JP2016199720A - 光学材料用樹脂組成物、光学材料用樹脂フィルム及び光導波路 - Google Patents

光学材料用樹脂組成物、光学材料用樹脂フィルム及び光導波路 Download PDF

Info

Publication number
JP2016199720A
JP2016199720A JP2015082450A JP2015082450A JP2016199720A JP 2016199720 A JP2016199720 A JP 2016199720A JP 2015082450 A JP2015082450 A JP 2015082450A JP 2015082450 A JP2015082450 A JP 2015082450A JP 2016199720 A JP2016199720 A JP 2016199720A
Authority
JP
Japan
Prior art keywords
meth
acrylate
resin
optical
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015082450A
Other languages
English (en)
Inventor
貴紀 宮
Takanori Miya
貴紀 宮
柴田 智章
Tomoaki Shibata
智章 柴田
雅夫 内ヶ崎
Masao Uchigasaki
雅夫 内ヶ崎
杉本 靖
Yasushi Sugimoto
靖 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2015082450A priority Critical patent/JP2016199720A/ja
Publication of JP2016199720A publication Critical patent/JP2016199720A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)
  • Epoxy Resins (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

【課題】屈折率が高く、波長850nmにおける透明性及び光伝搬性に優れ、アルカリ性水溶液に可溶であって、良好な加工性、サイズ制御性を示す光学材料用樹脂組成物、この光学材料用樹脂組成物を用いて形成した光学材料用樹脂フィルム及びこれらを用いて形成した光導波路を提供する。【解決手段】(A)主鎖にフルオレン骨格を含む酸性基含有ポリエステル樹脂、(B)重合性化合物及び(C)重合開始剤を含有する光学材料用樹脂組成物であって、(A)ポリエステル樹脂が、分子中にエチレン性不飽和基を2つ以上有する化合物である光学材料用樹脂組成物である。【選択図】なし

