JP2006112652A - Ice making method and device for heat storage - Google Patents

Ice making method and device for heat storage Download PDF

Info

Publication number
JP2006112652A
JP2006112652A JP2004297513A JP2004297513A JP2006112652A JP 2006112652 A JP2006112652 A JP 2006112652A JP 2004297513 A JP2004297513 A JP 2004297513A JP 2004297513 A JP2004297513 A JP 2004297513A JP 2006112652 A JP2006112652 A JP 2006112652A
Authority
JP
Japan
Prior art keywords
ice
aqueous solution
ice making
temperature
brine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004297513A
Other languages
Japanese (ja)
Inventor
Atsushi Kawakami
敦 川上
Masayuki Igarashi
正之 五十嵐
Masahiko Mimuro
真彦 三室
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004297513A priority Critical patent/JP2006112652A/en
Publication of JP2006112652A publication Critical patent/JP2006112652A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ice making method and its device for heat storage capable of obtaining a heat storage medium of low temperature which can not be obtained by ice obtained by phase change of water, by changing a phase of an aqueous solution. <P>SOLUTION: The aqueous solution W is used as fluid for ice making, and a temperature T<SB>1</SB>of the aqueous solution W taken out from a heat storage tank 1 and introduced to an ice making heat exchanger 10 is controlled to be raised by a predetermined temperature α from an ice-liquid coexistence temperature Tk(=Tg) of the aqueous solution W in the heat storage tank 1, and a refrigerant or brine B guided to the ice making heat exchanger 10 is controlled to be lower than the ice/liquid coexistence temperature Tk(=Tg) by a prescribed temperature β by controlling a freezer 3. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、水溶液を製氷する蓄熱用製氷方法と装置に関する。   The present invention relates to a heat storage ice making method and apparatus for making an aqueous solution.

近年、電力需要の昼夜平均化を図るために、夜間の余裕電力を利用して冷熱を貯蔵し、昼間に冷熱を取り出し冷房負荷などに利用する冷熱貯蔵システムが注目されている。   In recent years, in order to average power demand day and night, attention has been focused on a cold storage system that stores cold energy using surplus power at night and extracts cold energy during the day and uses it for cooling loads and the like.

冷熱の貯蔵には、いずれも水を使用する冷水蓄熱方法と氷蓄熱方法があるが、設備スペースの効率的利用等の面から、より省スペースで蓄熱が可能な氷蓄熱方法が多用されている。   There are cold water storage methods and ice storage methods that both use water for cold storage, but ice storage methods that can store heat more efficiently are used more frequently from the viewpoint of efficient use of equipment space. .

蓄熱用製氷方法には、スタティック方式とダイナミック方式がある。前者は、製氷用熱交換器の伝熱面に氷を着氷させ成長させる方式であるが、氷厚の増大に伴って伝熱効率が低下する。後者は、製氷用熱交換器の伝熱面に着氷した氷を間歇的に剥離させる剥離方式と、過冷却水を作り、過冷却状態を解除することにより相変化させ、氷を生成する過冷却方式がある。氷生成効率の有利性から過冷却方式が注目されている。   There are two types of ice storage methods for heat storage: static method and dynamic method. The former is a method of icing and growing ice on the heat transfer surface of the ice-making heat exchanger, but the heat transfer efficiency decreases as the ice thickness increases. The latter includes a peeling method that intermittently peels off the ice that has landed on the heat transfer surface of the ice-making heat exchanger, and a supercritical water that creates supercooled water and releases the supercooled state to change the phase and generate ice. There is a cooling system. The supercooling method is attracting attention because of the advantage of ice generation efficiency.

過冷却方式は、例えば、下記特許文献1〜3に開示されているように、蓄熱槽内に貯溜された水を取出し製氷熱交換器に導き、冷凍機で冷却された冷媒またはブライン(以下、冷媒と総称することもある)と熱交換して水を製氷熱交換器で凝固点温度以下の過冷却状態にまで冷却する。そして、この水を蓄熱槽内に戻すとき、槽内の液面との衝突により過冷却を解除して一部を氷に相変化し、シャーベット状の氷にするものである。   For example, as disclosed in Patent Documents 1 to 3 below, the supercooling method takes out the water stored in the heat storage tank, leads it to an ice making heat exchanger, and cools the refrigerant or brine (hereinafter, referred to as “cooling machine”). The water is cooled to a supercooled state below the freezing point temperature with an ice making heat exchanger. And when returning this water in a thermal storage tank, supercooling will be cancelled | released by the collision with the liquid level in a tank, a part will change into ice, and it will become sherbet-like ice.

この蓄熱用製氷方法により得られる蓄熱媒体は、水を相変化させた氷であるため、0℃の温度を得る程度であるが、ビル空調などの冷房に利用する場合には問題はない。   Since the heat storage medium obtained by this heat storage ice making method is ice obtained by changing the phase of water, it can only obtain a temperature of 0 ° C., but there is no problem when it is used for cooling such as building air conditioning.

しかし、空調以外の分野で利用する場合、例えば、アルコール飲料、レトルト食品、乳製品などのような食品や飲料に関する分野では、さらに低温の冷熱源を必要とする場合がある。このような低温の冷熱源は、水の氷蓄熱媒体で得ることは難しい。   However, when used in fields other than air conditioning, for example, in fields related to foods and beverages such as alcoholic beverages, retort foods, and dairy products, a colder heat source may be required. Such a low-temperature cold heat source is difficult to obtain with water ice storage media.

そこで、本発明者らは、アルコールや塩化ナトリウムなどを含む水溶液を蓄熱媒体として利用することに着目した。このような水溶液は、凍結温度が−10℃程度になり、食品や飲料に関する分野の冷熱源としても利用できる。   Therefore, the present inventors have focused on using an aqueous solution containing alcohol, sodium chloride, and the like as a heat storage medium. Such an aqueous solution has a freezing temperature of about −10 ° C. and can be used as a cold heat source in the field of food and beverages.

ところが、水溶液は、その種類のみでなく個々の水溶液の濃度によっても凍結させる場合の温度が変化し、単純に前記蓄熱用製氷方法を水溶液の場合に転用することは困難である。水を相変化させる場合は、水の凝固点温度が大気圧下では0℃と常に一定であるため、0℃+α℃の一定温度に昇温(予熱)し製氷熱交換器に送水すれば、製氷熱交換器内で凍結することはなく、−2℃程度の過冷却水が安定的に得られる。また、この水を冷却するブラインについても、0℃−β℃(=−3℃)の一定温度にし、製氷熱交換器に送れば、製氷熱交換器内で過冷却水が凝固することなく安定的に流出させることができる。   However, the temperature in the case of freezing the aqueous solution varies depending not only on the type but also the concentration of each aqueous solution, and it is difficult to simply divert the ice storage method for heat storage to an aqueous solution. When water is phase-changed, the freezing point temperature of water is always constant at 0 ° C under atmospheric pressure, so if the temperature is raised (preheated) to a constant temperature of 0 ° C + α ° C and sent to an ice making heat exchanger, ice making There is no freezing in the heat exchanger, and supercooled water at about −2 ° C. is stably obtained. In addition, the brine for cooling the water is also kept at a constant temperature of 0 ° C.-β ° C. (= −3 ° C.) and sent to the ice making heat exchanger without the supercooling water solidifying in the ice making heat exchanger. Can be discharged.

ところが、水溶液を冷却すると、まず、水溶液中の水分のみが相変化することになり、このため、製氷量の増加に伴い水溶液が濃縮され、水溶液の凝固点が降下することになり、水のような画一的で安定的な過冷却状態を得ることが難しい。   However, when the aqueous solution is cooled, first, only the water in the aqueous solution undergoes a phase change. For this reason, the aqueous solution is concentrated as the amount of ice is increased, and the freezing point of the aqueous solution is lowered. It is difficult to obtain a uniform and stable supercooled state.

また、水溶液の濃縮と、凝固点の降下により水溶液の粘性も増大する。粘性の増大は、水溶液のみでなく、ブラインについても生じる。このため、蓄熱用製氷方法で水溶液を相変化させる場合は、水の場合を単純に流用できない。
特許第2577156号公報(請求項1および図1参照) 特許第2911710号公報(請求項1および図1参照) 特開平7−83547号公報(図1、要約参照)
Further, the viscosity of the aqueous solution increases due to the concentration of the aqueous solution and the lowering of the freezing point. The increase in viscosity occurs not only with aqueous solutions but also with brine. For this reason, when the aqueous solution is phase-changed by the heat storage ice making method, the case of water cannot be simply used.
Japanese Patent No. 2577156 (see claim 1 and FIG. 1) Japanese Patent No. 2911710 (see claim 1 and FIG. 1) Japanese Patent Laid-Open No. 7-83547 (see FIG. 1, abstract)

本発明の目的は、水を相変化させた氷では得られない低温の蓄熱媒体を、水溶液を相変化させることにより安定的に得るための蓄熱用製氷方法と装置を提供することにある。   An object of the present invention is to provide a heat storage ice making method and apparatus for stably obtaining a low-temperature heat storage medium that cannot be obtained by ice whose phase has been changed by changing the phase of an aqueous solution.

