JP7019401B2 - Cross-section reduction rate estimation method and load bearing capacity estimation method - Google Patents

Cross-section reduction rate estimation method and load bearing capacity estimation method Download PDF

Info

Publication number
JP7019401B2
JP7019401B2 JP2017241189A JP2017241189A JP7019401B2 JP 7019401 B2 JP7019401 B2 JP 7019401B2 JP 2017241189 A JP2017241189 A JP 2017241189A JP 2017241189 A JP2017241189 A JP 2017241189A JP 7019401 B2 JP7019401 B2 JP 7019401B2
Authority
JP
Japan
Prior art keywords
cross
steel material
reduction rate
strain
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017241189A
Other languages
Japanese (ja)
Other versions
JP2019109095A (en
Inventor
博幸 早野
昂雄 落合
真弥 城出
玲 江里口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2017241189A priority Critical patent/JP7019401B2/en
Publication of JP2019109095A publication Critical patent/JP2019109095A/en
Application granted granted Critical
Publication of JP7019401B2 publication Critical patent/JP7019401B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Working Measures On Existing Buildindgs (AREA)

Description

本発明は、鉄筋の断面減少率を推定する技術および鉄筋の耐荷力を推定する技術に関する。 The present invention relates to a technique for estimating the cross-sectional reduction rate of a reinforcing bar and a technique for estimating the load bearing capacity of the reinforcing bar.

RC(Reinforced Concrete)造やSRC(Steel Reinforced Concrete)造などの構造物において、鉄筋腐食は構造物の構造性能を大きく低下させる。主に鉄筋は部材に生じる引張応力を負担し、健全な鉄筋の場合は断面積すべてが有効となるが、腐食した場合は鉄が腐食生成物に変わるために腐食部分は力学的に有効とはならず、その分だけ断面減少が生じることになる。 In structures such as RC (Reinforced Concrete) and SRC (Steel Reinforced Concrete) structures, rebar corrosion significantly reduces the structural performance of the structure. Reinforcing bars mainly bear the tensile stress generated in the members, and in the case of healthy reinforcing bars, the entire cross-sectional area is effective, but in the case of corrosion, iron is converted into corrosion products, so the corroded part is mechanically effective. However, the cross-section is reduced by that amount.

例えば、非特許文献1には、鉄筋が腐食することで断面積が減少し、鉄筋断面減少率の増加にともなって、構造物としての“はり”の耐荷性能が低下することが示されている。すなわち、鉄筋の断面減少率が分かれば、腐食劣化した構造物の現時点での耐荷性能が評価できる。 For example, Non-Patent Document 1 shows that the cross-sectional area decreases due to corrosion of the reinforcing bar, and the load-bearing performance of the “beam” as a structure decreases as the rate of decrease in the cross-sectional area of the reinforcing bar increases. .. That is, if the cross-sectional reduction rate of the reinforcing bar is known, the load-bearing performance of the corroded and deteriorated structure at the present time can be evaluated.

鉄筋の断面減少率を計測する方法としては、非特許文献2のように、大気中において鉄筋の腐食前と腐食後の腐食部分を取り除いた外形を計測し、断面積の差を断面減少率としているが、この方法では現存するコンクリート構造物中で鉄筋の腐食による断面減少率を測定することはできない。したがって、腐食過程におけるコンクリート中の鉄筋の断面減少率を、鉄筋を取り出さずに推定することができれば、実構造物の耐荷性能を評価することが可能となる。例えば、はりの耐荷力を推定するには、非特許文献1のように鉄筋断面減少率と耐荷力の関係を用いれば良い。 As a method for measuring the cross-sectional reduction rate of the reinforcing bar, as in Non-Patent Document 2, the outer shape of the reinforcing bar from which the corroded portion before and after the corrosion of the reinforcing bar is removed is measured, and the difference in cross-sectional area is used as the cross-sectional reduction rate. However, this method cannot measure the rate of cross-sectional reduction due to corrosion of reinforcing bars in existing concrete structures. Therefore, if the cross-sectional reduction rate of the reinforcing bar in the concrete in the corrosion process can be estimated without taking out the reinforcing bar, it is possible to evaluate the load bearing performance of the actual structure. For example, in order to estimate the load bearing capacity of the beam, the relationship between the reinforcing bar cross-section reduction rate and the load bearing capacity may be used as in Non-Patent Document 1.

また、特許文献1では鉄筋の腐食を光ファイバセンサにより検知する方法が開示されている。 Further, Patent Document 1 discloses a method of detecting corrosion of a reinforcing bar by an optical fiber sensor.

特開2016-186482号公報Japanese Unexamined Patent Publication No. 2016-186482

岩波光保、他2名、「鉄筋腐食がRCはりの耐荷性能に及ぼす影響」、コンクリート工学年次論文集、Vol.24、2002年、No.2、1501-1506Mitsuyasu Iwanami, 2 others, "Effects of Reinforcing Bar Corrosion on the Load-Resistant Performance of RC Beams", Annual Papers on Concrete Engineering, Vol.24, 2002, No.2, 1501-1506 内田祐介、ほか2名「高強度太径鉄筋の強度性状に及ぼす腐食の影響に関する研究」、コンクリート工学年次論文集、Vol.37、2015年、No.1、979-984Yusuke Uchida and 2 others "Study on the effect of corrosion on the strength properties of high-strength large-diameter reinforcing bars", Annual Proceedings of Concrete Engineering, Vol.37, 2015, No.1, 979-984

鉄筋の断面減少率は、次の式で求められる。
((腐食前の鉄筋の断面積)-(腐食部分を取り除いた鉄筋の断面積))/(腐食前の鉄筋の断面積)×100(%)
The cross-sectional reduction rate of the reinforcing bar is calculated by the following formula.
((Cross-sectional area of reinforcing bar before corrosion)-(Cross-sectional area of reinforcing bar with corroded part removed)) / (Cross-sectional area of reinforcing bar before corrosion) x 100 (%)

しかしながら、上記の鉄筋の断面減少率は、これらの非特許文献では腐食後にコンクリート中から鉄筋を取り出して、腐食生成物を取り除いてから外形を測定して断面積を算出する必要があるため、実構造物においての計測、さらには連続的に計測するのは困難である。 However, in these non-patent documents, it is necessary to take out the reinforcing bar from the concrete after corrosion, remove the corrosion product, and then measure the outer shape to calculate the cross-sectional area. It is difficult to measure in a structure and even continuously.

