber, and uniced water that does not freeze in the ice making chamber is made into ice. The circulation in which the water is collected in the water tank and sprayed to each ice making chamber is repeated. When the ice making completion detecting means detects that a predetermined ice block has been generated in the ice making chamber, the ice making water injection supply to the ice making chamber is stopped, and hot gas is circulated to the evaporator by switching the valve of the refrigeration apparatus. Shift to the deicing process to be supplied. In the deicing process, when the ice making part is heated by hot gas and the temperature rises, and the icing part with the inner wall surface of the ice making chamber in the ice block is melted, the ice block falls by its own weight and is stored in the ice storage chamber. The Then, when the deicing completion detecting means detects the detachment of the ice block from the ice making unit, the ice making process is shifted to the ice making process, and ice making is started again.

前述した製氷工程において、製氷小室内で製氷水が氷結する単位時間当たりの製氷量は、初期と比べ後期になるほど低下していく。これに対し、冷凍装置を構成する圧縮機の出力は常に一定であり、製氷工程においては蒸発器に供給される冷媒量も一定となっている。すなわち、製氷工程で氷が成長するにつれて製氷のために必要となる熱量が徐々に減少するのにも関わらず、蒸発器に供給される冷媒量は一定であるため、製氷工程の後期には気化することなく蒸発器を流出する液化冷媒が発生する。   In the ice making process described above, the amount of ice making per unit time in which ice making water freezes in the ice making chamber decreases as it becomes late compared to the initial stage. On the other hand, the output of the compressor constituting the refrigeration apparatus is always constant, and the amount of refrigerant supplied to the evaporator is also constant in the ice making process. In other words, the amount of heat supplied to the evaporator gradually decreases as the ice grows in the ice making process. The liquefied refrigerant that flows out of the evaporator without being generated is generated.

前記液化冷媒が圧縮機に吸入されると故障の原因となるため、前記自動製氷機の冷凍装置では、蒸発器と圧縮機との間に、蒸発器で蒸発した気化冷媒と未蒸発の液化冷媒とを分離するアキュームレータを設け、気化冷媒を圧縮機に吸入させると共に液化冷媒をアキュームレータ内に貯留することで、圧縮機に液化冷媒が吸入されるのを防止している。なお、アキュームレータ内に貯留された液化冷媒は、除氷工程において蒸発器からアキュームレータに流入するホットガスによって加温されて蒸発し、気化冷媒として圧縮機に吸入されるようになっている。   When the liquefied refrigerant is sucked into the compressor, it causes a failure. Therefore, in the refrigeration apparatus of the automatic ice maker, between the evaporator and the compressor, the vaporized refrigerant evaporated by the evaporator and the non-evaporated liquefied refrigerant An accumulator for separating the liquefied refrigerant is provided, and the refrigerant is sucked into the compressor and the liquefied refrigerant is stored in the accumulator to prevent the liquefied refrigerant from being sucked into the compressor. The liquefied refrigerant stored in the accumulator is heated and evaporated by hot gas flowing into the accumulator from the evaporator in the deicing process, and is sucked into the compressor as a vaporized refrigerant.

特開2005−164100号公報JP-A-2005-164100

前記冷凍装置では、圧縮機から吐出された冷媒を、蒸発器の冷却に供するために凝縮器によって凝縮して液化しているが、アキュームレータに貯留される液化冷媒は、蒸発器において製氷部(製氷水)と熱交換しておらず、このように蒸発器において何の仕事(熱交換)もすることなくアキュームレータに流入した液化冷媒を、ホットガスを用いて再度気体に戻すことは、エネルギーの無駄であった。   In the refrigeration apparatus, the refrigerant discharged from the compressor is condensed and liquefied by the condenser to be used for cooling the evaporator, but the liquefied refrigerant stored in the accumulator is the ice making unit (ice making unit) in the evaporator. It is a waste of energy to return the liquefied refrigerant that has flowed into the accumulator without any work (heat exchange) in this way to the gas using hot gas. Met.

ここで、製氷工程に際して氷が成長するときの氷表面から製氷小室を被覆する保護膜までの熱の移動速度は、氷の熱伝導率に依存する。氷の熱伝導率が2.2W/(m・K)であるのに対し、製氷部の形成材料である銅の熱伝導率は403W/(m・K)、保護膜の形成材料である錫の熱伝導率は68W/(m・K)であり、氷の熱伝導率は製氷部や保護膜に比べ、1桁以上低い値である。このため、製氷工程に際しては、製氷小室に供給される製氷水から製氷小室内に形成された氷へ移動する熱量に比べ、氷から保護膜や製氷部へ移動する熱量が多く、その差分は製氷された氷自身の冷却に使用される。従って、製氷完了に近づく程、保護膜に近い氷が過冷却される傾向にある。また、蒸発器で気化しない液化冷媒が発生する状況、すなわち蒸発器に供給される液化冷媒が過剰となる状況においては、前記の過冷却がより進行するおそれがある。そして、過度に冷却された氷ほど離脱させるのに多くの熱量が必要となることから、除氷工程に掛かる時間が長くなる問題を招く。   Here, the rate of heat transfer from the ice surface to the protective film covering the ice making chamber when ice grows during the ice making process depends on the thermal conductivity of the ice. While the thermal conductivity of ice is 2.2 W / (m · K), the thermal conductivity of copper, which is the material for forming the ice making part, is 403 W / (m · K), which is the material for forming the protective film, tin. The thermal conductivity of the ice is 68 W / (m · K), and the thermal conductivity of ice is one digit or more lower than that of the ice making part or the protective film. For this reason, in the ice making process, the amount of heat transferred from the ice making water supplied to the ice making chamber to the ice formed in the ice making chamber is larger than the amount of heat moving from the ice to the protective film and the ice making section, and the difference is the difference in ice making. Used to cool the frozen ice itself. Therefore, as the ice making is completed, the ice near the protective film tends to be supercooled. Further, in the situation where liquefied refrigerant that does not vaporize in the evaporator is generated, that is, in the situation where the liquefied refrigerant supplied to the evaporator becomes excessive, the above-described supercooling may further progress. In addition, excessively cooled ice requires a large amount of heat to be detached, which causes a problem that the time required for the deicing process becomes long.

すなわちこの発明は、従来の技術に係る自動製氷機に内在している前記課題に鑑み、これを好適に解決するべく提案されたものであって、製氷の進行状態に応じて過剰となる分の冷媒が有する冷熱の有効利用を図ると共に、氷の過冷却を抑制し得る自動製氷機を提供することを目的とする。   That is, the present invention has been proposed to solve this problem in view of the above-described problems inherent in the automatic ice making machine according to the prior art, and is excessive in accordance with the progress of ice making. An object of the present invention is to provide an automatic ice making machine capable of effectively utilizing the cold heat of the refrigerant and suppressing the overcooling of ice.

前記課題を解決し、所期の目的を好適に達成するため、請求項1の発明に係る自動製氷機は、
製氷工程に際して製氷水が供給される製氷部と、前記製氷部を冷却する冷凍装置とを備え、該冷凍装置は、圧縮機と、圧縮機から吐出された気化冷媒を凝縮する凝縮器と、前記製氷部に配設され、前記凝縮器で液化された液化冷媒を蒸発させる蒸発器とを有し、該蒸発器から冷媒が圧縮機に戻るよう構成された自動製氷機において、
前記製氷部での製氷の進行状態を検出する状態検出手段と、
前記凝縮器および蒸発器を接続する吐出側の冷媒経路から分岐して蒸発器および圧縮機を接続する吸入側の冷媒経路に接続され、冷媒が流通可能なバイパス経路と、
前記状態検出手段の検出状態に応じて作動し、前記吐出側の冷媒経路からバイパス経路へ流入する液化冷媒の量を調節する調節手段と、
前記バイパス経路中に設けられて液化冷媒が流入し、流入した液化冷媒を蒸発させて被熱交換体との間で熱交換する熱交換手段とを備えることを特徴とする。
請求項1の発明によれば、吐出側の冷媒経路からバイパス経路へ流入する液化冷媒の量を調節手段によって調節するよう構成することで、製氷の進行状態によって過剰となる分の液化冷媒を熱交換手段に流入させて、該熱交換手段で被熱交換体と熱交換することができ、エネルギーの無駄を低減し得る。また、製氷工程における製氷の進行状態に応じて蒸発器に供給する冷媒量を調節することで、蒸発器に過剰な量の液化冷媒が供給されることに起因する氷の過度の冷却を抑制でき、除氷工程を短縮して製氷能力を向上し得る。
In order to solve the above-mentioned problem and to achieve the intended purpose suitably, an automatic ice maker according to the invention of claim 1
An ice making unit to which ice making water is supplied in the ice making process, and a refrigeration device for cooling the ice making unit, the refrigeration device includes a compressor, a condenser for condensing vaporized refrigerant discharged from the compressor, and An automatic ice maker arranged in an ice making unit and having an evaporator for evaporating the liquefied refrigerant liquefied by the condenser, wherein the refrigerant returns from the evaporator to the compressor;
State detection means for detecting the progress of ice making in the ice making unit;
A bypass path that branches from the refrigerant path on the discharge side connecting the condenser and the evaporator and is connected to the refrigerant path on the suction side that connects the evaporator and the compressor, and through which the refrigerant can flow;
Adjusting means that operates according to the detection state of the state detection means and adjusts the amount of liquefied refrigerant flowing from the refrigerant path on the discharge side into the bypass path;
It is provided with the heat exchange means which is provided in the said bypass path | route, and a liquefied refrigerant flows in, evaporates the liquefied refrigerant which flowed in, and heat-exchanges between heat exchangers.
According to the first aspect of the present invention, the amount of liquefied refrigerant flowing from the discharge-side refrigerant path into the bypass path is adjusted by the adjusting means, so that the liquefied refrigerant in excess due to the progress of ice making is heated. By flowing into the exchange means, the heat exchange means can exchange heat with the heat exchanger, and waste of energy can be reduced. In addition, by adjusting the amount of refrigerant supplied to the evaporator according to the progress of ice making in the ice making process, it is possible to suppress excessive cooling of ice due to an excessive amount of liquefied refrigerant being supplied to the evaporator. This can shorten the deicing process and improve the ice making capacity.