本発明者らは、凝固点の降下と粘性の増大の両面から水溶液を制御することにより上記目的を達成し、本発明を完成するに至ったのである。凝固点降下の対策としては、水溶液の凝固点温度をTg(℃)とすると、製氷量に伴う水溶液の濃縮によりTg(℃)は降下するが、このような温度降下の中で製氷熱交換器へ水溶液を供給する温度をTg+α(℃)に制御する必要がある。そのためには、ある製氷量の条件で、凝固点温度Tg(℃)を把握する必要があるが、蓄熱槽内で水溶液と氷が共存している場合の水溶液の温度Tk(℃)(以下、氷液共存温度Tk℃と略称する)が、製氷状態如何に拘わらず、まさにTg(℃)とイコールである点に着目し、この氷液共存温度Tk℃をベースにして製氷熱交換器へ水溶液を供給する温度、製氷熱交換器へ供給するブラインの温度が所定の設定値になるように制御することにより行なう。   The inventors of the present invention have achieved the above object by controlling the aqueous solution from both the lowering of the freezing point and the increase in viscosity, and have completed the present invention. As a countermeasure against the freezing point depression, if the freezing point temperature of the aqueous solution is Tg (° C.), the Tg (° C.) drops due to the concentration of the aqueous solution accompanying the amount of ice making. Must be controlled to Tg + α (° C.). For that purpose, it is necessary to grasp the freezing point temperature Tg (° C.) under a certain amount of ice making, but the temperature Tk (° C.) of the aqueous solution when the aqueous solution and ice coexist in the heat storage tank (hereinafter referred to as ice Focusing on the fact that the liquid coexistence temperature is abbreviated as Tk ° C), regardless of the ice making condition, it is exactly Tg (° C) and equal, and the aqueous solution is supplied to the ice making heat exchanger based on this ice liquid coexistence temperature Tk ° C. This is performed by controlling the temperature to be supplied and the temperature of the brine to be supplied to the ice making heat exchanger to be a predetermined set value.

一方、粘性増大の対策としては、水溶液およびブラインそれぞれにおいて、一定の循環量が確保されるように流量制御することにより行なう。   On the other hand, as a countermeasure against the increase in viscosity, the flow rate is controlled so that a constant circulation amount is secured in each of the aqueous solution and the brine.

このような制御を行なうと、製氷熱交換器内で過冷却された水溶液を、凝固させることなく安定的に液状態のままで製氷熱交換器から流出させることができることから、水溶液を相変化させて低温の蓄熱用氷を安定的に得ることができることになる。   If such control is performed, the aqueous solution supercooled in the ice-making heat exchanger can be allowed to flow out of the ice-making heat exchanger in a stable liquid state without being solidified. Thus, low-temperature heat storage ice can be stably obtained.

つまり、本発明の目的は、下に記する手段により達成される。   That is, the object of the present invention is achieved by the means described below.

(1) 蓄熱槽内からの製氷用流体と、冷凍機で冷却されたブラインとをそれぞれ製氷熱交換器に導いて両者を熱交換し、前記製氷用流体を過冷却状態に冷却して前記蓄熱槽内に戻し、シャーベット状の氷を製造する蓄熱用製氷方法であって、
前記製氷用流体として水溶液を使用し、前記製氷熱交換器に導入される前記水溶液の温度が蓄熱槽内の水溶液の氷液共存温度より所定温度だけ高温となるように、また、前記製氷熱交換器に導かれるブラインの温度が前記氷液共存温度より所定温度だけ低温になるように、それぞれ制御し前記製氷熱交換器に導入することを特徴とする蓄熱用製氷方法。
(1) The ice making fluid from the inside of the heat storage tank and the brine cooled by the refrigerator are each led to an ice making heat exchanger to exchange heat, and the ice making fluid is cooled to a supercooled state to thereby store the heat. An ice making method for heat storage that returns to the inside of the tank and produces sherbet-shaped ice,
An aqueous solution is used as the ice-making fluid, and the temperature of the aqueous solution introduced into the ice-making heat exchanger is higher by a predetermined temperature than the ice liquid coexisting temperature of the aqueous solution in the heat storage tank. An ice making method for heat storage, wherein the temperature is controlled so that the temperature of the brine guided to the vessel is lower than the ice liquid coexistence temperature by a predetermined temperature, and the brine is introduced into the ice making heat exchanger.

(2) 蓄熱槽内からの製氷用流体と、冷凍機で冷却されたブラインとをそれぞれ製氷熱交換器に導いて両者を熱交換し、前記製氷用流体を過冷却状態に冷却して前記蓄熱槽内に戻し、シャーベット状の氷を製造する蓄熱用製氷方法であって、
前記製氷用流体として水溶液を使用し、前記蓄熱槽から製氷熱交換器に導かれる水溶液の流量が、前記水溶液の温度降下および濃縮による粘性増加に伴って所定流量以下になると、流量制御手段により前記所定流量に戻すことを特徴とする蓄熱用製氷方法。
(2) The ice making fluid from the heat storage tank and the brine cooled by the refrigerator are each led to an ice making heat exchanger to exchange heat, and the ice making fluid is cooled to a supercooled state to store the heat. An ice making method for heat storage that returns to the inside of the tank and produces sherbet-shaped ice,
When an aqueous solution is used as the ice-making fluid, and the flow rate of the aqueous solution guided from the heat storage tank to the ice-making heat exchanger becomes equal to or less than a predetermined flow rate due to a temperature drop and concentration increase due to the concentration of the aqueous solution, An ice making method for heat storage, characterized by returning to a predetermined flow rate.

(3) 蓄熱槽内からの製氷用流体と、冷凍機で冷却されたブラインとをそれぞれ製氷熱交換器に導いて両者を熱交換し、前記製氷用流体を過冷却状態に冷却して前記蓄熱槽内に戻し、シャーベット状の氷を製造する蓄熱用製氷方法であって、
前記製氷用流体として水溶液を使用し、前記冷凍機から製氷熱交換器に導かれるブラインの流量が温度降下に伴って所定流量以下になると、流量制御手段により前記所定流量に戻すことを特徴とする蓄熱用製氷方法。
(3) The ice making fluid from the inside of the heat storage tank and the brine cooled by the refrigerator are each led to an ice making heat exchanger to exchange heat, and the ice making fluid is cooled to a supercooled state to thereby store the heat. An ice making method for heat storage that returns to the inside of the tank and produces sherbet-shaped ice,
An aqueous solution is used as the ice making fluid, and when the flow rate of the brine introduced from the refrigerator to the ice making heat exchanger becomes a predetermined flow rate or less with a temperature drop, the flow rate control means returns the flow rate to the predetermined flow rate. Ice making method for heat storage.

(4) 前記水溶液を氷液共存温度より高温にする温度は、0.5℃〜1.5℃であり、前記冷媒を氷液共存温度より低温状態とする温度は、3.5℃〜4.5℃である前記(1)の蓄熱用製氷方法。   (4) The temperature at which the aqueous solution is made higher than the ice liquid coexistence temperature is 0.5 ° C. to 1.5 ° C., and the temperature at which the refrigerant is at a temperature lower than the ice liquid coexistence temperature is 3.5 ° C. to 4 ° C. (1) The ice storage method for heat storage according to (1) above, which is 5 ° C.

(5) 前記水溶液は、アルコール水溶液である前記(1)〜(4)の蓄熱用製氷方法。   (5) The ice making method for heat storage according to (1) to (4), wherein the aqueous solution is an alcohol aqueous solution.

(6) 前記水溶液は、塩化ナトリウム水溶液である前記(1)〜(4)の蓄熱用製氷方法。   (6) The ice making method for heat storage according to (1) to (4), wherein the aqueous solution is a sodium chloride aqueous solution.

(7) 内部に製氷用流体が貯溜された蓄熱槽と、
対向配置された複数の伝熱プレート間に、ブラインが流れる冷媒用流路および、前記製氷用流体が流れる前記製氷用流体用流路が形成されたプレート型の製氷熱交換器と、
前記蓄熱槽と製氷熱交換器との間で前記製氷用流体を循環させる製氷用流体循環回路と、
冷凍機で冷却されたブラインを前記製氷熱交換器に導く冷媒循環回路と、
を有し、
前記製氷熱交換器で製氷用流体と冷媒を熱交換することにより、製氷用流体を過冷却状態に冷却して前記蓄熱槽内に戻し、シャーベット状の氷を製造する蓄熱用製氷装置であって、
前記製氷用流体として水溶液を使用することとし、前記製氷熱交換器に流入する前記水溶液の温度を氷液共存温度より所定温度だけ高温に制御する水溶液制御部と、前記ブラインの温度を前記氷液共存温度より所定温度だけ低温に制御する冷媒温度制御部とを有することを特徴とする蓄熱用製氷装置。
(7) a heat storage tank in which ice making fluid is stored;
A plate-type ice-making heat exchanger in which a flow path for refrigerant in which brine flows and a flow path for the ice-making fluid in which the ice-making fluid flows are formed between a plurality of opposed heat transfer plates;
An ice making fluid circulation circuit for circulating the ice making fluid between the heat storage tank and the ice making heat exchanger;
A refrigerant circulation circuit for guiding brine cooled by a refrigerator to the ice making heat exchanger;
Have
A heat storage ice making device for producing a sherbet-like ice by cooling the ice making fluid to a supercooled state by exchanging heat between the ice making fluid and the refrigerant in the ice making heat exchanger. ,
An aqueous solution is used as the ice making fluid, and an aqueous solution control unit that controls the temperature of the aqueous solution flowing into the ice making heat exchanger to be higher than the ice solution coexistence temperature by a predetermined temperature; and the temperature of the brine is the ice solution An ice making device for heat storage, comprising: a refrigerant temperature control unit that controls a temperature lower than the coexistence temperature by a predetermined temperature.

(8) 内部に製氷用流体が貯溜された蓄熱槽と、
対向配置された複数の伝熱プレート間に、ブラインが流れる冷媒用流路および、前記製氷用流体が流れる前記製氷用流体用流路が交互に形成されたプレート型の製氷熱交換器と、
前記蓄熱槽と前記製氷熱交換器との間で前記製氷用流体が循環される製氷用流体循環回路と、
冷凍機と前記製氷熱交換器との間でブラインが循環されるブライン循環回路と、
を有し、
前記製氷熱交換器で製氷用流体とブラインを熱交換することにより製氷用流体を過冷却状態に冷却して前記蓄熱槽内に戻し、シャーベット状の氷を製造する蓄熱用製氷装置であって、
前記製氷用流体として水溶液を使用し、前記製氷用流体循環回路を循環する水溶液の流量が、前記水溶液の温度降下および濃縮による粘性増加に伴って所定流量より低下すると、前記所定流量に戻す流量制御手段を有することを特徴とする蓄熱用製氷装置。
(8) a heat storage tank in which ice-making fluid is stored;
A plate-type ice making heat exchanger in which a refrigerant flow path through which brine flows and a flow path for ice making fluid through which the ice making fluid flows are alternately formed between a plurality of opposed heat transfer plates;
An ice making fluid circulation circuit in which the ice making fluid is circulated between the heat storage tank and the ice making heat exchanger;
A brine circulation circuit in which brine is circulated between a refrigerator and the ice making heat exchanger;
Have
A heat storage ice making device for producing a sherbet-like ice by cooling the ice making fluid to a supercooled state by exchanging heat between the ice making fluid and brine in the ice making heat exchanger,
Flow control using an aqueous solution as the ice-making fluid, and returning the flow rate of the aqueous solution circulating through the ice-making fluid circulation circuit to the predetermined flow rate when the flow rate of the aqueous solution decreases below a predetermined flow rate due to a temperature drop and concentration increase due to concentration. An ice making apparatus for heat storage, characterized by comprising means.

