JP2016187052A - Printed Wiring Board - Google Patents

Printed Wiring Board Download PDF

Info

Publication number
JP2016187052A
JP2016187052A JP2016137716A JP2016137716A JP2016187052A JP 2016187052 A JP2016187052 A JP 2016187052A JP 2016137716 A JP2016137716 A JP 2016137716A JP 2016137716 A JP2016137716 A JP 2016137716A JP 2016187052 A JP2016187052 A JP 2016187052A
Authority
JP
Japan
Prior art keywords
layer
wiring board
printed wiring
thermoplastic polyimide
conductor wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016137716A
Other languages
Japanese (ja)
Other versions
JP6508632B2 (en
Inventor
浩之 福住
Hiroyuki Fukuzumi
浩之 福住
雅也 小山
Masaya Koyama
雅也 小山
稔 宇野
Minoru Uno
稔 宇野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2016137716A priority Critical patent/JP6508632B2/en
Publication of JP2016187052A publication Critical patent/JP2016187052A/en
Application granted granted Critical
Publication of JP6508632B2 publication Critical patent/JP6508632B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Structure Of Printed Boards (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a printed wiring board that is hardly warped in spite of provision of a polyimide layer and a thermoplastic polyimide layer.SOLUTION: A printed wiring board includes a wiring board portion having an insulation layer and a conductor wire on the insulation layer, and an adhesion layer 4 which is disposed on the wiring board portion and covers the conductor wire. The insulation layer has a polyimide core layer and two thermoplastic polyimide cover layers which are respectively located on both the surfaces of the core layer. The adhesion layer 4 is made of thermoplastic polyimide, and the conductor wire is embedded in the adhesion layer 4.SELECTED DRAWING: Figure 1

Description

本発明は、プリント配線板に関し、詳しくは、ポリイミド製の絶縁層を備えるプリント配線板に関する。   The present invention relates to a printed wiring board, and more particularly to a printed wiring board provided with an insulating layer made of polyimide.

プリント配線板における絶縁層のための材料の一つに、ポリイミドがある。ポリイミドから絶縁層を作製すると、プリント配線板に高い可撓性と耐熱性とを付与することができる。ただし、絶縁層をポリイミドのみから形成すると、ポリイミドと金属との間の密着性は低いため、絶縁層と導体配線との間の密着性が低くなることがある。このため、ポリイミド製の層の上に熱可塑性ポリイミド製の層を設け、この熱可塑性ポリイミド製の層の上に導体配線を設けることで、絶縁層と導体配線との間の良好な密着性を確保することも行われている。   One of the materials for the insulating layer in the printed wiring board is polyimide. When an insulating layer is produced from polyimide, high flexibility and heat resistance can be imparted to the printed wiring board. However, if the insulating layer is formed of only polyimide, the adhesiveness between the polyimide and the metal is low, so the adhesiveness between the insulating layer and the conductor wiring may be lowered. For this reason, by providing a layer made of thermoplastic polyimide on the layer made of polyimide and providing conductor wiring on the layer made of thermoplastic polyimide, good adhesion between the insulating layer and the conductor wiring is obtained. Securing is also done.

しかし、熱可塑性ポリイミドはポリイミドよりも大きな熱膨張係数を有するため、絶縁層がポリイミド製の層と熱可塑性ポリイミド製の層とを備えると、プリント配線板に反りが生じることがある。このような反りを抑制するための技術が、特許文献1に開示されている。特許文献1には、絶縁層を形成するための熱可塑性ポリイミド樹脂フィルムを二軸延伸することで、熱可塑性ポリイミド樹脂をフィルムの面方向に等方的に分子配向させ、これにより熱可塑性ポリイミド樹脂フィルムの熱膨張係数を低減させることが、記載されている。   However, since thermoplastic polyimide has a larger thermal expansion coefficient than polyimide, if the insulating layer includes a polyimide layer and a thermoplastic polyimide layer, the printed wiring board may be warped. A technique for suppressing such warpage is disclosed in Patent Document 1. In Patent Document 1, a thermoplastic polyimide resin film for forming an insulating layer is biaxially stretched so that the thermoplastic polyimide resin is molecularly oriented isotropically in the plane direction of the film. Reducing the coefficient of thermal expansion of the film is described.

特開2008−188792号公報JP 2008-188792 A

特許文献1に記載のように熱可塑性ポリイミド樹脂フィルムを二軸延伸することでその熱膨張係数を正確に調整するためには、延伸温度、延伸倍率、延伸速度等の処理条件を適正化する必要がある。しかし、このような多数の条件を同時に適正化することは容易ではない。また、製造ロットの相違などによる材料特性の変動や、製造環境の変動に起因して、処理後の熱可塑性ポリイミド樹脂フィルムの熱膨張係数にばらつきが生じることもある。このため、特許文献1に記載の技術では、プリント配線板の反りを効果的に抑制することはできなかった。   In order to adjust the thermal expansion coefficient accurately by biaxially stretching a thermoplastic polyimide resin film as described in Patent Document 1, it is necessary to optimize processing conditions such as stretching temperature, stretching ratio, stretching speed, etc. There is. However, it is not easy to simultaneously optimize such a large number of conditions. In addition, the thermal expansion coefficient of the processed thermoplastic polyimide resin film may vary due to fluctuations in material properties due to differences in production lots and the like, and fluctuations in the production environment. For this reason, the technique described in Patent Document 1 cannot effectively suppress the warpage of the printed wiring board.

本発明は上記事由に鑑みてなされたものであり、ポリイミド製の層と熱可塑性ポリイミド製の層とを備えるにもかかわらず、反りが生じにくいプリント配線板を提供することを目的とする。   The present invention has been made in view of the above reasons, and an object of the present invention is to provide a printed wiring board which is less likely to warp despite having a polyimide layer and a thermoplastic polyimide layer.

本発明に係るプリント配線板は、絶縁層と前記絶縁層上にある導体配線とを備える配線基板部と、前記配線基板部上にあり前記導体配線を覆う接着層とを備え、前記絶縁層は、ポリイミド製のコア層と、前記コア層の両面上にそれぞれある二つの熱可塑性ポリイミド製のカバー層とを備え、前記接着層は熱可塑性ポリイミド製であり、前記接着層に前記導体配線が埋め込まれていることを特徴とする。   A printed wiring board according to the present invention includes a wiring board portion including an insulating layer and a conductor wiring on the insulating layer, and an adhesive layer on the wiring substrate portion and covering the conductor wiring, A polyimide core layer and two thermoplastic polyimide cover layers on both sides of the core layer, the adhesive layer is made of thermoplastic polyimide, and the conductor wiring is embedded in the adhesive layer It is characterized by being.

本発明に係るプリント配線板の製造方法の第一の態様は、絶縁層と前記絶縁層上にある導体配線とを備え、前記絶縁層がポリイミド製のコア層と前記コア層の両面上にそれぞれある二つの熱可塑性ポリイミド製のカバー層とを備えるベース基板の上に、熱可塑性ポリイミド製の樹脂フィルムを前記導体配線を覆うように配置し、前記樹脂フィルムの上に金属箔を配置し、加熱プレスすることで前記ベース基板と前記樹脂フィルム、並びに前記樹脂フィルムと前記金属箔をそれぞれ接着するとともに前記樹脂フィルムに前記導体配線を埋め込むことを含む。   1st aspect of the manufacturing method of the printed wiring board which concerns on this invention is equipped with the insulating layer and the conductor wiring on the said insulating layer, and the said insulating layer is on both sides of a polyimide core layer and the said core layer, respectively A resin film made of thermoplastic polyimide is placed on the base substrate provided with two thermoplastic polyimide cover layers, and a metal foil is placed on the resin film and heated. The pressing includes bonding the base substrate and the resin film, the resin film and the metal foil, and embedding the conductor wiring in the resin film.

本発明に係るプリント配線板の製造方法の第二の態様は、絶縁層と前記絶縁層上にある導体配線とを備え、前記絶縁層がポリイミド製のコア層と前記コア層の両面上にそれぞれある二つの熱可塑性ポリイミド製のカバー層とを備えるベース基板の上に、熱可塑性ポリイミド製の樹脂フィルムを前記導体配線を覆うように配置し、前記樹脂フィルムの上に、熱可塑性ポリイミド製の樹脂層と、前記樹脂層上にあるポリイミド製の第二コア層と、前記第二コア層上にある熱可塑性ポリイミド製の第二カバー層とを備える多層樹脂フィルムを、前記樹脂フィルムに前記樹脂層が接するように配置し、前記第二カバー層上に金属箔を配置し、加熱プレスすることで前記ベース基板と前記樹脂フィルム、前記樹脂フィルムと前記多層樹脂フィルム、並びに前記多層樹脂フィルムと前記金属箔をそれぞれ接着するとともに前記樹脂フィルムに前記導体配線を埋め込むことを含んでもよい。   A second aspect of the method for manufacturing a printed wiring board according to the present invention includes an insulating layer and a conductor wiring on the insulating layer, and the insulating layer is formed on both sides of the polyimide core layer and the core layer. A resin film made of thermoplastic polyimide is arranged on a base substrate provided with two cover layers made of thermoplastic polyimide so as to cover the conductor wiring, and a resin made of thermoplastic polyimide is placed on the resin film. A multilayer resin film comprising a layer, a second core layer made of polyimide on the resin layer, and a second cover layer made of thermoplastic polyimide on the second core layer, the resin layer on the resin film The base substrate and the resin film, the resin film and the multilayer resin film, arranged by placing a metal foil on the second cover layer and heat pressing It may include embedding the conductor interconnect the multilayer resin film and the metal foil into the resin film with adhered respectively.

本発明に係るプリント配線板の製造方法の第三の態様は、絶縁層と前記絶縁層上にある導体配線とを備え、前記絶縁層がポリイミド製のコア層と前記コア層の両面上にそれぞれある二つの熱可塑性ポリイミド製のカバー層とを備えるベース基板の上に、熱可塑性ポリイミド製の樹脂層と、前記樹脂層上にあるポリイミド製の第二コア層と、前記第二コア層上にある熱可塑性ポリイミド製の第二カバー層とを備える多層樹脂フィルムを、前記樹脂層が前記導体配線を覆うように配置し、前記第二カバー層上に金属箔を配置し、加熱プレスすることで前記ベース基板と前記多層樹脂フィルム、並びに前記多層樹脂フィルムと前記金属箔をそれぞれ接着するとともに前記樹脂層に前記導体配線を埋め込むことを含む。   A third aspect of the method for producing a printed wiring board according to the present invention includes an insulating layer and a conductor wiring on the insulating layer, and the insulating layer is formed on both sides of the polyimide core layer and the core layer. On a base substrate provided with two thermoplastic polyimide cover layers, a thermoplastic polyimide resin layer, a polyimide second core layer on the resin layer, and the second core layer A multilayer resin film comprising a second cover layer made of a certain thermoplastic polyimide is disposed so that the resin layer covers the conductor wiring, a metal foil is disposed on the second cover layer, and heated and pressed. The base substrate and the multilayer resin film, and the multilayer resin film and the metal foil are bonded to each other and the conductor wiring is embedded in the resin layer.

本発明に係るプリント配線板の製造方法の第四の態様は、絶縁層と前記絶縁層上にある導体配線とを備え、前記絶縁層がポリイミド製のコア層と前記コア層の両面上にそれぞれある二つの熱可塑性ポリイミド製のカバー層とを備えるベース基板と、第二絶縁層と前記第二絶縁層上にある第二導体配線とを備え、前記第二絶縁層がポリイミド製の第二コア層と前記第二コア層の両面上にそれぞれある二つの熱可塑性ポリイミド製の第二カバー層とを備える第二ベース基板との間に、熱可塑性ポリイミド製の樹脂フィルムを、前記樹脂フィルムで前記導体配線と前記第二導体配線とを覆うように配置し、加熱プレスすることで前記ベース基板と前記樹脂フィルム、並びに前記樹脂フィルムと前記第二ベース基板をそれぞれ接着するとともに、前記樹脂フィルムに前記導体配線及び前記第二導体配線を埋め込むことを含む。   A fourth aspect of the method for manufacturing a printed wiring board according to the present invention includes an insulating layer and a conductor wiring on the insulating layer, and the insulating layer is formed on both sides of the polyimide core layer and the core layer. A base substrate comprising two thermoplastic polyimide cover layers, a second insulating layer and a second conductor wiring on the second insulating layer, wherein the second insulating layer is a polyimide second core A resin film made of thermoplastic polyimide between the layer and a second base substrate comprising two thermoplastic polyimide second cover layers respectively on both sides of the second core layer, The conductor wiring and the second conductor wiring are arranged so as to cover, and the base substrate and the resin film, and the resin film and the second base substrate are bonded by heating and pressing, respectively, It includes embedding the conductor wiring and the second conductor wiring to fat film.

本発明によれば、ポリイミド製の層と熱可塑性ポリイミド製の層とを備えるにもかかわらず、反りが生じにくいプリント配線板を得ることができる。   According to the present invention, it is possible to obtain a printed wiring board which is less likely to warp despite having a polyimide layer and a thermoplastic polyimide layer.