請求項2に係る発明では、製氷工程に際して前記製氷部に供給する製氷水が貯留される製氷水タンクと、該製氷水タンクに供給する製氷水が貯留される給水タンクを備え、
前記熱交換手段は、前記給水タンクに貯留されている製氷水に浸漬されて、該給水タンク内の製氷水との間で熱交換するよう構成されることを要旨とする。
請求項2の発明によれば、製氷の進行状態によって過剰となる分の液化冷媒と給水タンクに貯留される製氷水とを熱交換して、次回製氷用の製氷水を冷却することができる。すなわち、製氷水タンクには冷えた製氷水が供給されるから、製氷工程において製氷部に供給される製氷水を短時間で氷結温度(0℃)まで冷却でき、製氷工程を短縮して製氷能力を向上することができる。
The invention according to claim 2 includes an ice making water tank in which ice making water supplied to the ice making unit is stored in the ice making process, and a water supply tank in which ice making water supplied to the ice making water tank is stored,
The gist of the invention is that the heat exchanging means is configured to be immersed in ice making water stored in the water supply tank and to exchange heat with the ice making water in the water supply tank.
According to the second aspect of the present invention, it is possible to cool the ice making water for the next ice making by exchanging heat between the liquefied refrigerant in excess due to the progress of ice making and the ice making water stored in the water supply tank. In other words, since ice making water is supplied to the ice making water tank, the ice making water supplied to the ice making unit in the ice making process can be cooled to the freezing temperature (0 ° C) in a short time, and the ice making process can be shortened to produce ice making capacity. Can be improved.

請求項3に係る発明では、前記状態検出手段は、前記製氷部の温度を検出する温度センサであり、製氷工程に際して製氷部で製氷のために必要となる熱量に対して前記蒸発器に供給される液化冷媒の量が過剰となる設定温度を前記温度センサが検出したときに前記調節手段が作動して、前記吐出側の冷媒経路からバイパス経路へ液化冷媒が流入するよう構成されることを要旨とする。
請求項3の発明によれば、状態検出手段として製氷部の温度を検出する温度センサを用いることで、該温度センサを製氷完了および除氷完了の検出手段として兼用することができ、部品点数を低減し得る。
In the invention according to claim 3, the state detection means is a temperature sensor that detects the temperature of the ice making unit, and is supplied to the evaporator with respect to the amount of heat required for ice making in the ice making unit during the ice making process. The adjustment means operates when the temperature sensor detects a set temperature at which the amount of the liquefied refrigerant to be excessive is detected, and the liquefied refrigerant flows from the refrigerant path on the discharge side into the bypass path. And
According to the invention of claim 3, by using a temperature sensor for detecting the temperature of the ice making part as the state detecting means, the temperature sensor can be used as detecting means for completion of ice making and deicing, and the number of parts can be reduced. It can be reduced.

請求項4に係る発明では、前記温度センサが前記設定温度を検出した以後は、該温度センサの検出温度の変化に対応して、前記吐出側の冷媒経路からバイパス経路へ流入する液化冷媒の量を変化するように前記調節手段が作動されることを要旨とする。
請求項4の発明によれば、温度センサの検出温度の変化に対応して吐出側の冷媒経路からバイパス経路へ流入する液化冷媒の量を変化させることで、製氷部での製氷と熱交換手段での熱交換との両方を効率的に行なうことができる。
In the invention according to claim 4, after the temperature sensor detects the set temperature, the amount of liquefied refrigerant flowing into the bypass path from the refrigerant path on the discharge side in response to a change in temperature detected by the temperature sensor. The gist of the invention is that the adjusting means is operated so as to change.
According to the invention of claim 4, ice making and heat exchanging means in the ice making section are made by changing the amount of liquefied refrigerant flowing from the refrigerant path on the discharge side to the bypass path in response to a change in temperature detected by the temperature sensor. It is possible to efficiently perform both the heat exchange and the heat exchange.

本発明に係る自動製氷機によれば、製氷の進行状態に応じて過剰となる分の液化冷媒が有する冷熱を、被熱交換体の冷却に利用することができ、エネルギーの無駄を抑制し得る。また、製氷工程における製氷の進行状態に応じて蒸発器に供給する冷媒量を調節することができるから、製氷部に形成される氷の過度の冷却を抑制し、除氷工程を短縮して製氷能力を向上し得る。   According to the automatic ice making machine of the present invention, the cold heat of the liquefied refrigerant that becomes excessive according to the progress of ice making can be used for cooling the heat exchanger, and waste of energy can be suppressed. . In addition, since the amount of refrigerant supplied to the evaporator can be adjusted according to the progress of ice making in the ice making process, excessive cooling of the ice formed in the ice making part is suppressed, and the ice removing process is shortened to make ice making. Improve ability.

実施例に係る自動製氷機の概略構成図である。It is a schematic block diagram of the automatic ice making machine which concerns on an Example. 実施例に係る自動製氷機の主要な制御ブロック図である。It is a main control block diagram of the automatic ice making machine according to the embodiment. 製氷工程の開始から完了までの冷媒配管、製氷部および製氷水の各温度と、各時点における製氷割合を示すグラフ図である。It is a graph which shows each temperature of refrigerant | coolant piping from the start to completion of an ice making process, an ice making part, and ice making water, and the ice making ratio in each time.

次に、本発明に係る自動製氷機につき、好適な実施例を挙げて、添付図面を参照して以下に説明する。   Next, a preferred embodiment of the automatic ice making machine according to the present invention will be described below with reference to the accompanying drawings.

図1は、本発明の実施例に係る自動製氷機を示す概略構成図であり、該自動製氷機は、図示しない筐体の内部に画成された貯氷室(図示せず)の内部上方に、下方に開口した多数の製氷小室10aを画成した製氷部10が配設されている。また製氷部10の上面には、冷凍装置12を構成する蒸発器14が、各製氷小室10aの上部に位置するよう密着的に蛇行配置され、製氷工程に際して蒸発器14に供給される冷媒を気化させて各製氷小室10aの強制冷却を行なうよう構成される。   FIG. 1 is a schematic configuration diagram showing an automatic ice making machine according to an embodiment of the present invention. The automatic ice making machine is located above an ice storage chamber (not shown) defined in a housing (not shown). An ice making section 10 is provided which defines a large number of ice making chambers 10a opened downward. Further, on the upper surface of the ice making unit 10, an evaporator 14 constituting the refrigeration apparatus 12 is arranged in a meandering manner so as to be positioned above each ice making chamber 10a, and vaporizes the refrigerant supplied to the evaporator 14 during the ice making process. Thus, each ice making chamber 10a is configured to be forcibly cooled.