(9) 内部に製氷用流体が貯溜された蓄熱槽と、
対向配置された複数の伝熱プレート間に、ブラインが流れるブライン用流路および、前記製氷用流体が流れる前記製氷用流体用流路が形成されたプレート型の製氷熱交換器と、
前記蓄熱槽と製氷熱交換器との間で前記製氷用流体を循環させる製氷用流体循環回路と、
冷凍機で冷却されたブラインを前記製氷熱交換器に導くブライン循環回路と、
を有し、
前記製氷熱交換器で製氷用流体とブラインを熱交換することにより、製氷用流体を過冷却状態に冷却して前記蓄熱槽内に戻し、シャーベット状の氷を製造する蓄熱用製氷装置であって、
前記製氷用流体として水溶液を使用し、前記ブライン循環回路を循環するブライン量が、当該ブラインの温度の降下に伴って所定流量より低下すると、前記所定流量に戻す流量制御手段を有することを特徴とする蓄熱用製氷装置。
(9) a heat storage tank in which ice making fluid is stored;
A plate-type ice making heat exchanger in which a brine flow path through which brine flows and a flow path for the ice making fluid through which the ice making fluid flows are formed between a plurality of heat transfer plates disposed opposite to each other;
An ice making fluid circulation circuit for circulating the ice making fluid between the heat storage tank and the ice making heat exchanger;
A brine circulation circuit for guiding the brine cooled by the refrigerator to the ice-making heat exchanger;
Have
A heat storage ice making device that heats the ice making fluid and brine in the ice making heat exchanger to cool the ice making fluid to a supercooled state and return it to the heat storage tank to produce sherbet-like ice. ,
An aqueous solution is used as the ice-making fluid, and when the amount of brine circulating in the brine circulation circuit falls below a predetermined flow rate with a decrease in the temperature of the brine, the flow control means returns to the predetermined flow rate. Ice storage device for heat storage.

(10) 前記水溶液を氷液共存温度より高温にする温度は、0.5℃〜1.5℃であり、前記冷媒を氷液共存温度より低温状態とする温度は、3.5℃〜4.5℃である前記(7)の蓄熱用製氷装置。   (10) The temperature at which the aqueous solution is made higher than the ice-liquid coexistence temperature is 0.5 ° C. to 1.5 ° C., and the temperature at which the refrigerant is at a temperature lower than the ice-liquid coexistence temperature is 3.5 ° C. to 4 ° C. (5) The ice storage device for heat storage according to (7), which is 5 ° C.

(11) 前記水溶液は、アルコール水溶液である前記(7)〜(10)の蓄熱用製氷装置。   (11) The ice storage device for heat storage according to (7) to (10), wherein the aqueous solution is an alcohol aqueous solution.

(12) 前記水溶液は、塩化ナトリウム水溶液である前記(7)〜(10)の蓄熱用製氷装置。   (12) The heat storage ice making device according to any one of (7) to (10), wherein the aqueous solution is a sodium chloride aqueous solution.

本発明は、製氷用流体として水溶液を使用し、蓄熱槽内での氷液共存温度を基準に水溶液の温度を制御し、製氷するので、過冷却方式の有利性を生かしつつ、より低温の冷熱源を得ることができる。   The present invention uses an aqueous solution as an ice making fluid, controls the temperature of the aqueous solution based on the ice liquid coexisting temperature in the heat storage tank, and makes ice, making it possible to cool at lower temperatures while taking advantage of the supercooling method. You can get a source.

請求項1,7の発明は、製氷熱交換器に流入する水溶液の温度を、氷液共存温度を基準に制御し、また、冷媒に関しては冷凍機を制御して冷媒の温度を、氷液共存温度を基準に制御するので、簡単な制御で製氷熱交換器内の水溶液を安定的に過冷却とすることができ、蓄熱槽内に戻し過冷却を解除して相変化させ、シャーベット状の氷を得ることができる。   In the inventions of claims 1 and 7, the temperature of the aqueous solution flowing into the ice-making heat exchanger is controlled based on the ice liquid coexistence temperature, and for the refrigerant, the refrigerator is controlled to control the temperature of the refrigerant. Since the temperature is controlled based on the temperature, the aqueous solution in the ice-making heat exchanger can be stably supercooled with simple control. Can be obtained.

請求項2,8の発明は、蓄熱槽から製氷熱交換器に導かれる水溶液の流量が温度降下および濃縮による粘性増加に伴って所定流量より低下すると、水溶液の流量を流量制御手段の調整により所定流量に戻すので、製氷量の増加に伴い水溶液が濃縮され、凝固点が降下し、水溶液の粘性が増大しても、水溶液の流量が確保され、安定的な過冷却状態を得ることができる。   According to the second and eighth aspects of the present invention, when the flow rate of the aqueous solution guided from the heat storage tank to the ice-making heat exchanger decreases from the predetermined flow rate due to the temperature drop and the increase in viscosity due to concentration, the flow rate of the aqueous solution is determined by adjusting the flow control means. Since the flow rate is restored, the aqueous solution is concentrated as the amount of ice is increased, the freezing point is lowered, and even when the viscosity of the aqueous solution is increased, the flow rate of the aqueous solution is secured and a stable supercooled state can be obtained.

請求項3,9の発明は、冷凍機から製氷熱交換器へのブラインの流量がブラインの温度降下に伴って所定流量より低下すると、ブラインの流量を流量制御手段の調整により所定流量に戻すので、ブラインの粘性が増大しても、ブラインの流量が確保され、安定的な過冷却状態を得ることができる。   According to the third and ninth aspects of the present invention, when the flow rate of the brine from the refrigerator to the ice making heat exchanger falls below the predetermined flow rate due to the temperature drop of the brine, the flow rate of the brine is returned to the predetermined flow rate by adjusting the flow rate control means. Even if the viscosity of the brine increases, the flow rate of the brine is secured and a stable supercooled state can be obtained.

請求項4,10の発明は、水溶液の温度を氷液共存温度より0.5〜1.5℃上昇させ、冷媒の温度を氷液共存温度より3.5℃〜4.5℃の低温状態にすれば、製氷熱交換器内で水溶液を安定的に過冷却とすることができる。   In the inventions of claims 4 and 10, the temperature of the aqueous solution is raised by 0.5 to 1.5 ° C. from the ice liquid coexisting temperature, and the refrigerant temperature is a low temperature state of 3.5 ° C. to 4.5 ° C. from the ice liquid coexisting temperature. By doing so, the aqueous solution can be stably supercooled in the ice making heat exchanger.

請求項5,6,11,12の発明は、水溶液をアルコール水溶液あるいは塩化ナトリウム水溶液としたので、安価にかつ簡単に低温の冷熱源を得ることができる。   In the fifth, sixth, eleventh and twelfth inventions, since the aqueous solution is an alcohol aqueous solution or a sodium chloride aqueous solution, a low-temperature cold heat source can be obtained easily and inexpensively.

以下、本発明の実施の形態を、図面を参照しつつ説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本発明の実施形態に係る蓄熱用製氷装置の概略を示す図、図2はプレート型熱交換器を示す概略斜視図である。   FIG. 1 is a diagram showing an outline of an ice storage device for heat storage according to an embodiment of the present invention, and FIG. 2 is a schematic perspective view showing a plate heat exchanger.

本実施形態に係る蓄熱用製氷装置は、図1に示すように、内部に製氷用流体としての水溶液Wが貯溜された蓄熱槽1と、製氷熱交換器10と、蓄熱槽1と製氷熱交換器10との間で水溶液Wを循環させる水溶液循環回路2と、冷凍機3からの冷媒で冷却されたブラインBを貯留するブラインタンク4と、ブラインタンク4と製氷熱交換器10との間でブラインBを循環させるブライン循環回路5と、を有している。   As shown in FIG. 1, the heat storage ice making device according to the present embodiment includes a heat storage tank 1 in which an aqueous solution W as an ice making fluid is stored, an ice making heat exchanger 10, a heat storage tank 1, and ice making heat exchange. Between the aqueous solution circulation circuit 2 for circulating the aqueous solution W between the cooler 10, the brine tank 4 for storing the brine B cooled by the refrigerant from the refrigerator 3, and between the brine tank 4 and the ice making heat exchanger 10. A brine circulation circuit 5 that circulates the brine B.

製氷熱交換器10は、図2に示すように、対向配置された複数の伝熱プレート11間に、ブラインBが流れるブライン用流路12と、ブライン用流路12間に形成された水溶液Wが流れる水溶液用流路13とを有するプレート型熱交換器である。このプレート型熱交換器は、ブラインBと水溶液Wとの伝熱面積が大きいので、熱交換性能に優れたものであり、伝熱プレート11の枚数の増減により能力調整が容易にでき、コンパクト化や省スペース化が図れ、伝熱プレート11の保守点検も容易となる等、多くの利点を有している。特に、プレート型熱交換器は、その構造上、液体の流路が狭く複雑なため、製氷には不向きであるが、前述したような温度や流量を制御することでこれを可能にしている。   As shown in FIG. 2, the ice making heat exchanger 10 includes an aqueous solution W formed between the brine flow path 12 and the brine flow path 12 between the plurality of heat transfer plates 11 arranged to face each other. Is a plate type heat exchanger having an aqueous solution flow path 13. This plate-type heat exchanger has a large heat transfer area between the brine B and the aqueous solution W, and therefore has excellent heat exchange performance. The capacity can be easily adjusted by increasing or decreasing the number of heat transfer plates 11, and the size of the plate heat exchanger can be reduced. There are many advantages such as saving space and facilitating maintenance and inspection of the heat transfer plate 11. In particular, the plate-type heat exchanger is not suitable for ice making because of its narrow and complicated liquid flow path, but this is possible by controlling the temperature and flow rate as described above.