また、特許文献1では、非破壊で鉄筋腐食を検知できるものの定量的に鉄筋の断面減少率を推定できるものではない。 Further, in Patent Document 1, although non-destructive reinforcement corrosion can be detected, the cross-sectional reduction rate of the reinforcing bar cannot be quantitatively estimated.

本発明は、このような事情に鑑みてなされたものであり、実構造物の鉄筋の腐食にともなう膨張ひずみの挙動に基づいて、コンクリート中の鉄筋の断面減少率を非破壊で定量的に把握することができる断面減少率推定方法および耐荷力推定方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and the reduction rate of the cross section of the reinforcing bar in concrete is non-destructively and quantitatively grasped based on the behavior of the expansion strain due to the corrosion of the reinforcing bar of the actual structure. It is an object of the present invention to provide a method for estimating a cross-sectional reduction rate and a method for estimating a load bearing capacity.

(1)上記の目的を達成するため、本発明は、以下の手段を講じた。すなわち、本発明の断面減少率推定方法は、鋼材が腐食することによって減少した鋼材の断面の減少率を推定する断面減少率推定方法であって、前記鋼材の表面に光ファイバセンサを固定させる工程と、前記光ファイバセンサ中を伝搬する光波の特性変化を検出することによって、腐食生成物の発生による前記鋼材のひずみを検出する工程と、鋼材の断面減少率と鋼材の腐食膨張によるひずみとの関係を示す予め定められた関数を用いて、前記検出したひずみに対応する鋼材の断面減少率を推定する工程と、を含むことを特徴とする。 (1) In order to achieve the above object, the present invention has taken the following measures. That is, the cross-section reduction rate estimation method of the present invention is a cross-section reduction rate estimation method for estimating the cross-section reduction rate of the steel material reduced due to corrosion of the steel material, and is a step of fixing the optical fiber sensor to the surface of the steel material. The process of detecting the strain of the steel material due to the generation of corrosion products by detecting the change in the characteristics of the light wave propagating in the optical fiber sensor, and the cross-sectional reduction rate of the steel material and the strain due to the corrosion expansion of the steel material. It is characterized by including a step of estimating the cross-sectional reduction rate of the steel material corresponding to the detected strain by using a predetermined function indicating the relationship.

このように、鋼材の断面減少率と鋼材の腐食膨張によるひずみとの関係を示す予め定められた関数に基づいて、検出したひずみに対応する鉄筋の断面減少率を推定するので、ひずみが検出することによって鉄筋の断面減少率を求めることが可能となる。これにより、鋼材が腐食した場合の断面減少率を非破壊で定量的に把握することが可能となる。 In this way, the strain is detected because the cross-sectional reduction rate of the reinforcing bar corresponding to the detected strain is estimated based on a predetermined function showing the relationship between the cross-sectional reduction rate of the steel material and the strain due to the corrosion expansion of the steel material. This makes it possible to obtain the cross-sectional reduction rate of the reinforcing bar. This makes it possible to quantitatively grasp the cross-sectional reduction rate when the steel material is corroded in a non-destructive manner.

(2)また、本発明の断面減少率推定方法において、前記予め定められた関数は、コンクリート中で腐食した鋼材に巻き付けられた光ファイバセンサで検出したひずみと当該鋼材の断面減少率を実測して求められた値から特定された関数であることを特徴とする。 (2) Further, in the method for estimating the cross-section reduction rate of the present invention, the predetermined function actually measures the strain detected by the optical fiber sensor wound around the steel material corroded in the concrete and the cross-section reduction rate of the steel material. It is characterized by being a function specified from the value obtained in the above.

このように、予め定められた関数は、実測値に基づくものであるので、正確に断面減少率を把握することが可能となる。 As described above, since the predetermined function is based on the actually measured value, it is possible to accurately grasp the cross-sectional reduction rate.

(3)また、本発明の断面減少率推定方法において、前記鋼材は、実コンクリート構造中の鉄筋であることを特徴とする。 (3) Further, in the cross-section reduction rate estimation method of the present invention, the steel material is characterized by being a reinforcing bar in a real concrete structure.

このように、実コンクリート構造中の鉄筋に光ファイバセンサを巻き付けるので、非破壊で実構造物の鉄筋断面減少の状況を定量的に把握することが可能となる。 In this way, since the optical fiber sensor is wound around the reinforcing bar in the actual concrete structure, it is possible to quantitatively grasp the state of the decrease in the cross-section of the reinforcing bar in the actual structure without destruction.

(4)また、本発明の耐荷力推定方法は、上記(1)から(3)のいずれかに記載の断面減少率推定方法により得られた鋼材の断面減少率を用いて、コンクリート構造物の耐荷力を推定することを特徴とする。 (4) Further, in the load bearing capacity estimation method of the present invention, the cross-section reduction rate of the steel material obtained by the cross-section reduction rate estimation method according to any one of (1) to (3) above is used to form a concrete structure. It is characterized by estimating the load bearing capacity.

この構成により、ここで得られた断面減少率を用いて、構造物モデルを作成してFEM等の解析を行なうことができる。その結果、腐食によって劣化したコンクリート部材としての耐荷力が推定でき、建設時に比べてどの程度耐荷性能が低下したかを把握することで、構造物の適切な維持管理に役立つことになる。 With this configuration, a structure model can be created and analysis such as FEM can be performed using the cross-section reduction rate obtained here. As a result, the load bearing capacity of the concrete member deteriorated by corrosion can be estimated, and by grasping how much the load bearing capacity has deteriorated compared to the time of construction, it will be useful for proper maintenance of the structure.