前記製氷部10の下方には、所定間隔離間して所定量の製氷水が貯留される製氷水タンク16が配設される。この製氷水タンク16の上方に、前記製氷部10の各製氷小室10aに対応する位置にノズル18aを夫々突設した噴射部材18が配置される。また製氷水タンク16には、製氷工程に際して製氷水を循環させるための循環ポンプ20が、吸入パイプ20aを介して接続されると共に、この循環ポンプ20に接続する吐出パイプ20bが、前記噴射部材18に接続されている。そして製氷工程に際しては、循環ポンプ20によって噴射部材18に供給された製氷水を、各ノズル18aから対応する製氷小室10a内に噴射供給して、各製氷小室10a内に氷塊を形成するようになっている。なお、噴射部材18には、上下に開放する戻し孔(図示せず)が多数形成されており、前記製氷部10で氷結することなく噴射部材18の上面に落下した未氷結水を、戻し孔を介して前記製氷水タンク16に回収するようにしてある。   Below the ice making unit 10 is disposed an ice making water tank 16 in which a predetermined amount of ice making water is stored at a predetermined interval. Above the ice making water tank 16, an injection member 18 having nozzles 18a projecting at positions corresponding to the ice making chambers 10a of the ice making unit 10 is disposed. The ice making water tank 16 is connected with a circulation pump 20 for circulating the ice making water in the ice making process via a suction pipe 20a, and a discharge pipe 20b connected to the circulation pump 20 is connected to the injection member 18. It is connected to the. In the ice making process, ice making water supplied to the spray member 18 by the circulation pump 20 is jetted and supplied from the nozzles 18a into the corresponding ice making chambers 10a to form ice blocks in the ice making chambers 10a. ing. The injection member 18 is formed with a large number of return holes (not shown) that open up and down, and the freezing water that has fallen on the upper surface of the injection member 18 without icing in the ice making unit 10 is returned to the return hole. It is made to collect | recover in the said ice making water tank 16 via.

前記製氷部10と噴射部材18との間には、除氷工程により製氷部10から離脱した氷塊を貯氷室に案内する氷案内板(図示せず)が傾斜配置されている。この氷案内板には、前記噴射部材18の各ノズル18aから噴射供給される製氷水の通過を許容する開口部が開設されており、該開口部を介して製氷水が製氷小室10aに供給されると共に、該製氷小室10aで氷結することなく落下した未氷結水は、該開口部を通過した後に前記戻し孔を介して製氷水タンク16に回収されるようになっている。   An ice guide plate (not shown) is disposed between the ice making unit 10 and the injection member 18 to guide the ice blocks separated from the ice making unit 10 through the deicing process to the ice storage chamber. The ice guide plate has an opening that allows ice-making water sprayed and supplied from each nozzle 18a of the spray member 18 to be supplied to the ice making chamber 10a through the opening. In addition, unfrozen water that has fallen without freezing in the ice making chamber 10a passes through the opening and is collected in the ice making water tank 16 through the return hole.

前記自動製氷機は、図1に示す如く、外部水道系(外部水源)に接続する給水管22が接続する給水タンク24を備え、給水管22に配設した給水弁WVを開放することで、外部水道系からの水道水が給水タンク24に供給されるよう構成してある。また、給水タンク24に給水ポンプ26の吸入パイプ26aが接続されると共に、該給水ポンプ26の吐出パイプ26bは製氷水タンク16の上方で開口している。そして、給水タンク24に貯留されている水道水(次回製氷用の製氷水)は、除氷工程に際して給水ポンプ26によって製氷水タンク16に供給されて、次回の製氷工程における製氷水として用いられるよう構成される。なお、以後の説明において、給水タンク24に供給される水道水についても、製氷水と称するものとする。   As shown in FIG. 1, the automatic ice making machine includes a water supply tank 24 connected to a water supply pipe 22 connected to an external water system (external water source), and opens a water supply valve WV disposed in the water supply pipe 22. The tap water from the external water system is configured to be supplied to the water supply tank 24. In addition, a suction pipe 26 a of a water supply pump 26 is connected to the water supply tank 24, and a discharge pipe 26 b of the water supply pump 26 is opened above the ice making water tank 16. Then, the tap water stored in the water supply tank 24 (the ice making water for the next ice making) is supplied to the ice making water tank 16 by the water supply pump 26 in the deicing process so as to be used as the ice making water in the next ice making process. Composed. In the following description, tap water supplied to the water supply tank 24 is also referred to as ice making water.

前記給水タンク24内には、下限フロートスイッチFSLおよび上限フロートスイッチFSH(図2参照)が配設される。前記給水ポンプ26によって製氷水が製氷水タンク16に供給される際に、下限フロートスイッチFSLは、給水タンク24内における製氷水の水位が下限水位まで低下したことを検知するよう設定される。また給水弁WVの開放により給水タンク24に水道水が供給される際に、上限フロートスイッチFSHは、給水タンク24内における製氷水の水位が上限水位まで上昇したことを検知するよう設定される。そして、前記給水弁WVは、下限フロートスイッチFSLが下限水位を検知したときに開放すると共に、上限フロートスイッチFSHが上限水位を検知したときに閉成するよう、制御手段48(図2参照)によって開閉制御される。また給水ポンプ26は、製氷工程から除氷工程に移行した際に作動して、下限フロートスイッチFSLが下限水位を検知したときに停止するよう制御手段48で制御される。なお、給水ポンプ26が作動して給水タンク24内における製氷水の水位が上限水位から下限水位に低下したときまでの間に製氷水タンク16に供給された製氷水の量が、1回の製氷工程に必要充分な量となるように、給水タンク24の内容積や吸入パイプ26aおよび吐出パイプ26bの管路経の長さ等が設定されている。   A lower limit float switch FSL and an upper limit float switch FSH (see FIG. 2) are disposed in the water supply tank 24. When ice making water is supplied to the ice making water tank 16 by the water supply pump 26, the lower limit float switch FSL is set to detect that the water level of the ice making water in the water supply tank 24 has dropped to the lower limit water level. Further, when tap water is supplied to the water supply tank 24 by opening the water supply valve WV, the upper limit float switch FSH is set to detect that the water level of the ice making water in the water supply tank 24 has risen to the upper limit water level. Then, the water supply valve WV is opened by the control means 48 (see FIG. 2) so that it opens when the lower limit float switch FSL detects the lower limit water level and closes when the upper limit float switch FSH detects the upper limit water level. Open / close controlled. The water supply pump 26 is controlled by the control means 48 so that it operates when the ice making process is shifted to the deicing process and stops when the lower limit float switch FSL detects the lower limit water level. It should be noted that the amount of ice making water supplied to the ice making water tank 16 until the time when the water supply pump 26 is activated and the ice making water level in the water supplying tank 24 drops from the upper limit water level to the lower limit water level is one ice making. The internal volume of the water supply tank 24, the lengths of the conduits of the suction pipe 26a and the discharge pipe 26b, and the like are set so as to be an amount necessary and sufficient for the process.

図1に示す如く、前記冷凍装置12は、圧縮機28の冷媒吐出側に、吐出管30を介して凝縮器32、ドライヤ34、第1キャピラリーチューブ(減圧手段)36が順に接続されると共に、該第1キャピラリーチューブ36と蒸発器14の冷媒入口とが吐出管30で接続される。また、蒸発器14の冷媒出口が帰還管38を介して第1アキュームレータ40に接続されると共に、該第1アキュームレータ40は帰還管38により圧縮機28の冷媒入口に接続されている。すなわち、吐出管30および帰還管38で接続される圧縮機28、凝縮器32、ドライヤ34、第1キャピラリーチューブ36、蒸発器14および第1アキュームレータ40によって、冷媒の循環回路が構成される。圧縮機28で圧縮された気化冷媒は、凝縮器32に供給されて凝縮液化し、ドライヤ34で脱湿された液化冷媒が第1キャピラリーチューブ36で減圧された後、蒸発器14に流入してここで一挙に膨張して蒸発し、前記製氷部10と熱交換を行なって、該製氷部10を氷点下にまで冷却させる。蒸発器14で蒸発した気化冷媒と未蒸発の液化冷媒とは、気液混相状態で第1アキュームレータ40に流入し、ここで気液分離がなされる。そして、第1アキュームレータ40で分離された気化冷媒が圧縮機28に吸入され、液化冷媒は当該第1アキュームレータ40内に貯留される。なお、吐出管30とは、圧縮機28の冷媒吐出口から蒸発器14の冷媒入口までの吐出側の冷媒経路を総称し、帰還管38とは、蒸発器14の冷媒出口から圧縮機28の冷媒入口までの吸入側の冷媒経路を総称する。   As shown in FIG. 1, in the refrigeration apparatus 12, a condenser 32, a dryer 34, and a first capillary tube (decompression means) 36 are sequentially connected to a refrigerant discharge side of a compressor 28 through a discharge pipe 30. The first capillary tube 36 and the refrigerant inlet of the evaporator 14 are connected by a discharge pipe 30. Further, the refrigerant outlet of the evaporator 14 is connected to the first accumulator 40 via the return pipe 38, and the first accumulator 40 is connected to the refrigerant inlet of the compressor 28 via the return pipe 38. That is, the compressor 28, the condenser 32, the dryer 34, the first capillary tube 36, the evaporator 14 and the first accumulator 40 connected by the discharge pipe 30 and the return pipe 38 constitute a refrigerant circulation circuit. The vaporized refrigerant compressed by the compressor 28 is supplied to the condenser 32 to be condensed and liquefied, and the liquefied refrigerant dehumidified by the dryer 34 is decompressed by the first capillary tube 36 and then flows into the evaporator 14. Here, it expands all at once and evaporates, and heat exchange is performed with the ice making unit 10 to cool the ice making unit 10 to below the freezing point. The vaporized refrigerant evaporated by the evaporator 14 and the non-evaporated liquefied refrigerant flow into the first accumulator 40 in a gas-liquid mixed phase state, where gas-liquid separation is performed. The vaporized refrigerant separated by the first accumulator 40 is sucked into the compressor 28, and the liquefied refrigerant is stored in the first accumulator 40. The discharge pipe 30 is a generic term for a refrigerant path on the discharge side from the refrigerant outlet of the compressor 28 to the refrigerant inlet of the evaporator 14, and the return pipe 38 is a refrigerant outlet of the compressor 28 from the refrigerant outlet of the evaporator 14. The refrigerant path on the suction side to the refrigerant inlet is generically named.