水溶液循環回路2は、蓄熱槽1内の水溶液Wを製氷熱交換器10に導く流入側管路2aと、製氷熱交換器10から排出された水溶液Wを蓄熱槽1に導く排出側管路2bとを有している。   The aqueous solution circulation circuit 2 includes an inflow side pipe 2 a that guides the aqueous solution W in the heat storage tank 1 to the ice making heat exchanger 10, and a discharge side pipe 2 b that guides the aqueous solution W discharged from the ice making heat exchanger 10 to the heat storage tank 1. And have.

流入側管路2aには、蓄熱槽1内の水溶液Wの温度を検知する温度検知部材21と、水溶液Wを循環させる水溶液用のポンプPと、流通する水溶液Wの量を制御する流量制御弁22と、蓄熱槽1から流出する水溶液Wの温度が氷液共存温度Tk℃以下になると、水溶液Wを予熱する予熱手段23と、製氷熱交換器10に流入する水溶液Wの温度T℃を検知する流入温度検知部材24と、循環する水溶液Wの流量を検知する水溶液用の流量計25と、槽内温度検知部材21、流入温度検知部材24および流量計25からの測定データが入力され、これら測定データによりポンプPや流量制御弁22あるいは予熱手段23を制御する水溶液制御部Cwと、が設けられている。 The inflow side duct 2a includes a temperature sensing member 21 for detecting the temperature of the aqueous solution W in the thermal storage tank 1, a pump P 1 for aqueous solution for circulating the aqueous solution W, the flow rate control for controlling the amount of the aqueous solution W flowing When the temperature of the aqueous solution W flowing out from the valve 22 and the heat storage tank 1 becomes equal to or lower than the ice liquid coexistence temperature Tk ° C., the preheating means 23 for preheating the aqueous solution W and the temperature T 1 ° C. of the aqueous solution W flowing into the ice making heat exchanger 10 Measurement data from the inflow temperature detection member 24 for detecting the flow rate, the flowmeter 25 for the aqueous solution for detecting the flow rate of the circulating aqueous solution W, the in-tank temperature detection member 21, the inflow temperature detection member 24, and the flowmeter 25 are input. , an aqueous solution controller Cw for controlling the pump P 1 and the flow control valve 22 or preheating means 23, is provided by these measurement data.

排出側管路2bは、製氷熱交換器10内で過冷却状態にされた水溶液Wを蓄熱槽1内に戻す管路であるため、排出側管路2b自体は、内部を過冷却状態の水溶液Wが閉塞することなく円滑に流れるように、平滑形状でかつ樹脂材質とすることが好ましく、また、管路の曲り部の曲率半径は極力大きな値になるように設定し、過冷却状態の水溶液Wが刺激されることなく円滑に流れることが好ましい。排出側管路2bの蓄熱槽側の端部26は、蓄熱槽1の上部に臨まされた開放端部であり、過冷却状態にされた水溶液Wを蓄熱槽1に吐出することにより相変化させるようになっている。過冷却状態にされた水溶液Wは、蓄熱槽1内に戻るとき、液面と衝突することにより過冷却が解除され、一部が相変化し、シャーベット状の氷Kになる。   Since the discharge side pipe 2b is a pipe that returns the supercooled aqueous solution W in the ice making heat exchanger 10 to the heat storage tank 1, the discharge side pipe 2b itself is a supercooled aqueous solution. It is preferable to use a smooth material and a resin material so that W flows smoothly without blocking, and the curvature radius of the bent portion of the pipe is set to be as large as possible, and the supercooled aqueous solution It is preferable that W flows smoothly without being stimulated. The end 26 on the side of the heat storage tank of the discharge side pipe 2 b is an open end facing the upper part of the heat storage tank 1, and the phase is changed by discharging the supercooled aqueous solution W to the heat storage tank 1. It is like that. When the aqueous solution W brought into the supercooled state returns to the inside of the heat storage tank 1, the supercooling is released by colliding with the liquid surface, and a part of the phase changes to become sherbet-like ice K.

ブライン循環回路5は、ブラインタンク4に貯溜されたブラインBを製氷熱交換器10に導く流入側管路5aと、製氷熱交換器10から流出したブラインBをブラインタンク4に戻す排出側管路5bとを有している。   The brine circulation circuit 5 includes an inflow side conduit 5 a that guides the brine B stored in the brine tank 4 to the ice making heat exchanger 10, and an exhaust side conduit that returns the brine B that has flowed out of the ice making heat exchanger 10 to the brine tank 4. 5b.

流入側管路5aには、ブラインタンク4からのブラインBを製氷熱交換器10に送るブライン用のポンプPと、流通するブラインBの量を制御する流量制御弁52と、製氷熱交換器10に流入するブラインBの温度T℃を検知する流入温度検知部材54と、循環するブラインBの流量を検知するブライン用の流量計55と、流入温度検知部材54および流量計55からの測定データが入力され、この測定データによりポンプPや弁52あるいは冷凍機3を制御するブライン制御部Cbと、が設けられている。 The inflow side pipe 5a is provided with a pump P 2 for brine sending the brine B from the brine tank 4 to the ice heat exchanger 10, a flow control valve 52 to control the amount of brine B flowing, ice heat exchanger 10, an inflow temperature detecting member 54 for detecting the temperature T 2 ° C. of the brine B flowing in 10, a brine flow meter 55 for detecting the flow rate of the circulating brine B, and a measurement from the inflow temperature detecting member 54 and the flow meter 55. data is input, and brine controller Cb for controlling the pump P 2 and the valve 52 or the refrigerator 3, is provided by the measurement data.

次に、本実施形態に係る蓄熱用製氷方法を説明する。   Next, the ice storage method for heat storage according to the present embodiment will be described.

製氷用流体としての水溶液Wが常温の状態にあり、この状態で冷凍機3とポンプP,Pを作動すると、冷凍機3で冷却されたブラインBがブラインタンク4に貯留され、ブラインタンク4からポンプPにより取出されたブラインBと、ポンプPにより取出された蓄熱槽1内の水溶液Wが、製氷熱交換器10に流入し、相互に熱交換し、低温になった水溶液Wは、排出側管路2bを通って蓄熱槽1に戻され、ブラインBもブラインタンク4に戻される。 When the aqueous solution W as the ice making fluid is in a normal temperature state and the refrigerator 3 and the pumps P 1 and P 2 are operated in this state, the brine B cooled by the refrigerator 3 is stored in the brine tank 4, and the brine tank The brine B taken out from the pump 4 by the pump P 2 and the aqueous solution W in the heat storage tank 1 taken out by the pump P 1 flow into the ice-making heat exchanger 10, exchange heat with each other, and the aqueous solution W having a low temperature. Is returned to the heat storage tank 1 through the discharge side pipe 2b, and the brine B is also returned to the brine tank 4.

運転開始後間もない時間帯は、蓄熱槽1内では、水溶液W中の水分が、次第に凝固されて小さな粒のシャーベット状の氷Kが増加するが、この氷Kの増加に伴って水溶液Wの濃度も次第に増大し、水溶液Wの凝固点温度Tg℃も低下することになる。   In the time zone shortly after the start of operation, the water in the aqueous solution W is gradually solidified in the heat storage tank 1 and sherbet-like ice K having a small particle size increases. As the ice K increases, the aqueous solution W As a result, the freezing point temperature Tg ° C. of the aqueous solution W also decreases.

しかし、本実施形態では、氷液混在する蓄熱槽1から流出する水溶液Wの温度、氷液共存温度Tk℃が凝固点Tg℃と同じである点を利用し、この氷液共存温度Tk℃(=Tg℃)を基準にして、製氷熱交換器10に流入する水溶液Wの温度T℃を制御し、水溶液Wであっても正常な過冷却状態で製氷熱交換器10から流出させるようにしている。 However, in this embodiment, the temperature of the aqueous solution W flowing out from the heat storage tank 1 mixed with ice liquid and the ice liquid coexistence temperature Tk ° C. are the same as the freezing point Tg ° C., and this ice liquid coexistence temperature Tk ° C. (= The temperature T 1 ° C. of the aqueous solution W flowing into the ice making heat exchanger 10 is controlled on the basis of Tg ° C.), and the aqueous solution W is allowed to flow out of the ice making heat exchanger 10 in a normal supercooled state. Yes.

また、水溶液Wの濃縮と温度低下に伴って水溶液Wの流体粘性が増加するが、この粘性の増加によるものと思われる、製氷熱交換器10に流入する水溶液Wの流量低下が生じる。この流量低下にも対処しなければ、水溶液Wを正常な過冷却状態で流すことはできないので、水溶液Wの流量も制御している。   In addition, the fluid viscosity of the aqueous solution W increases as the aqueous solution W concentrates and the temperature decreases, but the flow rate of the aqueous solution W flowing into the ice-making heat exchanger 10 seems to be increased due to this increase in viscosity. Unless the reduction in the flow rate is dealt with, the aqueous solution W cannot be allowed to flow in a normal supercooled state, so the flow rate of the aqueous solution W is also controlled.

ブラインBは、氷液共存温度Tk℃(=Tg℃)より所定温度低い状態を維持しなければならず、しかも、ブラインBに関しても水溶液Wと同様、ブラインBの温度降下により粘性が増加し、これに伴ってブライン循環回路5を流通するブラインBの流量低下が生じるので、ブラインBの流量低下に対しても対処している。   The brine B must maintain a predetermined temperature lower than the ice liquid coexistence temperature Tk ° C. (= Tg ° C.), and the viscosity of the brine B increases as the temperature of the brine B decreases, as with the aqueous solution W. Along with this, a decrease in the flow rate of the brine B flowing through the brine circulation circuit 5 occurs.