Description

本発明は、光学材料用樹脂組成物、光学材料用樹脂フィルム及び光導波路に関し、特に波長850nmの透明性(低光伝播損失)に優れ、かつアルカリ性水溶液を用いて容易にパターニングが可能であり、パターニング後の厚み方向でのサイズ保持性に優れる光学材料用樹脂組成物、この光学材料用樹脂組成物を用いて形成した光学材料用樹脂フィルム及びこれらを用いて形成した光導波路に関する。
近年、電子素子間、配線基板間等の高速及び高密度信号伝送において、従来の電気配線による伝送では、信号の相互干渉、減衰等が障壁となり、高速化及び高密度化の限界が見え始めている。これを打ち破るため電子素子間、配線基板間等を光で接続する技術、いわゆる光インターコネクションが検討されている。光の伝送路としては加工の容易さ、低コスト、配線の自由度が高く、かつ高密度化が可能な点からポリマ光導波路が注目を集めている。
ポリマ光導波路の形態としては、光電気混載基板への適用を想定したガラスエポキシ樹脂等の硬い支持基板上に作製するリジッド光導波路、及びボード同士の接続を想定した硬い支持基板を持たないフレキシブル光導波路が好適と考えられている。
ポリマ光導波路には、適用される機器の使用環境、部品実装等の観点から、高透明性(低光伝搬損失)と共に高耐熱性も要求される。
このような光導波路を形成できる光学材料用樹脂組成物として、特許文献1には、主鎖にマレイミド骨格を含むアルカリ可溶性のアクリルポリマ及び/又はメタクリルポリマ等を含む光学材料用樹脂組成物が開示されている。
特許第4241874号
特許文献1に開示される材料は、高い透明性を有するものの、さらに高度な加工性(少ない露光量かつ短い現像時間で良好な形状のパターンが形成できること等)、優れたサイズ制御性(アルカリ性水溶液を用いた現像工程及び硬化による膜減りが少なく、サイズ制御がしやすいこと等)、及び優れた光伝搬性が求められている。
本発明は、前記の各課題を解決するためになされたものであり、屈折率が高く、波長850nmにおける透明性及び光伝搬性に優れ、アルカリ性水溶液に可溶であって、良好な加工性、サイズ制御性を示す光学材料用樹脂組成物、この光学材料用樹脂組成物を用いて形成した光学材料用樹脂フィルム及びこれらを用いて形成した光導波路を提供することを目的とする。
本発明者等は鋭意検討を重ねた結果、光学材料用樹脂組成物として、(A)主鎖にフルオレン骨格を含む酸性基含有ポリエステル樹脂であって分子中にエチレン性不飽和基を2つ以上有する化合物、(B)重合性化合物及び(C)重合開始剤を組み合わせること等により、上記課題を解決し得ることを見出した。
すなわち、本発明は、以下の[1]〜[10]に関する。
[1](A)主鎖にフルオレン骨格を含む酸性基含有ポリエステル樹脂、(B)重合性化合物及び(C)重合開始剤を含有する光学材料用樹脂組成物であって、(A)ポリエステル樹脂が、分子中にエチレン性不飽和基を2つ以上有する化合物である光学材料用樹脂組成物。
[2](B)重合性化合物が、芳香環を有する化合物を含有する上記[1]に記載の光学材料用樹脂組成物。
[3](B)重合性化合物が、(B2)芳香族エポキシジ(メタ)アクリレートを含有する上記[2]に記載の光学材料用樹脂組成物。
[4](A)ポリエステル樹脂の含有量が、(A)ポリエステル樹脂及び(B)重合性化合物の総量に対して10〜90質量%であり、(B)重合性化合物の含有量が、(A)ポリエステル樹脂及び(B)重合性化合物の総量に対して10〜90質量%であり、(C)重合開始剤の含有量が、(A)ポリエステル樹脂及び(B)重合性化合物の総量100質量部に対して、0.1〜10質量部である、上記[1]〜[3]のいずれかに記載の光学材料用樹脂組成物。
[5](C)重合開始剤が、光ラジカル重合開始剤である、上記[1]〜[4]のいずれかに記載の光学材料用樹脂組成物。
[6]上記[1]〜[5]のいずれかに記載の光学材料用樹脂組成物を用いて形成した光学材料用樹脂層を有する光学材料用樹脂フィルム。
[7]基材フィルム、上記[1]〜[5]のいずれかに記載の光学材料用樹脂組成物を用いて形成した光学材料用樹脂層、及び保護フィルムをこの順に有する上記[6]に記載の光学材料用樹脂フィルム。
[8]下部クラッド層、コア部及び上部クラッド層の少なくとも1つを上記[1]〜[5]のいずれかに記載の光学材料用樹脂組成物を用いて形成した光導波路。
[9]下部クラッド層、コア部及び上部クラッド層の少なくとも1つを上記[6]又は[7]に記載の光学材料用樹脂フィルムを用いて形成した光導波路。
[10]波長850nmにおける光伝搬損失が、0.20dB/cm以下である上記[8]又は[9]に記載の光導波路。
本発明によると、屈折率が高く、波長850nmにおける透明性及び光伝搬性に優れ、アルカリ性水溶液に可溶であって、良好な加工性及びサイズ制御性を示す光学材料用樹脂組成物、この光学材料用樹脂組成物を用いて形成した光学材料用樹脂フィルム及びこれらを用いて形成した光導波路を提供することができる。
本発明の光導波路の形態を説明する断面図である。
以下、本発明の具体的な実施形態について、詳細に説明するが、本発明は、以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。
[光学材料用樹脂組成物]
本発明の光学材料用樹脂組成物は、(A)主鎖にフルオレン型骨格を含む酸性基含有ポリエステル樹脂(以下、「(A)ポリエステル樹脂」又は「(A)成分」ともいう)、(B)重合性化合物(以下、「(B)成分」ともいう)、及び(C)重合開始剤(以下、「(C)成分」ともいう)を含有する光学材料用樹脂組成物であって、(A)ポリエステル樹脂が、分子中にエチレン性不飽和基を2つ以上有する化合物である、光学材料用樹脂組成物である。
本発明の光学材料用樹脂組成物は、加熱及び/又は活性光線の照射によって硬化するものである。
<(A)ポリエステル樹脂>
本発明の光学材料用樹脂組成物は、(A)成分として、主鎖にフルオレン型骨格を含む酸性基含有ポリエステル樹脂であって、分子中にエチレン性不飽和基を2つ以上有する化合物を含有する。
本発明に用いる(A)成分は、酸性基を含有するため、アルカリ可溶性を有する。ここで、アルカリ可溶性とは、アルカリ性水溶液に溶解する性質を意味する。
(A)成分は、アルカリ性水溶液による現像処理を可能とする観点から、(A)成分の溶液を乾燥後の膜厚が50μmとなるように基材に塗布した後、乾燥して得られた被膜を、1質量%の炭酸カリウム水溶液に30℃で30分間浸漬した後、純水にて洗浄した場合に、前記被膜が残らない程度のアルカリ可溶性を有していてもよい。
(A)成分としては、主鎖にフルオレン型骨格を含む酸性基含有ポリエステル樹脂であって、分子中にエチレン性不飽和基を2つ以上有する化合物であれば特に制限なく用いることができる。
酸性基としては、フェノール性水酸基、カルボキシ基等が挙げられ、これらの中でも、透明性、耐熱性、アルカリ性水溶液への溶解性及びサイズ制御性の観点から、カルボキシ基であってもよい。
カルボキシ基を有する(A)成分としては、透明性、耐熱性、及びアルカリ可溶性の観点から、フルオレン骨格を有するエポキシ樹脂にアクリル酸、メタクリル酸、及びこれらの誘導体であってカルボキシ基を有する化合物から選ばれる1種以上(以下、「(メタ)アクリル酸化合物」ともいう)を反応させてフルオレン骨格を有するエポキシ(メタ)アクリレートを得た後、該フルオレン骨格を有するエポキシ(メタ)アクリレートと多塩基性カルボン酸又はその無水物とを反応させて得られるポリエステル樹脂であってもよい。
すなわち、フルオレン骨格を有するエポキシ樹脂のエポキシ基と、(メタ)アクリル酸化合物のカルボキシ基とを反応させ、エステル結合を形成し、該反応により生じた水酸基及びエポキシ樹脂が元来有する水酸基から選ばれる1種以上と、多塩基性カルボン酸のカルボキシ基又は多塩基性カルボン酸無水物の酸無水物基とを反応させることにより、エポキシ(メタ)アクリレートにカルボキシ基を導入することができる。
なお、本明細書において、(メタ)アクリレートとは、アクリレート又はメタクリレートを意味し、(メタ)アクリル酸とは、アクリル酸又はメタクリル酸を意味し、(メタ)アクリロイル基とは、アクリロイル基又はメタクリロイル基を意味する。
また、エポキシ(メタ)アクリレートとは、エポキシ基を有する化合物のエポキシ基と、カルボキシ基及び(メタ)アクリロイル基を有する化合物のカルボキシ基とを反応させてエステル結合を形成させて得られる化合物である。
前記フルオレン骨格を有するエポキシ(メタ)アクリレートとしては、例えば、下記一般式(1)で表されるエポキシ(メタ)アクリレートが挙げられる。
一般式(1)中、Ar11及びAr12はそれぞれ独立に、R12又はR13で置換されていてもよい芳香環を有する2価の結合基を示し、X11及びX12はそれぞれ独立に−O−、−S−、−O(CHCH−、−O[CHCH(CH)]−のいずれかの2価の基を示し、a及びbは各々独立して1〜30の整数を示す。
一般式(1)中、R11及びR14は水素原子及びメチル基のいずれかを示し、R12及びR13はそれぞれ独立して炭化水素基、アルコキシ基、シクロアルコキシ基、アリールオキシ基、アラルキルオキシ基、アルキルチオ基、シクロアルキルチオ基、アリールチオ基、アラルキルチオ基、アシル基、ハロゲン原子、ニトロ基、シアノ基又は置換アミノ基を示し、m及びnは0〜4の整数を示す。また、式中に複数ある基は、それぞれ同一でも異なってもいてもよい。
前記Ar11及びAr12で示される芳香環を有する2価の結合基としては、R12又はR13で置換されていてもよいフェニレン基、ナフチレン基、アントラセニレン基等が挙げられる。
また、R11及びR14で示される前記炭化水素基としては、アルキル基、アルキニル基、アルケニル基等の脂肪族炭化水素基、シクロアルキル基、シクロアルケニル基等の脂環式炭化水素基、フェニル基、ナフチレン基等の芳香族炭化水素基であってもよく、その炭素数は、1〜10であってもよく、1〜6であってもよく、1〜3であってもよい。
前記多塩基性カルボン酸又はその無水物としては、ジカルボン酸、3価以上の多価カルボン酸又はこれらの無水物が挙げられる。
ジカルボン酸又はその無水物としては、例えば、マレイン酸、コハク酸、イタコン酸、フタル酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸、メチルヘキサヒドロフタル酸、メチルエンドメチレンテトラヒドロフタル酸、クロレンド酸、メチルテトラヒドロフタル酸、グルタル酸等のジカルボン酸又はその無水物が挙げられる。
3価以上の多価カルボン酸としては、例えば、トリメリット酸、ピロメリット酸、ベンゾフェノンテトラカルボン酸等の3価の多価カルボン酸及びこれらの無水物;4−(1,2−ジカルボキシエチル)−1,2,3,4−テトラヒドロナフタレン−1,2−ジカルボン酸、ビフェニルテトラカルボン酸、ビフェニルエーテルテトラカルボン酸等のテトラカルボン酸又はその二無水物などが挙げられる。
これらの中でも、現像性を向上させる観点から、テトラカルボン酸又はその二無水物であってもよく、屈折率を向上させる観点から、ピロメリット酸、ビフェニルテトラカルボン酸、ナフタレンテトラカルボン酸等の芳香族を有するものであってもよく、芳香族テトラカルボン酸又はその二無水物であってもよい。
前記フルオレン骨格を有するエポキシ(メタ)アクリレートと、前記多塩基性カルボン酸又はその無水物とを反応させた後に、前記ジカルボン酸又はその無水物で末端水酸基を封鎖してもよい。このようにすることで、エポキシ(メタ)アクリレートの末端水酸基と、エポキシ(メタ)アクリレートに導入されたカルボキシ基との反応を抑制することができ、樹脂組成物の安定性が向上する傾向にある。
フルオレン骨格を含むエポキシ(メタ)アクリレートと多塩基性カルボン酸又はその無水物との反応により得られる(A)ポリエステル樹脂としては、例えば、下記一般式(2)で表される構造単位を有するものであってもよい。
一般式(2)中、Ar11、Ar12、X11、X12、R11〜R14、m、nは前記と同様である。
一般式(2)中、Ar13(COOH)は前記テトラカルボン酸の2価の残基を示す。なお残基とは、原料成分から結合に供された官能基を除いた部分の構造をいう。また、式中に複数ある基は、それぞれ同一でも異なってもいてもよい。
Ar13(COOH)を構成するAr13は、屈折率の観点から、炭素数4〜10の2価の芳香族基であってもよく、フェニレン基、ナフチレン基、アントラセニレン基、ビフェニレン基等の2価の芳香族基であってもよい。
(A)成分1モル中に含まれる一般式(2)で表される構造単位のモル数は、2〜30モルであってもよく、3〜25モルであってもよく、5〜20モルであってもよい。
このような(A)ポリエステル樹脂は、高屈折率を有する傾向にある。また、主骨格にフルオレン構造を有するため、耐薬品性及び耐水性が良好であり、リフロー等の加熱を要する工程においても高い耐熱性を有する傾向にある。
(A)ポリエステル樹脂の屈折率は1.50〜1.70であってもよく、1.55〜1.70であってもよい。屈折率が1.50以上であると、硬化物の屈折率を十分に高くすることができる傾向にあり、1.70以下であると、生産性を良好に保つことができる傾向にある。
なお、(A)ポリエステル樹脂の屈折率は、実施例に記載の方法により測定することができる。
このような(A)ポリエステル樹脂としては、市販品を用いてもよい。市販品の(A)成分としては、例えば、「INR−16M」(商品名、ナガセケムテックス社製)、「CR−1030」(商品名、大阪ガスケミカル社製)等が商業的に入手可能である。
(A)ポリエステル樹脂の酸価は、20〜200mgKOH/gであってもよく、30〜180mgKOH/gであってもよく、40〜150mgKOH/gであってもよい。これにより、光学材料用樹脂組成物のアルカリ性水溶液による現像性が良好となり、優れた解像度が得られる傾向にある。
(A)ポリエステル樹脂の酸価は原料組成により調整することができ、例えば、前記多塩基性カルボン酸無水物の配合量を多くすることで酸価を高め、逆に多塩基性カルボン酸無水物の配合量を少なくすることで酸価を低くすることができる。
(A)ポリエステル樹脂の酸価は以下の方法により測定することができる。まず、測定を行う樹脂溶液を約1g精秤した後、その樹脂溶液にアセトンを約30g添加し、樹脂溶液を均一に溶解する。次いで、指示薬であるフェノールフタレインをその溶液に適量添加して、0.1Nの水酸化カリウム(KOH)水溶液を用いて滴定を行う。そして、次式により酸価を算出する。
A=10×V×56.11/(W×I)
なお、式中のAは酸価(mgKOH/g)を、Vは0.1NのKOH水溶液の滴定量(mL)を、Wは測定する樹脂溶液の質量(g)を、Iは測定する樹脂溶液の不揮発分の割合(質量%)をそれぞれ示す。
(A)ポリエステル樹脂の重量平均分子量(Mw)は、塗膜性の観点から、1000〜30000であってもよく、1500〜25000であってもよく、2000〜20000であってもよい。
なお、重量平均分子量(Mw)はゲルパーミエーションクロマトグラフィー(GPC)による標準ポリスチレン換算値から求めることができ、具体的には実施例に記載の方法から求めることができる。
本発明の光学材料用樹脂組成物中における(A)成分の含有量は、(A)成分及び(B)成分の総量に対して、10〜90質量%であってもよく、20〜85質量%であってもよく、25〜80質量%であってもよい。(A)成分の含有量が10質量%以上であると、光学材料用樹脂組成物の硬化物の強度及び可撓性が十分となる傾向にあり、また、未硬化部分の現像性が十分となる傾向にある。(A)成分の含有量が90質量%以下であると、露光時に(B)成分によって絡め込まれて容易に硬化し、耐現像液性が十分となる傾向にある。
次に、本発明に用いられる(B)重合性化合物について説明する。
<(B)重合性化合物>
(B)重合性化合物としては加熱又は/及び活性光線の照射によって重合する重合性化合物であれば特に制限なく用いることができ、例えば、エチレン性不飽和基、エポキシ基等の重合性置換基を有する化合物が挙げられる。
(B)重合性化合物の具体例としては、各種(メタ)アクリレート、ハロゲン化ビニリデン、ビニルエーテル、ビニルエステル、ビニルピリジン、ビニルアミド、アリール化ビニル等が挙げられる。これらの中でも、透明性の観点から、各種(メタ)アクリレート、アリール化ビニル等であってもよい。各種(メタ)アクリレートとしては、単官能、2官能又は3官能以上の多官能の(メタ)アクリレートのいずれも用いることができる。
前記単官能(メタ)アクリレートとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert−ブチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、イソアミル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、ヘプチル(メタ)アクリレート、オクチルヘプチル(メタ)アクリレート、ノニル(メタ)アクリレート、デシル(メタ)アクリレート、ウンデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、トリデシル(メタ)アクリレート、テトラデシル(メタ)アクリレート、ペンタデシル(メタ)アクリレート、ヘキサデシル(メタ)アクリレート、ステアリル(メタ)アクリレート、ベヘニル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、3−クロロ−2−ヒドロキシプロピル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、エトキシポリエチレングリコール(メタ)アクリレート、メトキシポリプロピレングリコール(メタ)アクリレート、エトキシポリプロピレングリコール(メタ)アクリレート、モノ(2−(メタ)アクリロイロキシエチル)スクシネート等の脂肪族(メタ)アクリレート;シクロペンチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、シクロペンチル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、モノ(2−(メタ)アクリロイロキシエチル)テトラヒドロフタレート、モノ(2−(メタ)アクリロイロキシエチル)ヘキサヒドロフタレート、1−デカヒドロナフタレン(メタ)アクリレート、2−デカヒドロナフタレン(メタ)アクリレート等の脂環式(メタ)アクリレート;ベンジル(メタ)アクリレート、フェニル(メタ)アクリレート、o−ビフェニル(メタ)アクリレート、1−ナフチル(メタ)アクリレート、2−ナフチル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、p−クミルフェノキシエチル(メタ)アクリレート、o−フェニルフェノキシエチル(メタ)アクリレート、1−ナフトキシエチル(メタ)アクリレート、2−ナフトキシエチル(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレート、フェノキシポリプロピレングリコール(メタ)アクリレート、2−ヒドロキシ−3−フェノキシプロピル(メタ)アクリレート、2−ヒドロキシ−3−(o−フェニルフェノキシ)プロピル(メタ)アクリレート、2−ヒドロキシ−3−(1−ナフトキシ)プロピル(メタ)アクリレート、2−ヒドロキシ−3−(2−ナフトキシ)プロピル(メタ)アクリレート等の芳香族(メタ)アクリレート;2−テトラヒドロフルフリル(メタ)アクリレート、N−(メタ)アクリロイロキシエチルヘキサヒドロフタルイミド、2−(メタ)アクリロイロキシエチル−N−カルバゾール等の複素環式(メタ)アクリレート、これらのカプロラクトン変性体などが挙げられる。