前記圧縮機28と凝縮器32とを接続する吐出管30に、ホットガス管42が分岐接続されており、このホットガス管42はホットガス弁HVを経て、蒸発器14と第1キャピラリーチューブ36とを接続する吐出管30に接続されている。このホットガス弁HVは、除氷工程の際にのみ開放し、製氷工程時は閉成するよう制御手段48によって開閉制御される。すなわち、除氷工程時にホットガス弁HVが開放して、圧縮機28から吐出されるホットガスを、前記ホットガス管42を介して蒸発器14にバイパスさせ、前記製氷部10を加熱することにより、製氷小室10a内に生成される氷塊の氷結面を融解させて、該氷塊を自重により落下させるようになっている。また蒸発器14から流出したホットガスは、第1アキュームレータ40に流入し、この第1アキュームレータ40内に貯留されている液化冷媒を加熱して蒸発させ、気化冷媒として圧縮機28に吸入させるようにしてある。なお、図中の符号FMは、凝縮器32を空冷するファンモータを示し、符号44は、ホットガス管42におけるホットガス弁HVより上流側に配設されて、該ホットガス弁HVに異物が流入するのを防止するストレーナを示す。また、ドライヤ34と第1キャピラリーチューブ36とを接続する吐出管30と、第1アキュームレータ40と圧縮機28とを接続する帰還管38とは所定長さに亘って接触するよう配設され、両管30,38が接触する熱交換部46において、吐出管30を流通する冷媒と帰還管38を流通する冷媒とを熱交換し得るよう構成される。   A hot gas pipe 42 is branched and connected to a discharge pipe 30 connecting the compressor 28 and the condenser 32, and the hot gas pipe 42 passes through a hot gas valve HV, and then the evaporator 14 and the first capillary tube 36. Are connected to a discharge pipe 30. The hot gas valve HV is opened / closed by the control means 48 so that it is opened only during the deicing process and closed during the ice making process. That is, the hot gas valve HV is opened during the deicing process, and the hot gas discharged from the compressor 28 is bypassed to the evaporator 14 via the hot gas pipe 42 to heat the ice making unit 10. The ice formation surface of the ice block generated in the ice making chamber 10a is melted and the ice block is dropped by its own weight. The hot gas flowing out of the evaporator 14 flows into the first accumulator 40, heats and evaporates the liquefied refrigerant stored in the first accumulator 40, and sucks it into the compressor 28 as a vaporized refrigerant. It is. In addition, the code | symbol FM in a figure shows the fan motor which air-cools the condenser 32, and the code | symbol 44 is arrange | positioned upstream from the hot gas valve HV in the hot gas pipe 42, and a foreign material exists in this hot gas valve HV. A strainer is shown to prevent inflow. The discharge pipe 30 connecting the dryer 34 and the first capillary tube 36 and the return pipe 38 connecting the first accumulator 40 and the compressor 28 are arranged so as to contact each other over a predetermined length. In the heat exchanging section 46 in which the tubes 30 and 38 are in contact, the refrigerant flowing through the discharge pipe 30 and the refrigerant flowing through the return pipe 38 can be heat-exchanged.

前記製氷部10には、該製氷部10の温度を検出する温度センサ50が配設されている。そして、この温度センサ50で検出された検出温度は、前記制御手段48に入力されるようになっている。製氷工程における製氷部10の温度は、製氷小室10a内に生成される氷の成長度合(製氷小室10a内に生成される氷の量)によって変化するものであり、温度センサ50が、製氷部10での製氷の進行状態を検出する状態検出手段として機能する。   The ice making unit 10 is provided with a temperature sensor 50 that detects the temperature of the ice making unit 10. The detected temperature detected by the temperature sensor 50 is input to the control means 48. The temperature of the ice making unit 10 in the ice making process varies depending on the degree of growth of the ice generated in the ice making chamber 10a (the amount of ice generated in the ice making chamber 10a). It functions as a state detection means for detecting the progress state of ice making.

前記制御手段48は、温度センサ50の検出温度が、予め設定された設定温度となったときに、後述する調節弁56を作動するよう設定されている。また制御手段48は、温度センサ50が予め設定された製氷完了温度を検出したときに、製氷工程から除氷工程に移行すると共に、該温度センサ50が予め設定された除氷完了温度を検出したときに、除氷工程から製氷工程に移行するよう、各機器を制御するように設定される。なお、前記設定温度は、製氷小室10a内で所定量の氷が生成されて、製氷のために必要となる熱量に対して蒸発器14に供給される液化冷媒が過剰となり、気化しない冷媒が発生する温度に設定される。   The control means 48 is set to operate a control valve 56 described later when the temperature detected by the temperature sensor 50 reaches a preset temperature. Further, when the temperature sensor 50 detects a preset ice making completion temperature, the control means 48 shifts from the ice making process to the deicing process, and the temperature sensor 50 detects the preset deicing completion temperature. Sometimes, it is set to control each device to shift from the deicing process to the ice making process. Note that the set temperature is such that a predetermined amount of ice is generated in the ice making chamber 10a, and the liquefied refrigerant supplied to the evaporator 14 is excessive with respect to the amount of heat required for ice making, thereby generating refrigerant that does not evaporate. Is set to the temperature to be

前記ドライヤ34と熱交換部46との間の吐出管30から分岐したバイパス管(バイパス経路)52が、熱交換部46と圧縮機28との間の帰還管38に接続されている。このバイパス管52には、前記給水タンク24内に配設した熱交換手段としての熱交換パイプ54が接続される。また、バイパス管52における熱交換パイプ54と吐出管30との間に、第2キャピラリーチューブ(減圧手段)60が配設されると共に、該バイパス管52における熱交換パイプ54と帰還管38との間に、調節手段としての調節弁56が配設されている。調節弁56は、常には管路を閉成してドライヤ34を通過した全ての液化冷媒を第1キャピラリーチューブ36に供給するのに対し、前記制御手段48の制御に基づき該調節弁56が作動したときには、管路を開放することでドライヤ34を通過した液化冷媒の一部がバイパス管52に分岐して第2キャピラリーチューブ60を介して熱交換パイプ54に流入するよう構成される。すなわち、製氷工程に際してドライヤ34から第1キャピラリーチューブ36に供給される液化冷媒の一部が、第2キャピラリーチューブ60で減圧された後に熱交換パイプ54に流入して蒸発することで給水タンク24に貯留されている被熱交換体としての製氷水と熱交換し、該製氷水を冷却するよう構成される。なお、前記調節弁56を作動したときにバイパス管52に分岐される液化冷媒の量は、前記製氷部10が設定温度となったときに過剰となる分量に相当する値に設定される。   A bypass pipe (bypass path) 52 branched from the discharge pipe 30 between the dryer 34 and the heat exchange section 46 is connected to a return pipe 38 between the heat exchange section 46 and the compressor 28. The bypass pipe 52 is connected to a heat exchange pipe 54 as heat exchange means disposed in the water supply tank 24. In addition, a second capillary tube (decompression unit) 60 is disposed between the heat exchange pipe 54 and the discharge pipe 30 in the bypass pipe 52, and the heat exchange pipe 54 and the return pipe 38 in the bypass pipe 52 are connected to each other. An adjusting valve 56 as an adjusting means is disposed therebetween. The control valve 56 always supplies all the liquefied refrigerant that has closed the conduit and passed through the dryer 34 to the first capillary tube 36, whereas the control valve 56 operates based on the control of the control means 48. In this case, a part of the liquefied refrigerant that has passed through the dryer 34 is branched to the bypass pipe 52 by opening the pipe, and flows into the heat exchange pipe 54 via the second capillary tube 60. In other words, a part of the liquefied refrigerant supplied from the dryer 34 to the first capillary tube 36 during the ice making process is decompressed by the second capillary tube 60 and then flows into the heat exchange pipe 54 and evaporates to the water supply tank 24. Heat is exchanged with the ice-making water as a stored heat exchanger, and the ice-making water is cooled. Note that the amount of the liquefied refrigerant branched to the bypass pipe 52 when the control valve 56 is operated is set to a value corresponding to an excess amount when the ice making unit 10 reaches a set temperature.