本発明によれば、予め定められた関数に基づいて、検出したひずみに対応する腐食減少率を推定するので、ひずみが検出できれば腐食減少率を求めることが可能となる。これにより、鋼材の腐食した場合の腐食減少率を定量的に把握することが可能となる。 According to the present invention, since the corrosion reduction rate corresponding to the detected strain is estimated based on a predetermined function, it is possible to obtain the corrosion reduction rate if the strain can be detected. This makes it possible to quantitatively grasp the corrosion reduction rate when the steel material is corroded.

本実施形態に係る光ファイバセンサのコンクリート中の鉄筋などの鋼材に設置する方法を示す図である。It is a figure which shows the method of installing the optical fiber sensor which concerns on this embodiment on the steel material such as a reinforcing bar in concrete. 本実施形態に係る腐食センサの概要を示す図である。It is a figure which shows the outline of the corrosion sensor which concerns on this embodiment. 電気腐食試験の概要を示す図である。It is a figure which shows the outline of the electric corrosion test. 光ファイバセンサ61を巻き付けたみがき棒鋼60の概要を示す図である。It is a figure which shows the outline of the polishing steel bar 60 around which the optical fiber sensor 61 is wound. 鋼材の断面減少率と鋼材の腐食膨張によるひずみとの関係を示すグラフである。It is a graph which shows the relationship between the cross-sectional reduction rate of a steel material, and the strain due to the corrosion expansion of a steel material.

本発明者らは、腐食による鋼材の腐食膨張と断面減少率との関係に着目し、鋼材に光ファイバセンサを固定し、コンクリート中の腐食環境下において光ファイバセンサのひずみから求めた鋼材の腐食膨張ひずみと鋼材の断面減少率との関係を定式化することによって、鉄筋の断面減少率を把握することができることを見出し、本発明に至った。 The present inventors focused on the relationship between the corrosion expansion of the steel material due to corrosion and the cross-sectional reduction rate, fixed the optical fiber sensor to the steel material, and corroded the steel material obtained from the strain of the optical fiber sensor in a corrosive environment in concrete. We have found that the cross-sectional reduction rate of reinforcing bars can be grasped by formulating the relationship between the expansion strain and the cross-sectional reduction rate of steel materials, and have reached the present invention.

すなわち、本発明の鉄筋の断面減少率推定方法は、鋼材の表面に光ファイバセンサを固定させる工程と、前記光ファイバセンサ中を伝搬する光波の特性変化を検証することによって、腐食生成物の発生による前記鋼材の腐食膨張ひずみを検出する工程と、鋼材の断面減少率と鋼材の腐食膨張によるひずみとの関係を示す予め定められた関数を用いて、前記検出したひずみに対応する鋼材の断面減少率を推定する工程と、を含むことを特徴とする。 That is, in the method for estimating the cross-sectional reduction rate of the reinforcing bar of the present invention, the generation of corrosion products is generated by verifying the step of fixing the optical fiber sensor on the surface of the steel material and the change in the characteristics of the optical wave propagating in the optical fiber sensor. Using a predetermined function showing the relationship between the step of detecting the corrosion expansion strain of the steel material and the strain due to the corrosion expansion of the steel material, the cross-sectional reduction of the steel material corresponding to the detected strain is performed. It is characterized by including a step of estimating the rate.

これにより、本発明者らは、鋼材の断面減少率を定量的に把握することを可能とした。以下、本発明の実施形態について、図面を参照しながら具体的に説明する。 This made it possible for the present inventors to quantitatively grasp the cross-sectional reduction rate of the steel material. Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings.

図1は、本実施形態に係る光ファイバセンサのコンクリート中の鉄筋などの鋼材に設置する方法を示す図である。構造物の鉄筋59にひずみを検出する検知部を有する光ファイバセンサ61が備えられている。これにより、長距離伝送が可能な光信号を用いることができ、非破壊で多点計測を行なうことが可能となる。また、鉄筋59と光ファイバセンサ61を被覆する被覆部を備えていても良い。被覆部を備えることによって、鉄筋コンクリート構造物内に設置する前に鉄筋が錆びてしまうことを回避することが可能となる。 FIG. 1 is a diagram showing a method of installing an optical fiber sensor according to the present embodiment on a steel material such as a reinforcing bar in concrete. An optical fiber sensor 61 having a detection unit for detecting strain is provided on the reinforcing bar 59 of the structure. As a result, an optical signal capable of long-distance transmission can be used, and non-destructive multipoint measurement can be performed. Further, a covering portion that covers the reinforcing bar 59 and the optical fiber sensor 61 may be provided. By providing the covering portion, it is possible to prevent the reinforcing bar from rusting before being installed in the reinforced concrete structure.