したがって、本実施形態の蓄熱用製氷方法では、水溶液Wを過冷却状態のまま製氷熱交換器10から流出させ、蓄熱槽1内で円滑に相変化させるために、水溶液WやブラインBの温度制御と流量低下の防止を行なっている。水溶液の温度制御と流量制御、ブラインの温度制御と流量制御を項分けて説明する。   Therefore, in the ice storage method for heat storage according to the present embodiment, the temperature control of the aqueous solution W or brine B is performed in order to cause the aqueous solution W to flow out of the ice making heat exchanger 10 in a supercooled state and to smoothly change the phase in the heat storage tank 1. And it prevents the flow rate from decreasing. The temperature control and flow rate control of the aqueous solution and the temperature control and flow rate control of the brine will be described separately.

<水溶液の温度制御>
冷凍機3とポンプPの運転を継続すると、蓄熱槽1内の水溶液Wは次第に冷却され、氷の量も増加する。これに伴って蓄熱槽1内の水溶液Wの濃度も増大し、水溶液Wの凝固点温度Tgが低下することになり、蓄熱槽1内での水溶液Wの温度も低下する。
<Temperature control of aqueous solution>
With continued operation of the refrigerator 3 and the pump P 1, an aqueous solution W in the heat storage tank 1 is gradually cooled, also increases the amount of ice. Along with this, the concentration of the aqueous solution W in the heat storage tank 1 also increases, the freezing point temperature Tg of the aqueous solution W decreases, and the temperature of the aqueous solution W in the heat storage tank 1 also decreases.

しかし、水溶液Wと氷Kが共存している状態の蓄熱槽1内から流出された水溶液Wの温度である氷液共存温度Tk℃(=Tg℃)は、凝固点Tg℃と同じ温度であるため、本実施形態では、この氷液共存温度Tk℃を基準として水溶液制御部Cwと水溶液制御部CwがブラインBの温度と水溶液Wの温度を制御している。   However, the ice liquid coexistence temperature Tk ° C. (= Tg ° C.), which is the temperature of the aqueous solution W flowing out from the heat storage tank 1 in the state where the aqueous solution W and ice K coexist, is the same temperature as the freezing point Tg ° C. In this embodiment, the aqueous solution control unit Cw and the aqueous solution control unit Cw control the temperature of the brine B and the temperature of the aqueous solution W with reference to the ice solution coexistence temperature Tk ° C.

水溶液制御部Cwは、水溶液Wの製氷熱交換器10に流入する直前の温度Tを流入温度検知部材24により検知し、槽内温度検知部材21により検知した氷液共存温度Tk℃(=Tg℃)と比較し、TがTkより高温であればそのまま流し、低温であれば、予熱手段33を作動して水溶液Wを加熱し、水溶液Wの温度TをTk+αの一定温度にまで高めた後に、製氷熱交換器10に流入させる。 Aqueous controller Cw is the temperature T 1 of the immediately before flowing into the ice making heat exchanger 10 of the aqueous solution W is detected by inlet temperature sensing member 24, the ice-liquid coexisting temperature Tk ° C. was detected by chamber temperature detection member 21 (= Tg ° C.) as compared to, T 1 is passed directly if a higher temperature than Tk, if low temperature, heat the aqueous solution W actuates the preheating means 33, the temperature T 1 of the aqueous solution W to a constant temperature of Tk + alpha enhanced After that, it is made to flow into the ice making heat exchanger 10.

=Tk+α……………(1)
の関係で温度制御を行なう。
T 1 = Tk + α (1)
Temperature control is performed in relation to

ここにおいて、「α」は、0.5℃〜1.5℃の範囲であればよいことが実験により立証されている。この値は、製氷熱交換器10に氷液共存温度Tk℃の水溶液Wが流入した場合において、水溶液Wが凍結せず、正常な過冷却状態となって安定的に製氷熱交換器10から流出する場合を実験により求めたものである。   Here, it has been proved by experiments that “α” may be in the range of 0.5 ° C. to 1.5 ° C. This value indicates that when the aqueous solution W having the ice liquor coexistence temperature Tk ° C. flows into the ice making heat exchanger 10, the aqueous solution W does not freeze and becomes a normal supercooled state and stably flows out of the ice making heat exchanger 10. The case where it does is calculated | required by experiment.

したがって、本実施形態では、氷液共存温度Tk℃(=Tg℃)を基準として、製氷熱交換器10に流入する直前の水溶液Wの温度を制御するので、水溶液Wは、製氷熱交換器10でブラインBにより冷却され、過冷却状態になり易く、液状態のまま製氷熱交換器10から流出され、蓄熱槽1内で相変化し、貯留されることになる。   Therefore, in this embodiment, the temperature of the aqueous solution W immediately before flowing into the ice making heat exchanger 10 is controlled on the basis of the ice liquid coexistence temperature Tk ° C. (= Tg ° C.). Then, it is cooled by the brine B and easily enters a supercooled state, flows out of the ice making heat exchanger 10 in a liquid state, undergoes a phase change in the heat storage tank 1 and is stored.

<ブラインの温度制御>
一方、水溶液Wの温度は、ブラインBの温度によっても変化するので、ブラインBの温度も制御する必要がある。ブラインBの温度Tは、水溶液Wの氷液共存温度Tk=Tg℃より所定温度βだけ低温である必要がある。
<Brine temperature control>
On the other hand, since the temperature of the aqueous solution W also changes depending on the temperature of the brine B, the temperature of the brine B needs to be controlled. The temperature T 2 of the brine B needs to be lower than the ice liquid coexistence temperature Tk = Tg ° C. of the aqueous solution W by a predetermined temperature β.

=Tk−β……………(2)
の関係が必要である。
T 2 = Tk−β (2)
Is necessary.

ここにおいて、「β」は、3.5℃〜4.5℃の範囲あればよいことが実験により立証されている。この値も、製氷熱交換器10に氷液共存温度Tk℃の水溶液Wが流入した場合において、水溶液Wが凍結せず、正常な過冷却状態となって製氷熱交換器10から流出する場合を実験により求めたものである。   Here, it has been proved by experiments that “β” may be in the range of 3.5 ° C. to 4.5 ° C. This value is also obtained when the aqueous solution W having the ice liquor coexistence temperature Tk ° C. flows into the ice making heat exchanger 10 and the aqueous solution W is not frozen and flows out of the ice making heat exchanger 10 in a normal supercooled state. It was obtained by experiment.

ブライン制御部Cbは、流入温度検知部材54が検知したブラインBの温度Tが、前記(2)式を充足するように、冷凍機3の作動状態を制御し、製氷熱交換器10に流入するブラインBの温度Tが水溶液Wの氷液共存温度Tk℃(=Tg℃)より3.5℃〜4.5℃低い温度になるように制御する。 Brine controller Cb the temperature T 2 of the brine B in which the inlet temperature detecting member 54 detects that, so as to satisfy the equation (2), and controls the operation state of the refrigerator 3, flows into the ice making heat exchanger 10 temperature T 2 of the brine B which is controlled to be in an ice-liquid coexistent temperature Tk ℃ (= Tg ℃) than 3.5 ° C. ~ 4.5 ° C. lower temperature of the aqueous solution W.

この結果、ブラインBは、水溶液Wが製氷熱交換器10内で凍結せず、過冷却状態を保持した状態で円滑に流出するように、水溶液Wを冷却することになる。   As a result, the brine B cools the aqueous solution W so that the aqueous solution W does not freeze in the ice making heat exchanger 10 and smoothly flows out while maintaining the supercooled state.

<水溶液の流量制御>
水溶液Wは、濃縮と凝固点温度Tgの低下に伴って水溶液Wの流体粘性が増加し、製氷熱交換器10に流入する水溶液Wの流量低下が生じる。水溶液Wが流量低下し、ブラインBが正常に流れていると、水溶液Wの温度が低下し、製氷熱交換器10内で過冷却状態を保持しつつ円滑に流れない虞がある。
<Flow control of aqueous solution>
As the aqueous solution W concentrates and the freezing point temperature Tg decreases, the fluid viscosity of the aqueous solution W increases, and the flow rate of the aqueous solution W flowing into the ice-making heat exchanger 10 decreases. When the flow rate of the aqueous solution W is decreased and the brine B is flowing normally, the temperature of the aqueous solution W is decreased, and there is a possibility that the aqueous solution W may not flow smoothly while maintaining a supercooled state in the ice making heat exchanger 10.

このため、本実施形態では、水溶液Wが製氷熱交換器10内で過冷却状態を保持しつつ円滑に流れている正常な状態の流量を予め水溶液制御部Cwに入力しておき、水溶液循環回路2に設けられた流量計25からの測定データと比較し、水溶液Wの流量が低下したと判断すれば、流量制御弁22の開度を大きくし、水溶液Wの流量を増大している。なお、水溶液制御部Cwからの信号によりポンプPの回転数を高め、水溶液Wの流量を増大してもよい。 For this reason, in this embodiment, a normal state flow rate in which the aqueous solution W smoothly flows while maintaining the supercooled state in the ice making heat exchanger 10 is input in advance to the aqueous solution control unit Cw, and the aqueous solution circulation circuit 2, if it is determined that the flow rate of the aqueous solution W has decreased, the opening degree of the flow control valve 22 is increased and the flow rate of the aqueous solution W is increased. Incidentally, increasing the rotational speed of the pump P 1 by a signal from an aqueous solution controller Cw, it may increase the flow rate of the aqueous solution W.

これにより製氷熱交換器10に流入する水溶液Wは、所定流量が確保され、水溶液Wを正常な過冷却状態で流すことができる。   As a result, a predetermined flow rate of the aqueous solution W flowing into the ice making heat exchanger 10 is secured, and the aqueous solution W can flow in a normal supercooled state.

<ブラインの流量制御>
ブラインBに関しても、その温度降下により粘性が増加する。特に、ブラインタンクに一旦貯留されるブラインBは、外気温の影響を受け易く、外気温が低下すると、これに伴って粘性が増加する。
<Brine flow rate control>
As for brine B, the viscosity increases due to the temperature drop. In particular, the brine B once stored in the brine tank is easily affected by the outside air temperature, and when the outside air temperature decreases, the viscosity increases accordingly.

