JP2016188849A - Deterioration detection method and corrosion sensor - Google Patents

Deterioration detection method and corrosion sensor Download PDF

Info

Publication number
JP2016188849A
JP2016188849A JP2016016250A JP2016016250A JP2016188849A JP 2016188849 A JP2016188849 A JP 2016188849A JP 2016016250 A JP2016016250 A JP 2016016250A JP 2016016250 A JP2016016250 A JP 2016016250A JP 2016188849 A JP2016188849 A JP 2016188849A
Authority
JP
Japan
Prior art keywords
optical fiber
fiber sensor
sensor
steel material
protective coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016016250A
Other languages
Japanese (ja)
Other versions
JP6758841B2 (en
Inventor
幸俊 井坂
Yukitoshi Isaka
幸俊 井坂
早野 博幸
Hiroyuki Hayano
博幸 早野
愛 吉田
Ai Yoshida
愛 吉田
玲 江里口
Rei Eriguchi
玲 江里口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Publication of JP2016188849A publication Critical patent/JP2016188849A/en
Application granted granted Critical
Publication of JP6758841B2 publication Critical patent/JP6758841B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Reinforcement Elements For Buildings (AREA)
  • Working Measures On Existing Buildindgs (AREA)

Abstract

PROBLEM TO BE SOLVED: To detect a degree of deterioration progress of a protective coating film in steel products to grasp a timing to apply protective coating material again.SOLUTION: There is provided a deterioration detection method that detects a degree of deterioration progress of a protective coating material applied to a steel product 60. The deterioration detection method includes at least the steps of: sticking an optical fiber sensor 62 on a surface of the steel product 60; applying a protective coating material to the steel product 60 on which the optical fiber sensor 62 is stuck, so as to have the optical fiber sensor 62 covered; and connecting a measuring device to the optical fiber sensor 62 and measuring a strain on the basis of variation of characteristics of a lightwave propagated through the optical fiber sensor 62. The degree of deterioration progress of the protective coating material applied to the steel product 60 is detected based on the measured strain.SELECTED DRAWING: Figure 1

Description

本発明は、鋼材に塗布された保護塗料の劣化進行状況を検出する技術に関する。   The present invention relates to a technique for detecting the progress of deterioration of a protective coating applied to a steel material.

従来から、鉄橋やプラントなどの鋼材を用いた構造物では、鋼材に錆が生じないように保護塗料が用いられている。この保護塗料は、腐食因子の浸透や紫外線などにより、時間の経過と共に劣化する。このため、蛍光X線により厚みを測定することで劣化を検出する手法や、鋼材にケーブルを接続して腐食に伴う電気的特性の変化を測定することで劣化を検出する手法が提案されている。しかし、前者は現場での測定に不向きであり、高価であるという欠点があり、後者は感度や精度劣るという欠点があった。このような事情から、これらの手法は採用しがたく、従来は、主に、目視によって保護塗料の剥離や発錆の点検が行なわれていた。しかし、単に目視で点検する手法では、計画的に保護塗料を塗り替えたり、将来的に、いつ塗り替えるべきであるかを予測したりすることは容易ではない。その結果、従来は、構造物に対し、定期的に全面的な保護塗料の塗り替えが行なわれていた。   Conventionally, in a structure using a steel material such as an iron bridge or a plant, a protective coating is used so that the steel material does not rust. This protective coating deteriorates over time due to penetration of corrosive factors and ultraviolet rays. For this reason, a method for detecting deterioration by measuring the thickness by fluorescent X-rays and a method for detecting deterioration by connecting a cable to a steel material and measuring a change in electrical characteristics accompanying corrosion have been proposed. . However, the former is not suitable for on-site measurement and has the disadvantage of being expensive, while the latter has the disadvantage of inferior sensitivity and accuracy. For these reasons, these methods are difficult to adopt, and conventionally, peeling of protective paint and inspection for rusting have been performed mainly by visual inspection. However, it is not easy to systematically repaint the protective paint and predict when it should be repainted in the future by the method of simply visual inspection. As a result, conventionally, the entire surface of the structure is regularly repainted with a protective coating.

特開2013−053916号公報JP 2013-053916 A 特開2012−208088号公報JP 2012-208088 A

しかしながら、構造物の保護塗膜の劣化は、一様に進むわけではないため、一部の劣化が進んでいたとしても、他の一部には、まだ塗り直しを必要としない箇所がある可能性がある。それにもかかわらず、従来から、構造物に対し、定期的に全面的な保護塗料の塗り替えを行なっていたため、無用なコストがかかってしまっていた。鋼材の健全性は保護塗料の健全性によって管理しているため、構造物の各所において、塗り直すべき時期を把握することができれば、安全性を確保しつつ、ライフサイクルコストを削減することが可能となる。一方、鋼材に塗布された保護塗膜は薄いため、塗膜の劣化状況の把握や管理は容易ではない。   However, since the deterioration of the protective coating of the structure does not progress uniformly, even if some deterioration has progressed, there may be places where other repainting is not yet required There is sex. In spite of this, since the entire surface of the structure has been regularly repainted with protective paint, unnecessary costs have been incurred. Since the soundness of steel is managed by the soundness of the protective paint, if it is possible to grasp the time for repainting at various locations in the structure, it is possible to reduce the life cycle cost while ensuring safety. It becomes. On the other hand, since the protective coating applied to the steel material is thin, it is not easy to grasp and manage the deterioration state of the coating.

本発明は、このような事情に鑑みてなされたものであり、鋼材の保護塗膜の劣化進行状況を検出し、保護塗料を塗り直すべき時期を把握することができる劣化検出方法および腐食センサを提供することを目的とする。   The present invention has been made in view of such circumstances, and provides a deterioration detection method and a corrosion sensor capable of detecting the progress of deterioration of a protective coating film of a steel material and grasping the time when the protective coating should be reapplied. The purpose is to provide.

(1)上記の目的を達成するために、本発明は、以下のような手段を講じた。すなわち、本発明の劣化検出方法は、鋼材に塗布された保護塗料の劣化進行状況を検出する劣化検出方法であって、光ファイバセンサを鋼材の表面に貼付する工程と、前記光ファイバセンサが貼付された鋼材に対し、前記光ファイバセンサが被覆されるように保護塗料を塗布する工程と、前記光ファイバセンサに計測器を接続し、前記光ファイバセンサ中を伝搬する光波の特性変化に基づいて、ひずみを測定する工程と、を少なくとも含み、前記測定したひずみに基づいて、前記鋼材に塗布された保護塗料の劣化進行状況を検出することを特徴とする。   (1) In order to achieve the above object, the present invention takes the following measures. That is, the deterioration detection method of the present invention is a deterioration detection method for detecting the progress of deterioration of a protective coating applied to a steel material, the step of attaching an optical fiber sensor to the surface of the steel material, and the optical fiber sensor being attached. Applying a protective paint to the steel material so that the optical fiber sensor is coated, and connecting a measuring instrument to the optical fiber sensor, and changing the characteristics of light waves propagating through the optical fiber sensor. And measuring the strain, and detecting a progress of deterioration of the protective coating applied to the steel material based on the measured strain.