前記バイパス管52における熱交換パイプ54と調節弁56との間に第2アキュームレータ58が配設されており、蒸発器14で蒸発した気化冷媒と未蒸発の液化冷媒とは、気液混相状態で第2アキュームレータ58に流入し、ここで気液分離がなされる。そして、第2アキュームレータ58で分離された気化冷媒が圧縮機28に吸入され、液化冷媒は当該第2アキュームレータ58内に貯留されるようになっている。   A second accumulator 58 is disposed between the heat exchange pipe 54 and the regulating valve 56 in the bypass pipe 52, and the vaporized refrigerant evaporated by the evaporator 14 and the non-evaporated liquefied refrigerant are in a gas-liquid mixed phase state. It flows into the 2nd accumulator 58, and gas-liquid separation is made here. The vaporized refrigerant separated by the second accumulator 58 is sucked into the compressor 28, and the liquefied refrigerant is stored in the second accumulator 58.

図3は、製氷工程の開始から完了までの冷媒配管、製氷部および製氷水(製氷水タンク内の水温)の各温度と、各時点における製氷割合(製氷量)を示すグラフであって、製氷水の温度が略0℃となっている間が、実際に氷が生成されている状態である。前記バイパス管52へ液化冷媒を分岐する時期(設定温度)については、製氷水温度が略0℃に達した後から製氷完了までの任意の間で設定すればよい。但し、図3のグラフから、製氷割合が略50%となった以後において、製氷割合(製氷量の増加)の傾きが緩やかになり、この時点から液化冷媒が過剰となる割合が大きくなる。従って、製氷割合が略50%となった時点での製氷部の温度である−3〜−5℃の間で、前記設定温度を設定するのが好適である。但し、製氷部10の温度と製氷割合の関係は、製氷部10の大きさや圧縮機等の能力によって異なるため、設定温度については能力に応じて適宜に設定される。   FIG. 3 is a graph showing the temperatures of the refrigerant piping, ice making section and ice making water (water temperature in the ice making water tank) from the start to the completion of the ice making process, and the ice making ratio (ice making amount) at each time point. While the temperature of the water is approximately 0 ° C., ice is actually generated. The time (set temperature) at which the liquefied refrigerant branches to the bypass pipe 52 may be set between any time after the ice-making water temperature reaches approximately 0 ° C. and the completion of ice-making. However, from the graph of FIG. 3, after the ice making ratio becomes approximately 50%, the slope of the ice making ratio (increase in ice making amount) becomes gentle, and the ratio of excess liquefied refrigerant increases from this point. Therefore, it is preferable to set the set temperature between −3 to −5 ° C., which is the temperature of the ice making part when the ice making ratio becomes approximately 50%. However, since the relationship between the temperature of the ice making unit 10 and the ice making ratio varies depending on the size of the ice making unit 10 and the capacity of the compressor, the set temperature is appropriately set according to the capacity.

(実施例の作用)
次に、実施例に係る自動製氷機の作用につき、以下説明する。なお、前記給水タンク24には、製氷水が上限水位まで貯留されているものとする。
(Operation of Example)
Next, the operation of the automatic ice maker according to the embodiment will be described below. It is assumed that ice-making water is stored in the water supply tank 24 up to the upper limit water level.

自動製氷機の製氷工程を開始すると、前記冷凍装置12においては、前記圧縮機28で圧縮された気化冷媒は、吐出管30を介して凝縮器32に供給されて凝縮液化し、ドライヤ34で脱湿された後第1キャピラリーチューブ36で減圧され、蒸発器14に流入してここで一挙に膨張して蒸発し、前記製氷部10と熱交換を行なって、該製氷部10が氷点下にまで冷却される。この蒸発器14で蒸発した気化冷媒は、第1アキュームレータ40に流入し、帰還管38を介して圧縮機28に吸入される。なお、製氷工程の開始時には、前記温度センサ50は設定温度を検出しておらず、前記調節弁56は管路を閉成しており、ドライヤ34を通過した全ての液化冷媒が第1キャピラリーチューブ36を介して蒸発器14に供給される。また製氷工程の初期においては、製氷部10を冷却するために多くの熱量が必要であるため、蒸発器14で略全ての液化冷媒が蒸発し、第1アキュームレータ40には液化冷媒は貯留されない。なお、前記ドライヤ34から第1キャピラリーチューブ36に向けて流れる液化冷媒は、前記熱交換部46において第1アキュームレータ40から圧縮機28に向けて流れる低温の気化冷媒との間で熱交換して冷却され、蒸発器14での冷却効率が向上する。   When the ice making process of the automatic ice making machine is started, in the refrigeration apparatus 12, the vaporized refrigerant compressed by the compressor 28 is supplied to the condenser 32 through the discharge pipe 30 to be condensed and liquefied, and dehydrated by the dryer 34. After being wetted, the pressure is reduced by the first capillary tube 36, flows into the evaporator 14 and expands and evaporates all at once, heat exchanges with the ice making unit 10, and the ice making unit 10 is cooled to below freezing point. Is done. The vaporized refrigerant evaporated in the evaporator 14 flows into the first accumulator 40 and is sucked into the compressor 28 through the return pipe 38. At the start of the ice making process, the temperature sensor 50 does not detect the set temperature, the control valve 56 is closed, and all the liquefied refrigerant that has passed through the dryer 34 is contained in the first capillary tube. 36 to the evaporator 14. Further, at the initial stage of the ice making process, since a large amount of heat is required to cool the ice making unit 10, almost all the liquefied refrigerant evaporates in the evaporator 14, and the liquefied refrigerant is not stored in the first accumulator 40. The liquefied refrigerant flowing from the dryer 34 toward the first capillary tube 36 is cooled by exchanging heat with the low-temperature vaporized refrigerant flowing from the first accumulator 40 toward the compressor 28 in the heat exchange unit 46. Thus, the cooling efficiency in the evaporator 14 is improved.

前記製氷水タンク16に貯留されている製氷水が、前記循環ポンプ20を介して噴射部材18に供給され、各ノズル18aから噴射された製氷水は、前記氷案内板の開口部を介して対応する製氷小室10aに供給される。製氷小室10aは、前記冷凍装置12の蒸発器14に供給される冷媒により冷却されているので、製氷水が製氷小室10aの内壁に接触して次第に冷却されると共に、該製氷小室10a内で氷結しない未氷結水は、氷案内板の開口部および噴射部材18の戻り孔を介して製氷水タンク16に帰還する。   The ice making water stored in the ice making water tank 16 is supplied to the injection member 18 through the circulation pump 20, and the ice making water injected from each nozzle 18a corresponds through the opening of the ice guide plate. To the ice making chamber 10a. Since the ice making chamber 10a is cooled by the refrigerant supplied to the evaporator 14 of the refrigeration apparatus 12, the ice making water comes into contact with the inner wall of the ice making chamber 10a and gradually cools, and the ice making chamber 10a is frozen in the ice making chamber 10a. The non-iced water that is not returned returns to the ice making water tank 16 through the opening of the ice guide plate and the return hole of the injection member 18.