これらの中でも透明性、加工性、サイズ制御性及び耐熱性の観点から、前記脂環式(メタ)アクリレート、前記芳香族(メタ)アクリレート又は複素環式(メタ)アクリレートであってもよい。
前記2官能(メタ)アクリレートとしては、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、テトラプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、エトキシ化ポリプロピレングリコールジ(メタ)アクリレート、1,3−ブタンジオールジ(メタ)アクリレート、1,4−ブタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、3−メチル−1,5−ペンタンジオールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、2−ブチル−2−エチル−1,3−プロパンジオールジ(メタ)アクリレート、1,9−ノナンジオールジ(メタ)アクリレート、1,10−デカンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、エトキシ化2−メチル−1,3−プロパンジオールジ(メタ)アクリレート等の脂肪族ジ(メタ)アクリレート;シクロヘキサンジメタノールジ(メタ)アクリレート、エトキシ化シクロヘキサンジメタノールジ(メタ)アクリレート、プロポキシ化シクロヘキサンジメタノールジ(メタ)アクリレート、エトキシ化プロポキシ化シクロヘキサンジメタノールジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、エトキシ化トリシクロデカンジメタノールジ(メタ)アクリレート、プロポキシ化トリシクロデカンジメタノールジ(メタ)アクリレート、エトキシ化プロポキシ化トリシクロデカンジメタノールジ(メタ)アクリレート、エトキシ化水添ビスフェノールAジ(メタ)アクリレート、プロポキシ化水添ビスフェノールAジ(メタ)アクリレート、エトキシ化プロポキシ化水添ビスフェノールAジ(メタ)アクリレート、エトキシ化水添ビスフェノールFジ(メタ)アクリレート、プロポキシ化水添ビスフェノールFジ(メタ)アクリレート、エトキシ化プロポキシ化水添ビスフェノールFジ(メタ)アクリレート、エトキシ化水添ビスフェノールAFジ(メタ)アクリレート、プロポキシ化水添ビスフェノールAFジ(メタ)アクリレート、エトキシ化プロポキシ化水添ビスフェノールAFジ(メタ)アクリレート、エトキシ化水添ビスフェノールSジ(メタ)アクリレート、プロポキシ化水添ビスフェノールSジ(メタ)アクリレート、エトキシ化プロポキシ化水添ビスフェノールSジ(メタ)アクリレート、1,2−デカヒドロナフタレンジ(メタ)アクリレート、1,3−デカヒドロナフタレンジ(メタ)アクリレート、1,4−デカヒドロナフタレンジ(メタ)アクリレート、1,5−デカヒドロナフタレン(メタ)アクリレート、1,6−デカヒドロナフタレン(メタ)アクリレート、1,7−デカヒドロナフタレン(メタ)アクリレート、1,8−デカヒドロナフタレン(メタ)アクリレート、2,3−デカヒドロナフタレン(メタ)アクリレート、2,6−デカヒドロナフタレン(メタ)アクリレート、2,7−デカヒドロナフタレン(メタ)アクリレート等の脂環式ジ(メタ)アクリレート;エトキシ化ビスフェノールAジ(メタ)アクリレート、プロポキシ化ビスフェノールAジ(メタ)アクリレート、エトキシ化プロポキシ化ビスフェノールAジ(メタ)アクリレート、エトキシ化ビスフェノールFジ(メタ)アクリレート、プロポキシ化ビスフェノールFジ(メタ)アクリレート、エトキシ化プロポキシ化ビスフェノールFジ(メタ)アクリレート、エトキシ化ビスフェノールAFジ(メタ)アクリレート、プロポキシ化ビスフェノールAFジ(メタ)アクリレート、エトキシ化プロポキシ化ビスフェノールAFジ(メタ)アクリレート、エトキシ化ビスフェノールSジ(メタ)アクリレート、プロポキシ化ビスフェノールSジ(メタ)アクリレート、エトキシ化プロポキシ化ビスフェノールSジ(メタ)アクリレート、エトキシ化フルオレン型ジ(メタ)アクリレート、プロポキシ化フルオレン型ジ(メタ)アクリレート、エトキシ化プロポキシ化フルオレン型ジ(メタ)アクリレート等の芳香族ジ(メタ)アクリレート;エトキシ化イソシアヌル酸ジ(メタ)アクリレート、プロポキシ化イソシアヌル酸ジ(メタ)アクリレート、エトキシ化プロポキシ化イソシアヌル酸ジ(メタ)アクリレート等の複素環式ジ(メタ)アクリレート;以上のジ(メタ)アクリレートのカプロラクトン変性体;ネオペンチルグリコール型エポキシジ(メタ)アクリレート等の脂肪族エポキシジ(メタ)アクリレート;シクロヘキサンジメタノール型エポキシジ(メタ)アクリレート、水添ビスフェノールA型エポキシジ(メタ)アクリレート、水添ビスフェノールF型エポキシジ(メタ)アクリレート、水添ビスフェノールAF型エポキシジ(メタ)アクリレート、水添ビスフェノールS型エポキシジ(メタ)アクリレート、デカヒドロナフタレン型エポキシジ(メタ)アクリレート等の脂環式エポキシジ(メタ)アクリレート;レゾルシノール型エポキシジ(メタ)アクリレート、ビスフェノールA型エポキシジ(メタ)アクリレート、ビスフェノールF型エポキシジ(メタ)アクリレート、ビスフェノールAF型エポキシジ(メタ)アクリレート、ビスフェノールS型エポキシジ(メタ)アクリレート、フルオレン型エポキシジ(メタ)アクリレート、ビフェニル型エポキシジ(メタ)アクリレート、ナフタレン型エポキシジ(メタ)アクリレート等の芳香族エポキシジ(メタ)アクリレートなどが挙げられる。
これらの中でも透明性、加工性、サイズ制御性及び耐熱性の観点から、前記脂環式ジ(メタ)アクリレート、前記芳香族ジ(メタ)アクリレート、前記複素環式ジ(メタ)アクリレート、前記脂環式エポキシジ(メタ)アクリレート又は前記芳香族エポキシジ(メタ)アクリレートであってもよい。
前記3官能以上の多官能(メタ)アクリレートとしては、例えば、トリメチロールプロパントリ(メタ)アクリレート、エトキシ化トリメチロールプロパントリ(メタ)アクリレート、プロポキシ化トリメチロールプロパントリ(メタ)アクリレート、エトキシ化プロポキシ化トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、エトキシ化ペンタエリスリトールトリ(メタ)アクリレート、プロポキシ化ペンタエリスリトールトリ(メタ)アクリレート、エトキシ化プロポキシ化ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、エトキシ化ペンタエリスリトールテトラ(メタ)アクリレート、プロポキシ化ペンタエリスリトールテトラ(メタ)アクリレート、エトキシ化プロポキシ化ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の脂肪族多官能(メタ)アクリレート;エトキシ化イソシアヌル酸トリ(メタ)アクリレート、プロポキシ化イソシアヌル酸トリ(メタ)アクリレート、エトキシ化プロポキシ化イソシアヌル酸トリ(メタ)アクリレート等の複素環式多官能(メタ)アクリレート;これらの多官能(メタ)アクリレートのカプロラクトン変性体;(メタ)アクリロイル基を3つ以上有する、フェノールノボラック型エポキシ(メタ)アクリレート、クレゾールノボラック型エポキシ(メタ)アクリレート、ビスフェノールAノボラック型エポキシ(メタ)アクリレート、ビスフェノールFノボラック型エポキシ(メタ)アクリレート、ビスフェノールAFノボラック型エポキシ(メタ)アクリレート、ビスフェノールSノボラック型エポキシ(メタ)アクリレート、ビフェニルアラルキル型エポキシ(メタ)アクリレート、ビスナフタレン型エポキシ(メタ)アクリレート等の芳香族多官能エポキシ(メタ)アクリレートなどが挙げられる。
これらの中でも透明性、加工性、サイズ制御性及び耐熱性の観点から、複素環式多官能(メタ)アクリレート、芳香族多官能エポキシ(メタ)アクリレートであってもよい。
これらの単官能、2官能又は3官能以上の多官能の(メタ)アクリレートは、各々単独で又は2種類以上を組み合わせて使用してもよく、さらに、その他の重合性化合物と組み合わせて使用してもよい。
また、(B)成分として、耐熱性及び透明性の観点から、分子中にアリーレン基、アリーレンオキシ基、アルキレンアリーレン基等の芳香環を有する化合物、及び脂環式炭化水素基を有する化合物から選ばれる1種類以上の化合物を用いてもよい。なお、アリーレン基とは、フェニレン基、ナフチレン基、ビフェニレン基、フルオレニレン基等の2価の芳香族炭化水素基、及びカルバゾリレン基、ピリジレン基等の2価の芳香族複素環基を表す。
より具体的には、(B)成分は、アリーレン基及びエチレン性不飽和基を含む下記一般式(3)で表される(B1)芳香族ジ(メタ)アクリレート(以下、「(B1)成分」ともいう)及び下記一般式(4)で表される(B2)芳香族エポキシジ(メタ)アクリレート(以下、「(B2)成分」ともいう)から選ばれる1種以上であってもよい。
一般式(3)中、X31及びX32は、各々独立に−O−、−S−、−O(CHCHO)−、−O[CHCH(CH)O]−のいずれかの2価の基を示し、a及びbは各々独立して1〜30の整数を示す。
一般式(3)中、Y
のいずれかで示される2価の基を示し、dは2〜10の整数を示す。
一般式(3)中、R31及びR36は各々独立して、水素原子及びメチル基のいずれかを示す。R32〜R35は各々独立して、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、炭素数1〜20の有機基、炭素数1〜20の含フッ素有機基のいずれかを示す。
なお、本明細書中、2価の基における−は結合手を意味し、
で表される基は、d+1個の炭素数を有する2価のシクロアルキレン基を意味する。
一般式(4)中、X41及びX42は各々独立に−O−、−S−、−O(CHCHO)−、−O[CHCH(CH)O]−のいずれかの2価の基を示し、a及びbは各々独立して1〜30の整数を示す。eは1〜10の整数を示す。
一般式(4)中、Y
のいずれかで示される2価の基を示し、dは2〜10の整数を示す。
一般式(4)中、R41及びR46は各々独立して、水素原子及びメチル基のいずれかを示す。R42〜R45は各々独立して、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、炭素数1〜20の有機基及び炭素数1〜20の含フッ素有機基のいずれかを示す。
一般式(3)及び(4)における有機基としては、例えば、アルキル基、シクロアルキル基、アリール基、アラルキル基、カルボニル基、アルコキシカルボニル基、アリールオキシカルボニル基、カルバモイル基等の1価の基が挙げられ、それらはさらに、ヒドロキシ基、ハロゲン原子、アルキル基、シクロアルキル基、アリール基、アラルキル基、カルボニル基、アルコキシカルボニル基、アリールオキシカルボニル基、カルバモイル基等で置換されていてもよい。
これらの(B1)及び(B2)成分は、単独で又は2種類以上を組み合わせて使用することができ、さらにその他の重合性化合物と組み合わせて使用することもできる。
また、(B)重合性化合物としては、(B3)分子内に2つ以上のエポキシ基を有する化合物(以下、「(B3)成分」ともいう)を用いてもよい。これを用いることで、前記(A)成分由来のカルボキシ基との間でいわゆるエポキシカルボキシレート化反応が生じ、硬化物の耐熱性及び強度の向上が期待できる。
((B3)分子内に2つ以上のエポキシ基を有する化合物)
(B3)分子内に2つ以上のエポキシ基を有する化合物の具体例としては、ビスフェノールA型エポキシ樹脂、テトラブロモビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂、フルオレン型エポキシ樹脂等の2官能フェノールグリシジルエーテル;水添ビスフェノールA型エポキシ樹脂、水添ビスフェノールF型エポキシ樹脂、水添2,2’−ビフェノール型エポキシ樹脂、水添4,4’−ビフェノール型エポキシ樹脂等の水添2官能フェノールグリシジルエーテル;フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ジシクロペンタジエン−フェノール型エポキシ樹脂、テトラフェニロールエタン型エポキシ樹脂等の多官能フェノールグリシジルエーテル;ポリエチレングリコール型エポキシ樹脂、ポリプロピレングリコール型エポキシ樹脂、ネオペンチルグリコール型エポキシ樹脂、1,6−ヘキサンジオール型エポキシ樹脂等の2官能脂肪族アルコールグリシジルエーテル;シクロヘキサンジメタノール型エポキシ樹脂、トリシクロデカンジメタノール型エポキシ樹脂等の2官能脂環式アルコールグリシジルエーテル;トリメチロールプロパン型エポキシ樹脂、ソルビトール型エポキシ樹脂、グリセリン型エポキシ樹脂等の多官能脂肪族アルコールグリシジルエーテル;フタル酸ジグリシジルエステル等の2官能芳香族グリシジルエステル;テトラヒドロフタル酸ジグリシジルエステル、ヘキサヒドロフタル酸ジグリシジルエステル等の2官能脂環式グリシジルエステル;N,N−ジグリシジルアニリン、N,N−ジグリシジルトリフルオロメチルアニリン等の2官能芳香族グリシジルアミン;N,N,N’,N’−テトラグリシジル−4,4−ジアミノジフェニルメタン、1,3−ビス(N,N−グリシジルアミノメチル)シクロヘキサン、N,N,O−トリグリシジル−p−アミノフェノール等の多官能芳香族グリシジルアミン;アリサイクリックジエポキシアセタール、アリサイクリックジエポキシアジペート、アリサイクリックジエポキシカルボキシレート、ビニルシクロヘキセンジオキシド等の2官能脂環式エポキシ樹脂;2,2−ビス(ヒドロキシメチル)−1−ブタノールの1,2−エポキシ−4−(2−オキシラニル)シクロヘキサン付加体等の多官能脂環式エポキシ樹脂;トリグリシジルイソシアヌレート等の多官能複素環式エポキシ樹脂;オルガノポリシロキサン型エポキシ樹脂等の2官能又は多官能ケイ素含有エポキシ樹脂などが挙げられる。
これらの中でも、透明性及び耐熱性の観点から、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂、フルオレン型エポキシ樹脂等の2官能フェノールグリシジルエーテル;上記水添2官能フェノールグリシジルエーテル;上記多官能フェノールグリシジルエーテル;上記2官能脂環式アルコールグリシジルエーテル;上記2官能芳香族グリシジルエステル;上記2官能脂環式グリシジルエステル;上記2官能脂環式エポキシ樹脂;上記多官能脂環式エポキシ樹脂;上記多官能複素環式エポキシ樹脂;上記2官能又は多官能ケイ素含有エポキシ樹脂であってもよい。
これらの(B3)成分は、単独で又は2種類以上を組み合わせて使用することができ、さらにその他の重合性化合物と組み合わせて使用することもできる。
上記重合性化合物の他に(B)重合性化合物として(B4)1分子中にエチレン性不飽和基とエポキシ基とをそれぞれ1つ以上有する化合物(以下、「(B4)成分」ともいう)も用いることができる。
((B4)1分子中にエチレン性不飽和基とエポキシ基とをそれぞれ1つ以上有する化合物)
(B4)1分子中にエチレン性不飽和基とエポキシ基とをそれぞれ1つ以上有する化合物の具体例としては、1分子中に2つ以上のエポキシ基を有するエポキシ樹脂を、1当量未満の(メタ)アクリル酸化合物と反応させて得られるエポキシ基を有するエポキシ(メタ)アクリレート、ヒドロキシ(メタ)アルキルアクリレートとエピハロヒドリンとを反応させて得られるヒドロキシアルキル(メタ)アクリレートグリシジルエーテル等が挙げられる。
前記エポキシ基を有するエポキシ(メタ)アクリレートの具体例としては、ビスフェノールA型エポキシモノ(メタ)アクリレート、テトラブロモビスフェノールA型エポキシモノ(メタ)アクリレート、ビスフェノールF型エポキシモノ(メタ)アクリレート、ビスフェノールS型エポキシモノ(メタ)アクリレート、ビスフェノールAF型エポキシモノ(メタ)アクリレート、ビスフェノールAD型エポキシモノ(メタ)アクリレート、ビフェニル型エポキシモノ(メタ)アクリレート、ナフタレン型エポキシモノ(メタ)アクリレート、フルオレン型エポキシモノ(メタ)アクリレート等の2官能フェノールグリシジルエーテル由来;水添ビスフェノールA型エポキシモノ(メタ)アクリレート、水添ビスフェノールF型エポキシモノ(メタ)アクリレート、水添2,2’−ビフェノール型エポキシモノ(メタ)アクリレート、水添4,4’−ビフェノール型エポキシモノ(メタ)アクリレート等の水添2官能フェノールグリシジルエーテル由来;1つ以上のエポキシ基を有する、フェノールノボラック型エポキシ(メタ)アクリレート、クレゾールノボラック型エポキシ(メタ)アクリレート、ジシクロペンタジエン−フェノール型エポキシ(メタ)アクリレート、テトラフェニロールエタン型エポキシ(メタ)アクリレート等の多官能フェノールグリシジルエーテル由来;ポリエチレングリコール型エポキシモノ(メタ)アクリレート、ポリプロピレングリコール型エポキシモノ(メタ)アクリレート、ネオペンチルグリコール型エポキシモノ(メタ)アクリレート、1,6−ヘキサンジオール型エポキシモノ(メタ)アクリレート等の2官能脂肪族アルコールグリシジルエーテル由来;シクロヘキサンジメタノール型エポキシモノ(メタ)アクリレート、トリシクロデカンジメタノール型エポキシモノ(メタ)アクリレート等の2官能脂環式アルコールグリシジルエーテル由来;トリメチロールプロパン型エポキシモノ(メタ)アクリレート、ソルビトール型エポキシモノ(メタ)アクリレート、グリセリン型エポキシモノ(メタ)アクリレート等の多官能脂肪族アルコールグリシジルエーテル由来;フタル酸ジグリシジルエステル等の2官能芳香族グリシジルエステル由来;テトラヒドロフタル酸ジグリシジルエステル、ヘキサヒドロフタル酸ジグリシジルエステル等の2官能脂環式グリシジルエステル由来のエポキシモノ(メタ)アクリレートなどが挙げられる。