ブラインBの粘性が増加すれば、ブライン循環回路5を流通するブラインBの流量が低下することになり、水溶液Wの冷却能力が低下する虞がある。   If the viscosity of the brine B increases, the flow rate of the brine B flowing through the brine circulation circuit 5 will decrease, and the cooling capacity of the aqueous solution W may decrease.

このため、本実施形態では、水溶液Wが製氷熱交換器10内で過冷却状態を保持しつつ円滑に流れている正常な状態の流量を予め水溶液制御部Cwに入力しておき、ブライン循環回路5に設けられた流量計55からの測定データと比較し、ブラインBの流量が低下したと判断すれば、流量制御弁52の開度を大きくし、ブラインBの流量を増大している。なお、ブライン制御部Cbからの信号によりポンプPの回転数を高め、ブラインBの流量を増大してもよい。 For this reason, in the present embodiment, a normal state flow rate in which the aqueous solution W smoothly flows while maintaining the supercooled state in the ice making heat exchanger 10 is input in advance to the aqueous solution control unit Cw, and the brine circulation circuit 5, if it is determined that the flow rate of the brine B has decreased, the opening degree of the flow control valve 52 is increased, and the flow rate of the brine B is increased. Incidentally, increasing the rotational speed of the pump P 2 by a signal from the brine control unit Cb, it may increase the flow rate of the brine B.

これにより製氷熱交換器10に流入するブラインBは、ブラインBの粘性が増加しても、正常な熱交換が行われる所定流量が確保され、正常な過冷却状態の水溶液Wにすることができる。   As a result, the brine B flowing into the ice-making heat exchanger 10 can have a predetermined flow rate at which normal heat exchange is performed even if the viscosity of the brine B increases, and can be made into a normal supercooled aqueous solution W. .

<実験例1>
図3は0.80容量%のアルコール水溶液の実験結果を示す測定データ表、図4は同測定データ表に基づいて作成したグラフである。
<Experimental example 1>
FIG. 3 is a measurement data table showing the experimental results of 0.80 vol% alcohol aqueous solution, and FIG. 4 is a graph created based on the measurement data table.

水溶液Wとして0.80容量%のアルコールを、ブラインBとしてエチレングリコール溶液を使用した。水溶液Wの循環流量を、1.00m/h、ブラインBの循環流量を、1.40m/hで一定とした。水溶液Wの蓄熱槽1から流出する温度Tk℃(=Tg℃)と、溶液の製氷熱交換器10に流入する温度T℃を測定し、水溶液Wの製氷熱交換器10に流入する温度がT=Tk+α℃になるように制御した。αは1.5℃とした。 As aqueous solution W, 0.80% by volume of alcohol was used, and as brine B, an ethylene glycol solution was used. The circulation flow rate of the aqueous solution W was kept constant at 1.00 m 3 / h, and the circulation flow rate of the brine B was kept constant at 1.40 m 3 / h. The temperature Tk ° C. (= Tg ° C.) of the aqueous solution W flowing out from the heat storage tank 1 and the temperature T 1 ° C. of the solution flowing into the ice making heat exchanger 10 are measured, and the temperature of the aqueous solution W flowing into the ice making heat exchanger 10 is Control was performed so that T 1 = Tk + α ° C. α was set to 1.5 ° C.

一方、ブラインBの製氷熱交換器10に流入する温度Tを測定し、ブラインBの製氷熱交換器10に流入する温度がT=Tk−β℃になるように制御した。βは4.5℃とした。 On the other hand, the temperature T 2 flowing into the ice making heat exchanger 10 of the brine B was measured, and the temperature flowing into the ice making heat exchanger 10 of the brine B was controlled to be T 2 = Tk−β ° C. β was set to 4.5 ° C.

この結果、図3に示すように、製氷熱交換器10の出口における水溶液Wの温度は、略−1.34℃〜−1.49℃であり、安定した過冷却状態の水溶液Wが流れ、これが蓄熱槽1内に送られて相変化し、シャーベット状の氷になった。蓄熱槽1内の温度も、略−0.22℃〜−0.27℃という安定した温度状態となった。   As a result, as shown in FIG. 3, the temperature of the aqueous solution W at the outlet of the ice making heat exchanger 10 is approximately −1.34 ° C. to −1.49 ° C., and the stable supercooled aqueous solution W flows. This was sent into the heat storage tank 1 to change the phase and became sherbet-like ice. The temperature in the heat storage tank 1 also became a stable temperature state of approximately −0.22 ° C. to −0.27 ° C.

<実験例2>
図5は1.20容量%のアルコール水溶液の実験結果を示す測定データ表、図6は同測定データ表に基づいて作成したグラフである。
<Experimental example 2>
FIG. 5 is a measurement data table showing experimental results of 1.20 vol% alcohol aqueous solution, and FIG. 6 is a graph created based on the measurement data table.

水溶液Wとして1.20容量%のアルコールを使用し、ブラインBとしては、前記同様のエチレングリコール溶液を使用した。水溶液Wの循環流量も、1.00m/h、ブラインBの循環流量も、1.40m/hと、同様とした。水溶液Wの蓄熱槽1から流出する温度Tk℃(=Tg℃)と、水溶液Wの製氷熱交換器10に流入する温度Tを測定し、水溶液Wの製氷熱交換器10に流入する温度がT-=Tg+αになるように制御した。αは1.5℃とした。 As the aqueous solution W, 1.20 vol% alcohol was used, and as the brine B, the same ethylene glycol solution as described above was used. The circulation flow rate of the aqueous solution W was 1.00 m 3 / h, and the circulation flow rate of the brine B was also 1.40 m 3 / h. The temperature Tk ° C. (= Tg ° C.) of the aqueous solution W flowing out of the heat storage tank 1 and the temperature T 1 of the aqueous solution W flowing into the ice making heat exchanger 10 are measured, and the temperature of the aqueous solution W flowing into the ice making heat exchanger 10 is Control was performed so that T 1 − = Tg + α. α was set to 1.5 ° C.

一方、ブラインBの製氷熱交換器10に流入する温度Tを測定し、ブラインBの製氷熱交換器10に流入する温度がT=Tk−βになるように制御した。βは4.5℃とした。 On the other hand, the temperature T 2 flowing into the ice making heat exchanger 10 of the brine B was measured, and the temperature flowing into the ice making heat exchanger 10 of the brine B was controlled to be T 2 = Tk−β. β was set to 4.5 ° C.

この結果、図5に示すように、製氷熱交換器10の出口温度は、略−1.36℃〜−1.59℃であり、安定した過冷却状態の水溶液Wが流れ、これが蓄熱槽1内に送られて相変化し、シャーベット状の氷になった。蓄熱槽1内の温度も、略−0.32℃〜−0.44℃という安定した温度状態となった。   As a result, as shown in FIG. 5, the outlet temperature of the ice making heat exchanger 10 is approximately −1.36 ° C. to −1.59 ° C., and a stable supercooled aqueous solution W flows, which is the heat storage tank 1. It was sent inside and changed in phase to become sorbet-like ice. The temperature in the heat storage tank 1 also became a stable temperature state of approximately −0.32 ° C. to −0.44 ° C.

<実験例3>
図7は3.38重量%の塩化ナトリウム水溶液の実験結果を示す測定データ表、図8は同測定データ表に基づいて作成したグラフである。
<Experimental example 3>
FIG. 7 is a measurement data table showing experimental results of a 3.38 wt% sodium chloride aqueous solution, and FIG. 8 is a graph created based on the measurement data table.

水溶液Wとして3.38重量%の塩化ナトリウム溶液を使用し、ブラインBとして塩化ナトリウム溶液を使用した。水溶液Wの循環流量を、1.00m/h、ブラインBの循環流量を、1.10m/hで一定とした。水溶液Wの蓄熱槽1から流出する温度がTk℃(=Tg℃)と、水溶液Wの製氷熱交換器10に流入する温度Tを測定し、水溶液Wの製氷熱交換器10に流入する温度がT=Tk+αになるように制御した。αは1.5℃とした。 A 3.38 wt% sodium chloride solution was used as aqueous solution W, and a sodium chloride solution was used as brine B. The circulation flow rate of the aqueous solution W was kept constant at 1.00 m 3 / h, and the circulation flow rate of the brine B was kept constant at 1.10 m 3 / h. The temperature at which the aqueous solution W flows out from the heat storage tank 1 is Tk ° C. (= Tg ° C.) and the temperature T 1 at which the aqueous solution W flows into the ice making heat exchanger 10 is measured, and the temperature at which the aqueous solution W flows into the ice making heat exchanger 10 Was controlled to be T 1 = Tk + α. α was set to 1.5 ° C.

一方、ブラインBの製氷熱交換器10に流入する温度Tを測定し、ブラインBの製氷熱交換器10に流入する温度がT=Tk−βになるように制御した。βは4.5℃とした。 On the other hand, the temperature T 2 flowing into the ice making heat exchanger 10 of the brine B was measured, and the temperature flowing into the ice making heat exchanger 10 of the brine B was controlled to be T 2 = Tk−β. β was set to 4.5 ° C.

この結果、図7に示すように、製氷熱交換器10の出口温度は、略−1.36℃〜−1.59℃であり、安定した過冷却状態の水溶液Wが流れ、これが蓄熱槽1内に送られて相変化し、シャーベット状の氷になった。蓄熱槽1内の温度も、略−2.06℃〜−2.52℃という安定した温度状態となった。   As a result, as shown in FIG. 7, the outlet temperature of the ice making heat exchanger 10 is approximately −1.36 ° C. to −1.59 ° C., and a stable supercooled aqueous solution W flows, which is the heat storage tank 1. It was sent inside and changed in phase to become sorbet-like ice. The temperature in the heat storage tank 1 also became a stable temperature state of approximately −2.06 ° C. to −2.52 ° C.