前記製氷工程の進行に伴い、前記製氷小室10aの内壁面で製氷水の一部が氷結を開始し、該製氷小室10a内で氷が徐々に成長する。また、製氷小室10aでの氷の成長度合に応じて、前記製氷部10の温度も徐々に低下する。そして、前記温度センサ50が、予め設定された設定温度を検出したときに、前記制御手段48は、前記調節弁56を作動する。これにより、前記ドライヤ34を通過した液化冷媒の一部がバイパス管52に分岐し、残りの液化冷媒が前記第1キャピラリーチューブ36を介して蒸発器14に供給される。バイパス管52に分岐する液化冷媒の量は、製氷小室10a内での製氷のために必要となる熱量に対して過剰となる分量に設定されているから、蒸発器14に供給された液化冷媒は略全てが蒸発する。すなわち、製氷工程の後期において、製氷小室10a内での製氷のために必要となる熱量に対して過剰な液化冷媒が供給されることに過因する氷の過冷却は抑制される。   As the ice making process proceeds, a part of the ice making water starts to freeze on the inner wall surface of the ice making chamber 10a, and ice gradually grows in the ice making chamber 10a. Further, the temperature of the ice making unit 10 gradually decreases according to the degree of ice growth in the ice making chamber 10a. When the temperature sensor 50 detects a preset temperature that is set in advance, the control means 48 operates the control valve 56. As a result, part of the liquefied refrigerant that has passed through the dryer 34 branches to the bypass pipe 52, and the remaining liquefied refrigerant is supplied to the evaporator 14 via the first capillary tube 36. Since the amount of the liquefied refrigerant branched to the bypass pipe 52 is set to an amount that is excessive with respect to the amount of heat required for ice making in the ice making chamber 10a, the liquefied refrigerant supplied to the evaporator 14 is Almost everything evaporates. That is, in the latter stage of the ice making process, ice overcooling due to excessive supply of liquefied refrigerant to the amount of heat required for ice making in the ice making chamber 10a is suppressed.

前記バイパス管52に分岐した液化冷媒は、前記第2キャピラリーチューブ60で減圧され、前記熱交換パイプ54に流入してここで一挙に膨張して蒸発し、前記給水タンク24に貯留されている製氷水と熱交換して、該製氷水が冷却される。すなわち、製氷工程の後期において過剰となる分量の液化冷媒を利用して製氷水を冷却することで、エネルギーの有効利用が図られる。   The liquefied refrigerant branched into the bypass pipe 52 is decompressed by the second capillary tube 60, flows into the heat exchange pipe 54, expands and evaporates all at once, and is stored in the water supply tank 24. The ice making water is cooled by heat exchange with water. That is, the energy can be effectively used by cooling the ice making water using an excessive amount of liquefied refrigerant in the latter stage of the ice making process.

前記熱交換パイプ54で蒸発した気化冷媒は、第2アキュームレータ58に流入し、帰還管38を介して圧縮機28に吸入される。前記給水タンク24に貯留されている製氷水に対して、前記熱交換パイプ54に供給される液化冷媒の量は少ないので、熱交換パイプ54に供給された液化冷媒は略全てが蒸発する。なお、熱交換パイプ54で蒸発しない液化冷媒があったとしても、前記第2アキュームレータ58で液化冷媒は分離されるから、圧縮機28には気化冷媒のみが吸入され、液化冷媒が圧縮機28に吸入されることに起因する故障の発生は防止される。   The vaporized refrigerant evaporated in the heat exchange pipe 54 flows into the second accumulator 58 and is sucked into the compressor 28 through the return pipe 38. Since the amount of the liquefied refrigerant supplied to the heat exchange pipe 54 is small with respect to the ice making water stored in the water supply tank 24, almost all of the liquefied refrigerant supplied to the heat exchange pipe 54 evaporates. Even if there is liquefied refrigerant that does not evaporate in the heat exchange pipe 54, the liquefied refrigerant is separated by the second accumulator 58, so that only the vaporized refrigerant is sucked into the compressor 28, and the liquefied refrigerant is sent to the compressor 28. Occurrence of failures due to inhalation is prevented.

前記製氷部10に所定量の氷塊が生成されたときの温度である製氷完了温度を前記温度センサ50が検出すると、前記制御手段48は、前記ホッガス弁HVを開放するよう制御すると共に、前記調節弁56を閉成するよう制御し、製氷工程から除氷工程に移行する。すなわち除氷工程では、圧縮機28から吐出されるホットガスを、前記ホットガス管42を介して蒸発器14にバイパスさせて、製氷部10を加熱する。蒸発器14から流出したホットガスは、第1アキュームレータ40に流入し、帰還管38を介して圧縮機28に吸入される。除氷工程が継続されて、氷塊の製氷小室10aとの氷結面が融解されると、該氷塊は自重により製氷小室10aから剥離落下する。この氷塊は、前記氷案内板上を滑落して貯氷室に放出されて貯留される。なお、除氷工程中においてホットガスで加熱される製氷部10の温度は前記設定温度より高くなるので、前記温度センサ50が設定温度を検出しなくなった時点で、前記制御手段48は調節弁56を閉成するよう制御する。   When the temperature sensor 50 detects an ice making completion temperature, which is a temperature at which a predetermined amount of ice blocks are generated in the ice making unit 10, the control means 48 controls the hog gas valve HV to open and controls the adjustment. The valve 56 is controlled to be closed, and the process proceeds from the ice making process to the deicing process. That is, in the deicing step, the ice making unit 10 is heated by bypassing the hot gas discharged from the compressor 28 to the evaporator 14 via the hot gas pipe 42. The hot gas flowing out of the evaporator 14 flows into the first accumulator 40 and is sucked into the compressor 28 through the return pipe 38. When the deicing process is continued and the icing surface of the ice block with the ice making chamber 10a is melted, the ice block peels off from the ice making chamber 10a due to its own weight. The ice block slides down on the ice guide plate and is released into the ice storage chamber for storage. In addition, since the temperature of the ice making unit 10 heated by the hot gas during the deicing process becomes higher than the set temperature, when the temperature sensor 50 no longer detects the set temperature, the control means 48 adjusts the control valve 56. Is controlled to close.

前記製氷工程の後期における前記製氷小室10a内に生成される氷塊の過冷却は抑制されているから、前記除氷工程においては短時間で氷塊の氷結面を融解することができる。すなわち、除氷工程を短縮し得るから、製氷能力を向上し得る。   Since the overcooling of the ice blocks generated in the ice making chamber 10a in the latter stage of the ice making process is suppressed, the ice surface of the ice blocks can be melted in a short time in the deicing process. That is, since the deicing process can be shortened, the ice making capacity can be improved.

前記製氷工程から除氷工程に移行したときに、前記制御手段48により給水ポンプ26が作動され、給水タンク24内に貯留されている製氷水は製氷水タンク16に供給される。給水タンク24内の製氷水が下限水位まで減少したことを下限フロートスイッチFSLが検知すると、制御手段48は給水ポンプ26を停止するよう制御し、製氷水タンク16への製氷水の供給は停止する。また、下限フロートスイッチFSLが下限水位を検知すると、制御手段48は前記給水弁WVを開放するよう制御し、外部水道系から次回製氷用の製氷水として、給水タンク24に新たな水道水が供給される。そして、給水タンク24に供給される製氷水が上限水位まで貯留されたことを上限フロートスイッチFSHが検知すると、制御手段48は給水弁WVを閉成するよう制御する。これにより、1回の製氷工程で使用されるに必要充分な量の製氷水が給水タンク24に貯留される。   When the ice making process is shifted to the deicing process, the water supply pump 26 is operated by the control means 48, and the ice making water stored in the water supply tank 24 is supplied to the ice making water tank 16. When the lower limit float switch FSL detects that the ice making water in the water supply tank 24 has decreased to the lower limit water level, the control unit 48 controls to stop the water supply pump 26 and the ice making water supply to the ice making water tank 16 stops. . Further, when the lower limit float switch FSL detects the lower limit water level, the control means 48 controls to open the water supply valve WV, and new tap water is supplied to the water supply tank 24 as ice making water for the next ice making from the external water system. Is done. Then, when the upper limit float switch FSH detects that the ice making water supplied to the water supply tank 24 has been stored up to the upper limit water level, the control means 48 controls to close the water supply valve WV. As a result, a sufficient amount of ice making water required to be used in one ice making process is stored in the water supply tank 24.