また、前記ヒドロキシアルキル(メタ)アクリレートとエピハロヒドリンとを反応させて得られるヒドロキシアルキル(メタ)アクリレートグリシジルエーテルの具体例としては、2−ヒドロキシエチル(メタ)アクリレートグリシジルエーテル、2−ヒドロキシプロピル(メタ)アクリレートグリシジルエーテル、3−ヒドロキシプロピル(メタ)アクリレートグリシジルエーテル、2−ヒドロキシブチル(メタ)アクリレートグリシジルエーテル、3−ヒドロキシブチル(メタ)アクリレートグリシジルエーテル、4−ヒドロキシブチル(メタ)アクリレートグリシジルエーテル、2−ヒドロキシペンチル(メタ)アクリレートグリシジルエーテル、3−ヒドロキシペンチル(メタ)アクリレートグリシジルエーテル、4−ヒドロキシペンチル(メタ)アクリレートグリシジルエーテル、5−ヒドロキシペンチル(メタ)アクリレートグリシジルエーテル、2−ヒドロキシヘキシル(メタ)アクリレートグリシジルエーテル、3−ヒドロキシヘキシル(メタ)アクリレートグリシジルエーテル、4−ヒドロキシヘキシル(メタ)アクリレートグリシジルエーテル、5−ヒドロキシヘキシル(メタ)アクリレートグリシジルエーテル、6−ヒドロキシヘキシル(メタ)アクリレートグリシジルエーテル、3,4−エポキシシクロヘキシルメチル(メタ)アクリレート等が挙げられる。
これらのエポキシ基を有するエポキシ(メタ)アクリレートは、単独で又は2種類以上を組み合わせて使用してもよく、さらにその他の重合性化合物と組み合わせて使用してもよい。
また、(B4)1分子中にエチレン性不飽和基とエポキシ基とをそれぞれ1つ以上有する化合物は、耐熱性及び透明性の観点から、さらに、分子中にアリーレン基、アリーレンオキシ基、アルキレンアリーレン基、脂環式炭化水素基、及びアルキレン基から選ばれる1種以上を有する化合物であってもよい。なお、アリーレン基とは、フェニレン基、ナフチレン基、ビフェニレン基、フルオレニレン基等の2価の芳香族炭化水素基、及びカルバゾリレン基、ピリジレン基等の2価の芳香族複素環基を表す。
より具体的には(B4)成分は、エポキシ基、アリーレン基及びエチレン性不飽和基を有する下記一般式(5)で表される化合物及び下記一般式(6)で表される化合物から選ばれる1種以上であってもよい。
一般式(5)中、X51及びX52は、各々独立に−O−、−S−、−O(CHCHO)−、−O[CHCH(CH)O]−のいずれかの2価の基を示し、a及びbは各々独立して1〜30の整数を示す。
一般式(5)中、Y
のいずれかで示される2価の基を示し、dは2〜10の整数を示す。
一般式(5)中、R51は水素原子、メチル基のいずれかを示す。R52〜R55は各々独立して、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、炭素数1〜20の有機基、炭素数1〜20の含フッ素有機基のいずれかを示す。
一般式(6)中、X61及びX62は各々独立に−O−、−S−、−O(CHCHO)−、−O[CHCH(CH)O]−のいずれかの2価の基を示し、a及びbは各々独立して1〜30の整数を示し、fは1〜10の整数を示す。
一般式(6)中、Y
のいずれかで示される2価の基を示し、dは2〜10の整数を示す。
一般式(6)中、R61は水素原子、メチル基のいずれかを示す。R62〜R65は各々独立して、水素原子、フッ素原子、塩素原子、臭素原子、ヨウ素原子、炭素数1〜20の有機基、炭素数1〜20の含フッ素有機基のいずれかを示す。
一般式(5)及び(6)における有機基としては、例えば、アルキル基、シクロアルキル基、アリール基、アラルキル基、カルボニル基、アルコキシカルボニル基、アリールオキシカルボニル基、カルバモイル基等の1価の基が挙げられ、それらはさらに、ヒドロキシ基、ハロゲン原子、アルキル基、シクロアルキル基、アリール基、アラルキル基、カルボニル基、アルコキシカルボニル基、アリールオキシカルボニル基、カルバモイル基等で置換されていてもよい。
これらの(B4)成分は、単独で又は2種類以上を組み合わせて使用することができ、さらにその他の重合性化合物と組み合わせて使用することもできる。
(B)成分中における(B1)成分の含有量は、透明性、耐熱性、アルカリ性水溶液への溶解性及びサイズ制御性の観点から、10〜90質量%であってもよく、15〜85質量%であってもよく、20〜80質量%であってもよい。
(B)成分中における(B2)成分の含有量は、同様の観点から、10〜90質量%であってもよく、15〜80質量%であってもよく、20〜80質量%であってもよい。
(B)成分中における(B3)成分の含有量は、同様の観点から、5〜90質量%であってもよく、10〜80質量%であってもよく、20〜70質量%であってもよい。
(B)成分中における(B4)成分の含有量は、同様の観点から、10〜90質量%であってもよく、15〜85質量%であってもよく、20〜80質量%であってもよい。
本発明の光学材料用樹脂組成物中における(B)成分の含有量は、(A)成分及び(B)成分の総量に対して、10〜90質量%であってもよく、20〜85質量%であってもよく、25〜80質量%であってもよい。(B)成分の含有量が10質量%以上であると、(A)成分と共に硬化することが容易となり、耐現像液性の不足が抑制される傾向にある。(B)成分の含有量が90質量%以下であると、光学材料用樹脂組成物の硬化物の強度及び可撓性が十分となる傾向にある。
<(C)重合開始剤>
本発明の光学材料用樹脂組成物は、(C)成分として、重合開始剤を含有する。
(C)重合開始剤としては、加熱及び/又は活性光線の照射によって、(B)重合性化合物の重合を開始させるものであれば特に制限なく用いることができる。
(C)重合開始剤の具体例としては、(B)重合性化合物としてエチレン性不飽和基を有する化合物を用いる場合、熱ラジカル重合開始剤及び光ラジカル重合開始剤から選ばれる1種以上のラジカル重合開始剤が挙げられる。特に硬化速度が速く、常温で硬化が可能なことから、光ラジカル重合開始剤を用いてもよい。
熱ラジカル重合開始剤としては、例えば、メチルエチルケトンパーオキシド、シクロヘキサノンパーオキシド、メチルシクロヘキサノンパーオキシド等のケトンパーオキシド;1,1−ビス(t−ブチルパーオキシ)シクロヘキサン、1,1−ビス(t−ブチルパーオキシ)−2−メチルシクロヘキサン、1,1−ビス(t−ブチルパーオキシ)−3,3,5−トリメチルシクロヘキサン、1,1−ビス(t−ヘキシルパーオキシ)シクロヘキサン、1,1−ビス(t−ヘキシルパーオキシ)−3,3,5−トリメチルシクロヘキサン等のパーオキシケタール;p−メンタンヒドロパーオキシド等のヒドロパーオキシド;α,α’−ビス(t−ブチルパーオキシ)ジイソプロピルベンゼン、ジクミルパーオキシド、t−ブチルクミルパーオキシド、ジ−t−ブチルパーオキシド等のジアルキルパーオキシド;オクタノイルパーオキシド、ラウロイルパーオキシド、ステアリルパーオキシド、ベンゾイルパーオキシド等のジアシルパーオキシド;ビス(4−t−ブチルシクロヘキシル)パーオキシジカーボネート、ジ−2−エトキシエチルパーオキシジカーボネート、ジ−2−エチルヘキシルパーオキシジカーボネート、ジ−3−メトキシブチルパーオキシカーボネート等のパーオキシカーボネート;t−ブチルパーオキシピバレート、t−ヘキシルパーオキシピバレート、1,1,3,3−テトラメチルブチルパーオキシ−2−エチルヘキサノエート、2,5−ジメチル−2,5−ビス(2−エチルヘキサノイルパーオキシ)ヘキサン、t−ヘキシルパーオキシ−2−エチルヘキサノエート、t−ブチルパーオキシ−2−エチルヘキサノエート、t−ブチルパーオキシイソブチレート、t−ヘキシルパーオキシイソプロピルモノカーボネート、t−ブチルパーオキシ−3,5,5−トリメチルヘキサノエート、t−ブチルパーオキシラウリレート、t−ブチルパーオキシイソプロピルモノカーボネート、t−ブチルパーオキシ−2−エチルヘキシルモノカーボネート、t−ブチルパーオキシベンゾエート、t−ヘキシルパーオキシベンゾエート、2,5−ジメチル−2,5−ビス(ベンゾイルパーオキシ)ヘキサン、t−ブチルパーオキシアセテート等のパーオキシエステル;2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス(2,4−ジメチルバレロニトリル)、2,2’−アゾビス(4−メトキシ−2’−ジメチルバレロニトリル)等のアゾ化合物などが挙げられる。
これらの中でも、硬化性、透明性、加工性、サイズ制御性及び耐熱性の観点から、ジアシルパーオキシド、パーオキシエステル及びアゾ化合物から選ばれる1種以上であってもよい。
光ラジカル重合開始剤としては、例えば、2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン等のベンゾインケタール;1−ヒドロキシシクロヘキシルフェニルケトン、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、1−[4−(2−ヒドロキシエトキシ)フェニル]−2−ヒドロキシ−2−メチル−1−プロパン−1−オン等のα−ヒドロキシケトン;2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタン−1−オン、1,2−メチル−1−[4−(メチルチオ)フェニル]−2−モルフォリノプロパン−1−オン等のα−アミノケトン;1−[(4−フェニルチオ)フェニル]−1,2−オクタジオン−2−(ベンゾイル)オキシム等のオキシムエステル;ビス(2,4,6−トリメチルベンゾイル)フェニルホスフィンオキシド、ビス(2,6−ジメトキシベンゾイル)−2,4,4−トリメチルペンチルホスフィンオキシド、2,4,6−トリメチルベンゾイルジフェニルホスフィンオキシド等のホスフィンオキシド;2−(o−クロロフェニル)−4,5−ジフェニルイミダゾール二量体、2−(o−クロロフェニル)−4,5−ジ(メトキシフェニル)イミダゾール二量体、2−(o−フルオロフェニル)−4,5−ジフェニルイミダゾール二量体、2−(o−メトキシフェニル)−4,5−ジフェニルイミダゾール二量体、2−(p−メトキシフェニル)−4,5−ジフェニルイミダゾール二量体等の2,4,5−トリアリールイミダゾール二量体;ベンゾフェノン、N,N’−テトラメチル−4,4’−ジアミノベンゾフェノン、N,N’−テトラエチル−4,4’−ジアミノベンゾフェノン、4−メトキシ−4’−ジメチルアミノベンゾフェノン等のベンゾフェノン化合物;2−エチルアントラキノン、フェナントレンキノン、2−tert−ブチルアントラキノン、オクタメチルアントラキノン、1,2−ベンズアントラキノン、2,3−ベンズアントラキノン、2−フェニルアントラキノン、2,3−ジフェニルアントラキノン、1−クロロアントラキノン、2−メチルアントラキノン、1,4−ナフトキノン、9,10−フェナントラキノン、2−メチル−1,4−ナフトキノン、2,3−ジメチルアントラキノン等のキノン化合物;ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインフェニルエーテル等のベンゾインエーテル;ベンゾイン、メチルベンゾイン、エチルベンゾイン等のベンゾイン化合物;ベンジルジメチルケタール等のベンジル化合物;9−フェニルアクリジン、1,7−ビス(9、9’−アクリジニルヘプタン)等のアクリジン化合物;N−フェニルグリシン;クマリンなどが挙げられる。
これらの中でも、硬化性、透明性、加工性、サイズ制御性及び耐熱性の観点から、α−ヒドロキシケトン及びホスフィンオキシドから選ばれる1種以上であってもよい。
また、前記2,4,5−トリアリールイミダゾール二量体において、2つのトリアリールイミダゾール部位のアリール基の置換基は、同一で対称な化合物を与えてもよく、相違して非対称な化合物を与えてもよい。また、ジエチルチオキサントンとジメチルアミノ安息香酸の組み合わせのように、チオキサントン化合物と3級アミンとを組み合わせてもよい。
これらのラジカル重合開始剤は、単独で又は2種類以上を組み合わせて使用してもよく、適切な増感剤と組み合わせて使用してもよい。
また、(B1)成分のエポキシ基を重合性基として用いるために、(C)重合開始剤としては、熱カチオン重合開始剤及び光カチオン重合開始剤から選ばれる1種以上のカチオン重合開始剤を用いてもよい。特に硬化速度が速く、常温硬化が可能である光カチオン重合開始剤を用いてもよい。
熱カチオン重合開始剤としては、例えば、p−アルコキシフェニルベンジルメチルスルホニウムヘキサフルオロアンチモネート等のベンジルスルホニウム塩;ベンジル−p−シアノピリジニウムヘキサフルオロアンチモネート、1−ナフチルメチル−o−シアノピリジニウムヘキサフルオロアンチモネート、シンナミル−o−シアノピリジニウムヘキサフルオロアンチモネート等のピリジニウム塩;ベンジルジメチルフェニルアンモニウムヘキサフルオロアンチモネート等のベンジルアンモニウム塩などが挙げられる。
これらの中でも、硬化性、透明性、加工性、サイズ制御性及び耐熱性の観点から、前記ベンジルスルホニウム塩であってもよい。
光カチオン重合開始剤としては、例えば、p−メトキシベンゼンジアゾニウムヘキサフルオロホスフェート等のアリールジアゾニウム塩、ジフェニルヨードニウムヘキサフルオロホスフェート、ジフェニルヨードニウムヘキサフルオロアンチモネート等のジアリールヨードニウム塩;トリフェニルスルホニウムヘキサフルオロホスフェート、トリフェニルスルホニウムヘキサフルオロアンチモネート、ジフェニル−4−チオフェノキシフェニルスルホニウムヘキサフルオロホスフェート、ジフェニル−4−チオフェノキシフェニルスルホニウムヘキサフルオロアンチモネート、ジフェニル−4−チオフェノキシフェニルスルホニウムペンタフルオロヒドロキシアンチモネート等のトリアリールスルホニウム塩;トリフェニルセレノニウムヘキサフルオロホスフェート、トリフェニルセレノニウムテトラフルオロボレート、トリフェニルセレノニウムヘキサフルオロアンチモネート等のトリアリールセレノニウム塩;ジメチルフェナシルスルホニウムヘキサフルオロアンチモネート、ジエチルフェナシルスルホニウムヘキサフルオロアンチモネート等のジアルキルフェナシルスルホニウム塩;4−ヒドロキシフェニルジメチルスルホニウムヘキサフルオロアンチモネート、4−ヒドロキシフェニルベンジルメチルスルホニウムヘキサフルオロアンチモネート等のジアルキル−4−ヒドロキシ塩;α−ヒドロキシメチルベンゾインスルホン酸エステル、N−ヒドロキシイミドスルホネート、α−スルホニロキシケトン、β−スルホニロキシケトン等のスルホン酸エステルなどが挙げられる。
これらの中でも、硬化性、透明性、加工性、サイズ制御性及び耐熱性の観点から、前記トリアリールスルホニウム塩であってもよい。
これらのカチオン重合開始剤は、単独で又は2種類以上を組み合わせて使用してもよく、適切な増感剤と組み合わせて使用してもよい。
本発明の光学材料用樹脂組成物中における(C)重合開始剤の含有量は、(A)成分及び(B)成分の総量100質量部に対して、0.1〜10質量部であってもよく、0.2〜7質量部であってもよく、0.3〜5質量部であってもよい。(C)重合開始剤の含有量が0.1質量部以上であると、硬化が十分となる傾向にあり、10質量部以下であると、十分な光透過性が得られる傾向にある。
また、この他に必要に応じて、本発明の光学材料用樹脂組成物中には、酸化防止剤、黄変防止剤、紫外線吸収剤、可視光吸収剤、着色剤、可塑剤、安定剤、充填剤等の添加剤を本発明の効果を阻害しない範囲で添加してもよい。
本発明の光学材料用樹脂組成物は、(A)ポリエステル樹脂、(B)重合性化合物、及び(C)重合開始剤を混合することにより製造することができる。(A)〜(C)成分の配合量は、光学材料用樹脂組成物中のこれらの含有量と同様である。混合は、前記有機溶媒中で行ってもよく、有機溶媒を使用せずに(A)〜(C)成分を公知の混合機を用いて混合してもよい。
本発明の光学材料用樹脂組成物は、有機溶剤を用いて希釈し、光学材料用樹脂ワニスとして使用してもよい。
なお、本明細書において、「光学材料用樹脂ワニス」とは、有機溶剤を5質量%以上含有する本発明の光学材料用樹脂組成物を意味する。
<光学材料用樹脂ワニス>
光学材料用樹脂ワニスの製造に用いる有機溶剤としては、本発明の光学材料用樹脂組成物を構成する各原料を溶解し得るものであれば特に制限はなく、例えば、トルエン、キシレン、メシチレン、クメン、p−シメン、ベンゼン等の芳香族炭化水素;テトラヒドロフラン、テトラヒドロピラン、1,4−ジオキサン等の環状エーテル;メタノール、エタノール、1−プロパノール、イソプロパノール、ブタノール、エチレングリコール、プロピレングリコール等のアルコール;アセトン、メチルエチルケトン、メチルイソブチルケトン、3−ペンタノン、シクロペンタノン、シクロヘキサノン、4−ヒドロキシ−4−メチル−2−ペンタノン等のケトン;酢酸メチル、酢酸エチル、酢酸ブチル、酢酸イソブチル、乳酸メチル、乳酸エチル、γ−ブチロラクトン等のエステル;エチレンカーボネート、プロピレンカーボネート等の炭酸エステル;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル等の多価アルコールアルキルエーテル;エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート等の多価アルコールアルキルエーテルアセテート;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルピロリドン等のアミドなどが挙げられる。
これらの中でも、溶解性及び沸点の観点から、トルエン、メタノール、エタノール、イソプロパノール、アセトン、メチルエチルケトン、メチルイソブチルケトン、3−ペンタノン、シクロヘキサノン、酢酸メチル、酢酸エチル、酢酸ブチル、酢酸イソブチル、乳酸メチル、乳酸エチル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジエチレングリコールジメチルエーテル、エチレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート又はN,N−ジメチルアセトアミドであってもよい。
これらの有機溶剤は、単独で又は2種類以上を組み合わせて使用してもよい。
また、光学材料用樹脂ワニス中の固形分濃度は、20〜80質量%であってもよい。
光学材料用樹脂ワニスを調合する際は、撹拌により混合してもよい。撹拌方法には特に制限はないが、撹拌効率の観点からプロペラを用いた撹拌であってもよい。
撹拌する際のプロペラの回転速度は、特に制限はないが、10〜1,000rpmであってもよく、50〜800rpmであってもよく、100〜500rpmであってもよい。プロペラの回転速度が10rpm以上であると、(A)〜(C)成分及び有機溶剤のそれぞれの成分が十分に混合される傾向にあり、1,000rpm以下であると、プロペラの回転による気泡の巻き込みを抑制できる傾向にある。
撹拌時間は、特に制限はないが、1〜24時間であってもよい。撹拌時間が1時間以上であると、(A)〜(C)成分及び有機溶剤のそれぞれの成分が十分に混合される傾向にあり、24時間以下であると、ワニスの調合時間を短縮できる傾向にある。