本発明は、上述した実施形態に限定されるものではなく、特許請求の範囲内で種々改変することができる。例えば、前記実施形態では、水溶液の温度制御と流量制御、ブラインの温度制御と流量制御を全て行なっているが、必ずしも全ての制御を行なうことはなく、水溶液WとブラインBの温度制御、水溶液Wの流量制御あるいはブラインBの流量制御をそれぞれ個別に行なってもよい。水溶液WとブラインBの温度制御のみを行なうと、水溶液Wの凝固点温度Tg℃が低下しても、水溶液Wを正常な過冷却状態で流すことができる。また、水溶液Wの流量制御あるいはブラインBの流量制御のみを行なうと、水溶液WやブラインBの凝固点温度Tg℃の低下に伴う粘性の増大に対処でき、水溶液Wを使用して製氷する場合に有効性を発揮するものである。   The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims. For example, in the embodiment, the temperature control and flow rate control of the aqueous solution and the temperature control and flow rate control of the brine are all performed, but not all the control is performed, the temperature control of the aqueous solution W and the brine B, the aqueous solution W Or the brine B flow control may be performed individually. If only the temperature control of the aqueous solution W and the brine B is performed, the aqueous solution W can be allowed to flow in a normal supercooled state even if the freezing point temperature Tg ° C. of the aqueous solution W decreases. Moreover, if only the flow rate control of the aqueous solution W or the flow rate control of the brine B is performed, it is possible to cope with an increase in viscosity accompanying a decrease in the freezing point temperature Tg ° C. of the aqueous solution W or the brine B. Effective when making ice using the aqueous solution W It demonstrates the nature.

また、本実施形態では、ブラインBとして、例えば、エチレングリコール溶液などを使用しているが、これのみでなく、塩化カリウム、アンモニア、塩化マグネシウム、炭酸カリウム、塩化カルシウムなど種々の溶液を使用することができることは言うまでもない。   In this embodiment, for example, an ethylene glycol solution is used as the brine B. However, not only this but also various solutions such as potassium chloride, ammonia, magnesium chloride, potassium carbonate, calcium chloride are used. Needless to say, you can.

本発明にかかる蓄熱用製氷方法と装置は、食品や飲料に関する分野での低温の冷熱源を得るものに適している。   The ice storage method and apparatus for heat storage according to the present invention are suitable for obtaining a low-temperature cold heat source in the field of food and beverages.

本発明の実施形態に係る蓄熱用製氷装置の概略図である。It is the schematic of the ice-making apparatus for thermal storage which concerns on embodiment of this invention. プレート型熱交換器を示す概略斜視図である。It is a schematic perspective view which shows a plate type heat exchanger. 0.80容量%のアルコール水溶液の実験結果を示すグラフである。It is a graph which shows the experimental result of 0.80 volume% alcohol aqueous solution. 同アルコール水溶液の実験結果を示す測定データ表である。It is a measurement data table | surface which shows the experimental result of the same alcohol aqueous solution. 1.20容量%のアルコール水溶液の実験結果を示すグラフである。It is a graph which shows the experimental result of 1.20 volume% alcohol aqueous solution. 同アルコール水溶液の実験結果を示す測定データ表である。It is a measurement data table | surface which shows the experimental result of the same alcohol aqueous solution. 3.38重量%の塩化ナトリウム水溶液の実験結果を示すグラフである。It is a graph which shows the experimental result of 3.38 weight% sodium chloride aqueous solution. 同塩化ナトリウム水溶液の実験結果を示す測定データ表である。It is a measurement data table | surface which shows the experimental result of the sodium chloride aqueous solution.

符号の説明Explanation of symbols

1…蓄熱槽、
2…製氷用流体循環回路、
3…冷凍機、
5…冷媒循環回路、
10…プレート型の製氷熱交換器(製氷熱交換器)、
11…伝熱プレート、
12…冷媒用流路、
13…製氷用流体用流路、
22…流量制御弁(流量制御手段)、
23…予熱手段、
52…流量制御弁(流量制御手段)、
B…ブライン(冷媒)、
Cb…冷媒温度制御部、
Cw…水溶液制御部、
K…氷、
…水溶液の温度、
…ブライン(冷媒)の温度、
Tg…水溶液の凝固点温度、
Tk…氷液共存温度、
W…水溶液。
1 ... thermal storage tank,
2 ... Fluid circulation circuit for ice making,
3 ... Refrigerator,
5 ... refrigerant circulation circuit,
10. Plate type ice making heat exchanger (ice making heat exchanger),
11 ... Heat transfer plate,
12 ... Flow path for refrigerant,
13 ... Flow path for ice making fluid,
22 ... Flow control valve (flow control means),
23. Preheating means,
52 ... Flow control valve (flow control means),
B ... Brine (refrigerant),
Cb: refrigerant temperature control unit,
Cw: aqueous solution control unit,
K ... ice,
T 1 ... temperature of the aqueous solution,
T 2 ... temperature of brine (refrigerant),
Tg: freezing point temperature of aqueous solution,
Tk ... Ice liquid coexistence temperature,
W: Aqueous solution.

Claims (12)