図1Aは本発明の第一実施形態に係るプリント配線板を示す断面図、図1Bは図1Aに示すプリント配線板の製造方法の例を示す断面図である。1A is a cross-sectional view showing a printed wiring board according to the first embodiment of the present invention, and FIG. 1B is a cross-sectional view showing an example of a method for manufacturing the printed wiring board shown in FIG. 1A. 図2Aは本発明の第二実施形態に係るプリント配線板を示す断面図、図2Bは図2Aに示すプリント配線板の製造方法の第一例示す断面図、図2Cは図2Aに示すプリント配線板の製造方法の第二例を示す断面図である。2A is a cross-sectional view showing a printed wiring board according to a second embodiment of the present invention, FIG. 2B is a cross-sectional view showing a first example of a method for manufacturing the printed wiring board shown in FIG. 2A, and FIG. 2C is a printed wiring board shown in FIG. It is sectional drawing which shows the 2nd example of the manufacturing method of a board. 図3Aは本発明の第三実施形態に係るプリント配線板を示す断面図、図3Bは図3Aに示すプリント配線板の製造方法の例を示す断面図である。FIG. 3A is a cross-sectional view showing a printed wiring board according to the third embodiment of the present invention, and FIG. 3B is a cross-sectional view showing an example of a method for manufacturing the printed wiring board shown in FIG. 3A.

図1Aに、本発明の第一実施形態に係るプリント配線板を示す。このプリント配線板は、絶縁層11(以下、第一絶縁層11という)と第一絶縁層11上にある導体配線21(以下、第一導体配線21という)とを備える配線基板部31(以下、第一配線基板部31という)と、第一配線基板部31上にあり第一導体配線21を覆う接着層4とを備える。第一絶縁層11は、ポリイミド製のコア層51(以下、第一コア層51という)と、第一コア層51の両面上にそれぞれある二つの熱可塑性ポリイミド製のカバー層611,612(以下、第一カバー層611,612という)とを備える。接着層4は熱可塑性ポリイミド製である。接着層4に第一導体配線21が埋め込まれている。第一実施形態では、プリント配線板は、更に接着層4上にある金属層72(以下、第二金属層72という)も備える。第一配線基板部31、接着層4及び第二金属層72は、この順に積層している。   FIG. 1A shows a printed wiring board according to the first embodiment of the present invention. This printed wiring board includes an insulating layer 11 (hereinafter referred to as a first insulating layer 11) and a wiring board part 31 (hereinafter referred to as a first conductive wiring 21) provided on the first insulating layer 11 (hereinafter referred to as a first conductor wiring 21). And the first wiring board portion 31) and the adhesive layer 4 that is on the first wiring board portion 31 and covers the first conductor wiring 21. The first insulating layer 11 includes a polyimide core layer 51 (hereinafter referred to as the first core layer 51) and two thermoplastic polyimide cover layers 611 and 612 (hereinafter referred to as the first core layer 51). And first cover layers 611 and 612). The adhesive layer 4 is made of thermoplastic polyimide. A first conductor wiring 21 is embedded in the adhesive layer 4. In the first embodiment, the printed wiring board further includes a metal layer 72 (hereinafter referred to as a second metal layer 72) on the adhesive layer 4. The 1st wiring board part 31, the contact bonding layer 4, and the 2nd metal layer 72 are laminated | stacked in this order.

第一実施形態では、プリント配線板における第一絶縁層11が熱可塑性ポリイミド製の第一カバー層611,612を備えるものの、プリント配線板は熱可塑性ポリイミド製の接着層4も備えるため、接着層4と第一絶縁層11との間の熱膨張係数の不均衡が抑制される。これにより、プリント配線板の反りが抑制される。   In the first embodiment, although the first insulating layer 11 in the printed wiring board includes the first cover layers 611 and 612 made of thermoplastic polyimide, the printed wiring board also includes the adhesive layer 4 made of thermoplastic polyimide. The imbalance of the thermal expansion coefficient between 4 and the first insulating layer 11 is suppressed. Thereby, the curvature of a printed wiring board is suppressed.

第一実施形態に係るプリント配線板について、更に詳しく説明する。第一配線基板部31は上記の通り、第一絶縁層11と、第一絶縁層11上にある第一導体配線21とを備える。第一実施形態では、第一配線基板部31は、第一絶縁層11における第一導体配線21とは反対側の面の上にある金属層(以下、第一金属層71という)も備える。   The printed wiring board according to the first embodiment will be described in more detail. As described above, the first wiring board portion 31 includes the first insulating layer 11 and the first conductor wiring 21 on the first insulating layer 11. In the first embodiment, the first wiring board portion 31 also includes a metal layer (hereinafter referred to as a first metal layer 71) on the surface of the first insulating layer 11 opposite to the first conductor wiring 21.

第一配線基板部31における第一導体配線21は、例えば銅製である。第一導体配線21における接着層4と接する面は粗化されていることが好ましい。この場合、第一導体配線21と接着層4との密着性が特に高くなる。第一導体配線21には金属めっき処理とクロメート処理とのうち少なくとも一方が施されていることが好ましい。この場合、第一導体配線21と接着層4との間に高い密着性が付与される。このため、プリント配線板の製造時などに第一導体配線21及び接着層4が加熱されても、第一導体配線21と接着層4との線膨張係数の差による第一導体配線21と接着層4との剥離が抑制される。これにより、第一導体配線21に高い耐熱性が付与される。金属めっき処理は、亜鉛めっき処理、錫めっき処理、ニッケルめっき処理、モリブデンめっき処理、及びコバルトめっき処理のうち少なくとも一種を含むことが好ましい。この場合、第一導体配線21と接着層4との間に特に高い密着性が付与される。第一導体配線21の厚みは例えば2〜35μmの範囲内である。   The first conductor wiring 21 in the first wiring board portion 31 is made of, for example, copper. The surface in contact with the adhesive layer 4 in the first conductor wiring 21 is preferably roughened. In this case, the adhesion between the first conductor wiring 21 and the adhesive layer 4 is particularly high. The first conductor wiring 21 is preferably subjected to at least one of a metal plating process and a chromate process. In this case, high adhesion is provided between the first conductor wiring 21 and the adhesive layer 4. For this reason, even when the first conductor wiring 21 and the adhesive layer 4 are heated at the time of manufacturing a printed wiring board, the first conductor wiring 21 and the adhesive layer 4 are bonded to each other due to the difference in coefficient of linear expansion between the first conductor wiring 21 and the adhesive layer 4. Separation from the layer 4 is suppressed. Thereby, high heat resistance is imparted to the first conductor wiring 21. The metal plating treatment preferably includes at least one of galvanization treatment, tin plating treatment, nickel plating treatment, molybdenum plating treatment, and cobalt plating treatment. In this case, particularly high adhesion is provided between the first conductor wiring 21 and the adhesive layer 4. The thickness of the first conductor wiring 21 is, for example, in the range of 2 to 35 μm.

第一配線基板部31における第一絶縁層11は上記の通りポリイミド製の第一コア層51を備え、そのため第一絶縁層11は高い可撓性と耐熱性を有する。第一コア層51の厚みは、例えば5〜200μmの範囲内である。   The first insulating layer 11 in the first wiring board portion 31 includes the first core layer 51 made of polyimide as described above, and therefore the first insulating layer 11 has high flexibility and heat resistance. The thickness of the first core layer 51 is, for example, in the range of 5 to 200 μm.

第一絶縁層11は、上記の通り第一コア層51の両面上にそれぞれある二つの熱可塑性ポリイミド製の第一カバー層611,612を備える。これにより、ポリイミド製の第一コア層51と第一導体配線21との間に二つの第一カバー層611,612のうち一方の第一カバー層611が介在し、この第一カバー層611が第一導体配線21に接する。このため、第一絶縁層11と第一導体配線21との間に高い密着性が得られる。さらに、ポリイミド製の第一コア層51と第一金属層71との間に二つの第一カバー層611,612のうち導体配線21と接しない第一カバー層612が介在し、この第一カバー層612が第一金属層71に接する。このため、第一絶縁層11と第一金属層71との間にも高い密着性が得られる。各第一カバー層611,612のガラス転移点は150〜300℃の範囲内であることが好ましい。この場合、第一絶縁層11の高い耐熱性を確保しながら、第一絶縁層11と第一導体配線21との高い密着性も確保し、更に第一絶縁層11と第一金属層71との高い密着性も確保することができる。各第一カバー層611,612のガラス転移点が220〜320℃の範囲内であれば特に好ましい。各第一カバー層611,612の厚みは例えば1〜15μmの範囲内である。   As described above, the first insulating layer 11 includes the two first cover layers 611 and 612 made of thermoplastic polyimide on the both surfaces of the first core layer 51. Thereby, one first cover layer 611 of the two first cover layers 611 and 612 is interposed between the polyimide first core layer 51 and the first conductor wiring 21, and the first cover layer 611 is Contact the first conductor wiring 21. For this reason, high adhesiveness is obtained between the first insulating layer 11 and the first conductor wiring 21. Further, between the first core layer 51 made of polyimide and the first metal layer 71, a first cover layer 612 that is not in contact with the conductor wiring 21 among the two first cover layers 611 and 612 is interposed. The layer 612 is in contact with the first metal layer 71. For this reason, high adhesion is also obtained between the first insulating layer 11 and the first metal layer 71. It is preferable that the glass transition point of each 1st cover layer 611,612 exists in the range of 150-300 degreeC. In this case, while ensuring the high heat resistance of the 1st insulating layer 11, the high adhesiveness of the 1st insulating layer 11 and the 1st conductor wiring 21 is ensured, Furthermore, the 1st insulating layer 11 and the 1st metal layer 71, High adhesion can be secured. It is particularly preferable if the glass transition points of the first cover layers 611 and 612 are in the range of 220 to 320 ° C. The thickness of each first cover layer 611, 612 is, for example, in the range of 1-15 μm.

第一コア層51の材料であるポリイミドは、熱がかけられることで硬化が進みはしないが、熱がかけられることで軟化する性質も有していないポリイミドのことを称する。このポリイミドは、例えばピロメリット酸二無水物及び4,4’−ジアミノジフェニルエーテルから得られるポリアミド酸を脱水硬化させて得られる。ポリイミドの具体例としては、商品名「カプトン」(東レ・デュポン社製、デュポン社製) が挙げられる。   The polyimide that is the material of the first core layer 51 refers to a polyimide that does not proceed with curing when heated, but does not have a property of being softened when heated. This polyimide is obtained, for example, by dehydrating and curing polyamic acid obtained from pyromellitic dianhydride and 4,4'-diaminodiphenyl ether. Specific examples of polyimide include trade name “Kapton” (manufactured by Toray DuPont, DuPont).

第一カバー層611,612の材料である熱可塑性ポリイミドは、熱がかけられることで可塑性を生じるポリイミドのことを称する。熱可塑性ポリイミドとしては、その繰り返し単位中でのイミド基の濃度が低いことで分子間の凝集力が低いポリイミドが挙げられる。   The thermoplastic polyimide that is the material of the first cover layers 611 and 612 refers to a polyimide that produces plasticity when heated. Examples of the thermoplastic polyimide include a polyimide having a low intermolecular cohesion due to a low concentration of imide groups in the repeating unit.

第一金属層71は、例えば銅製である。第一金属層71の厚みは例えば2〜70μmの範囲内である。   The first metal layer 71 is made of, for example, copper. The thickness of the first metal layer 71 is, for example, in the range of 2 to 70 μm.

熱可塑性ポリイミド製の接着層4が第一配線基板部31上にあり、第一導体配線21を覆っているため、上記の通りプリント配線板の反りが抑制される。また、接着層4が熱可塑性ポリイミド製であるため、接着層4が第一導体配線21の形状に容易に追随できる。このため、接着層4に第一導体配線21が容易に埋め込まれ、プリント配線板の平坦化が容易である。また、接着層4が熱可塑性ポリイミド製であるため、接着層4と第一導体配線21との密着性が高い。さらに、接着層4は第一絶縁層11における第一カバー層611に接し、接着層4と第一カバー層611とが共に熱可塑性ポリイミド製であるため、接着層4と第一絶縁層11との密着性も高い。   Since the adhesive layer 4 made of thermoplastic polyimide is on the first wiring board portion 31 and covers the first conductor wiring 21, warping of the printed wiring board is suppressed as described above. Further, since the adhesive layer 4 is made of thermoplastic polyimide, the adhesive layer 4 can easily follow the shape of the first conductor wiring 21. For this reason, the 1st conductor wiring 21 is easily embedded in the contact bonding layer 4, and flattening of a printed wiring board is easy. Further, since the adhesive layer 4 is made of thermoplastic polyimide, the adhesiveness between the adhesive layer 4 and the first conductor wiring 21 is high. Furthermore, since the adhesive layer 4 is in contact with the first cover layer 611 in the first insulating layer 11 and the adhesive layer 4 and the first cover layer 611 are both made of thermoplastic polyimide, the adhesive layer 4 and the first insulating layer 11 High adhesion.

接着層4のガラス転移点は150〜300℃の範囲内であることが好ましい。この場合、プリント配線板全体での高い耐熱性を確保しながら、接着層4と第一導体配線21との高い密着性を確保し、接着層4と第二金属層72との高い密着性も確保することができる。さらに、プリント配線板の製造時に接着層4の形状を第一導体配線21の形状に追随させることで接着層4に第一導体配線21を埋めこむことが特に容易であり、プリント配線板の平坦化が特に容易である。接着層4のガラス転移点が200〜280℃の範囲内であれば特に好ましい。接着層4の厚みは例えば5〜100μmの範囲内である。   The glass transition point of the adhesive layer 4 is preferably in the range of 150 to 300 ° C. In this case, while ensuring high heat resistance in the whole printed wiring board, high adhesion between the adhesive layer 4 and the first conductor wiring 21 is ensured, and high adhesion between the adhesive layer 4 and the second metal layer 72 is also achieved. Can be secured. Furthermore, it is particularly easy to embed the first conductor wiring 21 in the adhesive layer 4 by causing the shape of the adhesive layer 4 to follow the shape of the first conductor wiring 21 during manufacture of the printed wiring board. Is particularly easy. It is particularly preferable if the glass transition point of the adhesive layer 4 is in the range of 200 to 280 ° C. The thickness of the adhesive layer 4 is in the range of 5 to 100 μm, for example.

第二金属層72は、例えば銅製である。第二金属層72の厚みは例えば2〜70μmの範囲内である。   The second metal layer 72 is made of, for example, copper. The thickness of the second metal layer 72 is, for example, in the range of 2 to 70 μm.

第一実施形態では、プリント配線板における第一金属層71にエッチング処理等を施すことで、プリント配線板に導体配線を形成してもよい。また、プリント配線板における第二金属層72にエッチング処理等を施すことでプリント配線板に導体配線を形成してもよい。第一金属層71と第二金属層72のうち一方又は両方をそのままグランド層として利用してもよい。   In 1st embodiment, you may form a conductor wiring in a printed wiring board by performing the etching process etc. to the 1st metal layer 71 in a printed wiring board. Moreover, you may form a conductor wiring in a printed wiring board by giving the etching process etc. to the 2nd metal layer 72 in a printed wiring board. One or both of the first metal layer 71 and the second metal layer 72 may be used as a ground layer as they are.

第一実施形態では、プリント配線板に半導体チップを搭載してもよく、この場合、半導体チップとプリント配線板とをワイヤボンディング法で電気的に接続してもよい。このようにプリント配線板に半導体チップを搭載する場合、プリント配線板がワイヤボンディングによって部分的に加熱されても、第一絶縁層11及び接着層4が高い耐熱性を有するため、プリント配線板には第一絶縁層11及び接着層4の部分的な軟化による凹凸が生じにくい。このため、プリント配線板への半導体チップの実装が容易である。   In the first embodiment, a semiconductor chip may be mounted on the printed wiring board. In this case, the semiconductor chip and the printed wiring board may be electrically connected by a wire bonding method. Thus, when mounting a semiconductor chip on a printed wiring board, even if the printed wiring board is partially heated by wire bonding, the first insulating layer 11 and the adhesive layer 4 have high heat resistance. Is less likely to cause unevenness due to partial softening of the first insulating layer 11 and the adhesive layer 4. For this reason, it is easy to mount the semiconductor chip on the printed wiring board.

第一実施形態におけるプリント配線板の製造方法の例について、図1Bを参照して説明する。   An example of a method for manufacturing a printed wiring board in the first embodiment will be described with reference to FIG. 1B.

まず、ベース基板310(以下、第一ベース基板310という)を用意する。第一ベース基板310は、第一絶縁層11と、第一絶縁層11上にある第一導体配線21とを備える。第一ベース基板310は、更に第一絶縁層11の第一導体配線21とは反対側の面上にある第一金属層71も備える。第一絶縁層11は、ポリイミド製の第一コア層51と、第一コア層51の両面上にそれぞれある二つの熱可塑性ポリイミド製の第一カバー層611,612とを備える。第一ベース基板310は、例えば第一絶縁層11とその両面上にそれぞれある二つの金属箔とを備える両面金属張積層板における二つの金属箔のうち一方にエッチング処理を施すことで得られる。   First, a base substrate 310 (hereinafter referred to as a first base substrate 310) is prepared. The first base substrate 310 includes a first insulating layer 11 and a first conductor wiring 21 on the first insulating layer 11. The first base substrate 310 further includes a first metal layer 71 on the surface of the first insulating layer 11 opposite to the first conductor wiring 21. The first insulating layer 11 includes a first core layer 51 made of polyimide, and two cover layers 611 and 612 made of thermoplastic polyimide respectively on both surfaces of the first core layer 51. The first base substrate 310 is obtained, for example, by performing an etching process on one of two metal foils in a double-sided metal-clad laminate including the first insulating layer 11 and two metal foils respectively on both sides thereof.

次に、第一ベース基板310の上に熱可塑性ポリイミド製の樹脂フィルム40を、第一導体配線21を覆うように配置する。この樹脂フィルム40の上に金属箔720を配置する。金属箔720は例えば銅箔である。   Next, a resin film 40 made of thermoplastic polyimide is disposed on the first base substrate 310 so as to cover the first conductor wiring 21. A metal foil 720 is disposed on the resin film 40. The metal foil 720 is a copper foil, for example.

次に、加熱プレスすることで、第一ベース基板310と樹脂フィルム40、並びに樹脂フィルム40と金属箔720を、それぞれ接着するとともに、樹脂フィルム40に第一導体配線21を埋め込む。これにより、樹脂フィルム40から接着層4が形成され、金属箔金属箔720から第二金属層72が形成される。これにより、第一実施形態におけるプリント配線板が得られる。   Next, the first base substrate 310 and the resin film 40 and the resin film 40 and the metal foil 720 are bonded to each other and the first conductor wiring 21 is embedded in the resin film 40 by heat pressing. Thereby, the adhesive layer 4 is formed from the resin film 40, and the second metal layer 72 is formed from the metal foil metal foil 720. Thereby, the printed wiring board in the first embodiment is obtained.

この製造方法では、加熱プレス時に樹脂フィルム40が軟化することで、第一導体配線21が樹脂フィルム40に容易に埋め込まれる。これにより、プリント配線板の平坦化が容易である。樹脂フィルム40のガラス転移点が150〜300℃の範囲内である場合、加熱プレスにおける加熱温度は250〜400℃の範囲内であることが好ましい。この場合、150〜300℃の範囲内のガラス転移点を有する接着層4が形成され、プリント配線板に特に高い耐熱性が付与される。さらに、加熱プレス時に第一導体配線21が樹脂フィルム40に特に容易に埋め込まれ、このためプリント配線板の平坦化が特に容易である。ガラス転移点よりも加熱温度の方が高ければより好ましく、ガラス転移点と加熱温度との間の温度差が80℃以上であれば更に好ましい。   In this manufacturing method, the first conductor wiring 21 is easily embedded in the resin film 40 because the resin film 40 is softened during the heating press. This makes it easy to flatten the printed wiring board. When the glass transition point of the resin film 40 is in the range of 150 to 300 ° C, the heating temperature in the heating press is preferably in the range of 250 to 400 ° C. In this case, the adhesive layer 4 having a glass transition point in the range of 150 to 300 ° C. is formed, and particularly high heat resistance is imparted to the printed wiring board. Furthermore, the first conductor wiring 21 is particularly easily embedded in the resin film 40 at the time of hot pressing, so that it is particularly easy to flatten the printed wiring board. It is more preferable if the heating temperature is higher than the glass transition point, and it is more preferable if the temperature difference between the glass transition point and the heating temperature is 80 ° C. or more.

図2Aに、本発明の第二実施形態に係るプリント配線板を示す。このプリント配線板は、第一絶縁層11と第一絶縁層11上にある第一導体配線21とを備える第一配線基板部31と、第一配線基板部31上にあり第一導体配線21を覆う接着層4とを備える。第一絶縁層11は、ポリイミド製の第一コア層51と、第一コア層51の両面上にそれぞれある二つの熱可塑性ポリイミド製の第一カバー層611,612とを備える。接着層4は熱可塑性ポリイミド製である。接着層4に第一導体配線21が埋め込まれている。第二実施形態では、プリント配線板は、更に接着層4上にあるポリイミド製の第二コア層52と、第二コア層52上にある熱可塑性ポリイミド製の第二カバー層62と、を備える。プリント配線板は、更に第二カバー層62上にある第二金属層72も備える。第一配線基板部31、接着層4、第二コア層52、第二カバー層62及び第二金属層72は、この順に積層している。   FIG. 2A shows a printed wiring board according to the second embodiment of the present invention. This printed wiring board includes a first wiring board portion 31 including a first insulating layer 11 and a first conductor wiring 21 on the first insulating layer 11, and a first conductor wiring 21 on the first wiring board portion 31. And an adhesive layer 4 covering. The first insulating layer 11 includes a first core layer 51 made of polyimide, and two cover layers 611 and 612 made of thermoplastic polyimide respectively on both surfaces of the first core layer 51. The adhesive layer 4 is made of thermoplastic polyimide. A first conductor wiring 21 is embedded in the adhesive layer 4. In the second embodiment, the printed wiring board further includes a polyimide second core layer 52 on the adhesive layer 4 and a thermoplastic polyimide second cover layer 62 on the second core layer 52. . The printed wiring board further includes a second metal layer 72 on the second cover layer 62. The 1st wiring board part 31, the contact bonding layer 4, the 2nd core layer 52, the 2nd cover layer 62, and the 2nd metal layer 72 are laminated | stacked in this order.

第二コア層52の材料であるポリイミドは、第一コア層51の材料であるポリイミドと同様に、熱がかけられることで硬化が進みはしないが、熱がかけられることで軟化する性質も有していないポリイミドのことを称する。第二カバー層62の材料である熱可塑性ポリイミドは、第一カバー層611,612の材料である熱可塑性ポリイミドと同様に、熱がかけられることで可塑性を生じるポリイミドのことを称する。   The polyimide that is the material of the second core layer 52, like the polyimide that is the material of the first core layer 51, does not proceed with curing when heated, but has the property of softening when heated. This refers to polyimide that has not been used. The thermoplastic polyimide that is the material of the second cover layer 62 refers to a polyimide that generates plasticity when heated, similarly to the thermoplastic polyimide that is the material of the first cover layers 611 and 612.

第二実施形態では、プリント配線板における第一絶縁層11が熱可塑性ポリイミド製の第一カバー層611,612を備えるものの、プリント配線板は熱可塑性ポリイミド製の接着層4も備えるため、接着層4と第一絶縁層11との間の熱膨張係数の不均衡が抑制される。さらに、第二実施形態では、第一導体配線21の一面上に熱可塑性ポリイミド製の第一カバー層611、ポリイミド製の第一コア層51、熱可塑性ポリイミド製の第一カバー層612が順次積層するとともに、第一導体配線21の他面上に熱可塑性ポリイミド製の接着層4、ポリイミド製の第二コア層52、熱可塑性ポリイミド製の第二カバー層62が順次積層している。すなわち、第一導体配線21の一面上と他面上の各々に熱可塑性ポリイミド製の層、ポリイミド製の層、及び熱可塑性ポリイミド製の層が順次積層している。このため、プリント配線板全体で熱膨張係数の不均衡が更に抑制される。これにより、プリント配線板の反りが著しく抑制される。さらに、ポリイミド製の第二コア層52を備えることで、プリント配線板に著しく高い耐熱性が付与される。   In the second embodiment, although the first insulating layer 11 in the printed wiring board includes the first cover layers 611 and 612 made of thermoplastic polyimide, the printed wiring board also includes the adhesive layer 4 made of thermoplastic polyimide. The imbalance of the thermal expansion coefficient between 4 and the first insulating layer 11 is suppressed. Furthermore, in the second embodiment, a first cover layer 611 made of thermoplastic polyimide, a first core layer 51 made of polyimide, and a first cover layer 612 made of thermoplastic polyimide are sequentially laminated on one surface of the first conductor wiring 21. At the same time, an adhesive layer 4 made of thermoplastic polyimide, a second core layer 52 made of polyimide, and a second cover layer 62 made of thermoplastic polyimide are sequentially laminated on the other surface of the first conductor wiring 21. That is, a layer made of thermoplastic polyimide, a layer made of polyimide, and a layer made of thermoplastic polyimide are sequentially laminated on one surface and the other surface of the first conductor wiring 21. For this reason, the imbalance of a thermal expansion coefficient is further suppressed in the whole printed wiring board. Thereby, the curvature of a printed wiring board is suppressed remarkably. Furthermore, by providing the second core layer 52 made of polyimide, extremely high heat resistance is imparted to the printed wiring board.

第二実施形態に係るプリント配線板について、更に詳しく説明する。第一配線基板部31は上記の通り、第一絶縁層11と、第一絶縁層11上にある第一導体配線21とを備える。第一実施形態では、第一配線基板部31は、第一絶縁層11における第一導体配線21とは反対側の面の上にある第一金属層71も備える。この第一配線基板部31は、第一実施形態における第一配線基板部31と同じ構成を有してよい。第二実施形態における接着層4も、第一実施形態における接着層4と同じ構成を有してよい。   The printed wiring board according to the second embodiment will be described in more detail. As described above, the first wiring board portion 31 includes the first insulating layer 11 and the first conductor wiring 21 on the first insulating layer 11. In the first embodiment, the first wiring board portion 31 also includes a first metal layer 71 on the surface of the first insulating layer 11 opposite to the first conductor wiring 21. The first wiring board part 31 may have the same configuration as the first wiring board part 31 in the first embodiment. The adhesive layer 4 in the second embodiment may have the same configuration as the adhesive layer 4 in the first embodiment.

第二コア層52は、第一コア層51と同様にポリイミド製である。このため、上記の通り、プリント配線板の反りが著しく抑制される。第二コア層52の厚みは、例えば5〜200μmの範囲内である。   Similar to the first core layer 51, the second core layer 52 is made of polyimide. For this reason, as above-mentioned, the curvature of a printed wiring board is suppressed remarkably. The thickness of the second core layer 52 is, for example, in the range of 5 to 200 μm.

上記の通り第二コア層52の上には熱可塑性ポリイミド製の第二カバー層62がある。これにより、ポリイミド製の第二コア層52と第二金属層72との間に熱可塑性ポリイミド製の第二カバー層62が介在し、この第二カバー層62が第二金属層72と接する。このため、第二金属層72と第二カバー層62との間に高い密着性が得られ、第二カバー層62と第二コア層52との間にも高い密着性が得られる。これにより、プリント配線板における層間剥離が抑制される。第二カバー層62のガラス転移点は150〜300℃の範囲内であることが好ましい。この場合、プリント配線板の高い耐熱性を確保しながら、第二カバー層62と第二金属層72との高い密着性を確保することができる。第二カバー層62のガラス転移点が220〜320℃の範囲内であれば特に好ましい。第二カバー層62の厚みは例えば1〜15μmの範囲内である。   As described above, the second cover layer 62 made of thermoplastic polyimide is provided on the second core layer 52. Thereby, the second cover layer 62 made of thermoplastic polyimide is interposed between the second core layer 52 made of polyimide and the second metal layer 72, and the second cover layer 62 is in contact with the second metal layer 72. For this reason, high adhesiveness is obtained between the second metal layer 72 and the second cover layer 62, and high adhesiveness is also obtained between the second cover layer 62 and the second core layer 52. Thereby, delamination in a printed wiring board is suppressed. The glass transition point of the second cover layer 62 is preferably in the range of 150 to 300 ° C. In this case, high adhesion between the second cover layer 62 and the second metal layer 72 can be ensured while ensuring high heat resistance of the printed wiring board. It is particularly preferable if the glass transition point of the second cover layer 62 is in the range of 220 to 320 ° C. The thickness of the second cover layer 62 is, for example, in the range of 1 to 15 μm.

第二金属層72は、例えば銅製である。第二金属層72の厚みは例えば2〜70μmの範囲内である。   The second metal layer 72 is made of, for example, copper. The thickness of the second metal layer 72 is, for example, in the range of 2 to 70 μm.

第二実施形態でも、プリント配線板における第一金属層71にエッチング処理等を施すことで、プリント配線板に導体配線を形成してもよい。プリント配線板における第二金属層72にエッチング処理等を施すことでプリント配線板に導体配線を形成してもよい。第一金属層71と第二金属層72のうち一方又は両方をそのままグランド層として利用してもよい。   Also in the second embodiment, conductor wiring may be formed on the printed wiring board by performing an etching process or the like on the first metal layer 71 in the printed wiring board. Conductor wiring may be formed on the printed wiring board by subjecting the second metal layer 72 of the printed wiring board to an etching process or the like. One or both of the first metal layer 71 and the second metal layer 72 may be used as a ground layer as they are.

第二実施形態でも、プリント配線板に半導体チップを搭載してもよい。第二実施形態では、プリント配線板がワイヤボンディングによって部分的に加熱されても、プリント配線板は高い耐熱性を有するため、プリント配線板には第一絶縁層11等の部分的な軟化による凹凸が生じにくい。このため、プリント配線板への半導体チップの実装が容易である。   Also in the second embodiment, a semiconductor chip may be mounted on the printed wiring board. In the second embodiment, even if the printed wiring board is partially heated by wire bonding, the printed wiring board has high heat resistance. Therefore, the printed wiring board has unevenness due to partial softening of the first insulating layer 11 and the like. Is unlikely to occur. For this reason, it is easy to mount the semiconductor chip on the printed wiring board.

第二実施形態におけるプリント配線板の製造方法の第一例を、図2Bを参照して説明する。   The 1st example of the manufacturing method of the printed wiring board in 2nd embodiment is demonstrated with reference to FIG. 2B.

まず、第一ベース基板310を用意する。第一ベース基板310は、第一絶縁層11、第一導体配線21、及び第一金属層71を備え、第一絶縁層11は、第一コア層51と、第一コア層51の両面上にそれぞれある第一カバー層611,612とを備える。第一ベース基板310は、第一実施形態の場合の第一ベース基板310と同じ構成を有してよい。   First, the first base substrate 310 is prepared. The first base substrate 310 includes a first insulating layer 11, a first conductor wiring 21, and a first metal layer 71, and the first insulating layer 11 is formed on both surfaces of the first core layer 51 and the first core layer 51. Are provided with first cover layers 611 and 612, respectively. The first base substrate 310 may have the same configuration as the first base substrate 310 in the first embodiment.

次に、第一ベース基板310の上に熱可塑性ポリイミド製の樹脂フィルム40を、第一導体配線21を覆うように配置する。   Next, a resin film 40 made of thermoplastic polyimide is disposed on the first base substrate 310 so as to cover the first conductor wiring 21.

この樹脂フィルム40の上に、多層樹脂フィルム91を配置する。多層樹脂フィルム91は、熱可塑性ポリイミド製の樹脂層81と、樹脂層81上にあるポリイミド製の第二コア層52と、第二コア層52上にある熱可塑性ポリイミド製の第二カバー層62とを備える。多層樹脂フィルム91における樹脂層81が樹脂フィルム40と接するように、樹脂フィルム40の上に多層樹脂フィルム91を配置する。多層樹脂フィルム91における樹脂層81の厚みは、例えば1〜15μmの範囲内である。   A multilayer resin film 91 is disposed on the resin film 40. The multilayer resin film 91 includes a resin layer 81 made of thermoplastic polyimide, a second core layer 52 made of polyimide on the resin layer 81, and a second cover layer 62 made of thermoplastic polyimide on the second core layer 52. With. The multilayer resin film 91 is disposed on the resin film 40 so that the resin layer 81 in the multilayer resin film 91 is in contact with the resin film 40. The thickness of the resin layer 81 in the multilayer resin film 91 is, for example, in the range of 1 to 15 μm.

多層樹脂フィルム91における第二カバー層62上に金属箔720を配置する。金属箔720は例えば銅箔である。   A metal foil 720 is disposed on the second cover layer 62 in the multilayer resin film 91. The metal foil 720 is a copper foil, for example.

次に、加熱プレスすることで、第一ベース基板310と樹脂フィルム40、樹脂フィルム40と多層樹脂フィルム91、並びに多層樹脂フィルム91と金属箔720をそれぞれ接着するとともに樹脂フィルム40に第一導体配線21を埋め込む。これにより、樹脂フィルム40と樹脂層81から接着層4が形成され、金属箔720から第二金属層72が形成される。これにより、第二実施形態におけるプリント配線板が得られる。   Next, the first base substrate 310 and the resin film 40, the resin film 40 and the multilayer resin film 91, and the multilayer resin film 91 and the metal foil 720 are bonded to each other and the first conductor wiring is attached to the resin film 40 by heating and pressing. 21 is embedded. Thereby, the adhesive layer 4 is formed from the resin film 40 and the resin layer 81, and the second metal layer 72 is formed from the metal foil 720. Thereby, the printed wiring board in the second embodiment is obtained.

この製造方法では、加熱プレス時に樹脂フィルム40が軟化することで、第一導体配線21が樹脂層81に容易に埋め込まれる。このため、プリント配線板の平坦化が容易である。樹脂フィルム40のガラス転移点が150〜300℃の範囲内である場合、加熱プレスにおける加熱温度は250〜400℃の範囲内であることが好ましい。この場合、150〜300℃の範囲内のガラス転移点を有する接着層4が形成され、プリント配線板に特に高い耐熱性が付与される。さらに、加熱プレス時に第一導体配線21が樹脂フィルム40に特に容易に埋め込まれ、このためプリント配線板の平坦化が特に容易である。   In this manufacturing method, the first conductor wiring 21 is easily embedded in the resin layer 81 because the resin film 40 is softened during the heating press. For this reason, it is easy to flatten the printed wiring board. When the glass transition point of the resin film 40 is in the range of 150 to 300 ° C, the heating temperature in the heating press is preferably in the range of 250 to 400 ° C. In this case, the adhesive layer 4 having a glass transition point in the range of 150 to 300 ° C. is formed, and particularly high heat resistance is imparted to the printed wiring board. Furthermore, the first conductor wiring 21 is particularly easily embedded in the resin film 40 at the time of hot pressing, so that it is particularly easy to flatten the printed wiring board.

第二実施形態におけるプリント配線板の製造方法の第二例を、図2Cを参照して説明する。   A second example of the printed wiring board manufacturing method in the second embodiment will be described with reference to FIG. 2C.

まず、第一例と同様に第一ベース基板310を用意する。   First, the first base substrate 310 is prepared as in the first example.

次に、第一ベース基板310の上に多層樹脂フィルム92を配置する。多層樹脂フィルム92は、熱可塑性ポリイミド製の樹脂層82と、樹脂層82上にあるポリイミド製の第二コア層52と、第二コア層52上にある熱可塑性ポリイミド製の第二カバー層62とを備える。多層樹脂フィルム92における樹脂層82が第一ベース基板310における第一導体配線21を覆うように、第一ベース基板310の上に多層樹脂フィルム92を配置する。第二例では、多層樹脂フィルム92における樹脂層82の厚みは、例えば5〜100μmの範囲内である。   Next, the multilayer resin film 92 is disposed on the first base substrate 310. The multilayer resin film 92 includes a resin layer 82 made of thermoplastic polyimide, a second core layer 52 made of polyimide on the resin layer 82, and a second cover layer 62 made of thermoplastic polyimide on the second core layer 52. With. The multilayer resin film 92 is disposed on the first base substrate 310 so that the resin layer 82 in the multilayer resin film 92 covers the first conductor wiring 21 in the first base substrate 310. In the second example, the thickness of the resin layer 82 in the multilayer resin film 92 is, for example, in the range of 5 to 100 μm.

多層樹脂フィルム92における第二カバー層62上に金属箔720を配置する。金属箔720は例えば銅箔である。   A metal foil 720 is disposed on the second cover layer 62 in the multilayer resin film 92. The metal foil 720 is a copper foil, for example.

次に、加熱プレスすることで、第一ベース基板310と多層樹脂フィルム92、並びに多層樹脂フィルム92と金属箔720をそれぞれ接着するとともに樹脂層82に第一導体配線21を埋め込む。これにより、樹脂層82から接着層4が形成され、金属箔720から第二金属層72が形成される。これにより、第二実施形態におけるプリント配線板が得られる。   Next, the first base substrate 310 and the multilayer resin film 92, and the multilayer resin film 92 and the metal foil 720 are bonded to each other and the first conductor wiring 21 is embedded in the resin layer 82 by heating and pressing. Thereby, the adhesive layer 4 is formed from the resin layer 82, and the second metal layer 72 is formed from the metal foil 720. Thereby, the printed wiring board in the second embodiment is obtained.

この製造方法では、加熱プレス時に樹脂層82が軟化することで、第一導体配線21が樹脂層82に容易に埋め込まれる。このため、プリント配線板の平坦化が容易である。樹脂層82のガラス転移点が150〜300℃の範囲内である場合、加熱プレスにおける加熱温度は250〜400℃の範囲内であることが好ましい。この場合、150〜300℃の範囲内のガラス転移点を有する接着層4が形成され、プリント配線板に特に高い耐熱性が付与される。さらに、加熱プレス時に第一導体配線21が樹脂層82に特に容易に埋め込まれ、このためプリント配線板の平坦化が特に容易である。   In this manufacturing method, the first conductor wiring 21 is easily embedded in the resin layer 82 because the resin layer 82 is softened during the heat pressing. For this reason, it is easy to flatten the printed wiring board. When the glass transition point of the resin layer 82 is in the range of 150 to 300 ° C, the heating temperature in the heating press is preferably in the range of 250 to 400 ° C. In this case, the adhesive layer 4 having a glass transition point in the range of 150 to 300 ° C. is formed, and particularly high heat resistance is imparted to the printed wiring board. Furthermore, the first conductor wiring 21 is particularly easily embedded in the resin layer 82 during hot pressing, and thus the printed wiring board is particularly easily flattened.

図3Aに、本発明の第三実施形態に係るプリント配線板を示す。このプリント配線板は、第一絶縁層11と第一絶縁層11上にある第一導体配線21とを備える第一配線基板部31と、第一配線基板部31上にあり第一導体配線21を覆う接着層4とを備える。第一絶縁層11は、ポリイミド製の第一コア層51と、第一コア層51の両面上にそれぞれある二つの熱可塑性ポリイミド製の第一カバー層611,612とを備える。接着層4は熱可塑性ポリイミド製である。接着層4に第一導体配線21が埋め込まれている。第三実施形態では、プリント配線板は、更に接着層4上にある第二配線基板部32を備える。第一配線基板部31、接着層4、及び第二配線基板部32は、この順に積層している。第二配線基板部32は、第二絶縁層12と第二絶縁層12上にある第二導体配線22とを備える。第二絶縁層12は、ポリイミド製の第二コア層52と、第二コア層52の両面上にそれぞれある二つの熱可塑性ポリイミド製の第二カバー層621,622とを備える。第二導体配線22は、接着層4に埋め込まれている。   FIG. 3A shows a printed wiring board according to the third embodiment of the present invention. This printed wiring board includes a first wiring board portion 31 including a first insulating layer 11 and a first conductor wiring 21 on the first insulating layer 11, and a first conductor wiring 21 on the first wiring board portion 31. And an adhesive layer 4 covering. The first insulating layer 11 includes a first core layer 51 made of polyimide, and two cover layers 611 and 612 made of thermoplastic polyimide respectively on both surfaces of the first core layer 51. The adhesive layer 4 is made of thermoplastic polyimide. A first conductor wiring 21 is embedded in the adhesive layer 4. In the third embodiment, the printed wiring board further includes a second wiring board portion 32 on the adhesive layer 4. The 1st wiring board part 31, the contact bonding layer 4, and the 2nd wiring board part 32 are laminated | stacked in this order. The second wiring board portion 32 includes a second insulating layer 12 and a second conductor wiring 22 on the second insulating layer 12. The second insulating layer 12 includes a second core layer 52 made of polyimide and two cover layers 621 and 622 made of thermoplastic polyimide respectively on both surfaces of the second core layer 52. The second conductor wiring 22 is embedded in the adhesive layer 4.

第三実施形態では、プリント配線板における第一絶縁層11が熱可塑性ポリイミド製の第一カバー層611,612を備えるものの、プリント配線板は熱可塑性ポリイミド製の接着層4も備えるため、接着層4と第一絶縁層11との間の熱膨張係数の不均衡が抑制される。また、プリント配線板における第二絶縁層12が熱可塑性ポリイミド製の第二カバー層621,622を備えるものの、プリント配線板は熱可塑性ポリイミド製の接着層4も備えるため、接着層4と第二絶縁層12との間の熱膨張係数の不均衡も抑制される。さらに、第三実施形態では、接着層4の一面上に第一導体配線21、熱可塑性ポリイミド製の第一カバー層611、ポリイミド製の第一コア層51、熱可塑性ポリイミド製の第一カバー層612が順次積層するとともに、接着層4の他面上に第二導体配線22、熱可塑性ポリイミド製の第二カバー層621、ポリイミド製の第二コア層52、熱可塑性ポリイミド製の第二カバー層622が順次積層している。すなわち、接着層4の一面上と他面上の各々に熱可塑性ポリイミド製の層、ポリイミド製の層、及び熱可塑性ポリイミド製の層が順次積層している。このため、プリント配線板全体で熱膨張係数の不均衡が更に抑制される。これにより、プリント配線板の反りが著しく抑制される。   In the third embodiment, although the first insulating layer 11 in the printed wiring board includes the first cover layers 611 and 612 made of thermoplastic polyimide, the printed wiring board also includes the adhesive layer 4 made of thermoplastic polyimide. The imbalance of the thermal expansion coefficient between 4 and the first insulating layer 11 is suppressed. In addition, although the second insulating layer 12 in the printed wiring board includes the second cover layers 621 and 622 made of thermoplastic polyimide, the printed wiring board also includes the adhesive layer 4 made of thermoplastic polyimide. An imbalance in the thermal expansion coefficient with the insulating layer 12 is also suppressed. Furthermore, in the third embodiment, the first conductor wiring 21, the first cover layer 611 made of thermoplastic polyimide, the first core layer 51 made of polyimide, and the first cover layer made of thermoplastic polyimide are formed on one surface of the adhesive layer 4. 612 are sequentially laminated, and the second conductor wiring 22, the second cover layer 621 made of thermoplastic polyimide, the second core layer 52 made of polyimide, and the second cover layer made of thermoplastic polyimide are formed on the other surface of the adhesive layer 4. 622 is sequentially stacked. That is, a thermoplastic polyimide layer, a polyimide layer, and a thermoplastic polyimide layer are sequentially laminated on one side and the other side of the adhesive layer 4. For this reason, the imbalance of a thermal expansion coefficient is further suppressed in the whole printed wiring board. Thereby, the curvature of a printed wiring board is suppressed remarkably.

第三実施形態に係るプリント配線板について、更に詳しく説明する。第一配線基板部31は上記の通り、第一絶縁層11と、第一絶縁層11上にある第一導体配線21とを備える。第三実施形態では、第一配線基板部31は、第一絶縁層11における第一導体配線21とは反対側の面の上にある第一金属層71も備える。この第一配線基板部31は、第一実施形態における第一配線基板部31と同じ構成を有してよい。   The printed wiring board according to the third embodiment will be described in more detail. As described above, the first wiring board portion 31 includes the first insulating layer 11 and the first conductor wiring 21 on the first insulating layer 11. In the third embodiment, the first wiring board portion 31 also includes a first metal layer 71 on the surface of the first insulating layer 11 opposite to the first conductor wiring 21. The first wiring board part 31 may have the same configuration as the first wiring board part 31 in the first embodiment.

第三実施形態における接着層4は、第一実施形態における接着層4と同じ構成を有してよい。   The adhesive layer 4 in the third embodiment may have the same configuration as the adhesive layer 4 in the first embodiment.

第二配線基板部32は上記の通り、第二絶縁層12と、第二絶縁層12上にある第二導体配線22とを備える。第三実施形態では、第二配線基板部32は、第二絶縁層12における第二導体配線22とは反対側の面の上にある第二金属層72も備える。   As described above, the second wiring board portion 32 includes the second insulating layer 12 and the second conductor wiring 22 on the second insulating layer 12. In the third embodiment, the second wiring board portion 32 also includes a second metal layer 72 on the surface of the second insulating layer 12 opposite to the second conductor wiring 22.

第二配線基板部32における第二導体配線22は、例えば銅製である。第二導体配線22における接着層4と接する面は粗化されていることが好ましい。この場合、第二導体配線22と接着層4との密着性が特に高くなる。また、第二導体配線22には金属めっき処理が施されていることが好ましい。この場合、第二導体配線22の耐熱性が高くなる。金属めっき処理は、クロメートめっき処理、亜鉛めっき処理、錫めっき処理、ニッケルめっき処理、モリブデンめっき処理、及びコバルトめっき処理のうち少なくとも一種を含むことが好ましい。第二導体配線22の厚みは例えば2〜70μmの範囲内である。   The second conductor wiring 22 in the second wiring board portion 32 is made of, for example, copper. The surface in contact with the adhesive layer 4 in the second conductor wiring 22 is preferably roughened. In this case, the adhesion between the second conductor wiring 22 and the adhesive layer 4 is particularly high. The second conductor wiring 22 is preferably subjected to a metal plating process. In this case, the heat resistance of the second conductor wiring 22 is increased. The metal plating treatment preferably includes at least one of a chromate plating treatment, a zinc plating treatment, a tin plating treatment, a nickel plating treatment, a molybdenum plating treatment, and a cobalt plating treatment. The thickness of the second conductor wiring 22 is in the range of 2 to 70 μm, for example.

第二配線基板部32における第二絶縁層12は上記の通りポリイミド製の第二コア層52を備え、そのため第二絶縁層12は高い可撓性と耐熱性を有する。第二コア層52の厚みは、例えば5〜200μmの範囲内である。   The second insulating layer 12 in the second wiring board portion 32 includes the second core layer 52 made of polyimide as described above, and therefore the second insulating layer 12 has high flexibility and heat resistance. The thickness of the second core layer 52 is, for example, in the range of 5 to 200 μm.

第二絶縁層12は、上記の通り第二コア層52の両面上にそれぞれある二つの熱可塑性ポリイミド製の第二カバー層621,622を備える。これにより、ポリイミド製の第二コア層52と第二導体配線22との間に第二カバー層621が介在し、この第二カバー層621が第二導体配線22に接する。このため、第二絶縁層12と第二導体配線22との間に高い密着性が得られる。さらに、ポリイミド製の第二コア層52と第二金属層72との間に熱可塑性ポリイミド製の第二カバー層622が介在し、この第二カバー層622が第二金属層72に接する。このため、第二絶縁層12と第二金属層72との間にも高い密着性が得られる。各第二カバー層621,622のガラス転移点は150〜300℃の範囲内であることが好ましい。この場合、第二絶縁層12の高い耐熱性を確保しながら、第二絶縁層12と第二導体配線22との高い密着性も確保し、更に第二絶縁層12と第二金属層72との高い密着性も確保することができる。各第二カバー層621,622のガラス転移点が220〜320℃の範囲内であれば特に好ましい。各第二カバー層621,622の厚みは例えば1〜15μmの範囲内である。   As described above, the second insulating layer 12 includes the two cover layers 621 and 622 made of thermoplastic polyimide respectively on both surfaces of the second core layer 52. Accordingly, the second cover layer 621 is interposed between the polyimide second core layer 52 and the second conductor wiring 22, and the second cover layer 621 is in contact with the second conductor wiring 22. For this reason, high adhesion is obtained between the second insulating layer 12 and the second conductor wiring 22. Furthermore, a second cover layer 622 made of thermoplastic polyimide is interposed between the second core layer 52 made of polyimide and the second metal layer 72, and the second cover layer 622 is in contact with the second metal layer 72. For this reason, high adhesion is also obtained between the second insulating layer 12 and the second metal layer 72. It is preferable that the glass transition point of each 2nd cover layer 621,622 is in the range of 150-300 degreeC. In this case, while ensuring high heat resistance of the second insulating layer 12, high adhesion between the second insulating layer 12 and the second conductor wiring 22 is also ensured, and further, the second insulating layer 12 and the second metal layer 72 are High adhesion can be secured. It is particularly preferable if the glass transition points of the second cover layers 621 and 622 are in the range of 220 to 320 ° C. The thicknesses of the second cover layers 621 and 622 are, for example, in the range of 1 to 15 μm.

第二金属層72は、例えば銅製である。第二金属層72の厚みは例えば2〜70μmの範囲内である。   The second metal layer 72 is made of, for example, copper. The thickness of the second metal layer 72 is, for example, in the range of 2 to 70 μm.

第三実施形態では、熱可塑性ポリイミド製の接着層4が第一配線基板部31と第二配線基板部32との間にあり、第一導体配線21及び第二導体配線22を覆っているため、上記の通りプリント配線板の反りが抑制される。また、接着層4が熱可塑性ポリイミド製であるため、接着層4が第一導体配線21及び第二導体配線22の形状に容易に追随できる。このため、接着層4に第一導体配線21及び第二導体配線22が容易に埋め込まれる。このため、プリント配線板の平坦化が容易である。また、接着層4が熱可塑性ポリイミド製であるため、接着層4と第一導体配線21との密着性、並びに接着層4と第二導体配線22との密着性が高い。また、接着層4は第一絶縁層11における第一カバー層611に接し、接着層4と第一カバー層611とが共に熱可塑性ポリイミド製であるため、接着層4と第一絶縁層11との密着性も高い。さらに、接着層4は第二絶縁層12における第二カバー層621にも接し、接着層4と第二カバー層621とが共に熱可塑性ポリイミド製であるため、接着層4と第二絶縁層12との密着性も高い。   In the third embodiment, the adhesive layer 4 made of thermoplastic polyimide is between the first wiring board portion 31 and the second wiring board portion 32 and covers the first conductor wiring 21 and the second conductor wiring 22. As described above, warping of the printed wiring board is suppressed. Further, since the adhesive layer 4 is made of thermoplastic polyimide, the adhesive layer 4 can easily follow the shapes of the first conductor wiring 21 and the second conductor wiring 22. For this reason, the first conductor wiring 21 and the second conductor wiring 22 are easily embedded in the adhesive layer 4. For this reason, it is easy to flatten the printed wiring board. Further, since the adhesive layer 4 is made of thermoplastic polyimide, the adhesiveness between the adhesive layer 4 and the first conductor wiring 21 and the adhesiveness between the adhesive layer 4 and the second conductor wiring 22 are high. Further, since the adhesive layer 4 is in contact with the first cover layer 611 in the first insulating layer 11 and the adhesive layer 4 and the first cover layer 611 are both made of thermoplastic polyimide, the adhesive layer 4 and the first insulating layer 11 High adhesion. Furthermore, since the adhesive layer 4 also contacts the second cover layer 621 in the second insulating layer 12 and both the adhesive layer 4 and the second cover layer 621 are made of thermoplastic polyimide, the adhesive layer 4 and the second insulating layer 12 Adhesion with is high.

第三実施形態でも、プリント配線板における第一金属層71にエッチング処理等を施すことで、プリント配線板に導体配線を形成してもよい。また、プリント配線板における第二金属層72にエッチング処理等を施すことでプリント配線板に導体配線を形成してもよい。第一金属層71と第二金属層72のうち一方又は両方をそのままグランド層として利用してもよい。   Also in the third embodiment, conductor wiring may be formed on the printed wiring board by performing an etching process or the like on the first metal layer 71 in the printed wiring board. Moreover, you may form a conductor wiring in a printed wiring board by giving the etching process etc. to the 2nd metal layer 72 in a printed wiring board. One or both of the first metal layer 71 and the second metal layer 72 may be used as a ground layer as they are.

第三実施形態でも、プリント配線板に半導体チップを搭載してもよい。第三実施形態では、プリント配線板がワイヤボンディングによって部分的に加熱されても、プリント配線板は高い耐熱性を有するため、プリント配線板には第一絶縁層11、第二絶縁層12等の部分的な軟化による凹凸が生じにくい。このため、プリント配線板への半導体チップの実装が容易である。   Also in the third embodiment, a semiconductor chip may be mounted on the printed wiring board. In the third embodiment, even if the printed wiring board is partially heated by wire bonding, the printed wiring board has high heat resistance. Therefore, the printed wiring board includes the first insulating layer 11, the second insulating layer 12, and the like. Unevenness due to partial softening hardly occurs. For this reason, it is easy to mount the semiconductor chip on the printed wiring board.

第三の実施形態におけるプリント配線板を更に多層化してもよい。例えば、第三の実施形態において、第二絶縁層12の上に、第一及び第二導体配線21,22と同様の導体配線、接着層4と同様の別の接着層、第一及び第二導体配線21,22と同様の導体配線、及び第一及び第二絶縁層11,12と同様の絶縁層が、順次積層していてもよい。第二絶縁層12の上に、導体配線、接着層、導体配線、及び絶縁層からなる積層体が複数個積層していてもよい。これらの場合にも、プリント配線板がポリイミド製の層と熱可塑性ポリイミド製の層とを備えるにもかかわらず、プリント配線板に反りが生じにくい。   The printed wiring board in the third embodiment may be further multilayered. For example, in the third embodiment, conductor wiring similar to the first and second conductor wirings 21 and 22, another adhesive layer similar to the adhesive layer 4, first and second on the second insulating layer 12. Conductor wiring similar to the conductor wirings 21 and 22 and insulating layers similar to the first and second insulating layers 11 and 12 may be sequentially laminated. On the second insulating layer 12, a plurality of laminated bodies composed of a conductor wiring, an adhesive layer, a conductor wiring, and an insulating layer may be stacked. Even in these cases, the printed wiring board is unlikely to warp despite the fact that the printed wiring board includes a polyimide layer and a thermoplastic polyimide layer.

第三実施形態におけるプリント配線板の製造方法を、図3Aを参照して説明する。   A printed wiring board manufacturing method according to the third embodiment will be described with reference to FIG. 3A.

まず、第一ベース基板310及び第二ベース基板320を用意する。第一ベース基板310は、第一絶縁層11、第一導体配線21、及び第一金属層71を備え、第一絶縁層11は、第一コア層51と、第一コア層51の両面上にそれぞれある第一カバー層611,612とを備える。第一ベース基板310は、第一実施形態の場合の第一ベース基板310と同じ構成を有してよい。第二ベース基板320は、第二絶縁層12と、第二絶縁層12上にある第二導体配線22とを備える。第二ベース基板320は、更に第二絶縁層12の第一導体配線21とは反対側の面上にある第二金属層72も備える。第二絶縁層12は、ポリイミド製の第二コア層52と、第二コア層52の両面上にそれぞれある二つの熱可塑性ポリイミド製の第二カバー層621,622とを備える。第二ベース基板320は、例えば第二絶縁層12とその両面上にそれぞれある二つの金属箔とを備える両面金属張積層板における二つの金属箔のうちの一方にエッチング処理を施すことで得られる。   First, the first base substrate 310 and the second base substrate 320 are prepared. The first base substrate 310 includes a first insulating layer 11, a first conductor wiring 21, and a first metal layer 71, and the first insulating layer 11 is formed on both surfaces of the first core layer 51 and the first core layer 51. Are provided with first cover layers 611 and 612, respectively. The first base substrate 310 may have the same configuration as the first base substrate 310 in the first embodiment. The second base substrate 320 includes the second insulating layer 12 and the second conductor wiring 22 on the second insulating layer 12. The second base substrate 320 further includes a second metal layer 72 on the surface of the second insulating layer 12 opposite to the first conductor wiring 21. The second insulating layer 12 includes a second core layer 52 made of polyimide and two cover layers 621 and 622 made of thermoplastic polyimide respectively on both surfaces of the second core layer 52. The second base substrate 320 is obtained, for example, by performing an etching process on one of the two metal foils in the double-sided metal-clad laminate including the second insulating layer 12 and two metal foils respectively on both surfaces thereof. .

次に、第一ベース基板310と第二ベース基板320との間に熱可塑性ポリイミド製の樹脂フィルム40を、この樹脂フィルム40で第一導体配線21と第二導体配線22とを覆うように配置する。   Next, a resin film 40 made of thermoplastic polyimide is disposed between the first base substrate 310 and the second base substrate 320 so as to cover the first conductor wiring 21 and the second conductor wiring 22 with the resin film 40. To do.

次に、加熱プレスすることで、第一ベース基板310と樹脂フィルム40、並びに樹脂フィルム40と第二ベース基板320をそれぞれ接着するとともに樹脂フィルム40に第一導体配線21及び第二導体配線22を埋め込む。これにより、樹脂フィルム40から接着層4が形成される。これにより、第三実施形態におけるプリント配線板が得られる。   Next, the first base substrate 310 and the resin film 40 and the resin film 40 and the second base substrate 320 are bonded to each other by heating and pressing, and the first conductor wiring 21 and the second conductor wiring 22 are attached to the resin film 40. Embed. Thereby, the adhesive layer 4 is formed from the resin film 40. Thereby, the printed wiring board in the third embodiment is obtained.

この製造方法では、加熱プレス時に樹脂フィルム40が軟化することで、第一導体配線21及び第二導体配線22が樹脂フィルム40に容易に埋め込まれる。このため、プリント配線板の平坦化が容易である。樹脂フィルム40のガラス転移点が150〜300℃の範囲内である場合、加熱プレスにおける加熱温度は250〜400℃の範囲内であることが好ましい。この場合、150〜300℃の範囲内のガラス転移点を有する接着層4が形成され、プリント配線板に特に高い耐熱性が付与される。さらに、加熱プレス時に第一導体配線21及び第二導体配線22が樹脂フィルム40に特に容易に埋め込まれ、このためプリント配線板の平坦化が特に容易である。   In this manufacturing method, the first conductor wiring 21 and the second conductor wiring 22 are easily embedded in the resin film 40 because the resin film 40 is softened at the time of hot pressing. For this reason, it is easy to flatten the printed wiring board. When the glass transition point of the resin film 40 is in the range of 150 to 300 ° C, the heating temperature in the heating press is preferably in the range of 250 to 400 ° C. In this case, the adhesive layer 4 having a glass transition point in the range of 150 to 300 ° C. is formed, and particularly high heat resistance is imparted to the printed wiring board. Furthermore, the first conductor wiring 21 and the second conductor wiring 22 are particularly easily embedded in the resin film 40 at the time of hot pressing, so that it is particularly easy to flatten the printed wiring board.

[実施例1]
ポリイミド製の層と、この層の両面上にそれぞれある二つの熱可塑性ポリイミド製の層とを備える多層フィルム(カネカ製、商品名ピクシオ)の両面上に、それぞれ三井金属製の銅箔(品番VLP)を配置した。続いて、温度360℃、プレス圧3.9MPa(40kg/cm2)、処理時間5分間の条件で加熱プレスすることで、多層フィルムに銅箔を熱圧着した。これにより、両面銅張積層板を得た。この両面銅張積層板における二つの銅箔のうちの一方にエッチング処理を施すことで導体配線を形成した。これにより、ベース基板を得た。
[Example 1]
On both sides of a multilayer film (Kaneka, product name Pixio) each comprising a polyimide layer and two thermoplastic polyimide layers on both sides of this layer, respectively, a copper foil made of Mitsui Metal (product number VLP) ) Was placed. Then, the copper foil was thermocompression bonded to the multilayer film by heat-pressing under conditions of a temperature of 360 ° C., a press pressure of 3.9 MPa (40 kg / cm 2 ), and a treatment time of 5 minutes. This obtained the double-sided copper clad laminated board. Conductive wiring was formed by performing an etching process on one of the two copper foils in the double-sided copper-clad laminate. As a result, a base substrate was obtained.

ベース基板における導体配線に銅めっき処理を施すことで、銅層を形成した。続いて、亜鉛−ニッケルめっき処理を施すことで、銅層上に亜鉛−ニッケル合金めっき層を形成した。この亜鉛めっき層における亜鉛原子量は10mg/m2であった。続いて、亜鉛−錫めっき処理を施すことで、亜鉛めっき層上に亜鉛−錫合金めっき層を形成した。この亜鉛−錫合金めっき層における亜鉛原子量は5mg/m2であり、錫原子量は5mg/m2であった。続いてベース基板を水洗してから、無水クロム酸で処理することで亜鉛−錫合金めっき層上にクロメート層を形成した。クロメート層におけるクロム原子量は5mg/m2であった。 A copper layer was formed by performing copper plating on the conductor wiring on the base substrate. Subsequently, a zinc-nickel alloy plating layer was formed on the copper layer by performing a zinc-nickel plating treatment. The zinc atomic weight in this galvanized layer was 10 mg / m 2 . Subsequently, a zinc-tin alloy plating layer was formed on the zinc plating layer by performing a zinc-tin plating treatment. The zinc atomic weight in this zinc-tin alloy plating layer was 5 mg / m 2 and the tin atomic weight was 5 mg / m 2 . Subsequently, the base substrate was washed with water and then treated with chromic anhydride to form a chromate layer on the zinc-tin alloy plating layer. The chromium atomic weight in the chromate layer was 5 mg / m 2 .

続いて、ベース基板における導体配線がある面上に、ガラス転移点が230℃である熱可塑性ポリイミドフィルム(東レ・デュポン製、商品名カプトンKJ)と、銅箔とを、順次積層した。続いて、温度360℃、プレス圧3.9MPa(40kg/cm2)、処理時間5分間の条件の加熱プレスによって、ベース基板と熱可塑性ポリイミドフィルム、並びに熱可塑性ポリイミドフィルムと銅箔を、それぞれ接着した。これにより、図1に示す構造を有するプリント配線板を得た。 Subsequently, a thermoplastic polyimide film (product name: Kapton KJ, manufactured by Toray DuPont) having a glass transition point of 230 ° C. and a copper foil were sequentially laminated on the surface of the base substrate having the conductor wiring. Subsequently, the base substrate and the thermoplastic polyimide film, and the thermoplastic polyimide film and the copper foil were bonded to each other by a heat press under conditions of a temperature of 360 ° C., a press pressure of 3.9 MPa (40 kg / cm 2 ), and a processing time of 5 minutes. did. Thereby, a printed wiring board having the structure shown in FIG. 1 was obtained.

[実施例2]
実施例1の場合と同じ方法で、ベース基板を得た。このベース基板における導体配線にニッケル−コバルト処理を施すことで、ニッケル−コバルト合金めっき層を形成した。ニッケル−コバルト合金めっき層におけるニッケル原子量は20mg/m2、コバルト原子量は14mg/m2であった。続いて、モリブデン−コバルトめっき処理を施すことで、ニッケル−コバルト合金めっき層上にモリブデン−コバルト合金めっき層を形成した。モリブデン−コバルト合金めっき層におけるモリブデン原子量は70mg/m2、コバルト原子量は5mg/m2であった。
[Example 2]
A base substrate was obtained in the same manner as in Example 1. The nickel-cobalt alloy plating layer was formed by performing nickel-cobalt treatment on the conductor wiring in the base substrate. The nickel atomic weight in the nickel-cobalt alloy plating layer was 20 mg / m 2 , and the cobalt atomic weight was 14 mg / m 2 . Subsequently, a molybdenum-cobalt plating process was performed to form a molybdenum-cobalt alloy plating layer on the nickel-cobalt alloy plating layer. The molybdenum atomic weight in the molybdenum-cobalt alloy plating layer was 70 mg / m 2 , and the cobalt atomic weight was 5 mg / m 2 .

続いて、ベース基板における導体配線がある面上に、ガラス転移点が230℃である熱可塑性ポリイミドフィルム(東レ・デュポン製、商品名カプトンKJ)と、銅箔とを、順次積層した。続いて、温度360℃、プレス圧3.9MPa(40kg/cm2)、処理時間5分間の条件の加熱プレスによって、ベース基板と熱可塑性ポリイミドフィルム、並びに熱可塑性ポリイミドフィルムと銅箔を、それぞれ接着した。これにより、図1に示す構造を有するプリント配線板を得た。 Subsequently, a thermoplastic polyimide film (product name: Kapton KJ, manufactured by Toray DuPont) having a glass transition point of 230 ° C. and a copper foil were sequentially laminated on the surface of the base substrate having the conductor wiring. Subsequently, the base substrate and the thermoplastic polyimide film, and the thermoplastic polyimide film and the copper foil were bonded to each other by a heat press under conditions of a temperature of 360 ° C., a press pressure of 3.9 MPa (40 kg / cm 2 ), and a processing time of 5 minutes. did. Thereby, a printed wiring board having the structure shown in FIG. 1 was obtained.

[実施例3]
実施例1の場合と同じ方法でベース基板を得た。このベース基板における導体配線に、実施例1の場合と同じ複数のめっき処理及びクロメート処理を施した。
[Example 3]
A base substrate was obtained in the same manner as in Example 1. The conductor wiring on the base substrate was subjected to the same plurality of plating treatments and chromate treatments as in Example 1.

続いて、ベース基板における導体配線がある面上に、ガラス転移点が230℃である熱可塑性ポリイミドフィルム(東レ・デュポン製、商品名カプトンKJ)、ポリイミド製の層と、この層の両面上にそれぞれある二つの熱可塑性ポリイミド製の層とを備える多層フィルム(カネカ製、商品名ピクシオ)、及び銅箔を、順次積層した。続いて、温度360℃、プレス圧3.9MPa(40kg/cm2)、処理時間5分間の条件の加熱プレスによって、ベース基板と熱可塑性ポリイミドフィルム、熱可塑性ポリイミドフィルムと多層フィルム、並びに多層フィルムと銅箔を、それぞれ接着した。これにより、図2に示す構造を有するプリント配線板を得た。 Subsequently, a thermoplastic polyimide film (made by Toray DuPont, trade name Kapton KJ) having a glass transition point of 230 ° C., a polyimide layer, and both sides of this layer on the surface of the base substrate having the conductor wiring A multilayer film (manufactured by Kaneka, trade name Pixio) having two thermoplastic polyimide layers each and a copper foil were sequentially laminated. Subsequently, the base substrate and the thermoplastic polyimide film, the thermoplastic polyimide film and the multilayer film, and the multilayer film were heated and pressed at a temperature of 360 ° C., a press pressure of 3.9 MPa (40 kg / cm 2 ), and a treatment time of 5 minutes. Each copper foil was bonded. As a result, a printed wiring board having the structure shown in FIG. 2 was obtained.

[実施例4]
実施例1の場合と同じ方法でベース基板を得た。このベース基板における導体配線に、実施例1の場合と同じ複数のめっき処理及びクロメート処理を施した。
[Example 4]
A base substrate was obtained in the same manner as in Example 1. The conductor wiring on the base substrate was subjected to the same plurality of plating treatments and chromate treatments as in Example 1.

続いて、ベース基板における導体配線がある面上に、ガラス転移点が230℃である熱可塑性ポリイミドフィルム(東レ・デュポン製、商品名カプトンKJ)、ポリイミド製の層と、この層の両面上にそれぞれある二つの熱可塑性ポリイミド製の層とを備える多層フィルム(宇部興産製、商品名ユーピレックス)、及び銅箔を、順次積層した。続いて、温度360℃、プレス圧3.9MPa(40kg/cm2)、処理時間5分間の条件の加熱プレスによって、ベース基板と熱可塑性ポリイミドフィルム、熱可塑性ポリイミドフィルムと多層フィルム、並びに多層フィルムと銅箔を、それぞれ接着した。これにより、図2に示す構造を有するプリント配線板を得た。 Subsequently, a thermoplastic polyimide film (made by Toray DuPont, trade name Kapton KJ) having a glass transition point of 230 ° C., a polyimide layer, and both sides of this layer on the surface of the base substrate having the conductor wiring A multilayer film (made by Ube Industries, trade name Iupilex), each having two thermoplastic polyimide layers, and a copper foil were sequentially laminated. Subsequently, the base substrate and the thermoplastic polyimide film, the thermoplastic polyimide film and the multilayer film, and the multilayer film were heated and pressed at a temperature of 360 ° C., a press pressure of 3.9 MPa (40 kg / cm 2 ), and a treatment time of 5 minutes. Each copper foil was bonded. As a result, a printed wiring board having the structure shown in FIG. 2 was obtained.

[実施例5]
実施例1の場合と同じ方法で第一ベース基板と第二ベース基板を得た。各ベース基板における導体配線に、実施例1の場合と同じ複数のめっき処理及びクロメート処理を施した。
[Example 5]
A first base substrate and a second base substrate were obtained in the same manner as in Example 1. The same plurality of plating treatments and chromate treatments as in Example 1 were performed on the conductor wiring in each base substrate.

第一ベース基板と第二ベース基板の間に、ガラス転移点が230℃である熱可塑性ポリイミドフィルム(東レ・デュポン製、商品名カプトンKJ)を、この熱可塑性ポリイミドフィルムで各ベース基板の導体配線を覆うように配置した。続いて、温度360℃、プレス圧3.9MPa(40kg/cm2)、処理時間5分間の条件の加熱プレスによって、第一ベース基板と熱可塑性ポリイミドフィルム、並びに熱可塑性ポリイミドフィルムと第二ベース基板を、それぞれ接着した。これにより、図3に示す構造を有するプリント配線板を得た。 Between the first base substrate and the second base substrate, a thermoplastic polyimide film having a glass transition point of 230 ° C. (product name: Kapton KJ, manufactured by Toray DuPont) is used for the conductor wiring of each base substrate with this thermoplastic polyimide film. It was arranged so as to cover. Subsequently, the first base substrate and the thermoplastic polyimide film, as well as the thermoplastic polyimide film and the second base substrate were heated and pressed under conditions of a temperature of 360 ° C., a press pressure of 3.9 MPa (40 kg / cm 2 ), and a processing time of 5 minutes. Were bonded to each other. As a result, a printed wiring board having the structure shown in FIG. 3 was obtained.

[実施例6]
ポリイミド製の層と、この層の両面上にそれぞれある二つの熱可塑性ポリイミド製の層とを備える多層フィルム(カネカ製、商品名ピクシオ)を用意した。マット面を有し、このマット面に亜鉛−ニッケル合金めっき処理及びクロメート処理が施されている二つの銅箔(三井金属製、品番VLP)も用意した。多層フィルムの両面上に、それぞれ銅箔を、各銅箔のマット面が多層フィルムとは反対側を向くように配置した。それ以外は実施例1の場合と同じ方法で、両面銅張積層板を得た。この両面銅張積層板における二つの銅箔のうちの一方にエッチング処理を施すことで導体配線を形成した。これにより、ベース基板を得た。
[Example 6]
A multilayer film (manufactured by Kaneka, trade name Pixio) comprising a polyimide layer and two thermoplastic polyimide layers respectively on both sides of this layer was prepared. Two copper foils (manufactured by Mitsui Metals, product number VLP) having a mat surface and subjected to zinc-nickel alloy plating treatment and chromate treatment on the mat surface were also prepared. Copper foils were arranged on both sides of the multilayer film so that the mat surface of each copper foil faced the opposite side of the multilayer film. Otherwise, the double-sided copper-clad laminate was obtained in the same manner as in Example 1. Conductive wiring was formed by performing an etching process on one of the two copper foils in the double-sided copper-clad laminate. As a result, a base substrate was obtained.

続いて、ベース基板における導体配線がある面上に、ガラス転移点が230℃である熱可塑性ポリイミドフィルム(東レ・デュポン製、商品名カプトンKJ)と、銅箔とを、順次積層した。続いて、温度360℃、プレス圧3.9MPa(40kg/cm2)、処理時間5分間の条件の加熱プレスによって、ベース基板と熱可塑性ポリイミドフィルム、並びに熱可塑性ポリイミドフィルムと銅箔を、それぞれ接着した。これにより、図1に示す構造を有するプリント配線板を得た。 Subsequently, a thermoplastic polyimide film (product name: Kapton KJ, manufactured by Toray DuPont) having a glass transition point of 230 ° C. and a copper foil were sequentially laminated on the surface of the base substrate having the conductor wiring. Subsequently, the base substrate and the thermoplastic polyimide film, and the thermoplastic polyimide film and the copper foil were bonded to each other by a heat press under conditions of a temperature of 360 ° C., a press pressure of 3.9 MPa (40 kg / cm 2 ), and a processing time of 5 minutes. did. Thereby, a printed wiring board having the structure shown in FIG. 1 was obtained.

[実施例7]
実施例1の場合と同じ方法でベース基板を得た。このベース基板における導体配線に、実施例1の場合と同じ複数のめっき処理及びクロメート処理を施した。
[Example 7]
A base substrate was obtained in the same manner as in Example 1. The conductor wiring on the base substrate was subjected to the same plurality of plating treatments and chromate treatments as in Example 1.

続いて、ベース基板における導体配線がある面上に、ガラス転移点が300℃である熱可塑性ポリイミドフィルム(東レ・デュポン製、品名カプトンJP)、ポリイミド製の層と、この層の両面上にそれぞれある二つの熱可塑性ポリイミド製の層とを備える多層フィルム(カネカ製、商品名ピクシオ)、及び銅箔を、この順に積層した。続いて、温度400℃、プレス圧3.9MPa(40kg/cm2)、処理時間5分間の条件の加熱プレスによって、ベース基板と熱可塑性ポリイミドフィルム、熱可塑性ポリイミドフィルムと多層フィルム、並びに多層フィルムと銅箔を、それぞれ接着した。これにより、図2に示す構造を有するプリント配線板を得た。 Subsequently, on the surface of the base substrate where the conductor wiring is present, a thermoplastic polyimide film having a glass transition point of 300 ° C. (manufactured by Toray DuPont, product name Kapton JP), a polyimide layer, and both surfaces of this layer, respectively. A multilayer film (manufactured by Kaneka, trade name Pixio) including two layers made of thermoplastic polyimide and a copper foil were laminated in this order. Subsequently, the base substrate and the thermoplastic polyimide film, the thermoplastic polyimide film and the multilayer film, and the multilayer film were heated and pressed under conditions of a temperature of 400 ° C., a press pressure of 3.9 MPa (40 kg / cm 2 ), and a treatment time of 5 minutes. Each copper foil was bonded. As a result, a printed wiring board having the structure shown in FIG. 2 was obtained.

[実施例8]
実施例1の場合と同じ方法でベース基板を得た。このベース基板における導体配線に、実施例1の場合と同じ複数のめっき処理及びクロメート処理を施した。
[Example 8]
A base substrate was obtained in the same manner as in Example 1. The conductor wiring on the base substrate was subjected to the same plurality of plating treatments and chromate treatments as in Example 1.

続いて、ベース基板における導体配線がある面上に、ガラス転移点が150℃である熱可塑性ポリイミドフィルム(東レ製、実験品)、ポリイミド製の層と、この層の両面上にそれぞれある二つの熱可塑性ポリイミド製の層とを備える多層フィルム(カネカ製、商品名ピクシオ)、及び銅箔を、この順に積層した。続いて、温度250℃、プレス圧3.9MPa(40kg/cm2)、処理時間5分間の条件の加熱プレスによって、ベース基板と熱可塑性ポリイミドフィルム、熱可塑性ポリイミドフィルムと多層フィルム、並びに多層フィルムと銅箔を、それぞれ接着した。これにより、図2に示す構造を有するプリント配線板を得た。 Subsequently, a thermoplastic polyimide film having a glass transition point of 150 ° C. (manufactured by Toray Industries, Inc.), a polyimide layer, and two layers on each side of this layer on the surface of the base substrate where the conductor wiring is present. A multilayer film (manufactured by Kaneka, trade name Pixio) having a layer made of thermoplastic polyimide and a copper foil were laminated in this order. Subsequently, the base substrate and the thermoplastic polyimide film, the thermoplastic polyimide film and the multilayer film, and the multilayer film were heated and pressed under conditions of a temperature of 250 ° C., a press pressure of 3.9 MPa (40 kg / cm 2 ), and a treatment time of 5 minutes. Each copper foil was bonded. As a result, a printed wiring board having the structure shown in FIG. 2 was obtained.

[実施例9]
実施例1の場合と同じ方法でベース基板を得た。このベース基板における導体配線に、実施例1の場合と同じ複数のめっき処理及びクロメート処理を施した。
[Example 9]
A base substrate was obtained in the same manner as in Example 1. The conductor wiring on the base substrate was subjected to the same plurality of plating treatments and chromate treatments as in Example 1.

ポリイミドフィルム(東レ・デュポン製、商品名カプトンEN)の一面上にガラス転移点が230℃の熱可塑性ポリイミド(東レ・デュポン製の品名カプトンKJと同様の熱可塑性ポリイミド)からなる厚み25μmの層を、他面上にガラス転移点が230℃の熱可塑性ポリイミド(東レ・デュポン製の品名カプトンKJと同様の熱可塑性ポリイミド)からなる厚み2μmの層を、それぞれ形成した。これにより、多層フィルムを得た。   On a surface of a polyimide film (product name: Kapton EN, manufactured by Toray DuPont), a layer having a thickness of 25 μm made of thermoplastic polyimide (a thermoplastic polyimide similar to the product name Kapton KJ, manufactured by Toray DuPont) having a glass transition point of 230 ° C. On the other surface, a layer having a thickness of 2 μm made of thermoplastic polyimide having a glass transition point of 230 ° C. (a thermoplastic polyimide similar to Kapton KJ, manufactured by Toray DuPont) was formed. This obtained the multilayer film.

続いて、ベース基板における導体配線がある面上に、多層フィルムにおける厚み25μmの層を重ね、更に多層フィルム上に銅箔を重ねた。続いて、温度360℃、プレス圧3.9MPa(40kg/cm2)、処理時間5分間の条件の加熱プレスによって、ベース基板と多層フィルム、並びに多層フィルムと銅箔を、それぞれ接着した。これにより、図2に示す構造を有するプリント配線板を得た。 Subsequently, a layer having a thickness of 25 μm in the multilayer film was overlaid on the surface of the base substrate having the conductor wiring, and a copper foil was overlaid on the multilayer film. Subsequently, the base substrate and the multilayer film, and the multilayer film and the copper foil were bonded to each other by a heating press under conditions of a temperature of 360 ° C., a press pressure of 3.9 MPa (40 kg / cm 2 ), and a treatment time of 5 minutes. As a result, a printed wiring board having the structure shown in FIG. 2 was obtained.

[比較例1]
ポリイミド製の絶縁層を備える両面銅張積層板を準備した。この両面銅張積層板における二つの銅箔のうちの一方にエッチング処理を施すことで導体配線を形成した。これにより、ベース基板を得た。このベース基板における導体配線に、実施例1の場合と同じ複数のめっき処理及びクロメート処理を施した。
[Comparative Example 1]
A double-sided copper clad laminate provided with an insulating layer made of polyimide was prepared. Conductive wiring was formed by performing an etching process on one of the two copper foils in the double-sided copper-clad laminate. As a result, a base substrate was obtained. The conductor wiring on the base substrate was subjected to the same plurality of plating treatments and chromate treatments as in Example 1.

続いて、ベース基板における導体配線がある面上に、ガラス転移点が230℃である熱可塑性ポリイミドフィルム(東レ・デュポン製、商品名カプトンKJ)と、銅箔とを、順次積層した。続いて、温度360℃、プレス圧3.9MPa(40kg/cm2)、処理時間5分間の条件の加熱プレスによって、ベース基板と熱可塑性ポリイミドフィルム、並びに熱可塑性ポリイミドフィルムと銅箔を、それぞれ接着し、プリント配線板を得た。 Subsequently, a thermoplastic polyimide film (product name: Kapton KJ, manufactured by Toray DuPont) having a glass transition point of 230 ° C. and a copper foil were sequentially laminated on the surface of the base substrate having the conductor wiring. Subsequently, the base substrate and the thermoplastic polyimide film, and the thermoplastic polyimide film and the copper foil were bonded to each other by a heat press under conditions of a temperature of 360 ° C., a press pressure of 3.9 MPa (40 kg / cm 2 ), and a processing time of 5 minutes. A printed wiring board was obtained.

[反り評価]
各実施例1〜9及び比較例1で得られたプリント配線板から、70mm×240mmの寸法のサンプルを切り出した。このサンプルの表面の銅箔をエッチングにより全て除去してから、オーブンで200℃1時間加熱した。続いて、各サンプルを、熱可塑性ポリイミドフィルムに由来する層が上方を向くようにして、平坦な面上に配置した。この状態で、サンプルが下方に凸となるように反る場合には平坦な面とサンプルとの間の隙間の最大値がnであれば「−n」を反り量とみなした。サンプルが上方に凸となるように反る場合には平坦な面とサンプルとの間の隙間の最大値がnであれば「+n」を反り量とみなした。測定は、テーパーゲージを用いて行った。
[Curve evaluation]
Samples having a size of 70 mm × 240 mm were cut out from the printed wiring boards obtained in Examples 1 to 9 and Comparative Example 1. The copper foil on the surface of this sample was completely removed by etching, and then heated in an oven at 200 ° C. for 1 hour. Subsequently, each sample was placed on a flat surface with the layer derived from the thermoplastic polyimide film facing upward. In this state, when the sample is warped so as to protrude downward, if the maximum value of the gap between the flat surface and the sample is n, “−n” is regarded as the warp amount. When the sample warps so as to be convex upward, if the maximum value of the gap between the flat surface and the sample is n, “+ n” is regarded as the warp amount. The measurement was performed using a taper gauge.

この結果、反り量が−40mm〜+40mmの範囲内であれば、「A」と評価し、この範囲を外れる場合は「B]と評価した。   As a result, if the amount of warpage was within the range of −40 mm to +40 mm, it was evaluated as “A”, and when out of this range, it was evaluated as “B”.

[線間充填性評価]
各実施例及び比較例で得られたプリント配線板の表面の銅箔をエッチングにより全て除去した。続いて、熱可塑性ポリイミドフィルムに由来する層を目視で観察し、ベース基板に由来する導体配線の線間におけるボイドの有無を確認した。その結果、ボイドが認められず、線間が樹脂で十分に充填されている場合を「A」、ボイドが認められ、線間の樹脂の充填が不十分である場合を「B」と評価した。なお、導体配線の残銅率(すなわち導体配線の材料である銅箔の残存率)は70%である。
[Evaluation of fillability between lines]
The copper foil on the surface of the printed wiring board obtained in each example and comparative example was all removed by etching. Subsequently, the layer derived from the thermoplastic polyimide film was visually observed to confirm the presence or absence of voids between the conductor wirings derived from the base substrate. As a result, a case where no void was recognized and the space between the lines was sufficiently filled with resin was evaluated as “A”, and a case where void was observed and the resin between the lines was insufficiently filled was evaluated as “B”. . The residual copper ratio of the conductor wiring (that is, the residual ratio of the copper foil that is the material of the conductor wiring) is 70%.

[はんだ耐熱性評価]
各実施例及び比較例で得られたプリント配線板のはんだ耐熱性試験を、JIS C6481に準ずる方法で、加熱温度260℃、加熱時間30秒の条件で行った。その結果、プリント配線板にふくれが発生しなかった場合を「A」、ふくれが発生した場合を「B」と評価した。
[Solder heat resistance evaluation]
The solder heat resistance test of the printed wiring board obtained in each Example and Comparative Example was performed under the conditions of a heating temperature of 260 ° C. and a heating time of 30 seconds by a method according to JIS C6481. As a result, the case where no blistering occurred on the printed wiring board was evaluated as “A”, and the case where blistering occurred was evaluated as “B”.

11 絶縁層(第一絶縁層)
12 第二絶縁層
21 導体配線(第一導体配線)
22 第二導体配線
31 配線基板部(第一配線基板部)
310 ベース基板(第一ベース基板)
32 第二配線基板部
320 第二ベース基板
4 接着層
40 樹脂フィルム
51 コア層(第一コア層)
52 第二コア層
611,612 カバー層(第一カバー層)
62,621,622 第二カバー層
72 金属層(第二金属層)
720 金属箔
81,82 樹脂層
91,92 多層樹脂フィルム
11 Insulating layer (first insulating layer)
12 Second insulating layer 21 Conductor wiring (first conductor wiring)
22 Second conductor wiring 31 Wiring board part (first wiring board part)
310 Base substrate (first base substrate)
32 Second Wiring Board 320 Second Base Substrate 4 Adhesive Layer 40 Resin Film 51 Core Layer (First Core Layer)
52 2nd core layer 611,612 Cover layer (1st cover layer)
62,621,622 Second cover layer 72 Metal layer (second metal layer)
720 Metal foil 81, 82 Resin layer 91, 92 Multilayer resin film

Claims (5)

絶縁層と前記絶縁層上にある導体配線とを備える配線基板部と、
前記配線基板部上にあり前記導体配線を覆う接着層とを備え、
前記絶縁層は、ポリイミド製のコア層と、前記コア層の両面上にそれぞれある二つの熱可塑性ポリイミド製のカバー層とを備え、
前記接着層は熱可塑性ポリイミド製であり、前記接着層に前記導体配線が埋め込まれている
プリント配線板。
A wiring board portion comprising an insulating layer and a conductor wiring on the insulating layer;
An adhesive layer on the wiring board portion and covering the conductor wiring;
The insulating layer includes a polyimide core layer and two thermoplastic polyimide cover layers respectively on both sides of the core layer,
The printed wiring board, wherein the adhesive layer is made of thermoplastic polyimide, and the conductor wiring is embedded in the adhesive layer.
前記接着層のガラス転移点が150〜300℃の範囲内である請求項1に記載のプリント配線板。 The printed wiring board according to claim 1, wherein a glass transition point of the adhesive layer is in a range of 150 to 300 ° C. 前記導体配線に金属めっき処理とクロメート処理のうち少なくとも一方が施されている請求項1又は2に記載のプリント配線板。 The printed wiring board according to claim 1, wherein at least one of a metal plating process and a chromate process is performed on the conductor wiring. 前記導体配線に前記金属めっき処理が施され、前記金属めっき処理が、亜鉛めっき処理、錫めっき処理、ニッケルめっき処理、モリブデンめっき処理、及びコバルトめっき処理のうち少なくとも一種を含む請求項3に記載のプリント配線板。 The metal plating treatment is performed on the conductor wiring, and the metal plating treatment includes at least one of a zinc plating treatment, a tin plating treatment, a nickel plating treatment, a molybdenum plating treatment, and a cobalt plating treatment. Printed wiring board. 前記接着層は、前記配線基板部に前記プリント配線板を構成する他の部材を接着させるためのものである請求項1から4のいずれか一項に記載のプリント配線板。 The printed wiring board according to any one of claims 1 to 4, wherein the adhesive layer is for bonding other members constituting the printed wiring board to the wiring board portion.
JP2016137716A 2016-07-12 2016-07-12 Printed wiring board Active JP6508632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016137716A JP6508632B2 (en) 2016-07-12 2016-07-12 Printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016137716A JP6508632B2 (en) 2016-07-12 2016-07-12 Printed wiring board

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015029514A Division JP5979516B2 (en) 2015-02-18 2015-02-18 Printed wiring board and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2016187052A true JP2016187052A (en) 2016-10-27
JP6508632B2 JP6508632B2 (en) 2019-05-08

Family

ID=57203387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016137716A Active JP6508632B2 (en) 2016-07-12 2016-07-12 Printed wiring board

Country Status (1)

Country Link
JP (1) JP6508632B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07312468A (en) * 1994-05-18 1995-11-28 Yamaichi Electron Co Ltd Flexible circuit board
JPH1051098A (en) * 1996-08-07 1998-02-20 Mitsui Petrochem Ind Ltd Circuit board with built-in resistor
JPH11298114A (en) * 1998-04-14 1999-10-29 Mitsui Chem Inc Manufacture of polyimide-metal laminate
JP2000052483A (en) * 1998-08-05 2000-02-22 Mitsui Chemicals Inc Polyimide metal foil laminated sheet and production thereof
JP2001072781A (en) * 1998-11-05 2001-03-21 Kanegafuchi Chem Ind Co Ltd Polyimide film and substrate for electric and electronic apparatus using same
JP2007042721A (en) * 2005-08-01 2007-02-15 Fujikura Ltd Multilayer wiring substrate and method of manufacturing same
JP2008188792A (en) * 2007-02-01 2008-08-21 Kurabo Ind Ltd Flexible laminated sheet having thermoplastic polyimide layer and its manufacturing method
JP2010050166A (en) * 2008-08-19 2010-03-04 Shin Etsu Polymer Co Ltd Printed circuit board
JP2012076363A (en) * 2010-10-01 2012-04-19 Nippon Kayaku Co Ltd Copper-clad laminated plate having primer layer, and wiring board using the laminated plate

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07312468A (en) * 1994-05-18 1995-11-28 Yamaichi Electron Co Ltd Flexible circuit board
JPH1051098A (en) * 1996-08-07 1998-02-20 Mitsui Petrochem Ind Ltd Circuit board with built-in resistor
JPH11298114A (en) * 1998-04-14 1999-10-29 Mitsui Chem Inc Manufacture of polyimide-metal laminate
JP2000052483A (en) * 1998-08-05 2000-02-22 Mitsui Chemicals Inc Polyimide metal foil laminated sheet and production thereof
JP2001072781A (en) * 1998-11-05 2001-03-21 Kanegafuchi Chem Ind Co Ltd Polyimide film and substrate for electric and electronic apparatus using same
JP2007042721A (en) * 2005-08-01 2007-02-15 Fujikura Ltd Multilayer wiring substrate and method of manufacturing same
JP2008188792A (en) * 2007-02-01 2008-08-21 Kurabo Ind Ltd Flexible laminated sheet having thermoplastic polyimide layer and its manufacturing method
JP2010050166A (en) * 2008-08-19 2010-03-04 Shin Etsu Polymer Co Ltd Printed circuit board
JP2012076363A (en) * 2010-10-01 2012-04-19 Nippon Kayaku Co Ltd Copper-clad laminated plate having primer layer, and wiring board using the laminated plate

Also Published As

Publication number Publication date
JP6508632B2 (en) 2019-05-08

Similar Documents

Publication Publication Date Title
WO2007013330A1 (en) Process for producing wiring board covered with thermoplastic liquid crystal polymer film
JP2009172996A (en) Flexible copper clad laminated board and its manufacturing method
JP2004319962A (en) Flex rigid printed wiring board and its manufacturing method
JP5979516B2 (en) Printed wiring board and manufacturing method thereof
JP6508632B2 (en) Printed wiring board
TW201414367A (en) Printed circuit board and method for manufacturing the same
JP5712349B2 (en) Method for producing flexible laminate
KR20210090257A (en) Metal foil provided with carrier and method for manufacturing the same
JP4728980B2 (en) Printed wiring board and manufacturing method thereof
US20140151095A1 (en) Printed circuit board and method for manufacturing the same
JPWO2010032780A1 (en) Metal-clad laminate, circuit board and electronic component
JPH08153971A (en) Multilayered printed wiring board and its manufacture
JP4894344B2 (en) Single-sided board manufacturing method and multilayer printed wiring board
JPH08264939A (en) Manufacture of printed wiring board
JP2007036098A (en) Printed wiring board and manufacturing method therefor
JP2000013024A (en) Manufacture of multilayer board and plate for multilayer board manufacture
JPH01313998A (en) Manufacture of metal composite laminated board
JP6353645B2 (en) Aluminum base circuit board
JP2004079594A (en) Multilayer flexible printed wiring board
JPWO2017130945A1 (en) Multilayer printed wiring board and multilayer metal clad laminate
JP4892924B2 (en) Multilayer printed wiring board and manufacturing method thereof
JP2012209322A (en) Method of manufacturing wiring board
JP2007027504A (en) Multilevel wiring board, and method and apparatus for manufacturing the same
JP4285215B2 (en) Double-sided copper-clad laminate, method for producing the same, and multilayer laminate
JP2007069617A (en) Method for manufacturing flexible metal foil laminated plate

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20170118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180925

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190325

R151 Written notification of patent or utility model registration

Ref document number: 6508632

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151