調合した光学材料用樹脂ワニスは、フィルタを用いて濾過してもよい。
フィルタの孔径は、50μmであってもよく、30μmであってもよく、10μmであってもよい。フィルタ孔径が50μm以下であると、大きな異物等が除去されて、ワニス塗布時における「はじき」の発生が抑制される傾向にあり、またコア部を伝搬する光の散乱が抑制される傾向にある。
調合した光学材料用樹脂ワニスは、減圧下で脱泡してもよい。脱泡方法には、特に制限はなく、真空ポンプとベルジャー、真空装置付き脱泡装置等を用いた公知の脱法方法を適用することができる。減圧時の圧力には特に制限はないが、光学材料用樹脂ワニスに含まれる有機溶剤が沸騰しない圧力であってもよい。減圧脱泡時間には特に制限はないが、3〜60分間であってもよい。減圧脱泡時間が3分間以上であると、光学材料用樹脂ワニス内に溶解した気泡を十分に取り除くことができる傾向にあり、60分間以下であると、光学材料用樹脂ワニスに含まれる有機溶剤が過度に揮発することを抑制できる傾向にある。
本発明の光学材料用樹脂組成物を重合及び硬化してなる厚み50μmの硬化フィルムの波長400nmでの光透過率は、80%以上であってもよく、85%以上であってもよく、90%以上であってもよい。光透過率が80%以上であると、十分な光の透過量が得られる傾向にある。なお、光の透過率の上限に関しては特に制限はない。透過率は、分光光度計を用いることで測定することができる。
本発明の光学材料用樹脂組成物を重合及び硬化してなる硬化フィルムの、温度25℃における波長830nmでの屈折率は、1.400〜1.700であってもよく、1.425〜1.675であってもよく、1.450〜1.650であってもよい。屈折率が1.400〜1.700であれば、汎用的な光学材料用樹脂と屈折率が大きく異ならないため、光学材料としての汎用性が良好に保たれる傾向にある。
[光学材料用樹脂フィルム]
本発明の光学材料用樹脂フィルムは、本発明の光学材料用樹脂組成物を用いて形成した光学材料用樹脂層(以下、単に「樹脂層」ともいう)を有するものである。
本発明の光学材料用樹脂フィルムは、本発明の光学材料用樹脂組成物を基材フィルムに塗布し、必要に応じて溶剤を除去する方法により容易に製造することができる。また、生産性の観点からは、前記光学材料用樹脂ワニスを基材フィルムに塗布し、溶剤を除去する方法を適用してもよい。
<基材フィルム>
基材フィルムとしては、特に制限はなく、例えば、ポリエチレンテレフタレート(以下、「PET」ともいう)、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル;ポリエチレン、ポリプロピレン等のポリオレフィン;ポリカーボネート、ポリアミド、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリエーテルスルフィド、ポリエーテルスルホン、ポリエーテルケトン、ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリアリレート、ポリスルホン、液晶ポリマなどが挙げられる。これらの中でも、柔軟性及び強靭性の観点から、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリプロピレン、ポリカーボネート、ポリアミド、ポリイミド、ポリアミドイミド、ポリフェニレンエーテル、ポリフェニレンスルフィド、ポリアリレート又はポリスルホンであってもよい。
基材フィルムの厚みは、目的とする柔軟性に応じて適宜選択すればよいが、3〜250μmであってもよく、5〜200μmであってもよく、7〜150μmであってもよい。基材フィルムの厚みが3μm以上であると、フィルム強度が十分となる傾向にあり、250μm以下であると、十分な柔軟性が得られる傾向にある。
なお、樹脂層との剥離性向上の観点から、基材フィルムとして、シリコーン系化合物、含フッ素化合物等の離型剤により離型処理が施されたフィルムを必要に応じて用いてもよい。
本発明の光学材料用樹脂フィルムは、基材フィルム、光学材料用樹脂層及び保護フィルムをこの順に有する構造としてもよく、基材フィルム、光学材料用樹脂層及び保護フィルムからなり、これらをこの順に有する3層構造としてもよい。
<保護フィルム>
保護フィルムとしては、特に制限はなく、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル;ポリエチレン、ポリプロピレン等のポリオレフィンなどが挙げられる。これらの中でも、柔軟性及び強靭性の観点から、ポリエチレンテレフタレート等のポリエステル;ポリエチレン、ポリプロピレン等のポリオレフィンであってもよい。
なお、樹脂層との剥離性向上の観点から、保護フィルムとして、シリコーン系化合物、含フッ素化合物等の離型剤により離型処理が施されたフィルムを必要に応じて用いてもよい。保護フィルムの厚みは、目的とする柔軟性に応じて適宜選択すればよいが、10〜250μmであってもよく、15〜200μmであってもよく、20〜150μmであってもよい。保護フィルムの厚みが10μm以上であると、フィルム強度が十分となる傾向にあり、250μm以下であると、十分な柔軟性が得られる傾向にある。
本発明の光学材料用樹脂フィルムの樹脂層の厚みは、特に限定されないが、乾燥後の厚みで、5〜500μmであってもよく、7〜200μmであってもよく、10〜150μmであってもよい。樹脂層の厚みが5μm以上であると、光学材料用樹脂フィルム又は該フィルムの硬化物の強度が十分となる傾向にあり、500μm以下であると、乾燥を十分に行えるため光学材料用樹脂フィルム中の残留溶剤量を低く抑えることができ、該フィルムの硬化物を加熱したときの発泡を抑制できる傾向にある。
このようにして得られた光学材料用樹脂フィルムは、例えば、ロール状に巻き取ることによって容易に保存することができる。また、ロール状のフィルムを好適なサイズに切り出して、シート状にして保存することもできる。
本発明の光学材料用樹脂組成物は、光導波路形成用樹脂組成物として好適であり、同様に本発明の光学材料用樹脂フィルムは、光導波路形成用樹脂フィルムとして好適である。
<光導波路形成用樹脂フィルム>
本発明の光学材料用樹脂フィルムを、光導波路のコア部形成用樹脂フィルムとして用いる場合、基材フィルムとしては、後述のコアパターン形成に用いる露光用活性光線が透過するものであれば特に制限はなく、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル;ポリエチレン、ポリプロピレン等のポリオレフィン;ポリカーボネート、ポリフェニレンエーテル、ポリアリレートなどが挙げられる。これらの中でも、露光用活性光線の透過率、柔軟性及び強靭性の観点から、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル;ポリプロピレン等のポリオレフィンであってもよい。
さらに、露光用活性光線の透過率向上及びコアパターンの側壁荒れ低減の観点から、高透明タイプの基材フィルムを用いてもよい。このような高透明タイプの基材フィルムとしては、東洋紡株式会社製「コスモシャインA1517」、「コスモシャインA4100」等が商業的に入手可能である。
なお、樹脂層との剥離性向上の観点から、シリコーン系化合物、含フッ素化合物等の離型剤により離型処理が施されたフィルムを必要に応じて用いてもよい。
コア部形成用樹脂フィルムの基材フィルムの厚みは、5〜50μmであってもよく、10〜40μmであってもよく、15〜30μmであってもよい。コア部形成用樹脂フィルムの基材フィルムの厚みが5μm以上であると、支持体としての強度が十分となる傾向にあり、50μm以下であると、コアパターン形成時にフォトマスクとコア部形成用樹脂組成物層とのギャップが大きくならず、パターン形成性が良好となる傾向にある。
光導波路形成用樹脂フィルムは、基材フィルム、光導波路形成用樹脂層(光学材料用樹脂組成物)及び保護フィルムをこの順に有する構造としてもよく、基材フィルム、光導波路形成用樹脂層及び保護フィルムからなり、これらをこの順に有する3層構造としてもよい。
このようにして得られた光導波路形成用樹脂フィルムは、例えばロール状に巻き取ることによって容易に保存することができる。また、ロール状のフィルムを好適なサイズに切り出して、シート状にして保存することもできる。
[光導波路]
本発明の光導波路は、下部クラッド層、コア部及び上部クラッド層の少なくとも1つを本発明の光学材料用樹脂組成物又は本発明の光学材料用樹脂フィルムを用いて形成した光導波路である。
図1の(a)に本発明の光導波路1の断面図を示す。光導波路1は基材5上に形成され、高屈折率であるコア部形成用樹脂組成物から形成されるコア部2、及び低屈折率であるクラッド層形成用樹脂組成物から形成される下部クラッド層4及び上部クラッド層3で構成されている。
本発明の光学材料用樹脂組成物又は光学材料用樹脂フィルムは、光導波路1の下部クラッド層4、コア部2及び上部クラッド層3の少なくとも1つに用いることができる。
本発明の光学材料用樹脂組成物又は光学材料用樹脂フィルムを用いることによって、クラッド層とコア部の層間密着性、及び光導波路コアパターン形成時のパターン形成性(細線又は狭線間対応性)をより向上させることができ、線幅及び線間の小さい微細パターン形成が可能となる。また、大面積の光導波路を一度に製造できるという生産性に優れたプロセスを提供することが可能となる。
基材5としては、シリコン基板、ガラス基板、及びFR−4等のガラスエポキシ樹脂基板のような硬い基材を用いることができる。
また、光導波路1は、基材5として、柔軟性及び強靭性のある前記基材フィルムを用いて、フレキシブル光導波路としてもよい。
基材5として柔軟性及び強靭性のある前記基材フィルムを用いる場合、基材5は光導波路1のカバーフィルムとして機能させてもよい。カバーフィルムを配置することにより、カバーフィルムの柔軟性及び強靭性を光導波路1に付与することが可能となる。また、光導波路1への汚れの付着及び傷付きを防止できるため、取り扱い性が向上する。
以上の観点から、図1の(b)のように上部クラッド層3の外側にカバーフィルム5が配置されていたり、図1の(c)のように下部クラッド層4及び上部クラッド層3の両方の外側にカバーフィルム5が配置されていてもよい。
また、光導波路1に柔軟性及び強靭性が十分に備わっている場合、図1の(d)のように、カバーフィルムが配置されていなくてもよい。
下部クラッド層4の厚みは、特に制限はないが、2〜200μmであってもよく、5〜100μmであってもよく、7〜80μmであってもよい。下部クラッド層4の厚みが2μm以上であると、伝搬光をコア内部に閉じ込めることが容易となる傾向にあり、200μm以下であると、光導波路1全体の厚みが過度に大きくなることを抑制できる傾向にある。なお、下部クラッド層4の厚みとは、コア部2と下部クラッド層4との境界から下部クラッド層4の下面までの値である。
なお、下部クラッド層4を形成するために用いられる光学材料用樹脂フィルムの厚みは、硬化後の下部クラッド層4の厚みが上記の範囲となるように適宜調整すればよい。
コア部2の高さは、特に制限はないが、10〜100μmであってもよく、15〜80μmであってもよく、20〜70μmであってもよい。コア部2の高さが10μm以上であると、光導波路形成後の受発光素子又は光ファイバとの結合において位置合わせトレランスが小さくなることを抑制できる傾向にあり、100μm以下であると、光導波路形成後の受発光素子又は光ファイバとの結合において、結合効率が小さくなることを抑制できる傾向にある。
なお、コア部2を形成するために用いられる光学材料用樹脂フィルムの厚みは、硬化後のコア部2の高さが上記の範囲となるように適宜調整すればよい。
上部クラッド層3の厚みは、コア部2を埋め込むことができる範囲であれば、特に制限はないが、乾燥後の厚みで、12〜500μmであってもよく、15〜200μmであってもよく、20〜150μmであってもよい。
上部クラッド層3の厚みは、最初に形成される下部クラッド層4の厚みと同一であっても異なっていてもよいが、コア部2を埋め込むという観点から、下部クラッド層4の厚みよりも厚くしてもよい。
なお、上部クラッド層3の厚みとは、コア部2と下部クラッド層4との境界から上部クラッド層3の上面までの値である。
本発明の光導波路1は、波長850nmにおける光伝搬損失が、0.20dB/cm以下であってもよく、0.15dB/cm以下であってもよい。光伝搬損失が0.20dB/cm以下であると、光の損失が小さくなり、伝送信号の強度が十分となる傾向にある。
<光導波路の製造方法>
本発明の光導波路1を製造する方法としては、特に制限はないが、例えば、本発明の光導波路形成用樹脂ワニスを、コア部形成用樹脂ワニス及びクラッド層形成用樹脂ワニスとして用いて、スピンコート法等により製造する方法、本発明の光導波路形成用樹脂フィルムを、コア部形成用樹脂フィルム及びクラッド層形成用樹脂フィルムとして用いて、積層法により製造する方法などが挙げられる。また、これらの方法を組み合わせて製造することもできる。これらの中でも、生産性に優れた光導波路製造プロセスが提供可能という観点からは、光導波路形成用樹脂フィルムを用いる積層法を適用してもよい。
以下、本発明の光導波路形成用樹脂フィルムを下部クラッド層4、コア部2及び上部クラッド層3に用いて光導波路1を形成する製造方法について説明する。
まず、第1の工程として下部クラッド層形成用樹脂フィルムを基材5上に積層して下部クラッド層4を形成する。第1の工程における積層方式としては、ロールラミネータ、平板型ラミネータ等を用いて加熱しながら圧着することにより積層する方法が挙げられる。これらの中でも、密着性及び追従性の観点から、平板型ラミネータを用いて減圧下で下部クラッド層形成用樹脂フィルムを積層してもよい。なお、本発明において平板型ラミネータとは、積層材料を一対の平板の間に挟み、平板を加圧することにより圧着させるラミネータのことを指し、例えば、真空加圧式平板型ラミネータを用いることができる。ここでの加熱温度は、例えば、40〜130℃であってもよく、圧着圧力は、0.1〜1.0MPaであってもよいが、特に限定されるものではない。下部クラッド層形成用樹脂フィルムに保護フィルムが存在する場合には、保護フィルムを除去した後に積層する。
なお、真空加圧式平板型ラミネータによる積層の前に、ロールラミネータを用いて、あらかじめ下部クラッド層形成用樹脂フィルムを基材5上に仮貼りしておいてもよい。ここで、密着性及び追従性向上の観点から、圧着しながら仮貼りしてもよく、圧着する際、ヒートロールを有するラミネータを用いて加熱しながら行ってもよい。ラミネート温度は、20〜130℃であってもよく、40〜120℃であってもよい。温度が20℃以上であると、下部クラッド層形成用樹脂フィルムと基材5との密着性が向上する傾向にあり、130℃以下であると、樹脂層がロールラミネート時に流動しすぎることがなく、必要とする膜厚が得られる傾向にある。同様の観点から、ラミネート時の圧着圧力は、例えば、0.2〜0.9MPaであってもよく、ラミネート速度は0.1〜3m/minであってもよいが、特に限定されるものではない。
続いて、基材5上に積層された下部クラッド層形成用樹脂フィルムを光及び/又は熱により硬化し、下部クラッド層形成用樹脂フィルムの基材フィルムを除去し、下部クラッド層4を形成する。
下部クラッド層4を形成する際の活性光線の照射量は、例えば、100〜5,000mJ/cmであってもよく、加熱温度は50〜200℃であってもよいが、特に限定されるものではない。
次いで、第2の工程としてコア部形成用樹脂フィルムを第1の工程と同様の方法で積層する。ここで、コア部形成用樹脂フィルムは下部クラッド層形成用樹脂フィルムより高屈折率となるように設計される。また、コア部形成用樹脂フィルムを構成する樹脂組成物は、活性光線により硬化し、コアパターンを形成し得る感光性樹脂組成物であってもよい。
本発明の光学材料用樹脂組成物は、感光性を有するため、コア部形成用樹脂フィルムとして好適である。
次に、第3の工程として積層後のコア部形成用樹脂フィルムを露光し、光導波路のコアパターン(コア部2)を形成する。具体的には、アートワークと呼ばれるネガ又はポジマスクパターンを通して活性光線を画像状に照射する。また、レーザー直接描画を用いてフォトマスクを通さずに直接活性光線を画像状に照射してもよい。活性光線の光源としては、例えば、カーボンアーク灯、水銀蒸気アーク灯、超高圧水銀灯、高圧水銀灯、キセノンランプ等の紫外線を有効に放射する公知の光源が挙げられる。また、他にも写真用フラッド電球、太陽ランプ等の可視光を有効に放射するものが挙げられる。
ここでの活性光線の照射量は、10〜10,000mJ/cmであってもよく、50〜5,000mJ/cmであってもよく、100〜3,000mJ/cmであってもよい。10mJ/cm以上であると、硬化反応が十分に進行し、後述する現像工程によるコア部2の流失が抑制される傾向にあり、10,000mJ/cm以下であると、露光量過多によりコア部2が太ることがなく、微細なパターンが形成できる傾向にある。
なお、露光後に、コア部2の解像度及び密着性向上の観点から、露光後加熱を行ってもよい。紫外線照射から露光後加熱までの時間は、10分間以内であってもよい。10分間以内であると紫外線照射により発生した活性種の失活を抑制できる傾向にある。露光後加熱の温度は、例えば、40〜160℃であってもよく、加熱時間は30秒〜10分間であってもよいが、特に限定されるものではない。
露光後、コア部形成用樹脂フィルムの基材フィルムを除去し、アルカリ性水溶液、水系現像液等のコア部形成用樹脂フィルムの組成に対応した現像液を用いて、例えば、スプレー、揺動浸漬、ブラッシング、スクラッピング、ディップ、パドル等の公知の方法により現像する。また、必要に応じて2種類以上の現像方法を併用してもよい。
前記アルカリ性水溶液の塩基としては、特に制限はないが、例えば、リチウム、ナトリウム又はカリウムの水酸化物等の水酸化アルカリ;リチウム、ナトリウム、カリウム若しくはアンモニウムの炭酸塩又は重炭酸塩等の炭酸アルカリ;リン酸カリウム、リン酸ナトリウム等のアルカリ金属リン酸塩;ピロリン酸ナトリウム、ピロリン酸カリウム等のアルカリ金属ピロリン酸塩;ホウ砂、メタケイ酸ナトリウム等のナトリウム塩;水酸化テトラメチルアンモニウム、トリエタノールアミン、エチレンジアミン、ジエチレントリアミン、2−アミノ−2−ヒドロキシメチル−1,3−プロパンジオール、1,3−ジアミノプロパノール−2−モルホリン等の有機塩基などが挙げられる。現像に用いるアルカリ性水溶液のpHは9〜11であってもよく、その温度はコア部形成用樹脂組成物層の現像性に合わせて調節すればよい。また、アルカリ性水溶液中には、本発明の効果を阻害しない範囲で、表面活性剤、消泡剤、現像等を促進させるための少量の有機溶剤等を混入させてもよい。
前記水系現像液としては、水又はアルカリ性水溶液と1種類以上の有機溶剤からなるものであれば特に制限はない。水系現像液のpHは、前記コア部形成用樹脂フィルムの現像が十分にできる範囲でできるだけ小さくしてもよく、pH8〜12であってもよく、pH9〜10であってもよい。