図2は、本実施形態に係るひずみセンサの概要を示す図である。図2に示すように、鉄筋などの鋼材に直接光ファイバセンサを設置せずに、別途鋼材に光ファイバセンサ14を巻き付けた腐食センサ11として設置しても良い。この腐食センサ11は、鉄製の鋼材としてのみがき棒鋼12と、みがき棒鋼12の表面に巻回され、ひずみを検出する検知部13を有する光ファイバセンサ14と、を備えている。腐食センサ11の埋設深さは、構造物の鉄筋と腐食成分の環境が同等になるよう鉄筋と同じ深さにすることが好ましい。みがき棒鋼12に代えて、埋設する構造物と同じ鉄筋を用いても良い。また、腐食センサ11は、みがき棒鋼12と光ファイバセンサ14を被覆する被覆部15を備えていても良い。被覆部15を備えるので、鉄筋コンクリート構造物内に設置する前にみがき棒鋼12が錆びてしまうことを回避することが可能となる。 FIG. 2 is a diagram showing an outline of the strain sensor according to the present embodiment. As shown in FIG. 2, instead of directly installing the optical fiber sensor on a steel material such as a reinforcing bar, the optical fiber sensor 14 may be separately installed as a corrosion sensor 11 wound on the steel material. The corrosion sensor 11 includes a polishing bar steel 12 as an iron steel material, and an optical fiber sensor 14 having a detection unit 13 wound around the surface of the polishing bar steel 12 to detect strain. The embedding depth of the corrosion sensor 11 is preferably set to the same depth as the reinforcing bar of the structure so that the environment of the corrosive component is equal to that of the reinforcing bar. Instead of the polished steel bar 12, the same reinforcing bar as the structure to be buried may be used. Further, the corrosion sensor 11 may include a covering portion 15 that covers the polished steel bar 12 and the optical fiber sensor 14. Since the covering portion 15 is provided, it is possible to prevent the polished steel bar 12 from rusting before being installed in the reinforced concrete structure.

鋼材が腐食すると腐食生成物が生じ、体積膨張が生じる。鋼材に腐食が生じた場合には、光ファイバセンサも引き延ばされるので、光ファイバセンサのひずみを計測すれば鋼材の腐食膨張が検知可能となる。その挙動は、環境条件やコンクリートによって異なるため、光ファイバセンサを鋼材に巻き付ける際には、密着するように、好ましくは引張力が加わるように巻き付ける。これにより、膨張側・収縮側両方のひずみが計測できるようになる。 Corrosion of steel produces corrosion products and volume expansion. When the steel material is corroded, the optical fiber sensor is also stretched, so that the corrosion expansion of the steel material can be detected by measuring the strain of the optical fiber sensor. Since the behavior differs depending on the environmental conditions and concrete, when the optical fiber sensor is wound around the steel material, it is wound so as to be in close contact with each other, preferably to apply a tensile force. This makes it possible to measure strain on both the expansion side and the contraction side.

また、鋼材に光ファイバセンサを巻き付ける際には、光ファイバセンサを、直線状に貼付したり、波状に曲折して貼付したりしても良いが、好ましくは周回するようにらせん状、またはループ状に巻き付ける。異形鉄筋に巻き付ける場合は、リブあるいは節に沿って巻き付けると容易である。周回数は多いほど腐食部分と光ファイバが重なるので早期に検知するが、周回数が多すぎると鋼材への腐食因子の到達を妨げることになる。らせん状に巻く場合の周回数は、目安としてファイバ長(mm)/鋼材表面積(mm2)が0.01~2である。いずれにしても、鋼材に生ずる腐食の変化を光ファイバセンサが検出できれば良い。また、検知部はFBG(Fiber Bragg Gratings)センサ等を用いることができ、検知部が長いほど、あるいは多いほど好ましい。 Further, when the optical fiber sensor is wound around the steel material, the optical fiber sensor may be attached in a straight line or bent in a wavy shape, but preferably in a spiral shape or a loop so as to go around. Wrap it in a shape. When wrapping around a deformed reinforcing bar, it is easier to wrap it along ribs or knots. The larger the number of laps, the more the corroded part and the optical fiber overlap, so it is detected early. However, if the number of laps is too large, it will prevent the corrosion factor from reaching the steel material. As a guide, the fiber length (mm) / steel surface area (mm 2 ) is 0.01 to 2 for the number of laps when spirally wound. In any case, it suffices if the optical fiber sensor can detect the change in corrosion that occurs in the steel material. Further, an FBG (Fiber Bragg Gratings) sensor or the like can be used as the detection unit, and the longer or more the detection unit is, the more preferable.

被覆部は、構造物の鉄筋と腐食成分の環境が同等になるよう同じ配合または同じセメント水比であることが好ましい。少なくとも予防的には腐食因子の侵入を妨げないように、また、早期に腐食因子が鋼材に到達するように、水セメント比を構造体コンクリートと同等か高めにする。被覆部は、ひび割れることなく鋼材を保護できるよう、3~15mmの厚さのモルタルが好ましい。また、分離やブリーディングが生じないように混和材を使用することが好ましい。 It is preferable that the covering portion has the same composition or the same cement water ratio so that the environment of the reinforcing bar of the structure and the corrosive component are the same. The water-cement ratio should be equal to or higher than that of the structural concrete so that the invasion of the corrosive factor is not hindered at least prophylactically and the corrosive factor reaches the steel material at an early stage. The covering portion is preferably a mortar having a thickness of 3 to 15 mm so that the steel material can be protected without cracking. Further, it is preferable to use an admixture so that separation and bleeding do not occur.

腐食を検出する場合、ダミーセンサを併せて用いることが望ましい。ダミーセンサは、腐食センサ11の全表面に防錆処理を施したダミーセンサを用いても良いし、または、みがき棒鋼12と線膨張係数が実質的に同等でかつ鉄筋より腐食しにくい第2の棒材と、第2の棒材の表面に設けられ、ひずみを検出する光ファイバセンサとを備えるダミーセンサを用いても良い。 When detecting corrosion, it is desirable to use a dummy sensor together. As the dummy sensor, a dummy sensor in which the entire surface of the corrosion sensor 11 is subjected to anticorrosion treatment may be used, or a second dummy sensor having substantially the same linear expansion coefficient as the polished steel bar 12 and less likely to corrode than the reinforcing bar. A dummy sensor provided on the surface of the bar material and the second bar material and provided with an optical fiber sensor for detecting strain may be used.

そして、ダミーセンサを同環境に設置し、ダミーセンサによって腐食以外の要因で生じたひずみを検出し、ダミーセンサで検出したひずみを用いて、検出したひずみを補正しても良い。これにより、例えば、温度ひずみなどの腐食以外の要因で生じたひずみの影響を除去することが可能となる。 Then, the dummy sensor may be installed in the same environment, the strain generated by a factor other than corrosion may be detected by the dummy sensor, and the detected strain may be corrected by using the strain detected by the dummy sensor. This makes it possible to remove the influence of strain caused by factors other than corrosion, such as temperature strain.

すなわち、コンクリートには、温度・湿度やコンクリートの収縮、外力によって様々なひずみが生じる。従って、少なくとも鋼材や腐食センサ11よりも腐食しにくいダミーセンサを使用し、そのひずみ挙動と比較して腐食を判定する。ダミーセンサは、被覆モルタルにエポキシ樹脂などで被覆し、中性化や劣化因子の侵入を防いで内部の炭素鋼の腐食を防ぐ方法がある。または、炭素鋼と線膨張係数が同等のステンレス(例えば、SUS410など)を使用する。 That is, various strains occur in concrete due to temperature / humidity, shrinkage of concrete, and external force. Therefore, at least a dummy sensor that is less likely to corrode than the steel material or the corrosion sensor 11 is used, and corrosion is determined by comparing with the strain behavior thereof. As a dummy sensor, there is a method in which a coated mortar is coated with an epoxy resin or the like to prevent neutralization and invasion of deterioration factors and prevent corrosion of carbon steel inside. Alternatively, use stainless steel (for example, SUS410) having the same linear expansion coefficient as carbon steel.

ここで、光ファイバセンサによって得られた鋼材の腐食膨張ひずみと、予めひずみに対応する鋼材の断面減少率を求めておけば、鋼材の断面減少率を定量的に把握することが可能となる。なお、本明細書では、光ファイバセンサの検出値を腐食膨張ひずみに変換するが、設置方法や対象物が同じであれば光ファイバセンサの検出値そのものと鋼材の断面減少率の関係を求めても良い。 Here, if the corrosion expansion strain of the steel material obtained by the optical fiber sensor and the cross-sectional reduction rate of the steel material corresponding to the strain are obtained in advance, the cross-sectional reduction rate of the steel material can be quantitatively grasped. In this specification, the detection value of the optical fiber sensor is converted into corrosion expansion strain, but if the installation method and the object are the same, the relationship between the detection value of the optical fiber sensor itself and the cross-sectional reduction rate of the steel material is obtained. Is also good.

断面減少率は、腐食した鉄筋の腐食部を剥がしたり、クエン酸水素二アンモニウム水溶液により腐食部を溶解させたりして太さを測定すれば良い。また、顕微鏡で切断面を観察して断面減少率を求めても良い。腐食膨張ひずみの量が異なる鋼材を採取し、その断面減少率を測定し、予め、相関性を求めておく。 The cross-sectional reduction rate may be measured by peeling off the corroded portion of the corroded reinforcing bar or dissolving the corroded portion with an aqueous solution of diammonium hydrogen citrate. Further, the cross-sectional reduction rate may be obtained by observing the cut surface with a microscope. Steel materials with different amounts of corrosion expansion strain are sampled, the cross-sectional reduction rate is measured, and the correlation is obtained in advance.

ここで鉄筋種類や径に応じて、光ファイバセンサのひずみと鋼材の断面減少率の関係は若干異なってくるので、条件ごとに両者の関係を求めてもおくことが好ましい。腐食センサ11を用いる場合は、その仕様ごとに両者の関係を求めておけば良い。両者の関係は、実験室で求めても良いし、実構造物においてデータを蓄積しても求めても良い。 Here, since the relationship between the strain of the optical fiber sensor and the cross-sectional reduction rate of the steel material differs slightly depending on the type and diameter of the reinforcing bar, it is preferable to obtain the relationship between the two for each condition. When the corrosion sensor 11 is used, the relationship between the two may be obtained for each specification. The relationship between the two may be obtained in the laboratory, or data may be accumulated or obtained in the actual structure.

求められた断面減少率によって、鉄筋を取り出さず、既に知られた鉄筋の断面減少率と耐荷力の関係に基づいて実構造物の耐荷性能を評価することが可能となる。 With the obtained cross-section reduction rate, it is possible to evaluate the load-bearing performance of the actual structure based on the already known relationship between the cross-section reduction rate of the reinforcing bar and the load-bearing capacity without taking out the reinforcing bar.

[検証例]
次に、検証例について説明する。図3は、電気腐食試験の概要を示す図である。直径30mmで長さが350mmのみがき棒鋼60(JIS G3108)を用いる。このみがき棒鋼60の体積はVとする。表1の光ファイバセンサ61(φ150μm)を巻き付け、ケーブル62を接続して、コンクリート64に埋め込む。その際、水平方向のかぶりを左右均等に135mmとし、深さ方向のかぶりを上端から50mm、および下端から220mmとする。これを供試体66とし、この供試体66を、内法が310mmの容器69内で水没させて、水中で供試体から10mm離れた位置に、陰極材としての銅板電極68を設ける。銅板電極68は、幅が100mmであり、長さが300mmであり、ケーブル70が接続されている。また、供試体66上で、銅板電極68と対向する位置に防水型ゲージ72を設置する。
[Verification example]
Next, a verification example will be described. FIG. 3 is a diagram showing an outline of the galvanic corrosion test. A polished steel bar 60 (JIS G3108) with a diameter of 30 mm and a length of 350 mm is used. The volume of this polished steel bar 60 is V. The optical fiber sensor 61 (φ150 μm) shown in Table 1 is wound, the cable 62 is connected, and the optical fiber sensor 61 (φ150 μm) is embedded in the concrete 64. At that time, the cover in the horizontal direction is set to 135 mm evenly on the left and right, and the cover in the depth direction is set to 50 mm from the upper end and 220 mm from the lower end. This is referred to as a specimen 66, and the specimen 66 is submerged in a container 69 having a diameter of 310 mm, and a copper plate electrode 68 as a cathode material is provided at a position 10 mm away from the specimen in water. The copper plate electrode 68 has a width of 100 mm and a length of 300 mm, and a cable 70 is connected to the copper plate electrode 68. Further, a waterproof gauge 72 is installed on the specimen 66 at a position facing the copper plate electrode 68.

Figure 0007019401000001
図4は、光ファイバセンサ61を巻き付けたみがき棒鋼60の概要を示す図である。みがき棒鋼60のうち、両端の20mmの部分はコンクリートの外部にあり、それ以外がコンクリート中にあるものとする。コンクリート中の部分を区間1から区間8に分割し、各区間で光ファイバセンサ61によるひずみの測定を行なう。すなわち、みがき棒鋼60において、コンクリート中にある部分は、(350mm-40mm)より、310mmである。
Figure 0007019401000001
FIG. 4 is a diagram showing an outline of the polished steel bar 60 around which the optical fiber sensor 61 is wound. It is assumed that the 20 mm portions at both ends of the polished steel bar 60 are outside the concrete, and the rest are inside the concrete. The portion in the concrete is divided into sections 1 to 8, and the strain is measured by the optical fiber sensor 61 in each section. That is, in the polished steel bar 60, the portion in the concrete is 310 mm rather than (350 mm-40 mm).

光ファイバセンサ61の巻き付け方は、以下の通りである。すなわち、コンクリート中において端部から20mmの部分から巻き始められ、1周するごとにみがき棒鋼60の長手方向に25mm進むように巻き付ける。各区間は、10mmの間隔を有する。みがき棒鋼に対する光ファイバケーブルの巻き方は、一定の張力下、例えば、巻き付け時に多少の引張ひずみが出ていることを確認した上で、巻き付け作業を行ない、測定部の両端は接着剤で固定する。その結果、コンクリート中のみがき棒鋼60では、両端から20mmの部分が2つ、光ファイバセンサが1周巻き付けられる25mmの部分が8つ、各区間の間隔として10mmの部分が7つで、合計310mmとなっている。このみがき棒鋼をコンクリート(水セメント比60%,28日圧縮強度41N/mm2)に埋め込んだ。脱型後、コンクリートから露出した棒鋼は腐食しないように被覆処理し、材齢22日まで湿潤養生を行なった。 The method of winding the optical fiber sensor 61 is as follows. That is, it is started to be wound from a portion 20 mm from the end portion in the concrete, and is wound so as to advance 25 mm in the longitudinal direction of the polished steel bar 60 for each round. Each section has an interval of 10 mm. To wind the optical fiber cable around the polished steel bar, perform the winding work under a certain tension, for example, after confirming that some tensile strain is generated during winding, and fix both ends of the measuring part with adhesive. .. As a result, in the concrete steel bar 60, there are two 20 mm parts from both ends, eight 25 mm parts around which the optical fiber sensor is wound around, and seven 10 mm parts as the interval between each section, for a total of 310 mm. It has become. This polished steel bar was embedded in concrete (water-cement ratio 60%, 28-day compressive strength 41 N / mm 2 ). After demolding, the steel bars exposed from the concrete were coated so as not to corrode, and were wet-cured until the age of 22 days.

図3および図4に示したように、コンクリート試験体を20℃一定の水中に浸漬し、陰極材となる銅板を配置して、みがき棒鋼60を陽極材として200mAの一定電流による電食試験を行なった。試験中には8区間において、光ファイバセンサによりみがき棒鋼60の腐食膨張ひずみを連続的に計測した。 As shown in FIGS. 3 and 4, the concrete test piece is immersed in water at a constant temperature of 20 ° C., a copper plate as a cathode material is arranged, and an electrolytic corrosion test with a constant current of 200 mA is performed using the polished steel bar 60 as an anode material. I did. During the test, the corrosion expansion strain of the polished steel bar 60 was continuously measured by an optical fiber sensor in 8 sections.

光ファイバセンサにおいて、以下の式により、波長からひずみに変換し、腐食によるひずみの変化を確認した。 In the optical fiber sensor, the wavelength was converted to strain by the following equation, and the change in strain due to corrosion was confirmed.

Figure 0007019401000002
ここで、ε:ひずみ(μ)、λ:測定時の波長(nm)、λ*:初期波長(nm)である。
Figure 0007019401000002
Here, ε: strain (μ), λ: wavelength at the time of measurement (nm), λ * : initial wavelength (nm).

コンクリートにひび割れ発生後、試験体のコンクリート部分を除去してみがき棒鋼60を取り出し、60℃の10%クエン酸水素二アンモニウム水溶液に浸漬させ、腐食生成物を除去した。試験前および腐食生成物を除去後に、ノギスを用いてみがき棒鋼60の直径を各区間でそれぞれ10点計測して、平均直径から断面積をそれぞれ算出し、腐食後における断面減少率を算出した。 After the concrete was cracked, the concrete portion of the test piece was removed, and the polished steel bar 60 was taken out and immersed in a 10% diammonium hydrogen citrate aqueous solution at 60 ° C. to remove corrosion products. Before the test and after removing the corrosion product, the diameter of the polished steel bar 60 was measured at 10 points in each section using a caliper, the cross-sectional area was calculated from the average diameter, and the cross-sectional area reduction rate after corrosion was calculated.

その結果、表2に示すように試験終了時の8区間はそれぞれ腐食の状態は異なり、腐食膨張ひずみおよび断面減少率の結果は各区間で異なる値となった。光ファイバセンサはらせん状に設置しているため、円周方向に換算して鉄筋の腐食膨張ひずみとした。 As a result, as shown in Table 2, the corrosion conditions were different in each of the eight sections at the end of the test, and the results of the corrosion expansion strain and the cross-sectional reduction rate were different in each section. Since the optical fiber sensor is installed in a spiral shape, it is converted into the corrosive expansion strain of the reinforcing bar in the circumferential direction.

Figure 0007019401000003
図5は、鋼材の断面減少率と鋼材の腐食膨張によるひずみとの関係を示すグラフである。図5に示すように、8区間における鉄筋の断面減少率と腐食膨張ひずみの関係は、「y=29.8e9.999X」という関数が得られた。この結果から明らかなように、光ファイバセンサで計測したコンクリート中の腐食膨張ひずみが分かれば、鉄筋の断面減少率が推定でき、構造物モデルを作成してFEM(Finite Element Method)等の解析を行なう方法などで内部鉄筋が腐食した構造物としての構造耐力の評価もできる。
Figure 0007019401000003
FIG. 5 is a graph showing the relationship between the cross-sectional reduction rate of the steel material and the strain due to the corrosion expansion of the steel material. As shown in FIG. 5, a function of "y = 29.8e 9.999 X" was obtained for the relationship between the cross-sectional reduction rate of the reinforcing bar and the corrosion expansion strain in the eight sections. As is clear from this result, if the corrosion expansion strain in the concrete measured by the optical fiber sensor is known, the cross-sectional reduction rate of the reinforcing bar can be estimated, a structure model is created, and analysis such as FEM (Finite Element Method) is performed. It is also possible to evaluate the structural strength of a structure in which the internal reinforcing bars are corroded by the method used.

以上説明したように、本発明によれば、予め定められた関数に基づいて、光ファイバにより検出したひずみに対応する鉄筋の断面減少率を推定するので、ひずみを検出することによって断面減少率を求めることが可能となる。これにより、鋼材の断面減少率を定量的に把握することが可能となる。 As described above, according to the present invention, the cross-sectional reduction rate of the reinforcing bar corresponding to the strain detected by the optical fiber is estimated based on a predetermined function. Therefore, the cross-sectional reduction rate is determined by detecting the strain. It becomes possible to ask. This makes it possible to quantitatively grasp the cross-sectional reduction rate of the steel material.

11 腐食センサ
12、60 みがき棒鋼
13 検知部
14、61 光ファイバセンサ
15 被覆部
59 鉄筋
62 ケーブル
64 コンクリート
66 供試体
68 銅板電極
69 容器
70 ケーブル
72 防水型ゲージ
11 Corrosion sensor 12, 60 Polished steel bar 13 Detection part 14, 61 Optical fiber sensor 15 Coating part 59 Reinforcing bar 62 Cable 64 Concrete 66 Specimen 68 Copper plate electrode 69 Container 70 Cable 72 Waterproof gauge

Claims (4)

実コンクリート構造中の鋼材が腐食することによって減少した鋼材の断面の減少率を推定する断面減少率推定方法であって、
前記鋼材の表面に光ファイバセンサを固定させる工程と、
前記光ファイバセンサ中を伝搬する光波の特性変化を検出することによって、腐食生成物の発生による前記鋼材のひずみを検出する工程と、
コンクリート構造中で腐食した試験用鋼材に巻き付けられた光ファイバセンサで検出したひずみと当該試験用鋼材の断面減少率を実測して求められた値から特定され、鋼材の断面減少率と鋼材の腐食膨張によるひずみとの関係を示す予め定められた関数を用いて、前記検出したひずみに対応する鋼材の断面減少率を推定する工程と、を含むことを特徴とする断面減少率推定方法。
It is a cross-section reduction rate estimation method that estimates the reduction rate of the cross section of the steel material that has decreased due to the corrosion of the steel material in the actual concrete structure .
The process of fixing the optical fiber sensor to the surface of the steel material and
A step of detecting the strain of the steel material due to the generation of a corrosion product by detecting a change in the characteristics of the light wave propagating in the optical fiber sensor, and a step of detecting the strain of the steel material.
The strain detected by the optical fiber sensor wound around the corroded test steel in the concrete structure and the cross-sectional reduction rate of the test steel are identified from the measured values, and the cross-sectional reduction rate of the steel and the corrosion of the steel are specified. A method for estimating a cross-section reduction rate, which comprises a step of estimating a cross-section reduction rate of a steel material corresponding to the detected strain by using a predetermined function showing a relationship with a strain due to expansion.
前記予め定められた関数は、前記鋼材の種類や径の変更に応じて求められることを特徴とする請求項1に記載の断面減少率推定方法。The cross-section reduction rate estimation method according to claim 1, wherein the predetermined function is obtained according to a change in the type and diameter of the steel material. 前記鋼材と同種の鋼材の表面に設けられ、全表面に防錆処理を施された光ファイバセンサであるダミーセンサ、または前記鋼材と線膨張係数が実質的に同等で前記鋼材よりも腐食しにくい鋼材の表面に光ファイバセンサを設けたダミーセンサのいずれかを前記鋼材と同環境に設置する工程と、A dummy sensor, which is an optical fiber sensor provided on the surface of a steel material of the same type as the steel material and having a rust-preventive treatment on the entire surface, or a dummy sensor having a linear expansion coefficient substantially the same as that of the steel material and less likely to corrode than the steel material. The process of installing one of the dummy sensors with an optical fiber sensor on the surface of the steel material in the same environment as the steel material, and
前記ダミーセンサを構成する光ファイバセンサにより検出されたひずみを用いて、前記鋼材のひずみを補正する工程と、をさらに含むことを特徴とする請求項1または2に記載の断面減少率推定方法。The cross-sectional reduction rate estimation method according to claim 1 or 2, further comprising a step of correcting the strain of the steel material by using the strain detected by the optical fiber sensor constituting the dummy sensor.
請求項1から請求項3のいずれかに記載の断面減少率推定方法により得られた鋼材の断面減少率を用いて、コンクリート構造物の耐荷力を推定することを特徴とする耐荷力推定方法。 A load bearing capacity estimation method, characterized in that the load bearing capacity of a concrete structure is estimated using the cross-section reduction rate of a steel material obtained by the cross-section reduction rate estimation method according to any one of claims 1 to 3.
JP2017241189A 2017-12-15 2017-12-15 Cross-section reduction rate estimation method and load bearing capacity estimation method Active JP7019401B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017241189A JP7019401B2 (en) 2017-12-15 2017-12-15 Cross-section reduction rate estimation method and load bearing capacity estimation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017241189A JP7019401B2 (en) 2017-12-15 2017-12-15 Cross-section reduction rate estimation method and load bearing capacity estimation method

Publications (2)

Publication Number Publication Date
JP2019109095A JP2019109095A (en) 2019-07-04
JP7019401B2 true JP7019401B2 (en) 2022-02-15

Family

ID=67179629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017241189A Active JP7019401B2 (en) 2017-12-15 2017-12-15 Cross-section reduction rate estimation method and load bearing capacity estimation method

Country Status (1)

Country Link
JP (1) JP7019401B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021017697A (en) * 2019-07-17 2021-02-15 太平洋セメント株式会社 Peeling detection method of tile

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050082467A1 (en) 2003-10-21 2005-04-21 Guy Mossman Optical fiber based sensor system suitable for monitoring remote aqueous infiltration
JP2006522324A (en) 2003-03-11 2006-09-28 オクサンド Method and apparatus for monitoring the behavior of a line containing fluid under pressure
CN102095677A (en) 2010-12-01 2011-06-15 浙江大学 Method for monitoring corrosion cracks of reinforced concrete and sensor
JP2011257245A (en) 2010-06-08 2011-12-22 Tokyo Electric Power Co Inc:The Corrosion amount estimation method, corrosion amount estimation device, and management method for reinforced concrete
CN104849200A (en) 2015-05-22 2015-08-19 宋世德 FBG (Fiber Bragg Grating) metal corrosion sensor with temperature compensation function and manufacturing method thereof
JP2016186483A (en) 2015-03-27 2016-10-27 太平洋セメント株式会社 Corrosion state prediction method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006522324A (en) 2003-03-11 2006-09-28 オクサンド Method and apparatus for monitoring the behavior of a line containing fluid under pressure
US20050082467A1 (en) 2003-10-21 2005-04-21 Guy Mossman Optical fiber based sensor system suitable for monitoring remote aqueous infiltration
JP2011257245A (en) 2010-06-08 2011-12-22 Tokyo Electric Power Co Inc:The Corrosion amount estimation method, corrosion amount estimation device, and management method for reinforced concrete
CN102095677A (en) 2010-12-01 2011-06-15 浙江大学 Method for monitoring corrosion cracks of reinforced concrete and sensor
JP2016186483A (en) 2015-03-27 2016-10-27 太平洋セメント株式会社 Corrosion state prediction method
JP2016186482A (en) 2015-03-27 2016-10-27 太平洋セメント株式会社 Corrosion detection method
CN104849200A (en) 2015-05-22 2015-08-19 宋世德 FBG (Fiber Bragg Grating) metal corrosion sensor with temperature compensation function and manufacturing method thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
内田 祐介,高強度太径鉄筋の強度性状に及ぼす腐食の影響に関する研究,コンクリート工学年次論文集,Vol.37 No.1,日本,2015年,979頁-984頁
岩波 光保,鉄筋腐食がRCはりの耐荷性能に及ぼす影響,コンクリート工学年次論文集,Vol.24 No.2,日本,2002年,1501頁-1506頁

Also Published As

Publication number Publication date
JP2019109095A (en) 2019-07-04

Similar Documents

Publication Publication Date Title
JP6626285B2 (en) Corrosion state prediction method
JP6574331B2 (en) Corrosion sensor and corrosion detection method
Abouhussien et al. Acoustic emission‐based analysis of bond behavior of corroded reinforcement in existing concrete structures
JP7146192B2 (en) Method for estimating residual prestress force of PC girder
JP6734705B2 (en) Measurement and estimation methods
Zhou et al. A smart steel strand for the evaluation of prestress loss distribution in post-tensioned concrete structures
Biswal et al. Measurement of existing prestressing force in concrete structures through an embedded vibrating beam strain gauge
JP7019401B2 (en) Cross-section reduction rate estimation method and load bearing capacity estimation method
JP2010175477A (en) Method for diagnosing reinforced concrete floor version
JP6934413B2 (en) Stress monitoring sensor and stress monitoring method
Gao et al. Random corrosion characteristics of high strength steel wire after 18 years of service and the numerical reconstruction method
JP7079051B2 (en) Corrosion estimation method and estimation method
Fouad et al. Early corrosion monitoring of reinforcing steel bars by using long-gauge carbon fiber sensors
JP4672616B2 (en) Evaluation method of stress corrosion crack growth rate
Sævik Comparison between theoretical and experimental flexible pipe bending stresses
JPH0894557A (en) Method for checking soundness of buried prestressing steel
JP6524460B2 (en) Test body, strain measurement method, contraction / expansion strain estimation method and effective prestress amount estimation method
Frank et al. Fiber optic Bragg grating sensors embedded in GFRP rockbolts
Hwang et al. Evaluation of transfer length of CFRP tendon in pretensioned concrete beam using embedded FBG sensors
Ahmed et al. Corrosion durability of strain hardening fibre-reinforced cementitious composites
Atwa Corrosion monitoring of steel reinforcements of reinforced
Ali-Alvarez et al. Corrosion detection and evolution monitoring in reinforced concrete structures by the use of fiber Bragg grating sensor
Jeon et al. Measurement of friction coefficient of post-tensioning system using smart strand
Nariman Corrosion monitoring of steel reinforcements of reinforced concrete structures with long-gauge carbon fiber sensors
RU2456573C1 (en) Method to determine efficient diameter and module of elasticity of longitudinally reinforced rods of periodical shape from polymer composite materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220202

R150 Certificate of patent or registration of utility model

Ref document number: 7019401

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150