ここで、実施例の自動製氷機では、製氷工程の後期において過剰となる分量の液化冷媒を、蒸発器14に供給される前に分岐しているから、蒸発器14で気化することなく第1アキュームレータ40に流入する液化冷媒は殆どないか、ごくわずかである。従って、除氷工程中において第1アキュームレータ40に流入するホットガスによって全ての液化冷媒を蒸発して、気化冷媒として圧縮機28に帰還させることができる。すなわち、第1アキュームレータ40内に液化冷媒が滞溜したまま、次回の製氷工程に移行するのを防ぐことができ、製氷工程に際して蒸発器14に供給する充分な液化冷媒の量を確保して、効率的な冷却を達成し得る。   Here, in the automatic ice maker according to the embodiment, an excessive amount of liquefied refrigerant is branched before being supplied to the evaporator 14 in the later stage of the ice making process, and therefore the first ice without being vaporized by the evaporator 14. Little or very little liquefied refrigerant flows into the accumulator 40. Therefore, all the liquefied refrigerant can be evaporated by the hot gas flowing into the first accumulator 40 during the deicing process and returned to the compressor 28 as a vaporized refrigerant. That is, it is possible to prevent the liquefied refrigerant from staying in the first accumulator 40 and prevent the next ice making process from proceeding, and to secure a sufficient amount of the liquefied refrigerant to be supplied to the evaporator 14 during the ice making process. Efficient cooling can be achieved.

前記製氷部10から全ての氷塊が離脱したときの温度である除氷完了温度を前記温度センサ50が検出すると、前記制御手段48はホットガス弁HVを閉成するよう制御し、前述した製氷工程が再開される。この製氷工程に際して前記製氷水タンク16に貯留されている製氷水は、前記給水タンク24に貯留されている間に熱交換パイプ54を流通する液化冷媒との熱交換により冷却されているから、製氷工程において製氷水を短時間で氷結する温度まで低下させることができ、製氷能力を向上することができる。なお、除氷工程から製氷工程へ移行する際には、前記調節弁56は管路を閉成する状態となっているから、前記凝縮器32で液化された全ての液化冷媒が蒸発器14に供給され、蒸発器14での冷却能力が低下することはない。   When the temperature sensor 50 detects the deicing completion temperature, which is the temperature when all the ice blocks have detached from the ice making unit 10, the control means 48 controls to close the hot gas valve HV, and the ice making process described above. Is resumed. The ice making water stored in the ice making water tank 16 during the ice making process is cooled by heat exchange with the liquefied refrigerant flowing through the heat exchange pipe 54 while being stored in the water supply tank 24. In the process, the ice making water can be lowered to a temperature that freezes in a short time, and the ice making ability can be improved. It should be noted that when the transition from the deicing process to the ice making process is performed, the control valve 56 is in a state of closing the pipe, so that all the liquefied refrigerant liquefied by the condenser 32 is transferred to the evaporator 14. The cooling capacity in the evaporator 14 is not lowered.

また実施例の自動製氷機では、前記製氷部10での製氷の進行状態を検出する温度センサ50の検出温度を用いて、製氷工程から除氷工程への移行および除氷工程から製氷工程への移行を制御手段48で行なうよう構成したから、製氷完了を検出する手段や除氷完了を検出する手段を別途設ける必要はなく、部品点数を低減することができる。   Further, in the automatic ice making machine of the embodiment, the transition from the ice making process to the deicing process and the deicing process to the ice making process are performed using the detection temperature of the temperature sensor 50 that detects the progress of ice making in the ice making unit 10. Since the shift is performed by the control means 48, it is not necessary to separately provide means for detecting completion of ice making or means for detecting completion of deicing, and the number of parts can be reduced.

(変更例)
本願は前述した実施例の構成に限定されるものではなく、その他の構成を適宜に採用することができる。
1.実施例では、自動製氷機として、オープンセル式の製氷機構を採用した場合で説明したが、これに限定されるものではなく、製氷小室を下方から開閉自在に閉成する水皿を有する、所謂クロースドセル式の製氷機構、あるいは製氷板の製氷面に製氷水を流下供給する流下式の製氷機構等、各種の機構を採用し得る。
2.実施例では、熱交換パイプを給水タンク内に臨ませて次回製氷用の製氷水を冷却するよう構成したが、熱交換手段で熱交換する被熱交換体としては製氷水に限定されるものでない。例えば、貯氷室内に熱交換手段としての冷却器を配置し、該冷却器に供給される液化冷媒の蒸発により被熱交換体としての貯氷室内の空気を冷却するよう構成してもよい。
3.実施例では、ドライヤと熱交換部との間の吐出管から分岐したバイパス管を、熱交換部と圧縮機との間の帰還管に接続したが、これに限定されるものでなく、凝縮器から流出した液化冷媒を蒸発器を迂回して圧縮機に戻し得る経路でバイパス管を配管すればよい。
4.実施例では、温度センサが予め設定した1つの設定温度を検出したときに調節弁を作動するよう構成したが、これに限定されるものでない。例えば、調節弁として管路の開度を変更可能なものを採用すると共に、設定温度を複数設定し、各設定温度を温度センサが検出する毎に、蒸発器に供給される液化冷媒の量が段階的に減少するように調節弁の開度を変更する構成を採用し得る。また、温度センサの検出温度に対応して、蒸発器に供給される液化冷媒の量が連続的に減少する(吐出側の冷媒経路からバイパス経路へ流入する液化冷媒の量を変化する)ように調節弁を作動する構成を採用することもできる。
5.実施例では、製氷部での製氷の進行状態を検出する状態検出手段として温度センサを用いたが、これに限定されるものでなく、製氷小室内に生成される氷の厚み等を検出するもの等、その他の手段を採用し得る。
6.実施例では、減圧手段としてキャピラリーチューブを用いた場合で説明したが、これに限定されるものでなく、膨張弁等、その他の手段を採用し得る。
(Example of change)
The present application is not limited to the configuration of the above-described embodiment, and other configurations can be appropriately employed.
1. In the embodiment, the case where an open cell type ice making mechanism is adopted as an automatic ice making machine has been described. However, the present invention is not limited to this, and the so-called ice making chamber has a water tray that can be opened and closed from below. Various mechanisms such as a closed cell type ice making mechanism or a flow down type ice making mechanism for supplying ice making water to the ice making surface of the ice making plate can be adopted.
2. In the embodiment, the heat exchange pipe is faced in the water supply tank to cool the ice making water for the next ice making. However, the heat exchanger to be heat exchanged by the heat exchanging means is not limited to ice making water. . For example, a cooler as heat exchange means may be arranged in the ice storage chamber, and the air in the ice storage chamber as the heat exchanger may be cooled by evaporation of the liquefied refrigerant supplied to the cooler.
3. In the embodiment, the bypass pipe branched from the discharge pipe between the dryer and the heat exchanging section is connected to the return pipe between the heat exchanging section and the compressor. However, the present invention is not limited to this. What is necessary is just to pipe | tube a bypass pipe by the path | route which can return the liquefied refrigerant | coolant which flowed out out of the evaporator to a compressor bypassing an evaporator.
4). In the embodiment, the control valve is configured to operate when the temperature sensor detects one preset temperature set in advance, but the present invention is not limited to this. For example, a control valve that can change the opening of the pipe is adopted, and a plurality of set temperatures are set, and each time each set temperature is detected by a temperature sensor, the amount of liquefied refrigerant supplied to the evaporator is A configuration in which the opening of the control valve is changed so as to decrease stepwise may be employed. In addition, the amount of liquefied refrigerant supplied to the evaporator continuously decreases (changes the amount of liquefied refrigerant flowing from the discharge-side refrigerant path into the bypass path) in accordance with the temperature detected by the temperature sensor. It is also possible to employ a configuration that operates the control valve.
5. In the embodiment, the temperature sensor is used as the state detection means for detecting the progress of the ice making in the ice making unit, but the present invention is not limited to this, and detects the thickness of ice generated in the ice making chamber. Other means may be employed.
6). In the embodiment, the case where a capillary tube is used as the pressure reducing means has been described. However, the present invention is not limited to this, and other means such as an expansion valve can be adopted.