前記水系現像液に用いられる有機溶剤としては、例えば、メタノール、エタノール、イソプロパノール、ブタノール、エチレングリコール、プロピレングリコール等のアルコール;アセトン、4−ヒドロキシ−4−メチル−2−ペンタノン等のケトン;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル等の多価アルコールアルキルエーテルなどが挙げられる。
これらの有機溶剤は、単独で又は2種類以上を組み合わせて使用してもよい。
水系現像液中の有機溶剤の濃度は、2〜90質量%であってもよい。
水系現像液の温度はコア部形成用樹脂組成物の現像性に合わせて調節すればよい。また、水系現像液中には、本発明の効果を阻害しない範囲で界面活性剤、消泡剤等を少量混入させてもよい。
現像後の処理として、必要に応じて水と前記有機溶剤からなる洗浄液を用いてコア部2を洗浄してもよい。
現像又は洗浄後の処理としては、必要に応じて、60〜250℃程度の加熱及び/又は10〜10,000mJ/cm程度の露光を行うことにより、コア部2を更に硬化して用いてもよい。
続いて、第4の工程として上部クラッド層形成用樹脂フィルムを、コア部2を形成した面上に、第1及び第2の工程と同様の方法で積層して上部クラッド層3を形成する。ここで、上部クラッド層形成用樹脂フィルムは、コア部形成用樹脂フィルムよりも低屈折率になるように設計されている。また、上部クラッド層3の厚みは、コア部2の高さより大きくしてもよい。
次いで、第1の工程と同様な方法で上部クラッド層形成用樹脂フィルムを光及び/又は熱によって硬化し、上部クラッド層3を形成する。クラッド層形成用樹脂フィルムの基材フィルムの材質がPETである場合、活性光線の照射量は、100〜5,000mJ/cmであってもよい。一方、基材フィルムの材質がポリエチレンナフタレート、ポリアミド、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリフェニレンエーテル、ポリエーテルスルフィド、ポリエーテルスルホン、ポリスルホン等である場合、PETに比べて紫外線等の短波長の活性光線を通しにくいことから、活性光線の照射量は、500〜30,000mJ/cmであってもよい。照射量が500mJ/cm以上であると、硬化反応が十分に進行する傾向にあり、30,000mJ/cm以下であると、光照射の時間が長くかかりすぎることがない。
なお、硬化反応をより進行させるために、両面から同時に活性光線を照射することが可能な両面露光機を使用してもよい。また、加熱しながら活性光線を照射してもよい。活性光線照射中又は照射後の加熱温度は、例えば、50〜200℃であってもよいが、特に限定されるものではない。
上部クラッド層3を形成後、必要であれば基材フィルムを除去して、光導波路1を作製することができる。
本発明の光導波路は、耐熱性及び透明性に優れているために光モジュールの光伝送路として用いてもよい。光モジュールの形態としては、例えば光導波路の両端に光ファイバを接続した光ファイバ付き光導波路、光導波路の両端にコネクタを接続したコネクタ付き光導波路、光導波路とプリント配線板とを複合化した光電気複合基板、光導波路と光信号と電気信号を相互に変換する光/電気変換素子を組み合わせた光電気変換モジュール、光導波路と波長分割フィルタを組み合わせた波長合分波器等が挙げられる。なお、光電気複合基板において、複合化するプリント配線板としては、特に制限はなく、ガラスエポキシ基板等のリジッド基板、ポリイミド基板等のフレキシブル基板のどちらを用いてもよい。
以下、本発明を実施例及び比較例を挙げて更に詳細に説明する。ただし、本発明はこれら実施例に限定されるものではない。
なお、各合成例で得られたポリマの物性は以下の方法により測定した。
[酸価の測定]
酸価は各合成例で得られたポリマ溶液を中和するのに要した0.1mol/L水酸化カリウム水溶液の量から算出した。このとき、指示薬として添加したフェノールフタレインが無色からピンク色に変色した点を中和点とした。
[重量平均分子量の測定]
重量平均分子量(標準ポリスチレン換算)は、GPC装置(東ソー株式会社製、商品名:SD−822、DP−8020、及びRI−8020)を用いて、以下の条件にて測定した。
GPC測定に用いたカラムは日立化成株式会社製、商品名:Gelpack(登録商標) GL−A150−S及びGelpack(登録商標)GL−A160−Sを使用した。溶離液としてはテトラヒドロフランを用い、サンプル濃度0.5mg/mlとし、溶出速度を1ml/分として測定した。
なお、本実施例における分子量測定は、特に断らない限り同じ条件で実施した。
(合成例1)
[(メタ)アクリルポリマ(P−1)の調製]
撹拌機、冷却管、ガス導入管、滴下漏斗、及び温度計を備えたフラスコに、プロピレングリコールモノメチルエーテルアセテート46質量部及び乳酸メチル23質量部を秤量し、窒素ガスを導入しながら撹拌を行った。液温を65℃に上昇させ、メチルメタクリレート47質量部、ブチルアクリレート33質量部、2−ヒドロキシエチルメタクリレート16質量部、メタクリル酸14質量部、2,2’−アゾビス(2,4−ジメチルバレロニトリル)3質量部、プロピレングリコールモノメチルエーテルアセテート46質量部、及び乳酸メチル23質量部の混合物を3時間かけて滴下後、65℃で3時間撹拌し、さらに95℃で1時間撹拌を続けて、(メタ)アクリルポリマ(P−1)溶液(固形分47質量%)を得た。以下、(メタ)アクリルポリマ(P−1)溶液を「P−1溶液」とも称する。
得られた(メタ)アクリルポリマ(P−1)の酸価は79mgKOH/gであり、重量平均分子量は39,000であった。
(合成例2)
[(メタ)アクリルポリマ(P−2)の調製]
撹拌機、冷却管、ガス導入管、滴下漏斗、及び温度計を備えたフラスコに、プロピレングリコールモノメチルエーテルアセテート42質量部及び乳酸メチル21質量部を秤量し、窒素ガスを導入しながら撹拌を行った。液温を65℃に上昇させ、N−シクロヘキシルマレイミド14.5質量部、ベンジルアクリレート20質量部、o−フェニルフェノール1.5EOアクリレート39質量部、2−ヒドロキシエチルメタクリレート14質量部、メタクリル酸12.5質量部、2,2’−アゾビス(2,4−ジメチルバレロニトリル)4質量部、プロピレングリコールモノメチルエーテルアセテート37質量部、及び乳酸メチル21質量部の混合物を3時間かけて滴下後、65℃で3時間撹拌し、さらに95℃で1時間撹拌を続けて、(メタ)アクリルポリマ(P−2)溶液(固形分45質量%)を得た。以下、(メタ)アクリルポリマ(P−2)溶液を「P−2溶液」とも称する。
得られた(メタ)アクリルポリマ(P−2)の酸価は82mgKOH/gであり、重量平均分子量は32,000であった。
(製造例1)
[クラッド層形成用樹脂ワニスCLV−1の調合]
前記P−1溶液(固形分47質量%)84質量部(固形分40質量部)、光重合成分として、主骨格にアルキル鎖を有し、分子内にカルボキシ基を有するウレタンジアクリレート(日立化成株式会社製、商品名:HA9082−95、固形分76質量%)を37質量部(固形分28質量部)、ヘキサメチレンジイソシアネート型三量体をEO変性し、末端の水酸基とメタクリル酸とを反応させて得られたイソシアヌル環構造を有するウレタントリメタクリレート(日立化成株式会社製、商品名:UA−21EBD)20質量部(固形分20質量部)、及びヘキサメチレンジイソシアネート型三量体をメチルエチルケトンオキシムで保護したブロックイソシアネート(住化バイエルウレタン株式会社製、商品名:スミジュール(登録商標)BL3175、固形分75質量%)17質量部(固形分12質量部)、光重合開始剤として、1−[4−(2−ヒドロキシエトキシ)フェニル]−2−ヒドロキシ−2−メチル−1−プロパン−1−オン(BASFジャパン株式会社製、商品名:イルガキュア(登録商標)2959)1質量部、ビス(2,4,6−トリメチルベンゾイル)フェニルホスフィンオキシド(BASFジャパン株式会社製、商品名:イルガキュア819)1質量部、及び希釈用有機溶剤としてプロピレングリコールモノメチルエーテルアセテート40質量部を撹拌しながら混合した。得られた溶液を孔径2μmのポリフロンフィルタ(アドバンテック東洋株式会社製、商品名:PF020)を用いて加圧濾過を行った後、減圧脱泡し、クラッド層形成用樹脂ワニスCLV−1を得た。
(製造例2)
[クラッド層形成用樹脂フィルムCLF−1の作製]
上記で得られたクラッド層形成用樹脂ワニスCLV−1を、基材フィルムであるPETフィルム(東洋紡株式会社製、商品名:コスモシャインA4100、厚み50μm)の非処理面上に、塗工機(株式会社ヒラノテクシード製、商品名:マルチコーターTM−MC)を用いて塗布し、100℃で20分間乾燥後、保護フィルムとして表面離型処理PETフィルム(帝人デュポンフィルム株式会社製、商品名:ピューレックス(登録商標)A31、厚み25μm)を貼付け、クラッド層形成用樹脂フィルムCLF−1を得た。このとき樹脂層の厚みは、塗工機のギャップを調節することで任意に調整可能である。
本製造例で得た上部クラッド層形成用樹脂フィルムの厚みは70μmであり、下部クラッド層形成用樹脂フィルムの厚みは30μmであった。
クラッド層形成用樹脂フィルムCLF−1の屈折率は、後述の方法で測定したところ1.497であった。
(実施例1)
[コア部形成用樹脂ワニスCOV−1の調合]
(A)ポリエステル樹脂として、酸変性フルオレン型ポリエステル樹脂(商品名、大阪ガスケミカル株式会社製、商品名:オグソール(登録商標)CR−1030、重量平均分子量:5.8×10、酸価:113mgKOH/g)60質量部(固形分)、(B)重合性化合物として、ビスフェノールA型エポキシジアクリレート(新中村化学工業株式会社製、商品名:EA−1020N)15質量部(固形分)、EO変性ビスフェノールフルオレン型ジアクリレート(新中村化学工業株式会社製、商品名:A−BPEF)15質量部(固形分)、ビフェニルアラルキル型エポキシ樹脂(日本化薬株式会社製、商品名:NC−3000、エポキシ当量:277g/eq)、(C)重合開始剤として、1−[4−(2−ヒドロキシエトキシ)フェニル]−2−ヒドロキシ−2−メチル−1−プロパン−1−オン(BASFジャパン株式会社製、商品名:イルガキュア2959)1質量部、ビス(2,4,6−トリメチルベンゾイル)フェニルホスフィンオキシド(BASFジャパン株式会社製、商品名:イルガキュア819)1質量部、及び希釈溶剤としてプロピレングリコールモノメチルエーテルアセテートを固形分が55質量%となるよう加え、撹拌しながら混合した。得られた溶液を孔径2μmのポリフロンフィルタ(アドバンテック東洋株式会社製、商品名:PF020)を用いて加圧濾過を行った後、減圧脱泡し、コア部形成用樹脂ワニスCOV−1(固形分58質量%)を得た。
[コア部形成用樹脂フィルムCOF−1の作製]
上記で得られたコア部形成用樹脂ワニスCOV−1を、基材フィルムであるPETフィルム(東洋紡株式会社製、商品名:コスモシャインA1517、厚み16μm)の非処理面上に、前記塗工機を用いて塗布し、80℃で10分間、100℃で10分間乾燥後、保護フィルムとして表面離型処理PETフィルム(帝人デュポンフィルム株式会社製、商品名:ピューレックスA31、厚み25μm)を貼り付け、コア部形成用樹脂フィルムCOF−1を得た。
コア部形成用樹脂フィルムの樹脂層の厚みは、塗工機のギャップを調整することで任意に調整可能であるが、本実施例では硬化後の膜厚が50μmとなるように調整した。
[光導波路の作製]
真空加圧ラミネータ(ニチゴー・モートン株式会社製、商品名:V130)を用い、圧着圧力0.5MPa、温度80℃及び加圧時間30秒の条件で、保護フィルムを除去した前記クラッド形成用樹脂フィルムCLF−1を、ガラスエポキシ樹脂基板(日立化成株式会社製、商品名:MCL(登録商標)−E−679−FB、板厚0.6mm、表面銅箔はエッチングにより除去)上に積層した。次に紫外線露光機(株式会社大日本スクリーン製、商品名:MAP−1200)を用い、基材フィルムの上から紫外線(波長365nm)を4000mJ/cm照射後、基材フィルムを除去し、170℃で1時間加熱処理をすることによって、下部クラッド層4を形成した。
続いて、ロールラミネータ(日立化成テクノプラント株式会社製、商品名:HLM−1500)を用い、保護フィルムを除去した前記コア部形成用樹脂フィルムCOF−1を下部クラッド層4上に、圧着圧力0.5MPa、温度50℃、及び速度0.2m/分の条件で積層した。次いで、幅50μmの光導波路形成用パターンを有するネガフォトマスクを介し、基材フィルム上から前記紫外線露光機で紫外線(波長365nm)を表1に示す露光量で照射し、コア部2(コアパターン)を露光した。基材フィルムを除去した後、スプレー式現像装置(株式会社山縣機械製、商品名:RX−40D)を用い、1質量%の炭酸カリウム水溶液にて温度30℃、スプレー圧0.15MPa、及び表1に示す現像時間の条件で現像した。続いて、純水にて洗浄し、160℃で1時間加熱処理を行った。
次に、前記真空ラミネータを用い、保護フィルムを除去したクラッド層形成用樹脂フィルムCLF−1をコア部2及び下部クラッド層4上に、圧着圧力0.5MPa、温度85℃、及び加圧時間90秒の条件で積層した。次に基材フィルム上から前記紫外線露光機で紫外線(波長365nm)を4000mJ/cm照射し、基材フィルムを除去した後、温度170℃で1時間加熱処理をし、上部クラッド層3を形成し、図1(a)に示す光導波路1を得た。その後、ダイシングソー(株式会社ディスコ製、商品名:DAD−3350)を用いて長さ10cmのリジッド光導波路を切り出した。
(実施例2及び比較例1〜3)
表1に示す配合比に従って、実施例1と同様の方法でコア部形成用樹脂ワニスCOV−2〜5を調合し、コア部形成用樹脂フィルムCOF−2〜5を得た。その後、実施例1と同様の方法で光導波路を作製した。
[屈折率の測定]
保護フィルムを除去した前記クラッド層形成用樹脂フィルムに対して、前記紫外線露光機で紫外線(波長365nm)を4000mJ/cm照射した後、105℃で10分間、次いで170℃で1時間加熱して、クラッド層形成用樹脂フィルムの硬化物を得た。
また、保護フィルムを除去した前記コア部形成用樹脂フィルムに対して、前記紫外線露光機で紫外線(波長365nm)を表1に示す照射量で照射した後、80℃で10分間、次いで160℃で1時間加熱して、コア部形成用樹脂フィルムの硬化物を得た。
得られた硬化物を、各々、サイズ50mm×50mmに切断し、屈折率測定用サンプルを作製した。このサンプルの波長830nmにおける屈折率を、プリズム結合式屈折率計(Metricon社製、商品名:Model2020)を用いて測定した。コア部形成用樹脂フィルムの硬化物の屈折率を表1に示す。
[光伝搬損失の測定]
得られた光導波路の光伝搬損失を、波長850nmを中心波長とするVCSEL(垂直共振器面発光レーザー)光源(EXFO社製、商品名:FLS−300−01−VCL)、受光センサ(株式会社アドバンテスト製、商品名:Q82214)、入射ファイバ(GI−50/125マルチモードファイバ、NA=0.20)、及び出射ファイバ(SI−114・125マルチモードファイバ、NA=0.22)を用いて測定した。光伝搬損失は光損失測定値(dB)を光導波路長(10cm)で割ることにより算出した。
実施例1、2及び比較例1〜3の評価結果を表1に示す。
1)前記スプレー式現像装置を用い、1質量%炭酸カリウム水溶液を現像液として用いたコア部パターニングに要した時間。
2)(コア部形成用樹脂フィルムの硬化後の膜厚(50μm))−(光導波路作製後のコア部パターン高さ)より算出した。
3)前記光伝搬損失の測定方法にて測定した波長850nmにおける光伝搬損失。
表1中に示す各成分の詳細について以下に示す。
[(A)成分]
CR−1030:酸変性フルオレン型ポリエステル樹脂(大阪ガスケミカル株式会社製、商品名:オグソール(登録商標)CR−1030、重量平均分子量:5.8×10、酸価:113mgKOH/g)
[その他の成分]
ZCR−1569H:酸変性ビフェニル型エポキシアクリレート樹脂(日本化薬株式会社製、商品名:KAYARAD(登録商標)ZCR−1569H、重量平均分子量4.5×10、酸価:98mgKOH/g)
P−2:合成例2で作製した(メタ)アクリルポリマ(P−2)(重量平均分子量:32,000、酸価:82mgKOH/g)
[(B)成分]
EA−1010N:アクリル酸変性ビスフェノールA型エポキシモノアクリレート(新中村化学工業株式会社製、商品名:EA−1010N、エポキシ当量:518g/eq)
EA−1020N:アクリル酸変性ビスフェノールA型エポキシジアクリレート(新中村化学工業株式会社製、商品名:EA−1020N)
A−BPEF:EO変性ビスフェノールフルオレン型ジアクリレート(新中村化学工業株式会社製、商品名:A−BPEF)
NC−3000:ビフェニルアラルキル型エポキシ樹脂(日本化薬株式会社製、商品名:NC−3000、エポキシ当量:277g/eq)
[(C)成分]
I−819:ビス(2,4,6−トリメチルベンゾイル)フェニルホスフィンオキシド(BASFジャパン株式会社製、商品名:イルガキュア(登録商標)819)
I−2959:1−[4−(2−ヒドロキシエトキシ)フェニル]−2−ヒドロキシ−2−メチル−1−プロパン−1−オン(BASFジャパン株式会社製、商品名:イルガキュア(登録商標)2959)
実施例1及び2に示したように、本発明の光学材料用樹脂組成物を用いた光学材料用樹脂フィルムは膜減りが殆どなく、加工性(ここでは露光量及び現像時間のことをいう)及び厚み方向のサイズ制御性に優れていることがわかる。
また、これらの光学材料用樹脂フィルムを用いて製造した本発明の光導波路は、実施例1及び2に示すように、屈折率が高く、波長850nmにおいて光伝搬損失がそれぞれ0.28dB/cm、0.30dB/cmと低光伝搬損失が確認できた。
一方、比較例2に示すように、(A)成分として他の酸変性化合物を用いたものは、光伝搬損失が1.52dB/cmと本発明の光学材料用樹脂組成物と比べて大きい光伝搬損失となることがわかる。また、(メタ)アクリルポリマ(P−2)を用いた場合、比較例1及び3に示すように低光伝搬損失となるが、本発明の光学材料用樹脂組成物を用いた場合と比べて加工性に劣り、厚み方向のサイズ制御性に大きく劣ることがわかる。
本発明の光学材料用樹脂組成物は、屈折率が高く、波長850nmにおける透明性、低光伝搬損失、加工性、サイズ制御性等に優れており、これらを用いて製造した光導波路も波長850nmにおける透明性、低光伝搬損失等に優れたものである。したがって、本発明は、各種光学装置、光インターコネクション等の幅広い分野に優れた特性を有するものとして適用が可能である。
1 光導波路
2 コア部
3 上部クラッド層
4 下部クラッド層
5 基材又はカバーフィルム