蓄熱槽内からの製氷用流体と、冷凍機で冷却されたブラインとをそれぞれ製氷熱交換器に導いて両者を熱交換し、前記製氷用流体を過冷却状態に冷却して前記蓄熱槽内に戻し、シャーベット状の氷を製造する蓄熱用製氷方法であって、
前記製氷用流体として水溶液を使用し、前記製氷熱交換器に導入される前記水溶液の温度が蓄熱槽内の水溶液の氷液共存温度より所定温度だけ高温となるように、また、前記製氷熱交換器に導かれるブラインの温度が前記氷液共存温度より所定温度だけ低温になるように、それぞれ制御し前記製氷熱交換器に導入することを特徴とする蓄熱用製氷方法。
The ice making fluid from the inside of the heat storage tank and the brine cooled by the refrigerator are each led to an ice making heat exchanger to exchange heat, and the ice making fluid is cooled to a supercooled state to enter the heat storage tank. An ice-making method for storing heat that returns and produces sherbet-shaped ice,
An aqueous solution is used as the ice-making fluid, and the temperature of the aqueous solution introduced into the ice-making heat exchanger is higher by a predetermined temperature than the ice liquid coexisting temperature of the aqueous solution in the heat storage tank. An ice making method for heat storage, wherein the temperature is controlled so that the temperature of the brine guided to the vessel is lower than the ice liquid coexistence temperature by a predetermined temperature, and the brine is introduced into the ice making heat exchanger.
蓄熱槽内からの製氷用流体と、冷凍機で冷却されたブラインとをそれぞれ製氷熱交換器に導いて両者を熱交換し、前記製氷用流体を過冷却状態に冷却して前記蓄熱槽内に戻し、シャーベット状の氷を製造する蓄熱用製氷方法であって、
前記製氷用流体として水溶液を使用し、前記蓄熱槽から製氷熱交換器に導かれる水溶液の流量が、前記水溶液の温度降下および濃縮による粘性増加に伴って所定流量以下になると、流量制御手段により前記所定流量に戻すことを特徴とする蓄熱用製氷方法。
The ice making fluid from the inside of the heat storage tank and the brine cooled by the refrigerator are each led to an ice making heat exchanger to exchange heat, and the ice making fluid is cooled to a supercooled state to enter the heat storage tank. An ice-making method for storing heat that returns and produces sherbet-shaped ice,
When an aqueous solution is used as the ice-making fluid, and the flow rate of the aqueous solution guided from the heat storage tank to the ice-making heat exchanger becomes equal to or less than a predetermined flow rate due to a temperature drop and concentration increase due to the concentration of the aqueous solution, An ice making method for heat storage, characterized by returning to a predetermined flow rate.
蓄熱槽内からの製氷用流体と、冷凍機で冷却されたブラインとをそれぞれ製氷熱交換器に導いて両者を熱交換し、前記製氷用流体を過冷却状態に冷却して前記蓄熱槽内に戻し、シャーベット状の氷を製造する蓄熱用製氷方法であって、
前記製氷用流体として水溶液を使用し、前記冷凍機から製氷熱交換器に導かれるブラインの流量が温度降下に伴って所定流量以下になると、流量制御手段により前記所定流量に戻すことを特徴とする蓄熱用製氷方法。
The ice making fluid from the inside of the heat storage tank and the brine cooled by the refrigerator are each led to an ice making heat exchanger to exchange heat, and the ice making fluid is cooled to a supercooled state to enter the heat storage tank. An ice-making method for storing heat that returns and produces sherbet-shaped ice,
An aqueous solution is used as the ice making fluid, and when the flow rate of the brine introduced from the refrigerator to the ice making heat exchanger becomes a predetermined flow rate or less with a temperature drop, the flow rate control means returns the flow rate to the predetermined flow rate. Ice making method for heat storage.
前記水溶液を氷液共存温度より高温にする温度は、0.5℃〜1.5℃であり、前記冷媒を氷液共存温度より低温状態とする温度は、3.5℃〜4.5℃である請求項1に記載の蓄熱用製氷方法。   The temperature at which the aqueous solution is made higher than the ice liquor coexistence temperature is 0.5 ° C to 1.5 ° C, and the temperature at which the refrigerant is at a temperature lower than the ice liquor coexistence temperature is 3.5 ° C to 4.5 ° C. The ice making method for heat storage according to claim 1. 前記水溶液は、アルコール水溶液である請求項1〜4のいずれかに記載の蓄熱用製氷方法。   The said aqueous solution is alcohol aqueous solution, The ice-making method for thermal storage in any one of Claims 1-4. 前記水溶液は、塩化ナトリウム水溶液である請求項1〜4のいずれかに記載の蓄熱用製氷方法。   The said aqueous solution is sodium chloride aqueous solution, The ice-making method for thermal storage in any one of Claims 1-4. 内部に製氷用流体が貯溜された蓄熱槽と、
対向配置された複数の伝熱プレート間に、ブラインが流れる冷媒用流路および、前記製氷用流体が流れる前記製氷用流体用流路が形成されたプレート型の製氷熱交換器と、
前記蓄熱槽と製氷熱交換器との間で前記製氷用流体を循環させる製氷用流体循環回路と、
冷凍機で冷却されたブラインを前記製氷熱交換器に導く冷媒循環回路と、
を有し、
前記製氷熱交換器で製氷用流体と冷媒を熱交換することにより、製氷用流体を過冷却状態に冷却して前記蓄熱槽内に戻し、シャーベット状の氷を製造する蓄熱用製氷装置であって、
前記製氷用流体として水溶液を使用することとし、前記製氷熱交換器に流入する前記水溶液の温度を氷液共存温度より所定温度だけ高温に制御する水溶液制御部と、前記ブラインの温度を前記氷液共存温度より所定温度だけ低温に制御する冷媒温度制御部とを有することを特徴とする蓄熱用製氷装置。
A heat storage tank in which ice-making fluid is stored;
A plate-type ice-making heat exchanger in which a flow path for refrigerant in which brine flows and a flow path for the ice-making fluid in which the ice-making fluid flows are formed between a plurality of opposed heat transfer plates;
An ice making fluid circulation circuit for circulating the ice making fluid between the heat storage tank and the ice making heat exchanger;
A refrigerant circulation circuit for guiding brine cooled by a refrigerator to the ice making heat exchanger;
Have
A heat storage ice making device for producing a sherbet-like ice by cooling the ice making fluid to a supercooled state by exchanging heat between the ice making fluid and the refrigerant in the ice making heat exchanger. ,
An aqueous solution is used as the ice making fluid, and an aqueous solution control unit that controls the temperature of the aqueous solution flowing into the ice making heat exchanger to be higher than the ice solution coexistence temperature by a predetermined temperature; and the temperature of the brine is the ice solution An ice making device for heat storage, comprising: a refrigerant temperature control unit that controls a temperature lower than the coexistence temperature by a predetermined temperature.
内部に製氷用流体が貯溜された蓄熱槽と、
対向配置された複数の伝熱プレート間に、ブラインが流れる冷媒用流路および、前記製氷用流体が流れる前記製氷用流体用流路が交互に形成されたプレート型の製氷熱交換器と、
前記蓄熱槽と前記製氷熱交換器との間で前記製氷用流体が循環される製氷用流体循環回路と、
冷凍機と前記製氷熱交換器との間でブラインが循環されるブライン循環回路と、
を有し、
前記製氷熱交換器で製氷用流体とブラインを熱交換することにより製氷用流体を過冷却状態に冷却して前記蓄熱槽内に戻し、シャーベット状の氷を製造する蓄熱用製氷装置であって、
前記製氷用流体として水溶液を使用し、前記製氷用流体循環回路を循環する水溶液の流量が、前記水溶液の温度降下および濃縮による粘性増加に伴って所定流量より低下すると、前記所定流量に戻す流量制御手段を有することを特徴とする蓄熱用製氷装置。
A heat storage tank in which ice-making fluid is stored;
A plate-type ice making heat exchanger in which a refrigerant flow path through which brine flows and a flow path for ice making fluid through which the ice making fluid flows are alternately formed between a plurality of opposed heat transfer plates;
An ice making fluid circulation circuit in which the ice making fluid is circulated between the heat storage tank and the ice making heat exchanger;
A brine circulation circuit in which brine is circulated between a refrigerator and the ice making heat exchanger;
Have
A heat storage ice making device for producing a sherbet-like ice by cooling the ice making fluid to a supercooled state by exchanging heat between the ice making fluid and brine in the ice making heat exchanger,
Flow control using an aqueous solution as the ice-making fluid, and returning the flow rate of the aqueous solution circulating through the ice-making fluid circulation circuit to the predetermined flow rate when the flow rate of the aqueous solution decreases below a predetermined flow rate due to a temperature drop and concentration increase due to concentration. An ice making apparatus for heat storage, characterized by comprising means.
内部に製氷用流体が貯溜された蓄熱槽と、
対向配置された複数の伝熱プレート間に、ブラインが流れるブライン用流路および、前記製氷用流体が流れる前記製氷用流体用流路が形成されたプレート型の製氷熱交換器と、
前記蓄熱槽と製氷熱交換器との間で前記製氷用流体を循環させる製氷用流体循環回路と、
冷凍機で冷却されたブラインを前記製氷熱交換器に導くブライン循環回路と、
を有し、
前記製氷熱交換器で製氷用流体とブラインを熱交換することにより、製氷用流体を過冷却状態に冷却して前記蓄熱槽内に戻し、シャーベット状の氷を製造する蓄熱用製氷装置であって、
前記製氷用流体として水溶液を使用し、前記ブライン循環回路を循環するブライン量が、当該ブラインの温度の降下に伴って所定流量より低下すると、前記所定流量に戻す流量制御手段を有することを特徴とする蓄熱用製氷装置。
A heat storage tank in which ice-making fluid is stored;
A plate-type ice making heat exchanger in which a brine flow path through which brine flows and a flow path for the ice making fluid through which the ice making fluid flows are formed between a plurality of heat transfer plates disposed opposite to each other;
An ice making fluid circulation circuit for circulating the ice making fluid between the heat storage tank and the ice making heat exchanger;
A brine circulation circuit for guiding the brine cooled by the refrigerator to the ice-making heat exchanger;
Have
A heat storage ice making device for producing a sherbet-like ice by cooling the ice making fluid to a supercooled state by exchanging heat between the ice making fluid and brine in the ice making heat exchanger. ,
An aqueous solution is used as the ice-making fluid, and when the amount of brine circulating in the brine circulation circuit falls below a predetermined flow rate with a decrease in the temperature of the brine, the flow control means returns to the predetermined flow rate. Ice storage device for heat storage.
前記水溶液を氷液共存温度より高温にする温度は、0.5℃〜1.5℃であり、前記冷媒を氷液共存温度より低温状態とする温度は、3.5℃〜4.5℃である請求項7に記載の蓄熱用製氷装置。   The temperature at which the aqueous solution is made higher than the ice liquor coexistence temperature is 0.5 ° C to 1.5 ° C, and the temperature at which the refrigerant is at a temperature lower than the ice liquor coexistence temperature is 3.5 ° C to 4.5 ° C. The ice storage device for heat storage according to claim 7. 前記水溶液は、アルコール水溶液である請求項7〜10のいずれかに記載の蓄熱用製氷装置。   The ice storage device for heat storage according to any one of claims 7 to 10, wherein the aqueous solution is an aqueous alcohol solution. 前記水溶液は、塩化ナトリウム水溶液である請求項7〜10のいずれかに記載の蓄熱用製氷装置。   The said aqueous solution is sodium chloride aqueous solution, The ice making apparatus for thermal storage in any one of Claims 7-10.
JP2004297513A 2004-10-12 2004-10-12 Ice making method and device for heat storage Pending JP2006112652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004297513A JP2006112652A (en) 2004-10-12 2004-10-12 Ice making method and device for heat storage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004297513A JP2006112652A (en) 2004-10-12 2004-10-12 Ice making method and device for heat storage

Publications (1)

Publication Number Publication Date
JP2006112652A true JP2006112652A (en) 2006-04-27

Family

ID=36381310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004297513A Pending JP2006112652A (en) 2004-10-12 2004-10-12 Ice making method and device for heat storage

Country Status (1)

Country Link
JP (1) JP2006112652A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016033444A (en) * 2014-07-31 2016-03-10 高砂熱学工業株式会社 Ice making system of sherbet ice and ice making method of sherbet ice
WO2016190232A1 (en) * 2015-05-22 2016-12-01 ダイキン工業株式会社 Fluid supplying device for temperature adjustment
JPWO2015083256A1 (en) * 2013-12-04 2017-03-16 富士通株式会社 Cooling device using mixed hydraulic fluid and cooling device for electronic device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015083256A1 (en) * 2013-12-04 2017-03-16 富士通株式会社 Cooling device using mixed hydraulic fluid and cooling device for electronic device
JP2016033444A (en) * 2014-07-31 2016-03-10 高砂熱学工業株式会社 Ice making system of sherbet ice and ice making method of sherbet ice
WO2016190232A1 (en) * 2015-05-22 2016-12-01 ダイキン工業株式会社 Fluid supplying device for temperature adjustment
CN107614980A (en) * 2015-05-22 2018-01-19 大金工业株式会社 Temperature adjustment fluid supply apparatus
JPWO2016190232A1 (en) * 2015-05-22 2018-02-22 ダイキン工業株式会社 Fluid supply device for temperature adjustment
CN107614980B (en) * 2015-05-22 2018-12-14 大金工业株式会社 Fluid supply apparatus is used in temperature adjustment
US10345023B2 (en) 2015-05-22 2019-07-09 Daikin Industries, Ltd. Temperature-adjusting fluid supply apparatus

Similar Documents

Publication Publication Date Title
US20160273811A1 (en) System for cooling a cabinet
KR20180008636A (en) Fluid cooling by refrigerant at triple point
JP5184300B2 (en) Dry ice manufacturing apparatus and dry ice manufacturing method
KR101710134B1 (en) High efficiency Ice thermal storage system
JP2006112652A (en) Ice making method and device for heat storage
JP4623995B2 (en) Ice making method and ice making apparatus by supercooling brine
JP5881379B2 (en) Fishing boat refrigeration equipment
KR101365876B1 (en) Wine cooling device
JPH11311454A (en) Latent heat storage type heat source system
KR102004184B1 (en) Cooling system for refrigeration container and cooling method
JP4399309B2 (en) Ice heat storage device
JP6643302B2 (en) Beverage dispenser
JP4922843B2 (en) Cooling system
JP2007303790A (en) Beer dispenser
JP2004085008A (en) Hydrate slurry manufacturing system and its operation method
JP3053623B1 (en) Fresh food storage equipment
JP3326685B2 (en) Refrigeration methods for open showcases, refrigerators, etc.
KR100545040B1 (en) Method and apparatus of cooling system using ice slurry as second coolant
JP2016118385A (en) Refrigeration shipping boat
JP2000121175A (en) Chiller
JP4247131B2 (en) Cooler
JPH0617757B2 (en) Freezing detection method for low temperature cold water production equipment
JPH0477216B2 (en)
JP3642238B2 (en) Ice heat storage device
JP2548637B2 (en) Operating method of supercooled water production equipment

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060804

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060825

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091006