このように、細径である光ファイバセンサを用いることから、厚さが薄い保護塗膜と鋼材との間に設置することが可能となる。また、塗膜の欠損部も少ない。また、鋼材の保護塗膜の劣化進行状況を検出し、保護塗料を塗り直すべき時期を把握することができることから、その結果として、効果的で、かつ効率的な塗装サイクルを設定することが可能となり、コストの削減を図ることが可能となる。   As described above, since the optical fiber sensor having a small diameter is used, it can be installed between the protective coating film having a small thickness and the steel material. Also, there are few defects in the coating film. In addition, it is possible to detect the progress of the deterioration of the protective coating on steel and to know when to reapply the protective coating. As a result, it is possible to set an effective and efficient coating cycle. Thus, cost reduction can be achieved.

(2)また、本発明の劣化検出方法は、鋼材に塗布された保護塗料の劣化進行状況を検出する劣化検出方法であって、光ファイバセンサを金属板の表面に貼付する工程と、前記光ファイバセンサが貼付された金属板を鋼材の表面に貼付する工程と、前記金属板が貼付された鋼材に対し、前記光ファイバセンサが被覆されるように保護塗料を塗布する工程と、前記光ファイバセンサに計測器を接続し、前記光ファイバセンサ中を伝搬する光波の特性変化に基づいて、ひずみを測定する工程と、を少なくとも含み、前記測定したひずみに基づいて、前記鋼材に塗布された保護塗料の劣化進行状況を検出することを特徴とする。   (2) The degradation detection method of the present invention is a degradation detection method for detecting the progress of degradation of the protective coating applied to the steel material, the step of attaching an optical fiber sensor to the surface of a metal plate, and the light A step of affixing a metal plate to which a fiber sensor is affixed to a surface of a steel material; a step of applying a protective coating to the steel material to which the metal plate is affixed so as to cover the optical fiber sensor; and the optical fiber Connecting a measuring instrument to the sensor and measuring strain based on a change in characteristics of the light wave propagating through the optical fiber sensor, and the protection applied to the steel material based on the measured strain It is characterized by detecting the progress of paint deterioration.

このように、光ファイバセンサを金属板の表面に貼付するので、現地(現場)で光ファイバを張付ける作業が不要となり、金属板を張付けるだけの容易な作業となる。また、現地でなく、室内で光ファイバを適度な緊張力で金属板に取り付けることができ、検知の精度が高くなる。したがって、現場における施工も通常のように実施され、手間が増えることはない。また、金属板の保護塗膜の厚さを段階的に正確に変化させることが可能となるので、保護塗料の劣化進行状況を段階的に検出することが可能となる。   As described above, since the optical fiber sensor is attached to the surface of the metal plate, the work of attaching the optical fiber at the site (site) is not required, and the work is simply performed by attaching the metal plate. In addition, the optical fiber can be attached to the metal plate with an appropriate tension in the room, not at the site, and the detection accuracy is increased. Therefore, construction on site is carried out as usual, and labor is not increased. Moreover, since it becomes possible to change the thickness of the protective coating film of a metal plate correctly in steps, it becomes possible to detect the progress of deterioration of the protective coating in steps.

(3)また、本発明の劣化検出方法は、光ファイバセンサを鋼材又は金属板の表面に貼付する前に、防錆被膜を鋼材又は金属板の表面に貼付したダミーセンサを設け、ダミーセンサを用いて腐食以外の要因で生じたひずみを検出し、前記検出したひずみを補正するステップをさらに含むことを特徴とする。   (3) Moreover, the deterioration detection method of this invention provides the dummy sensor which stuck the antirust coating on the surface of the steel material or the metal plate before sticking the optical fiber sensor on the surface of the steel material or the metal plate, The method further includes the step of detecting strain generated by factors other than corrosion and correcting the detected strain.

この構成により、腐食によるひずみと、そうでないひずみ、すなわち温度や外力によるひずみを識別することが可能となる。これにより、温度や外力によるひずみの影響を取り除くことが可能となる。その結果、高い精度で腐食によるひずみのみを検出することが可能となる。   With this configuration, it is possible to discriminate between distortion due to corrosion and other distortions, that is, distortion due to temperature or external force. Thereby, it becomes possible to remove the influence of strain due to temperature and external force. As a result, only distortion due to corrosion can be detected with high accuracy.

(4)また、本発明の劣化検出方法は、前記貼付された光ファイバセンサの表面に、腐食因子が浸透しない防錆処理が施されたダミーセンサを設け、ダミーセンサを用いて腐食以外の要因で生じたひずみを検出し、前記検出したひずみを補正するステップをさらに含むことを特徴とする。   (4) Moreover, the deterioration detection method of this invention provides the dummy sensor by which the anti-corrosion process which the corrosion factor did not permeate | penetrate was provided in the surface of the said stuck optical fiber sensor, and factors other than corrosion using a dummy sensor The method further includes the step of detecting the distortion generated in step 1 and correcting the detected distortion.

この構成により、腐食によるひずみと、そうでないひずみ、すなわち温度や外力によるひずみを識別することが可能となる。これにより、温度や外力によるひずみの影響を取り除くことが可能となる。その結果、高い精度で腐食によるひずみのみを検出することが可能となる。   With this configuration, it is possible to discriminate between distortion due to corrosion and other distortions, that is, distortion due to temperature or external force. Thereby, it becomes possible to remove the influence of strain due to temperature and external force. As a result, only distortion due to corrosion can be detected with high accuracy.

(5)また、本発明の腐食センサは、鋼材に塗布された保護塗料の劣化進行状況を検出する腐食センサであって、光ファイバセンサと、前記光ファイバセンサを保持する鋼材と、前記光ファイバセンサおよび前記光ファイバセンサが貼付された鋼材を被覆する保護塗料と、を備え、前記鋼材の腐食により光ファイバセンサ中を伝搬する光波の特性に変化が生じることを特徴とする。   (5) Further, the corrosion sensor of the present invention is a corrosion sensor for detecting the progress of deterioration of the protective coating applied to the steel material, the optical fiber sensor, the steel material holding the optical fiber sensor, and the optical fiber. And a protective paint for covering the steel material to which the optical fiber sensor is attached, and the characteristics of the light wave propagating through the optical fiber sensor change due to corrosion of the steel material.

この構成により、現地(現場)でセンサを取り付ける作業が不要となり、本センサを対象物と同じ環境に設置するだけの作業となる。また、現地でなく、室内で光ファイバを適度な緊張力で張付けることができ、検知の精度が高くなる。したがって、現場における施工も通常のように実施され、手間が増えることはない。さらに、測定が容易な場所に設置することもできる。   With this configuration, the work of attaching the sensor at the site (site) is not required, and the work is simply to install the sensor in the same environment as the object. In addition, the optical fiber can be stretched with an appropriate tension force in the room, not at the site, and the detection accuracy becomes high. Therefore, construction on site is carried out as usual, and labor is not increased. Furthermore, it can also be installed in a place where measurement is easy.

本発明によれば、細径である光ファイバセンサを用いることから、厚さが薄い保護塗膜と鋼材との間に設置することが可能となる。また、塗膜の欠損部も少なくなる。また、鋼材の保護塗膜の劣化進行状況を検出し、保護塗料を塗り直すべき時期を把握することができることから、その結果として、効果的で、かつ効率的な塗装サイクルを設定することが可能となり、コストの削減を図ることが可能となる。   According to the present invention, since an optical fiber sensor having a small diameter is used, it can be installed between a protective coating film having a small thickness and a steel material. Moreover, the defect | deletion part of a coating film also decreases. In addition, it is possible to detect the progress of the deterioration of the protective coating on steel and to know when to reapply the protective coating. As a result, it is possible to set an effective and efficient coating cycle. Thus, cost reduction can be achieved.

本発明に係る実施形態1を示す図である。It is a figure which shows Embodiment 1 which concerns on this invention. H鋼の側面にセンサを貼付し、保護塗料を塗布した様子を示す図である。It is a figure which shows a mode that the sensor was stuck on the side surface of H steel, and the protective coating was apply | coated. 実施形態2に係るセンサの使用例を示す図である。It is a figure which shows the usage example of the sensor which concerns on Embodiment 2. FIG. 鋼材に光ファイバセンサを有する金属板を張り付けて、保護塗膜を施した様子を示す図である。It is a figure which shows a mode that the metal plate which has an optical fiber sensor was stuck on steel materials, and the protective coating film was given. 検証例に係る試験体を示す図である。It is a figure which shows the test body which concerns on a verification example. 腐食環境下における経過時間とひずみとの関係を示すグラフである。It is a graph which shows the relationship between the elapsed time and distortion in a corrosive environment. 光ファイバセンサを鋼材に3巻きとした検証結果を示すグラフである。It is a graph which shows the verification result which made the optical fiber sensor 3 turns to steel materials. 検証例2に係る試験体の概要を示す図である。It is a figure which shows the outline | summary of the test body which concerns on the verification example 2. FIG. 測定結果を示す図である。It is a figure which shows a measurement result.

本実施形態に係る腐食検出方法として、鋼材の表面に光ファイバセンサを貼り付ける場合を例示する。この腐食センサにおいては、鋼材そのものの腐食を検出することが可能である。鋼材が腐食すると、腐食生成物の体積膨張により光ファイバに伸びが生ずる。この伸びを、光ファイバセンサを介して、データロガー等の測定器で検出することによって、鋼材が腐食環境にあるのか否か、腐食因子が侵入してきたのかどうか、鋼材の腐食状況はどうかを診断することが可能となる。鋼材は、構造物に用いられている鋼材を使用してもよいし、別に鋼材を準備してセンサを設置してもよい。別に鋼材を準備してセンサを設置する場合は、測定対象と環境が同一である周辺部にセンサが移動したり脱落したりしないように設置する。構造物に用いられている鋼材を使用する場合は、別に鋼材を準備したり、取り付けたりする必要がなくなる。   The case where an optical fiber sensor is affixed on the surface of steel materials is illustrated as a corrosion detection method which concerns on this embodiment. In this corrosion sensor, it is possible to detect corrosion of the steel material itself. When the steel material is corroded, the optical fiber is stretched due to the volume expansion of the corrosion product. By detecting this elongation with a measuring instrument such as a data logger via an optical fiber sensor, it is diagnosed whether the steel is in a corrosive environment, whether a corrosive factor has entered, and whether the steel is corroded. It becomes possible to do. As the steel material, a steel material used in a structure may be used, or a steel material may be separately prepared and a sensor may be installed. Separately, when a sensor is installed by preparing a steel material, the sensor is installed so that the sensor does not move or drop out in the periphery where the measurement target and the environment are the same. When using the steel material used for the structure, it is not necessary to separately prepare or attach the steel material.

[実施形態1]
図1は、本発明に係る実施形態1を示す図である。実施形態1では、鋼材60の平面に光ファイバセンサ62を直接張り付ける態様を採る。例えば、図2に示すように、H鋼の側面に光ファイバセンサ62を貼付し、保護用の塗料を塗布する。これにより、鋼材を加工することなく、直接鋼材に光ファイバセンサ62を設けることが可能となる。その結果、鋼材腐食の早期発見が可能となる。また、腐食によるひずみを正確に検出することが可能となる。
[Embodiment 1]
FIG. 1 is a diagram showing Embodiment 1 according to the present invention. In the first embodiment, the optical fiber sensor 62 is directly attached to the plane of the steel material 60. For example, as shown in FIG. 2, an optical fiber sensor 62 is attached to the side surface of H steel, and a protective coating is applied. As a result, the optical fiber sensor 62 can be provided directly on the steel material without processing the steel material. As a result, early detection of steel corrosion is possible. Further, it becomes possible to accurately detect strain due to corrosion.

測定対象となる金属構造物、例えば、鋼橋やプラント設備、街路灯、土中埋設管、タンク、船舶などに保護塗料を塗布する場合、塗布前の金属材料の表面に、光ファイバセンサ62を貼付する。光ファイバセンサ62はFBGセンサ等を用いることができる。鋼材60に光ファイバセンサ62を張付ける際には、直線状に配置すればよいが、屈曲していてもよい。光ファイバセンサ62を鋼材60に張り付ける際には、密着するように、好ましくは引張力が加わるように巻き付け、接着剤で両端を固定する。これにより、膨張側・収縮側両方のひずみが計測できるようになる。その後、保護塗料を塗布するまで風雨等により損傷しないように保護しておく。保護する材料としてフィルムやシール、塗料で溶解する材料で覆ってもよい。   When applying protective paint to metal structures to be measured, such as steel bridges, plant equipment, street lamps, underground pipes, tanks, ships, etc., an optical fiber sensor 62 is placed on the surface of the metal material before application. Affix it. As the optical fiber sensor 62, an FBG sensor or the like can be used. When the optical fiber sensor 62 is attached to the steel material 60, it may be arranged in a straight line, but it may be bent. When the optical fiber sensor 62 is attached to the steel material 60, the optical fiber sensor 62 is wound so as to be in close contact, preferably with a tensile force applied, and both ends are fixed with an adhesive. Thereby, both the expansion side and the contraction side strain can be measured. Then, it protects so that it may not be damaged by a wind and rain etc. until a protective paint is applied. As a material to be protected, a film, a seal, or a material that dissolves with a paint may be covered.

光ファイバセンサの長さは、5mm〜500mmが好ましい。光ファイバセンサの長さが、500mm以上では張付けの際の取扱いが困難であり、保護塗料の塗布時に損傷する恐れがある。また、光ファイバセンサの長さが、5mm以下では検知する腐食範囲が狭く、またひずみも小さくなることから検知精度が劣る。   The length of the optical fiber sensor is preferably 5 mm to 500 mm. If the length of the optical fiber sensor is 500 mm or more, it is difficult to handle the optical fiber sensor and it may be damaged when the protective coating is applied. Further, when the length of the optical fiber sensor is 5 mm or less, the corrosion range to be detected is narrow and the strain is also small, so the detection accuracy is inferior.

本実施形態では、光ファイバセンサおよびその端部を保護塗膜の外部に出して計測器に接続する。ここで、光ファイバセンサは細径であるため、光ファイバセンサを引き出した場合に生じる塗膜の欠陥を生じることなく、センサを設置することができる。あるいは、計測器や光ファイバに接続できるように取り出しておいてもよいし、常時監視できるように配線しておいてもよい。   In the present embodiment, the optical fiber sensor and its end are exposed outside the protective coating and connected to the measuring instrument. Here, since the optical fiber sensor has a small diameter, the sensor can be installed without causing a coating film defect that occurs when the optical fiber sensor is pulled out. Alternatively, it may be taken out so that it can be connected to a measuring instrument or an optical fiber, or it may be wired so that it can be constantly monitored.

[実施形態2]
図3は、実施形態2に係るセンサの使用例を示す図である。上述した実施形態1では鋼材の平面に光ファイバセンサを直接張り付けたが、本実施形態によれば、金属板64に光ファイバセンサ66を張付け、当該金属板64を鋼材に張り付ける態様を採る。図4は、鋼材70に光ファイバセンサ66を有する金属板64を張り付けて、保護塗膜72を施した様子を示す図である。金属板(金属箔でもよい)64の材質は、測定対象とする鋼材70と同じものが好ましいが、早期検知のためにより錆びやすい材質の鉄や亜鉛にしてもよい。光ファイバセンサ66を金属板64に張り付ける際には、密着するように、好ましくは引張力が加わるように巻き付け、接着剤で両端を固定する。事前に室内で適切な引張力が加わるように光ファイバセンサ66を金属板64に張り付けておけば、設置したい鋼材に金属板64を張付けるだけで腐食センサを設置できる。金属板64の鋼材70への張付けは接着剤を用いる。
[Embodiment 2]
FIG. 3 is a diagram illustrating a usage example of the sensor according to the second embodiment. In the first embodiment described above, the optical fiber sensor is directly attached to the flat surface of the steel material. However, according to this embodiment, the optical fiber sensor 66 is attached to the metal plate 64 and the metal plate 64 is attached to the steel material. FIG. 4 is a view showing a state in which a protective metal coating 72 is applied by attaching a metal plate 64 having an optical fiber sensor 66 to a steel material 70. The material of the metal plate (or metal foil) 64 is preferably the same as that of the steel material 70 to be measured, but may be iron or zinc which is more easily rusted for early detection. When the optical fiber sensor 66 is attached to the metal plate 64, the optical fiber sensor 66 is wound so as to be in close contact with each other, preferably with a tensile force applied, and both ends are fixed with an adhesive. If the optical fiber sensor 66 is attached to the metal plate 64 so that an appropriate tensile force is applied in the room in advance, the corrosion sensor can be installed simply by attaching the metal plate 64 to the steel material to be installed. An adhesive is used to attach the metal plate 64 to the steel material 70.

また、金属板64の厚さを変化させることによって、保護塗膜72の厚さを変化させることができる。金属板64の厚さが異なる複数種類のセンサを、複数個配置することによって、保護塗膜72の厚さを正確に変化させ、段階的な劣化検出を実施することができる。この場合、同時に、現地の実環境での塗膜の保護性能を把握することも可能となる。また、保護塗膜72の塗布回数を変化させてもよい。例えば、センサ張付け部のみ下塗りの塗装回数を減らすことで腐食因子の侵入を事前に検知することができる。   In addition, the thickness of the protective coating 72 can be changed by changing the thickness of the metal plate 64. By disposing a plurality of types of sensors having different thicknesses of the metal plate 64, the thickness of the protective coating 72 can be accurately changed, and stepwise deterioration detection can be performed. In this case, at the same time, it is possible to grasp the protective performance of the coating film in the actual local environment. Moreover, you may change the frequency | count of application | coating of the protective coating 72. FIG. For example, the invasion of the corrosion factor can be detected in advance by reducing the number of times of applying the undercoat only in the sensor attachment portion.

このため、対象となる金属構造物の保護塗膜72が劣化するよりも早期に、腐食の危険性を把握することが可能となる。さらに、金属板64の厚みを段階的に変化させて、複数種類の厚さを持ったセンサを複数配置することにより、時系列的な劣化の進行を把握することができ、塗膜の耐久性の予測や計画的、効率的な塗膜の塗り変えなど、予防保全的な維持管理を可能にすることができる。   For this reason, it becomes possible to grasp | ascertain the risk of corrosion earlier than the protective coating film 72 of the metal structure used as object. Furthermore, by changing the thickness of the metal plate 64 step by step and arranging a plurality of sensors having a plurality of types of thickness, it is possible to grasp the progress of deterioration in time series, and the durability of the coating film Preventive maintenance and management such as predicting systematic and systematic and efficient paint repainting.

本実施形態に係る金属板64の厚さは、好ましくは0.05mm以上0.5mm以下である。例えば、金属板64の厚みを0.5mm以下としてセンサを構成すると、保護塗膜72に埋設する場合に、特に好適となる。金属板64(金属箔)の厚さは0.5mm以下であるので、フレキシブルで、化学工場プラントなどにおける配管やタンクや、球状のガスタンクなどの曲面形状にも対応可能である。また、塗布の際に段差となって障害となることもない。金属板64(金属箔)の厚さは0.05mmより薄いと損傷する恐れがあり、また適切な引張力を与えることができなくなる。例えば、金属板64(金属箔)の厚みを0.05mm、0.1mm、0.15mmの3種類としてそれぞれセンサを構成し、これらの3種類のセンサを鋼構造物の表面に配置することにより、保護塗膜の劣化進行を段階的に検知することが可能となる。   The thickness of the metal plate 64 according to the present embodiment is preferably 0.05 mm or more and 0.5 mm or less. For example, when the sensor is configured with the metal plate 64 having a thickness of 0.5 mm or less, it is particularly suitable when the sensor is embedded in the protective coating film 72. Since the thickness of the metal plate 64 (metal foil) is 0.5 mm or less, the metal plate 64 is flexible and can accommodate curved shapes such as pipes and tanks in a chemical factory plant or a spherical gas tank. In addition, it does not become an obstacle during application. If the thickness of the metal plate 64 (metal foil) is less than 0.05 mm, it may be damaged, and an appropriate tensile force cannot be applied. For example, by configuring the sensor with three types of thicknesses of the metal plate 64 (metal foil) of 0.05 mm, 0.1 mm, and 0.15 mm, and arranging these three types of sensors on the surface of the steel structure, It becomes possible to detect the progress of deterioration of the protective coating film in stages.

なお、金属板64は金属構造物の保護塗膜72の上から張付けてもよい。この場合、腐食センサに金属構造物と同様の保護塗膜を行なう。   The metal plate 64 may be stuck on the protective coating film 72 of the metal structure. In this case, the same protective coating as that of the metal structure is applied to the corrosion sensor.

[実施形態3]
本実施形態は、上記の実施形態により光ファイバセンサを設置し、別途腐食を検知しないように防錆処理を施したダミーセンサと設置する様態である。すなわち、ダミーセンサを用いて腐食以外の要因で生じたひずみを検出し、光ファイバセンサで検出したひずみを補正することで、正確に腐食によるひずみを検知することができる。これにより、例えば、温度による鋼材の収縮ひずみなどの影響を除去することが可能となる。
[Embodiment 3]
This embodiment is a mode in which an optical fiber sensor is installed according to the above-described embodiment, and is installed with a dummy sensor that has been subjected to rust prevention treatment so as not to detect corrosion. In other words, the strain caused by factors other than corrosion is detected using a dummy sensor, and the strain detected by the optical fiber sensor is corrected, so that the strain due to corrosion can be accurately detected. Thereby, for example, it becomes possible to remove the influence such as shrinkage strain of the steel material due to temperature.

ダミーセンサの製造方法としては、鋼材や金属板の表面に光ファイバセンサを配置したのち、使用される保護塗料よりも中性化や劣化因子の侵入を防ぐ樹脂(例えばエポキシ樹脂)、塗料(例えばジンクリッチ系塗料)によるコーティングあるいはめっき、などで被覆し、内部の鋼材の腐食を防ぐ方法がある。本方法は、鋼材に直接光ファイバセンサを張付ける場合に適する。   As a manufacturing method of the dummy sensor, after placing an optical fiber sensor on the surface of a steel material or a metal plate, a resin (for example, an epoxy resin) or a paint (for example, an epoxy resin) that prevents the neutralization or invasion of deterioration factors from the protective coating used. There is a method to prevent corrosion of the internal steel material by coating with zinc rich paint) or plating. This method is suitable for attaching an optical fiber sensor directly to a steel material.

また、ダミーセンサの製造方法としては、チタンや貴金属等の腐食しない金属板を鋼材に張付けてから、当該金属板に光ファイバセンサを張り付ける。本方法は、金属箔に光ファイバセンサを張付ける場合に適する。   As a method for manufacturing the dummy sensor, a metal plate such as titanium or a noble metal is attached to a steel material, and then the optical fiber sensor is attached to the metal plate. This method is suitable for attaching an optical fiber sensor to a metal foil.

また、鋼管、丸鋼の内部など腐食が生じない部分が存在する場合には、当該部位に光ファイバセンサを設置し、ダミーセンサとしてもよい。  Moreover, when there exists a part which does not produce corrosion, such as the inside of a steel pipe or a round steel, an optical fiber sensor may be installed in the part, and a dummy sensor may be used.

[実施形態4]
上記の実施形態は、対象とする構造物の鋼材に光ファイバセンサを設置するものであったが、本実施形態は、別途光ファイバセンサが貼り付けられた鋼材を腐食センサとして設置する様態である。すなわち、上記実施形態の鋼材を小型の鋼材に換えたものであり、例えば、対象物と同じ材質の小型の鉄棒や鉄板に光ファイバセンサを貼り付け、保護塗料を塗布したものである。取り付け方法は、上記実施形態と同様である。本実施形態で製造したセンサは、測定対象と環境が同一である対象物の周辺部に移動したり脱落したりしないように処置を講じて設置するのみである。本実施形態のセンサは、現場で製造することはなく精密に室内で製造して測定箇所に運搬すれば使用可能となる。したがって、現場における施工も通常のように実施され、手間が増えることはなく、構造物にセンサを貼り付けるなど手を加えることもない。また、測定が容易な場所に設置することもできる。
[Embodiment 4]
In the above embodiment, the optical fiber sensor is installed on the steel material of the target structure. However, this embodiment is a mode in which the steel material to which the optical fiber sensor is separately attached is installed as a corrosion sensor. . That is, the steel material of the above embodiment is replaced with a small steel material. For example, an optical fiber sensor is attached to a small iron bar or iron plate made of the same material as the object, and a protective paint is applied. The attachment method is the same as in the above embodiment. The sensor manufactured in the present embodiment is only installed by taking measures so that it does not move or drop out to the periphery of an object whose environment is the same as the object to be measured. The sensor of this embodiment can be used if it is precisely manufactured indoors and transported to a measurement location without being manufactured on site. Therefore, construction on site is carried out as usual, and labor is not increased, and no additional work such as attaching a sensor to the structure is required. It can also be installed in a place where measurement is easy.

[検証例]
図5は、金属の腐食により光ファイバセンサがひずみを検知するかを検証するために用いた試験体を示す図である。図5に示すように、試験体40は、棒鋼50に光ファイバセンサ51を巻き付けて、モルタル等のセメント硬化体52で被覆することにより構成されている。試験体40に対して、上下方向のかぶりが20mmであり、左右方向のかぶりが10mmである。図5では、棒鋼50に対して光ファイバセンサ51を1巻とした例を示したが、以下、3巻とする場合も併せて検証する。次に、試験体40の具体的検証例を示す。
[Verification example]
FIG. 5 is a view showing a test body used for verifying whether the optical fiber sensor detects strain due to corrosion of metal. As shown in FIG. 5, the test body 40 is configured by winding an optical fiber sensor 51 around a steel bar 50 and covering with a hardened cement body 52 such as mortar. With respect to the test body 40, the vertical fog is 20 mm, and the horizontal fog is 10 mm. In FIG. 5, an example in which the optical fiber sensor 51 is wound once with respect to the steel bar 50 is shown. Next, a specific verification example of the test body 40 is shown.

みがき棒鋼は、JIS G 3108 SGD3Mを使用した。みがき棒鋼に対する光ファイバの巻き方は、一定の張力下、例えば、巻き付け時に多少の引張ひずみが出ていることを確認した上で、巻き付け作業を行ない、端部をCN(東京測器製)で固定した。光ファイバセンサ(FBGセンサ)は、表2に示す仕様のものを用いた。また、ダミーセンサによるひずみ挙動の差異で腐食検知を行なうのが好ましく、被覆モルタルの体積変化や含水率の影響がひずみに表れることが予想されるため、試験体の仕様に応じて、ダミーの試験体を作製した。   JIS G 3108 SGD3M was used as the polished steel bar. The method of winding the optical fiber around the polished steel bar is under certain tension, for example, after confirming that some tensile strain has occurred during winding, and then winding the wire with CN (manufactured by Tokyo Sokki). Fixed. An optical fiber sensor (FBG sensor) having the specifications shown in Table 2 was used. In addition, it is preferable to detect corrosion based on the difference in strain behavior of the dummy sensor, and it is expected that the influence of volume change and moisture content of the coated mortar will appear in the strain. The body was made.

Figure 2016188849
Figure 2016188849
Figure 2016188849
Figure 2016188849

次に、被覆モルタルについて説明する。モルタルの使用材料は、次の表に示す通りである。

Figure 2016188849
Next, the covering mortar will be described. The materials used for the mortar are as shown in the following table.
Figure 2016188849

次に、モルタルの配合は、次の表に示す通りである。

Figure 2016188849
なお、上記の表中、「B」とは、「C」と「L」とを混合したものである。 Next, the composition of the mortar is as shown in the following table.
Figure 2016188849
In the above table, “B” is a mixture of “C” and “L”.

[モルタルの練混ぜ方法]
試験体に用いるモルタルは、“株式会社丸東製作所社製のモルタルミキサ(2L練)”を用いて練混ぜを行なった。練混ぜ手順は、以下の通りである。なお、モルタルの練混ぜは、20±2℃、湿度50%以上の恒温恒湿室にて行なった。
[Mortar mixing method]
The mortar used for the test body was kneaded using a “Maruto Seisakusho mortar mixer (2 L kneading)”. The mixing procedure is as follows. The mortar was kneaded in a constant temperature and humidity chamber at 20 ± 2 ° C. and a humidity of 50% or more.

塩ビ製型枠(内径φ40mm×高さ50mm、または内径φ40mm×高さ65mm)にモルタルを打込み、その中に光ファイバを巻いた棒鋼を中央部に入れ、その後、同じ恒温恒湿室で3時間養生後、20℃湿度95%以上で7日間養生し、脱型した。   Placing mortar into a PVC mold (inner diameter φ40 mm x height 50 mm, or inner diameter φ40 mm x height 65 mm), placing a steel bar wrapped with an optical fiber in the center, and then 3 hours in the same constant temperature and humidity chamber After curing, it was cured at 20 ° C. and humidity of 95% or more for 7 days and demolded.

試験体40を腐食環境下(温度40℃下で、NaCl:10%水溶液に浸漬1日、湿度60%乾燥3日、再度NaCl:10%水溶液に浸漬1日、以降は湿度60%乾燥)におき、計測機器(株式会社渡辺製作所製)により波長の変化を計測した。NaCl:10%水溶液の浸漬は、光ファイバ引き出し部からNaCl水溶液の侵入がないように、試験体の下端から30mm(3巻きの場合は、試験体の下端から45mm)の部分までを浸漬させた。また、ダミー試験体は、ここでは実験上腐食しない棒鋼を用いずに腐食センサと同じ試験体を用いており、NaCl水溶液を用いる代わりに腐食することのない純水に浸漬した。   Specimen 40 under corrosive environment (temperature 40 ° C., immersed in NaCl: 10% aqueous solution for 1 day, humidity 60% dried for 3 days, again immersed in NaCl: 10% aqueous solution for 1 day, and thereafter dried at 60% humidity) The change in wavelength was measured using a measuring instrument (manufactured by Watanabe Seisakusho Co., Ltd.) In the immersion of the NaCl: 10% aqueous solution, a portion of 30 mm from the lower end of the test specimen (45 mm from the lower end of the test specimen in the case of three windings) was so immersed that the NaCl aqueous solution did not enter from the optical fiber lead-out portion. . The dummy specimen used here was the same specimen as the corrosion sensor without using a steel bar that does not corrode experimentally, and was immersed in pure water that does not corrode instead of using the NaCl aqueous solution.

以下の式により、波長からひずみに変換し、腐食によるひずみの変化を確認した。

Figure 2016188849
ここで、ε:ひずみ(μ)、λ:測定時の波長(nm)、λ*:初期波長(nm)である。 Using the following equation, the wavelength was converted to strain, and the change in strain due to corrosion was confirmed.
Figure 2016188849
Here, ε: strain (μ), λ: wavelength at the time of measurement (nm), and λ * : initial wavelength (nm).

図6は、腐食環境下における経過時間とひずみとの関係を示すグラフである。図6に示す1巻きとした検証例では、1日と4日に塩水や水に浸漬したため、温度変化やモルタルの吸水などで一時的にひずみが変化したが、ダミー試験体も同じ様に変化したため、腐食によるものではない。16日に試験体とダミー試験体のひずみ量が乖離した。そこで、試験体の被覆モルタルを除去したところ、棒鋼が腐食していることが確認された。   FIG. 6 is a graph showing the relationship between elapsed time and strain in a corrosive environment. In the verification example with one winding shown in FIG. 6, since it was immersed in salt water or water on the 1st and 4th, the strain temporarily changed due to temperature change or mortar water absorption, but the dummy specimen also changed in the same way This is not due to corrosion. On the 16th, the strain amount of the test specimen and the dummy test specimen deviated. Then, when the covering mortar of the test body was removed, it was confirmed that the steel bar was corroded.

図7に示す3巻きとした検証例では、温度が一定になった後に計測を開始し、腐食後も計測を継続した例である。測定日数45日に腐食ひび割れが発生した。ひび割れが発生するまで、継続的に腐食による膨張を捉えることが可能であることが証明された。   The verification example with 3 windings shown in FIG. 7 is an example in which measurement is started after the temperature becomes constant and measurement is continued after corrosion. Corrosion cracks occurred on the 45th measurement day. It has been proved that it is possible to continuously capture the expansion due to corrosion until cracking occurs.

[検証例2]
腐食の状況に応じてひずみが増加するかどうかを確認するため、鋼材に光ファイバを巻き付けた大気中の場合について、腐食状況の確認と光ファイバによるひずみ計測を行なった。図8に示すように、試験体はφ20mm棒鋼50に、中心部の測定領域高さ25mmの範囲で光ファイバセンサ51を1巻とした。図9は、測定結果を示す図である。測定2日目までは20℃大気中であるため、丸1に示すように、腐食はほとんどなく、その直後にファイバ1巻の試験体中央部に塩水を塗布した。その後急激にひずみが増大し、丸2において目視による判定で腐食範囲が10%であり、丸3において目視による判定で腐食範囲が35%となった。以上の結果より、腐食の程度に対応してひずみは増大していることが分かる。
[Verification Example 2]
In order to confirm whether or not the strain increases according to the corrosion situation, the corrosion situation was confirmed and the strain was measured with the optical fiber in the case where the optical fiber was wrapped around the steel material. As shown in FIG. 8, the test specimen was a φ20 mm steel bar 50 and one turn of the optical fiber sensor 51 in a measurement area height of 25 mm at the center. FIG. 9 is a diagram showing measurement results. Since it was in the atmosphere at 20 ° C. until the second day of measurement, as shown in circle 1, there was almost no corrosion, and immediately after that, salt water was applied to the center of the test body of the fiber 1 roll. After that, the strain increased rapidly, and the corrosion range in round 2 was 10% by visual judgment, and in round 3, the corrosion range was 35% by visual judgment. From the above results, it can be seen that the strain increases corresponding to the degree of corrosion.

これにより、局所的に保護塗料の劣化進行状況を検出することが可能となる。その結果、効果的で、かつ効率的な塗装サイクルを設定することが可能となり、ライフサイクルコストの削減を計ることが可能となる。   Thereby, it becomes possible to detect the progress of deterioration of the protective coating locally. As a result, an effective and efficient coating cycle can be set, and the life cycle cost can be reduced.

40 試験体
50 棒鋼
51 光ファイバセンサ
52 セメント硬化体(モルタル)
60 鋼材
62 光ファイバセンサ
64 金属板(金属箔)
66 光ファイバセンサ
70 鋼材
72 保護塗膜
40 Specimen 50 Steel bar 51 Optical fiber sensor 52 Cement hardened body (mortar)
60 Steel 62 Optical fiber sensor 64 Metal plate (metal foil)
66 Optical fiber sensor 70 Steel 72 Protective coating

Claims (5)

鋼材に塗布された保護塗料の劣化進行状況を検出する劣化検出方法であって、
光ファイバセンサを鋼材の表面に貼付する工程と、
前記光ファイバセンサが貼付された鋼材に対し、前記光ファイバセンサが被覆されるように保護塗料を塗布する工程と、
前記光ファイバセンサに計測器を接続し、前記光ファイバセンサ中を伝搬する光波の特性変化に基づいて、ひずみを測定する工程と、を少なくとも含み、
前記測定したひずみに基づいて、前記鋼材に塗布された保護塗料の劣化進行状況を検出することを特徴とする劣化検出方法。
A deterioration detection method for detecting the progress of deterioration of a protective coating applied to a steel material,
Attaching the optical fiber sensor to the surface of the steel material;
Applying a protective coating to the steel material to which the optical fiber sensor is attached so that the optical fiber sensor is coated;
Connecting a measuring instrument to the optical fiber sensor, and measuring strain based on a characteristic change of a light wave propagating in the optical fiber sensor,
A degradation detection method, comprising: detecting a progress of degradation of the protective coating applied to the steel material based on the measured strain.
鋼材に塗布された保護塗料の劣化進行状況を検出する劣化検出方法であって、
光ファイバセンサを金属板の表面に貼付する工程と、
前記光ファイバセンサが貼付された金属板を鋼材の表面に貼付する工程と、
前記金属板が貼付された鋼材に対し、前記光ファイバセンサが被覆されるように保護塗料を塗布する工程と、
前記光ファイバセンサに計測器を接続し、前記光ファイバセンサ中を伝搬する光波の特性変化に基づいて、ひずみを測定する工程と、を少なくとも含み、
前記測定したひずみに基づいて、前記鋼材に塗布された保護塗料の劣化進行状況を検出することを特徴とする劣化検出方法。
A deterioration detection method for detecting the progress of deterioration of a protective coating applied to a steel material,
Attaching the optical fiber sensor to the surface of the metal plate;
Attaching the metal plate to which the optical fiber sensor is attached to the surface of the steel material;
Applying a protective coating to the steel material to which the metal plate is attached so that the optical fiber sensor is coated;
Connecting a measuring instrument to the optical fiber sensor, and measuring strain based on a characteristic change of a light wave propagating in the optical fiber sensor,
A degradation detection method, comprising: detecting a progress of degradation of the protective coating applied to the steel material based on the measured strain.
光ファイバセンサを鋼材又は金属板の表面に貼付する前に、防錆被膜を鋼材又は金属板の表面に貼付したダミーセンサを設け、ダミーセンサを用いて腐食以外の要因で生じたひずみを検出し、前記検出したひずみを補正するステップをさらに含むことを特徴とする請求項1又は請求項2記載の劣化検出方法。   Before applying the optical fiber sensor to the surface of the steel or metal plate, a dummy sensor with a rust-proof coating applied to the surface of the steel or metal plate is provided, and the dummy sensor is used to detect strains caused by factors other than corrosion. The deterioration detection method according to claim 1, further comprising a step of correcting the detected distortion. 前記貼付された光ファイバセンサの表面に、腐食因子が浸透しない防錆処理が施されたダミーセンサを設け、ダミーセンサを用いて腐食以外の要因で生じたひずみを検出し、前記検出したひずみを補正するステップをさらに含むことを特徴とする請求項1又は請求項2記載の劣化検出方法。   On the surface of the affixed optical fiber sensor, a dummy sensor that has been subjected to a rust prevention treatment that does not allow corrosion factors to permeate is provided, and the strain generated by factors other than corrosion is detected using the dummy sensor, and the detected strain is detected. The deterioration detection method according to claim 1, further comprising a correction step. 鋼材に塗布された保護塗料の劣化進行状況を検出する腐食センサであって、
光ファイバセンサと、
前記光ファイバセンサを保持する鋼材と、
前記光ファイバセンサおよび前記光ファイバセンサが貼付された鋼材を被覆する保護塗料と、を備え、
前記鋼材の腐食により光ファイバセンサ中を伝搬する光波の特性に変化が生じることを特徴とする腐食センサ。
A corrosion sensor that detects the progress of deterioration of the protective coating applied to steel,
An optical fiber sensor;
A steel material for holding the optical fiber sensor;
A protective paint for covering the optical fiber sensor and the steel material to which the optical fiber sensor is attached,
A corrosion sensor characterized in that a change occurs in characteristics of a light wave propagating through an optical fiber sensor due to corrosion of the steel material.
JP2016016250A 2015-03-27 2016-01-29 Deterioration detection method and corrosion sensor Active JP6758841B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015066634 2015-03-27
JP2015066634 2015-03-27

Publications (2)

Publication Number Publication Date
JP2016188849A true JP2016188849A (en) 2016-11-04
JP6758841B2 JP6758841B2 (en) 2020-09-23

Family

ID=57203192

Family Applications (6)

Application Number Title Priority Date Filing Date
JP2015152867A Active JP6621611B2 (en) 2015-03-27 2015-07-31 Corrosion detection method
JP2015152870A Active JP6626285B2 (en) 2015-03-27 2015-07-31 Corrosion state prediction method
JP2016016250A Active JP6758841B2 (en) 2015-03-27 2016-01-29 Deterioration detection method and corrosion sensor
JP2016016139A Pending JP2016188848A (en) 2015-03-27 2016-01-29 Corrosion detection method and corrosion sensor
JP2016016547A Active JP6660749B2 (en) 2015-03-27 2016-01-29 Concrete crack detection method and crack sensor
JP2016056836A Active JP6649142B2 (en) 2015-03-27 2016-03-22 Corrosion detection method and corrosion sensor

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2015152867A Active JP6621611B2 (en) 2015-03-27 2015-07-31 Corrosion detection method
JP2015152870A Active JP6626285B2 (en) 2015-03-27 2015-07-31 Corrosion state prediction method

Family Applications After (3)

Application Number Title Priority Date Filing Date
JP2016016139A Pending JP2016188848A (en) 2015-03-27 2016-01-29 Corrosion detection method and corrosion sensor
JP2016016547A Active JP6660749B2 (en) 2015-03-27 2016-01-29 Concrete crack detection method and crack sensor
JP2016056836A Active JP6649142B2 (en) 2015-03-27 2016-03-22 Corrosion detection method and corrosion sensor

Country Status (1)

Country Link
JP (6) JP6621611B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101925271B1 (en) 2017-02-07 2018-12-05 경희대학교 산학협력단 Corrosion monitoring system for mornitoring degradation factor, and methof for mornitoring the same
WO2019203028A1 (en) * 2018-04-16 2019-10-24 日本電信電話株式会社 Corrosion testing method and corrosion testing device

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6833587B2 (en) * 2017-03-29 2021-02-24 太平洋セメント株式会社 Corrosion detection method
KR101958403B1 (en) * 2017-08-09 2019-07-04 조선대학교산학협력단 The Metal corrosion monitoring system
JP6993066B2 (en) * 2017-10-03 2022-01-13 一般財団法人電力中央研究所 Diagnostic method for concrete structures
CN107843358A (en) * 2017-12-04 2018-03-27 中国电建集团中南勘测设计研究院有限公司 A kind of concrete abrasion early warning system and method
JP7019401B2 (en) * 2017-12-15 2022-02-15 太平洋セメント株式会社 Cross-section reduction rate estimation method and load bearing capacity estimation method
JP6934413B2 (en) * 2017-12-19 2021-09-15 太平洋セメント株式会社 Stress monitoring sensor and stress monitoring method
JP7174479B2 (en) * 2017-12-22 2022-11-17 太平洋セメント株式会社 Concrete Deterioration Detection Method Due to Freezing Damage, Freeze-Thaw Resistance Evaluation Method, and Concrete Specimen
CN108663256B (en) * 2018-03-19 2021-03-09 武汉钢铁有限公司 Sample surface treatment method for X-ray internal stress test
JP7216464B2 (en) * 2018-09-28 2023-02-01 太平洋セメント株式会社 STRESS MONITORING SENSOR AND STRESS MONITORING METHOD
KR20200126572A (en) * 2019-04-30 2020-11-09 경성대학교 산학협력단 System and method for corrosion monitoring using fiber optic sensor
US10895566B1 (en) * 2019-10-24 2021-01-19 Palo Alto Research Center Incorporated Optical monitoring to detect corrosion of power grid components
CN112284270B (en) * 2020-11-09 2021-08-20 燕山大学 Metal surface corrosion monitoring device based on fiber bragg grating self-temperature compensation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11101617A (en) * 1997-09-26 1999-04-13 Nkk Corp Structure strain monitoring method and its monitoring device
JP2002267575A (en) * 2001-03-08 2002-09-18 Mitsubishi Heavy Ind Ltd Detecting device for structure crack
US20050082467A1 (en) * 2003-10-21 2005-04-21 Guy Mossman Optical fiber based sensor system suitable for monitoring remote aqueous infiltration
JP2015021871A (en) * 2013-07-19 2015-02-02 太平洋セメント株式会社 Deterioration detection method, method of manufacturing sensor, and sensor