Claims (10)

  1. (A)主鎖にフルオレン骨格を含む酸性基含有ポリエステル樹脂、(B)重合性化合物及び(C)重合開始剤を含有する光学材料用樹脂組成物であって、(A)ポリエステル樹脂が、分子中にエチレン性不飽和基を2つ以上有する化合物である光学材料用樹脂組成物。
  2. (B)重合性化合物が、芳香環を有する化合物を含有する請求項1に記載の光学材料用樹脂組成物。
  3. (B)重合性化合物が、(B2)芳香族エポキシジ(メタ)アクリレートを含有する請求項2に記載の光学材料用樹脂組成物。
  4. (A)ポリエステル樹脂の含有量が、(A)ポリエステル樹脂及び(B)重合性化合物の総量に対して10〜90質量%であり、(B)重合性化合物の含有量が、(A)ポリエステル樹脂及び(B)重合性化合物の総量に対して10〜90質量%であり、(C)重合開始剤の含有量が、(A)ポリエステル樹脂及び(B)重合性化合物の総量100質量部に対して、0.1〜10質量部である、請求項1〜3のいずれか1項に記載の光学材料用樹脂組成物。
  5. (C)重合開始剤が、光ラジカル重合開始剤である、請求項1〜4のいずれか1項に記載の光学材料用樹脂組成物。
  6. 請求項1〜5のいずれか1項に記載の光学材料用樹脂組成物を用いて形成した光学材料用樹脂層を有する光学材料用樹脂フィルム。
  7. 基材フィルム、請求項1〜5のいずれか1項に記載の光学材料用樹脂組成物を用いて形成した光学材料用樹脂層、及び保護フィルムをこの順に有する請求項6に記載の光学材料用樹脂フィルム。
  8. 下部クラッド層、コア部及び上部クラッド層の少なくとも1つを請求項1〜5のいずれか1項に記載の光学材料用樹脂組成物を用いて形成した光導波路。
  9. 下部クラッド層、コア部及び上部クラッド層の少なくとも1つを請求項6又は7に記載の光学材料用樹脂フィルムを用いて形成した光導波路。
  10. 波長850nmにおける光伝搬損失が、0.20dB/cm以下である請求項8又は9に記載の光導波路。
JP2015082450A 2015-04-14 2015-04-14 光学材料用樹脂組成物、光学材料用樹脂フィルム及び光導波路 Pending JP2016199720A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015082450A JP2016199720A (ja) 2015-04-14 2015-04-14 光学材料用樹脂組成物、光学材料用樹脂フィルム及び光導波路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015082450A JP2016199720A (ja) 2015-04-14 2015-04-14 光学材料用樹脂組成物、光学材料用樹脂フィルム及び光導波路