10 製氷部,12 冷凍装置,14 蒸発器,16 製氷水タンク,
24 給水タンク,28 圧縮機,30 吐出管(吐出側の冷媒経路),
32 凝縮器
38 帰還管(吸入側の冷媒経路),50 温度センサ(状態検出手段)
52 バイパス管(バイパス経路),54 熱交換パイプ(熱交換手段)
56 調節弁(調節手段)
10 ice making parts, 12 refrigeration equipment, 14 evaporators, 16 ice making water tanks,
24 water supply tank, 28 compressor, 30 discharge pipe (discharge side refrigerant path),
32 Condenser 38 Return pipe (suction side refrigerant path), 50 Temperature sensor (state detection means)
52 Bypass pipe (bypass path), 54 Heat exchange pipe (heat exchange means)
56 Control valve (control means)

Claims (4)

製氷工程に際して製氷水が供給される製氷部(10)と、前記製氷部(10)を冷却する冷凍装置(12)とを備え、該冷凍装置(12)は、圧縮機(28)と、圧縮機(28)から吐出された気化冷媒を凝縮する凝縮器(32)と、前記製氷部(10)に配設され、前記凝縮器(32)で液化された液化冷媒を蒸発させる蒸発器(14)とを有し、該蒸発器(14)から冷媒が圧縮機(28)に戻るよう構成された自動製氷機において、
前記製氷部(10)での製氷の進行状態を検出する状態検出手段(50)と、
前記凝縮器(32)および蒸発器(14)を接続する吐出側の冷媒経路(30)から分岐して蒸発器(14)および圧縮機(28)を接続する吸入側の冷媒経路(38)に接続され、冷媒が流通可能なバイパス経路(52)と、
前記状態検出手段(50)の検出状態に応じて作動し、前記吐出側の冷媒経路(30)からバイパス経路(52)へ流入する液化冷媒の量を調節する調節手段(56)と、
前記バイパス経路(52)中に設けられて液化冷媒が流入し、流入した液化冷媒を蒸発させて被熱交換体との間で熱交換する熱交換手段(54)とを備える
ことを特徴とする自動製氷機。
An ice making unit (10) to which ice making water is supplied in the ice making process, and a freezing device (12) for cooling the ice making unit (10), the freezing device (12) includes a compressor (28), a compression unit A condenser (32) for condensing the vaporized refrigerant discharged from the machine (28), and an evaporator (14) disposed in the ice making section (10) and evaporating the liquefied refrigerant liquefied by the condenser (32). An automatic ice making machine configured to return the refrigerant from the evaporator (14) to the compressor (28),
State detection means (50) for detecting the progress of ice making in the ice making section (10),
Branching from the discharge side refrigerant path (30) connecting the condenser (32) and the evaporator (14) to the refrigerant path (38) on the suction side connecting the evaporator (14) and the compressor (28). A bypass path (52) that is connected and allows refrigerant to flow; and
Adjusting means (56) that operates according to the detection state of the state detection means (50) and adjusts the amount of liquefied refrigerant flowing from the refrigerant path (30) on the discharge side into the bypass path (52);
A heat exchange means (54) provided in the bypass path (52) for injecting liquefied refrigerant, evaporating the liquefied refrigerant that has flowed in, and exchanging heat with the heat exchanger is provided. Automatic ice machine.
製氷工程に際して前記製氷部(10)に供給する製氷水が貯留される製氷水タンク(16)と、該製氷水タンク(16)に供給する製氷水が貯留される給水タンク(24)を備え、
前記熱交換手段(54)は、前記給水タンク(24)に貯留されている製氷水に浸漬されて、該給水タンク(24)内の製氷水との間で熱交換するよう構成される請求項1記載の自動製氷機。
An ice making water tank (16) for storing ice making water to be supplied to the ice making unit (10) during the ice making process, and a water supply tank (24) for storing ice making water to be supplied to the ice making water tank (16),
The heat exchange means (54) is configured to be immersed in ice making water stored in the water supply tank (24) to exchange heat with ice making water in the water supply tank (24). The automatic ice maker according to 1.
前記状態検出手段は、前記製氷部(10)の温度を検出する温度センサ(50)であり、製氷工程に際して製氷部(10)で製氷のために必要となる熱量に対して前記蒸発器(14)に供給される液化冷媒の量が過剰となる設定温度を前記温度センサ(50)が検出したときに前記調節手段(56)が作動して、前記吐出側の冷媒経路(30)からバイパス経路(52)へ液化冷媒が流入するよう構成される請求項1または2記載の自動製氷機。   The state detection means is a temperature sensor (50) for detecting the temperature of the ice making unit (10), and the evaporator (14) with respect to the amount of heat required for ice making in the ice making unit (10) during the ice making process. ) When the temperature sensor (50) detects a set temperature at which the amount of the liquefied refrigerant to be supplied becomes excessive, the adjusting means (56) is activated, and the bypass side path from the refrigerant path (30) on the discharge side The automatic ice maker according to claim 1 or 2, wherein the liquefied refrigerant flows into (52). 前記温度センサ(50)が前記設定温度を検出した以後は、該温度センサ(50)の検出温度の変化に対応して、前記吐出側の冷媒経路(30)からバイパス経路(52)へ流入する液化冷媒の量を変化するように前記調節手段(56)が作動される請求項3記載の自動製氷機。   After the temperature sensor (50) detects the set temperature, it flows from the refrigerant path (30) on the discharge side into the bypass path (52) in response to a change in the temperature detected by the temperature sensor (50). The automatic ice making machine according to claim 3, wherein the adjusting means (56) is operated so as to change the amount of the liquefied refrigerant.
JP2009028888A 2008-02-22 2009-02-10 Automatic ice machine Expired - Fee Related JP5448482B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009028888A JP5448482B2 (en) 2008-02-22 2009-02-10 Automatic ice machine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008042040 2008-02-22
JP2008042040 2008-02-22
JP2009028888A JP5448482B2 (en) 2008-02-22 2009-02-10 Automatic ice machine

Publications (2)

Publication Number Publication Date
JP2009222379A true JP2009222379A (en) 2009-10-01
JP5448482B2 JP5448482B2 (en) 2014-03-19

Family

ID=41239345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009028888A Expired - Fee Related JP5448482B2 (en) 2008-02-22 2009-02-10 Automatic ice machine

Country Status (1)

Country Link
JP (1) JP5448482B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101343462B1 (en) * 2012-04-27 2013-12-20 인 이 Ice-making and cooling system
CN112460869A (en) * 2019-09-09 2021-03-09 青岛海尔电冰箱有限公司 Pipeline system of ice maker
CN113028694A (en) * 2019-12-09 2021-06-25 青岛海尔电冰箱有限公司 Ice maker and refrigerator including the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5112854B1 (en) * 1970-12-16 1976-04-22
JP2002156145A (en) * 2000-11-20 2002-05-31 Hitachi Air Conditioning System Co Ltd Operation method for ice heat storage unit
JP2005308367A (en) * 2004-04-26 2005-11-04 Fuji Electric Retail Systems Co Ltd Ice making machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5112854B1 (en) * 1970-12-16 1976-04-22
JP2002156145A (en) * 2000-11-20 2002-05-31 Hitachi Air Conditioning System Co Ltd Operation method for ice heat storage unit
JP2005308367A (en) * 2004-04-26 2005-11-04 Fuji Electric Retail Systems Co Ltd Ice making machine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101343462B1 (en) * 2012-04-27 2013-12-20 인 이 Ice-making and cooling system
CN112460869A (en) * 2019-09-09 2021-03-09 青岛海尔电冰箱有限公司 Pipeline system of ice maker
CN112460869B (en) * 2019-09-09 2023-11-14 青岛海尔电冰箱有限公司 Pipeline system of ice maker
CN113028694A (en) * 2019-12-09 2021-06-25 青岛海尔电冰箱有限公司 Ice maker and refrigerator including the same
CN113028694B (en) * 2019-12-09 2023-08-08 青岛海尔电冰箱有限公司 Ice maker and refrigerator including the same

Also Published As

Publication number Publication date
JP5448482B2 (en) 2014-03-19

Similar Documents

Publication Publication Date Title
KR101452762B1 (en) Refrigerator
JP5203702B2 (en) Refrigerant heat storage and cooling system with enhanced heat exchange function
US3922875A (en) Refrigeration system with auxiliary defrost heat tank
KR20230044385A (en) Water purifier with ice maker
JP5448482B2 (en) Automatic ice machine
JP2009109110A (en) Refrigeration system
JP4545634B2 (en) Refrigerant distribution device for refrigeration equipment
JP5253944B2 (en) Automatic ice machine
JP2006010181A (en) Deicing operation method of automatic ice making machine
KR101962878B1 (en) Chilling system using waste heat recovery by chiller discharge gas
JP2008057862A (en) Ice making machine
JPH086973B2 (en) Ice machine refrigeration cycle
JP2008281262A (en) Automatic ice making machine and its operation method
KR101470958B1 (en) An ice machine with an integrated water-air cooling system
CN113631876B (en) Defrosting system
JP2000121107A (en) Ice storage system
JP2006090691A (en) Operating method for flow down type ice maker
JP2013024435A (en) Ice making machine
SU1725044A1 (en) Ice generator
JP2003194444A (en) Automatic ice making machine
KR102101393B1 (en) Combined cold-hot heat storage system
JP5254098B2 (en) Ice machine
CA2561514C (en) Ice maker circuit
JP2006183925A (en) Method of operating automatic ice machine for deicing
JP2001004255A (en) Automatic ice maker and operating method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131224

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees