JPH0330849Y2 - - Google Patents
Info
- Publication number
- JPH0330849Y2 JPH0330849Y2 JP15158886U JP15158886U JPH0330849Y2 JP H0330849 Y2 JPH0330849 Y2 JP H0330849Y2 JP 15158886 U JP15158886 U JP 15158886U JP 15158886 U JP15158886 U JP 15158886U JP H0330849 Y2 JPH0330849 Y2 JP H0330849Y2
- Authority
- JP
- Japan
- Prior art keywords
- concrete
- metal
- probe
- corrosion
- reinforcing bars
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000004567 concrete Substances 0.000 claims description 28
- 239000002184 metal Substances 0.000 claims description 22
- 229910052751 metal Inorganic materials 0.000 claims description 22
- 238000005260 corrosion Methods 0.000 claims description 19
- 230000007797 corrosion Effects 0.000 claims description 19
- 230000003014 reinforcing effect Effects 0.000 claims description 15
- 239000000523 sample Substances 0.000 claims description 14
- 239000011810 insulating material Substances 0.000 claims description 6
- 238000012806 monitoring device Methods 0.000 claims description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 10
- 229910001294 Reinforcing steel Inorganic materials 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 229910000831 Steel Inorganic materials 0.000 description 6
- 239000010959 steel Substances 0.000 description 6
- 229910052742 iron Inorganic materials 0.000 description 5
- 150000002739 metals Chemical class 0.000 description 4
- 239000010949 copper Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 150000003841 chloride salts Chemical class 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229920001342 Bakelite® Polymers 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000004637 bakelite Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000033116 oxidation-reduction process Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 239000011150 reinforced concrete Substances 0.000 description 1
- 238000007665 sagging Methods 0.000 description 1
- 235000002639 sodium chloride Nutrition 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Landscapes
- Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
Description
【考案の詳細な説明】
《産業上の利用分野》
本考案は鉄筋コンクリート中の鉄筋がコンクリ
ートの中性化や塩化物の作用で腐食する状態にあ
るかどうかを簡易に判定する鉄筋の腐食監視装置
に関する。[Detailed description of the invention] <<Industrial application>> This invention is a corrosion monitoring device for reinforcing bars that easily determines whether the reinforcing bars in reinforced concrete are in a state of corrosion due to concrete neutralization or the action of chlorides. Regarding.
《従来の技術》
従来はコンクリートを部分的に破壊して内部の
鉄筋を露出する。そして、この露出箇所を目視す
ることにより鉄筋の腐食状態やその程度を判定し
ていた。[Conventional technology] Conventionally, concrete is partially destroyed to expose the internal reinforcing steel. The state and degree of corrosion of the reinforcing bars was determined by visually observing these exposed locations.
あるいは壁やスラブから抜き取つたコンクリー
トコアを検査するものであつた。 Alternatively, it was used to inspect concrete cores extracted from walls or slabs.
このような判定方法ではコンクリートコアの抜
き取り作業、コンクリートの〓り作業等いずれに
しても大きな労力と後の補修作業が伴う。 In any case, such a determination method involves a large amount of labor and subsequent repair work, such as the work of extracting the concrete core and the work of sagging the concrete.
また、自ら調査箇所および調査数とも制約を受
け、構造体耐力への悪影響もあつた。 In addition, we were constrained by the number of inspection locations and the number of inspections, which had a negative impact on the strength of the structure.
腐食程度を判断するに際しても、鉄筋がコンク
リートに埋込まれる前に発生していた錆がどうか
は不明であり、反対に鉄筋に錆が見られない状態
であつても、鉄筋が腐食する状況に至つている場
合があり、判断を誤ることも止むを得ない懸念を
残していた。 When determining the degree of corrosion, it is unclear whether rust has formed before the reinforcing bars are embedded in concrete, and conversely, even if there is no rust on the reinforcing bars, there is no possibility that the reinforcing bars will corrode. In some cases, there were unavoidable concerns that the decision could be made incorrectly.
《考案が解決しようとする問題点》
本来、コンクリート中の鋼材は、コンクリート
が保持している強アルリ性雰囲気中に置かれてい
るため、その酸化還元作用は止められている。[Problem that the invention aims to solve] Originally, the steel in concrete is placed in the strong alkaline atmosphere that the concrete maintains, so its oxidation-reduction action is stopped.
しかし、大気中の炭酸ガスや何らかの酸性物質
がコンクリートに作用し、長年の間にコンクリー
トのアルカリ性は失われ、次第に鋼材の腐食が始
まるのである。このことのほかに、コンクリート
中に一定量以上の密度で水溶性塩化物が含入して
いると、アルカリ性雰囲気中にあつても腐食が誘
発される。 However, carbon dioxide gas and some acidic substances in the atmosphere act on the concrete, and over many years the concrete loses its alkalinity, and the steel gradually begins to corrode. In addition to this, if water-soluble chlorides are contained in concrete at a density above a certain level, corrosion will be induced even in an alkaline atmosphere.
最近、除塩処理が不充分な海産骨材や潮風によ
つて運ばれる海塩粒子が雨水に溶解してコンクリ
ート中に浸透蓄積し、コンクリート鉄筋の腐食原
因になつている現象も明らかになつた。 Recently, it has become clear that marine aggregates that have not been sufficiently desalinated and sea salt particles carried by the sea breeze dissolve in rainwater and accumulate in concrete, causing corrosion of concrete reinforcing bars. .
叙述の状況にあつて、コンクリート中の鋼材の
腐食状態を簡単に調査、診断できる方法が要求さ
れている。 In the situation described above, there is a need for a method that can easily investigate and diagnose the corrosion state of steel in concrete.
本考案は上記事情に鑑みてなされたものであつ
て、その目的は、簡単迅速に鉄筋の腐食状態とそ
の進行速度とを構造物のコンクリートを全く破壊
することなく判別できる鉄筋の腐食監視装置を提
供するにある。 The present invention was developed in view of the above circumstances, and its purpose is to provide a reinforcing steel corrosion monitoring device that can easily and quickly determine the state of reinforcing steel corrosion and its progress rate without destroying the concrete of a structure. It is on offer.
《問題点を解決するための手段》
上記目的を達成するために、本考案に係る鉄筋
の腐食監視装置は、絶縁材で電気的に絶縁した鉄
筋と同種金属および異種金属でプローブを構成
し、該プローブを被監視コンクリート構造体に予
め埋設すると共に、該同種金属と該異種金属との
間に直列に電流計を接続してなることを特徴とす
る。<Means for Solving the Problems> In order to achieve the above object, the reinforcing steel corrosion monitoring device according to the present invention includes a probe made of the same kind of metal and a different kind of metal as the reinforcing bars electrically insulated with an insulating material, The probe is previously buried in the concrete structure to be monitored, and an ammeter is connected in series between the similar metal and the dissimilar metal.
《作用》
コンクリート中で鉄筋が腐食している部分とそ
うでない部分とに自由エネルギーの差が生じる。
これが勢力学的には系の安定のためにエネルギー
を放出する。この仕事が起電力となり、腐食部分
はアノードとなつて酸化反応を起し、他の部分は
カソードとなつて還元反応を起すのである。すな
なわち、腐食電池とも言うべき状態が形成され、
腐食電流を伴つて腐食が進行する。<<Effect>> A difference in free energy occurs between parts of concrete where the reinforcing steel is corroded and parts where it is not.
Force-wise, this releases energy to stabilize the system. This work becomes an electromotive force, and the corroded part becomes an anode and causes an oxidation reaction, and the other part becomes a cathode and causes a reduction reaction. In other words, a state that can be called a corrosion battery is formed,
Corrosion progresses with corrosion current.
鉄筋に対して自然電極電位の差が大きい異種電
極をカソードあるいはアノードとし、このカソー
ド(アノード)になる金属を標準電極とする閉回
路を形成しているのである。従つて、標準電極と
なる金属材料によつてはこれがカソードやアノー
ドになる場合があることは勿論である。 A closed circuit is formed in which a dissimilar electrode with a large difference in natural electrode potential relative to the reinforcing steel is used as a cathode or anode, and the metal serving as the cathode (anode) is used as a standard electrode. Therefore, it goes without saying that depending on the metal material used as the standard electrode, this may become a cathode or an anode.
電流計が示す電流量と方向とで鉄筋の状態を把
握するものである。 The condition of the reinforcing bars is determined by the amount and direction of current indicated by the ammeter.
《実施例》
以下、本考案の好適な実施例について、図面を
参照にして説明する。<<Example>> Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
第1図は本考案に使用するプローブ1を例示し
ており、このプローブ1は鉄筋と同種の鉄材2
と、チタン(Ti)、銅(Cu)、白金(Pt)等なら
何れでもよいが、ここでは銅を選んでなる異種金
属3をエポキシ樹脂、ベークライト等の絶縁材4
を挟んで棒状に一体的に構成している。 FIG. 1 shows an example of a probe 1 used in the present invention.
Any metal such as titanium (Ti), copper (Cu), platinum (Pt), etc. may be used, but in this case, the dissimilar metal 3 made of copper is used as an insulating material 4 such as epoxy resin or Bakelite.
It is integrally constructed into a rod shape with the two sides in between.
同図aのプローブ1は、絶縁材4の左側に鉄材
2、右側に異種金属3を接着した棒状で、鉄材2
と異種金属3の各端部にリード線5−5を接続し
ている。 The probe 1 shown in FIG.
A lead wire 5-5 is connected to each end of the dissimilar metal 3.
同図bのプローブ1′は、鉄材2の両端に絶縁
材4−4を介して異種金属3−3を取着したもの
であつて、リード線5−5は鉄材2に接続したも
のと、異種金属3−3間を短絡したものとがあ
る。こうすることにより、異種金属3−3の内部
抵抗を低くし、またプローブ1自体の信頼性が向
上している。 The probe 1' shown in FIG. 1B has a dissimilar metal 3-3 attached to both ends of a steel material 2 via an insulating material 4-4, and a lead wire 5-5 is connected to the steel material 2. There is one in which dissimilar metals 3-3 are short-circuited. By doing so, the internal resistance of the dissimilar metal 3-3 is lowered, and the reliability of the probe 1 itself is improved.
プローブ1は鉄材2と異種金属3とを直線状に
するのではなく、コンクリート構造体の埋設箇所
の形状や状況によつて並列になし、その間を絶縁
材4で断絶してもよい。要は電気的に絶縁された
鉄材2と異種金属3とがあればよい。 In the probe 1, the iron material 2 and the dissimilar metal 3 may not be arranged in a straight line, but may be arranged in parallel depending on the shape and situation of the buried part of the concrete structure, and the gap between them may be interrupted by an insulating material 4. In short, it is sufficient that the iron material 2 and the dissimilar metal 3 are electrically insulated.
上記プローブ1は第2図の如く、構造体を構成
するコンクリート6にコンクリート打設に際して
埋設する。そして、リード線5はコンクリート6
の外へ出しておき、これに電流計7を接続してい
る。電流計7は0.1μAから100μA位迄の電流を計
測できればよい。 As shown in FIG. 2, the probe 1 is buried in concrete 6 constituting the structure during concrete pouring. And lead wire 5 is concrete 6
The ammeter 7 is connected to this. The ammeter 7 only needs to be able to measure currents from 0.1 μA to about 100 μA.
こうして、コンクリート6のアルカリ濃度が中
性化してくれば、プローブ1の鉄材2は活性化
し、局部電池を構成するのである。その時、異種
金属3を基準電極とする腐食電流が電流計7を通
り、鉄材2の放電量を知るものである。そのこと
により、コンクリート6内に配筋されている鉄筋
の様子が類推され腐食進行の度合いを知り得る。 In this way, when the alkali concentration of the concrete 6 becomes neutral, the iron material 2 of the probe 1 is activated and forms a local battery. At that time, a corrosion current using the dissimilar metal 3 as a reference electrode passes through the ammeter 7, and the amount of discharge of the iron material 2 is known. By doing so, it is possible to infer the condition of reinforcing bars arranged in the concrete 6 and to know the degree of corrosion progress.
《効果》
以上詳しく説明したように、本考案に係る鉄筋
の腐食監視装置によれば、鉄筋と同種の金属およ
びこれと異種の金属を互いに絶縁してコンクリー
ト中に埋設しておき、これら金属間を電流計を介
して接続しているので、異種金属が保有している
自然電極電位に対する鉄筋と同種の鉄材の電極電
位の変化を連続的に、しかもコンクリートの品質
や外部環境の影響およびかぶり厚さなど鉄筋の腐
食に関与する諸要因が実際の条件下で監視掌握で
きる。また、コンクリートを〓る必要性も全くな
く、簡易かつ迅速に鉄筋の腐食状況が判定できる
効果がある。<<Effects>> As explained in detail above, according to the reinforcing steel corrosion monitoring device according to the present invention, metals of the same kind as the reinforcing bars and metals of different kinds are insulated from each other and buried in concrete. Since these are connected via an ammeter, changes in the electrode potential of the same type of steel as the reinforcing steel can be continuously monitored against the natural electrode potential held by dissimilar metals, and the effects of concrete quality, external environment, and cover thickness can be monitored continuously. The various factors involved in the corrosion of reinforcing bars can be monitored and grasped under actual conditions. Furthermore, there is no need to remove concrete at all, and the corrosion status of reinforcing bars can be determined simply and quickly.
第1図a,bは本考案に使用するプローブを例
示する側面図、第2図はコンクリート中に埋設し
たプローブと電流計との様子を示す説明図であ
る。
1……プローブ、2……鉄材、3……異種金
属、4……絶縁材7……電流計。
FIGS. 1a and 1b are side views illustrating the probe used in the present invention, and FIG. 2 is an explanatory diagram showing the state of the probe and ammeter buried in concrete. 1...Probe, 2...Iron material, 3...Different metal, 4...Insulating material 7...Ammeter.
Claims (1)
び異種金属でプローブを構成し、該プローブを被
監視コンクリート構造体に予め埋設すると共に、
該同種金属と該異種金属との間に直列に電流計を
接続してなることを特徴とする鉄筋の腐食監視装
置。 A probe is constructed of the same kind of metal and a different kind of metal as the reinforcing bars electrically insulated with an insulating material, and the probe is buried in advance in the concrete structure to be monitored, and
A corrosion monitoring device for reinforcing bars, characterized in that an ammeter is connected in series between the similar metal and the dissimilar metal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15158886U JPH0330849Y2 (en) | 1986-10-03 | 1986-10-03 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15158886U JPH0330849Y2 (en) | 1986-10-03 | 1986-10-03 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6358746U JPS6358746U (en) | 1988-04-19 |
JPH0330849Y2 true JPH0330849Y2 (en) | 1991-06-28 |
Family
ID=31068801
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15158886U Expired JPH0330849Y2 (en) | 1986-10-03 | 1986-10-03 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0330849Y2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006337169A (en) * | 2005-06-01 | 2006-12-14 | Taiheiyo Cement Corp | Corrosion sensor, sheath tube, sheath tube jointing member, and corrosion sensor unit |
JP2016186483A (en) * | 2015-03-27 | 2016-10-27 | 太平洋セメント株式会社 | Corrosion state prediction method |
-
1986
- 1986-10-03 JP JP15158886U patent/JPH0330849Y2/ja not_active Expired
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006337169A (en) * | 2005-06-01 | 2006-12-14 | Taiheiyo Cement Corp | Corrosion sensor, sheath tube, sheath tube jointing member, and corrosion sensor unit |
JP2016186483A (en) * | 2015-03-27 | 2016-10-27 | 太平洋セメント株式会社 | Corrosion state prediction method |
Also Published As
Publication number | Publication date |
---|---|
JPS6358746U (en) | 1988-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3205291B2 (en) | Prediction method of corrosion state of steel in concrete | |
Hansson | Comments on electrochemical measurements of the rate of corrosion of steel in concrete | |
Castro-Borges et al. | Performance of a 60-year-old concrete pier with stainless steel reinforcement | |
González et al. | On the effectiveness of realkalisation as a rehabilitation method for corroded reinforced concrete structures | |
González et al. | Some questions on the corrosion of steel in concrete. Part II: Corrosion mechanism and monitoring, service life prediction and protection methods | |
JPH0330849Y2 (en) | ||
JP2783957B2 (en) | How to passivate steel in concrete | |
KR20050101676A (en) | Sensor for monitoring the corrosion damage of steel embedded in concrete structure and sensor system | |
Mietz et al. | Monitoring of concrete structures with respect to rebar corrosion | |
JP6691384B2 (en) | Corrosion sensor and corrosion detection method | |
JPH0422464B2 (en) | ||
JP2511234B2 (en) | Probe for detecting corrosion degree of buried rebar | |
Nürnberger et al. | Stainless steel in concrete structures and in the fastening technique | |
JPH10221292A (en) | Detecting method for steel material corrosion in concrete | |
JP6851605B2 (en) | Calibration method of pH detection electrode wire | |
JP3847300B2 (en) | Corrosion prediction apparatus and corrosion prediction method for steel in concrete | |
JP2000044364A (en) | Detection of repair-needing portion of concrete structure and its repair | |
BETON | Corrosion of stainless steel reinforcement in cracked concrete | |
WO2005111575A1 (en) | Measuring device, equipment and method for monitoring the onset of corrosion affecting steel reinforcements embedded in reinforced concrete | |
JP6618212B2 (en) | Desalination treatment system for concrete, realkalization treatment system, and salinity sensor and pH sensor used therefor | |
Saraswathy et al. | Performance of galvanized and stainless steel rebars in concrete under macrocell corrosion conditions | |
JP3516587B2 (en) | Method for detecting continuity of steel in concrete | |
JP2002365259A (en) | Method and apparatus for judging carbonation of concrete | |
Andrade et al. | Detection of corrosion risk besides patch repairs | |
JP6353733B2 (en) | Spacer member having anti-corrosion function for steel in concrete and installation method thereof |