Publications (1)

Publication Number Publication Date
JP2016199720A true JP2016199720A (ja) 2016-12-01

Family

ID=57422443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015082450A Pending JP2016199720A (ja) 2015-04-14 2015-04-14 光学材料用樹脂組成物、光学材料用樹脂フィルム及び光導波路

Country Status (1)

Country Link
JP (1) JP2016199720A (ja)

Similar Documents

Publication Publication Date Title
TWI382054B (zh) 光學材料用樹脂組成物、光學材料用樹脂膜以及光導波管
TWI421296B (zh) 光波導形成用樹脂組成物、光波導形成用樹脂膜以及使用該膜的光導波管
JP5381097B2 (ja) 光学材料用フェノキシ樹脂、光学材料用樹脂組成物、光学材料用樹脂フィルム及びこれらを用いた光導波路
WO2015029261A1 (ja) 光導波路形成用樹脂組成物、光導波路形成用樹脂フィルム及びそれらを用いた光導波路
WO2015033893A1 (ja) 曲面形状部材形成用感光性樹脂組成物、及びこれを用いた、曲面形状部材形成用感光性樹脂フィルム、並びにこれらを用いたレンズ部材
JP5526740B2 (ja) 光導波路形成用樹脂組成物及びこれを用いた光導波路形成用樹脂フィルム、並びにこれらを用いた光導波路
JPWO2012026435A1 (ja) 光導波路形成用樹脂組成物、これを用いた光導波路形成用樹脂フィルム、及びこれらを用いた光導波路
JP5585578B2 (ja) 光導波路形成用樹脂組成物、光導波路形成用樹脂フィルム及び光導波路
JP2011117988A (ja) 光導波路形成用樹脂組成物及びこれを用いた光導波路形成用樹脂フィルム、並びにこれらを用いた光導波路
JP5515219B2 (ja) 光導波路形成用樹脂組成物、光導波路形成用樹脂フィルム、及びこれらを用いた光導波路
JP5003506B2 (ja) 光学材料用樹脂組成物、光学材料用樹脂フィルム、及びこれらを用いた光導波路
JP2009175244A (ja) 光学材料用樹脂組成物、光学材料用樹脂フィルム、及びこれらを用いた光導波路
JP5433959B2 (ja) 光導波路の製造方法及び該製造方法により得られた光導波路
JP2009093140A (ja) 光導波路の製造方法及び該製造方法により得られた光導波路
JP2016199719A (ja) 光学材料用樹脂組成物、光学材料用樹脂フィルム及び光導波路
JP2015145998A (ja) 光導波路形成用樹脂組成物、光導波路形成用樹脂フィルム、それらを用いた光導波路及びその製造法
JP5904362B2 (ja) 光学材料用樹脂組成物、光学材料用樹脂フィルム及び光導波路
JP2009167353A (ja) 光学材料用樹脂組成物、光学材料用樹脂フィルム、及びこれらを用いた光導波路
JP2016199720A (ja) 光学材料用樹脂組成物、光学材料用樹脂フィルム及び光導波路
TWI501032B (zh) 光波導形成用樹脂組成物、光波導形成用樹脂膜及使用它們的光波導
JP2018048277A (ja) 光学材料用樹脂組成物、それを用いた光学材料用樹脂フィルム及び光導波路とその製造方法
JP2016200770A (ja) 光学材料用樹脂組成物、光学材料用樹脂フィルム及び光導波路
JP2013174776A (ja) 光学材料用樹脂組成物、光学材料用樹脂フィルム及びそれらを用いた光導波路
JP2015146000A (ja) 光導波路形成用樹脂組成物、光導波路形成用樹脂フィルム及びそれらを用いた光導波路
JP2017138495A (ja) 感光性樹脂組成物を用いた光導波路の製造方法