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0330849Y2 (en) * 1986-10-03 1991-06-28
US5374821A (en) * 1993-06-30 1994-12-20 Martin Marietta Energy Systems, Inc. Elastomeric optical fiber sensors and method for detecting and measuring events occurring in elastic materials
JPH0921661A (en) * 1995-07-06 1997-01-21 Sumitomo Electric Ind Ltd Apparatus for monitoring underground state of anchor construction part
JPH10197298A (en) * 1997-01-14 1998-07-31 Keisoku Gihan Kk Method for measuring variable state of baserock, slope soil structure and civil engineering structure
JP3381621B2 (en) * 1998-04-27 2003-03-04 栗田工業株式会社 Corrosion sensor
JP3756673B2 (en) * 1998-06-30 2006-03-15 株式会社ジオトップ Concrete pile capable of measuring strain and manufacturing method thereof
JP3457894B2 (en) * 1998-10-02 2003-10-20 三菱重工業株式会社 Optical fiber laying method and strain detecting device using optical fiber
JP4008623B2 (en) * 1999-06-14 2007-11-14 株式会社Nttファシリティーズ CONCRETE STRUCTURE AND ITS MANUFACTURING METHOD, CONCRETE STRUCTURE DAMAGE DETECTION DEVICE AND DAMAGE DETECTION METHOD
US6813403B2 (en) * 2002-03-14 2004-11-02 Fiber Optic Systems Technology, Inc. Monitoring of large structures using brillouin spectrum analysis
JP2005077113A (en) * 2003-08-29 2005-03-24 Kowa:Kk Distortion detection system
US7411176B2 (en) * 2005-01-26 2008-08-12 National Central University Method and apparatus for examining corrosion of tendon embedded in concrete
JP4594887B2 (en) * 2006-03-17 2010-12-08 株式会社東芝 Lined damage detection method and corrosive fluid container
JP4975420B2 (en) * 2006-11-28 2012-07-11 公益財団法人鉄道総合技術研究所 Structure state detection apparatus and state detection system
JP2008191076A (en) * 2007-02-07 2008-08-21 Chishin Go Corrosion monitoring device
JP5697254B2 (en) * 2011-09-27 2015-04-08 太平洋セメント株式会社 Corrosion environment detection sensor for concrete structures
CN102445452B (en) * 2011-09-28 2014-02-19 沈阳建筑大学 Method for monitoring of steel bar corrosion in real time
JP5690254B2 (en) * 2011-10-28 2015-03-25 公益財団法人鉄道総合技術研究所 Method and apparatus for monitoring deterioration of RC structure due to rebar corrosion
JP2013104701A (en) * 2011-11-11 2013-05-30 Japan Atomic Energy Agency Optical fiber sensor and measurement method using the same, and concrete structure provided with optical fiber sensor
FR2992063B1 (en) * 2012-06-18 2014-07-18 Commissariat Energie Atomique DEVICE FOR MEASURING CORROSION IN A METAL STRUCTURE OR COMPRISING AT LEAST ONE METALLIC FRAME, USES AND METHOD THEREFOR
CN203259452U (en) * 2013-05-28 2013-10-30 大连理工大学 Fiber anchor rod corrosion sensor
CN104154874B (en) * 2014-08-13 2017-03-01 浙江大学宁波理工学院 Monitoring device and method that armored concrete rust distending based on Fibre Optical Sensor splits

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11101617A (en) * 1997-09-26 1999-04-13 Nkk Corp Structure strain monitoring method and its monitoring device
JP2002267575A (en) * 2001-03-08 2002-09-18 Mitsubishi Heavy Ind Ltd Detecting device for structure crack
US20050082467A1 (en) * 2003-10-21 2005-04-21 Guy Mossman Optical fiber based sensor system suitable for monitoring remote aqueous infiltration
JP2015021871A (en) * 2013-07-19 2015-02-02 太平洋セメント株式会社 Deterioration detection method, method of manufacturing sensor, and sensor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHAO 他: "Brillouin Corrosion Expansion Sensors for Steel Reinforced Concrete Structures Using a Fiber Optic C", SENSORS, vol. 第11巻, 第11号, JPN6019007667, 16 November 2011 (2011-11-16), pages 10798 - 10819, ISSN: 0004235440 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101925271B1 (en) 2017-02-07 2018-12-05 경희대학교 산학협력단 Corrosion monitoring system for mornitoring degradation factor, and methof for mornitoring the same
WO2019203028A1 (en) * 2018-04-16 2019-10-24 日本電信電話株式会社 Corrosion testing method and corrosion testing device

Also Published As

Publication number Publication date
JP6621611B2 (en) 2019-12-18
JP2016188848A (en) 2016-11-04
JP6626285B2 (en) 2019-12-25
JP6649142B2 (en) 2020-02-19
JP6758841B2 (en) 2020-09-23
JP2016188850A (en) 2016-11-04
JP6660749B2 (en) 2020-03-11
JP2016186482A (en) 2016-10-27
JP2016186483A (en) 2016-10-27
JP2016188858A (en) 2016-11-04

Similar Documents

Publication Publication Date Title
JP6758841B2 (en) Deterioration detection method and corrosion sensor
JP6574331B2 (en) Corrosion sensor and corrosion detection method
Pei et al. Cementitious coatings for improved corrosion resistance of steel reinforcement
JP6734705B2 (en) Measurement and estimation methods
JP6934413B2 (en) Stress monitoring sensor and stress monitoring method
Hamilton et al. Durability evaluation of Florida’s fiber-reinforced polymer (FRP) composite reinforcement for concrete structures
Zajec et al. Corrosion monitoring of steel structure coating degradation
JP2009235894A (en) Concrete curing method and system
JP4785653B2 (en) How to repair mortar or concrete structures
JP7258681B2 (en) Sealed wire rope inspection method, sealed wire rope repair method, and sealed wire rope
Fernandez et al. Corrosion characteristics of unprotected post-tensioning strands under stress.
JP7019401B2 (en) Cross-section reduction rate estimation method and load bearing capacity estimation method
Nützel et al. Long‐term corrosion protection for bridge cables with butyl rubber tapes using the ATIS Cableskin® system
JP2017223503A (en) Corrosion estimation method and estimation method
JP2011174321A (en) Waterproof structure and waterproof structure forming method
Knudsen Review of coating failure incidents on the Norwegian continental shelf since the introduction of NORSOK M-501
JP2012112199A (en) Method for repairing crack of concrete structure, and concrete structure
Meyer Organic Corrosion Inhibitors–New Build And Existing Structures Performance
Alampalli Effectiveness of FRP materials with alternative concrete removal strategies for reinforced concrete bridge column wrapping
Castro-Borges et al. Corrosion performance of concrete columns after localized repairs in a tropical coastal environment
Faber et al. Carbon Fiber Pipeline Repair—Destructive Testing and Agency Experience
Bayne The Basics of Deteriorating Concrete at Wastewater Plants: Tips on Causes, Repair, and Resources
Fernandez et al. Embrittlement Susceptibility of Stressed High Strength Carbon Steel Ungrouted Post-Tensioning Strands
JP2021132508A (en) Repair member for columnar workpiece, columnar workpiece, and repair method thereof
Faust et al. Suspension bridge cable and suspender rope maintenance

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20160224

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200902

R150 Certificate of patent or registration of utility model

Ref document number: 6758841

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250