JP2007036098A - Printed wiring board and manufacturing method therefor - Google Patents

Printed wiring board and manufacturing method therefor Download PDF

Info

Publication number
JP2007036098A
JP2007036098A JP2005220481A JP2005220481A JP2007036098A JP 2007036098 A JP2007036098 A JP 2007036098A JP 2005220481 A JP2005220481 A JP 2005220481A JP 2005220481 A JP2005220481 A JP 2005220481A JP 2007036098 A JP2007036098 A JP 2007036098A
Authority
JP
Japan
Prior art keywords
copper foil
roughness
wiring board
printed wiring
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005220481A
Other languages
Japanese (ja)
Inventor
Naoto Ohara
直人 大原
Katsuhiko Takahashi
克彦 高橋
Koji Tsurusaki
幸司 鶴崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2005220481A priority Critical patent/JP2007036098A/en
Publication of JP2007036098A publication Critical patent/JP2007036098A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a printed wiring board and a manufacturing method therefor which give a circuit both adhesion and bending characteristics. <P>SOLUTION: A silver foil circuit surface coated with a cover lay or an inter-layer adhesive is subjected to microetching and turned into a rough surface with a roughness Rz of 0.5 μm or lower, or a surface roughness Ra of 0.5 μm or lower. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、プリント配線板およびその製造方法に関する。   The present invention relates to a printed wiring board and a method for manufacturing the same.

フレキシブル配線板は薄くて可撓性に優れるため、種々の電子機器内に組み込まれている。特に折り畳み式携帯電話のヒンジ部やPDA端末などに用いられるフレキシブル配線板は、高い耐屈曲性が求められる。
フレキシブル配線板を製造する際、銅張積層板(CCL)の銅箔上には、銅箔面の保護のためカバーレイ(CL)が貼着される。多層基板では、カバーレイもしくは層間接着剤が貼着される場合がある。従来、銅箔とカバーレイもしくは層間接着剤との層間密着力を向上するため、銅箔面に粗化処理が施されることがある。ここで粗化処理とは、銅箔の表面に凹凸形状を形成するものである。
Since flexible wiring boards are thin and excellent in flexibility, they are incorporated in various electronic devices. In particular, a flexible wiring board used for a hinge portion of a folding cellular phone, a PDA terminal, or the like is required to have high bending resistance.
When manufacturing a flexible wiring board, a coverlay (CL) is affixed on the copper foil of a copper clad laminated board (CCL) for protection of the copper foil surface. In a multilayer substrate, a coverlay or an interlayer adhesive may be attached. Conventionally, in order to improve the interlayer adhesion between the copper foil and the coverlay or the interlayer adhesive, the copper foil surface may be subjected to a roughening treatment. Here, the roughening treatment is to form an uneven shape on the surface of the copper foil.

絶縁性基板と貼り合わされる側である銅箔面の表面粗度に関する文献として、特許文献1、2がある。特許文献1には、冷間圧延で形成した表面のオイルピットの深さが2.0μm以下とした圧延銅箔が記載されている。また、特許文献2には、Raが0.2μm以下程度の表面粗さの小さい金属箔表面に基板材料となるポリイミドを積層したフレキシブル金属箔積層体が記載されている。
このほか、銅箔の表面粗度に関する文献としては、特許文献3〜6がある。特許文献3には、微細回路の形成を容易にするため、熱硬化性接着剤又は電気絶縁性樹脂に接する面のRzが3μm以下であり、表面処理層中のニッケル含有量が0.2g/m以下である銅箔を使用したフレキシブル印刷配線用基板が記載されている。特許文献4には、耐マイグレーションを向上するため、銅箔の貼り合わせ側の面(M面)のRzを0.5〜3.0μmとしたフレキシブルプリント基板用積層板が記載されている。特許文献5には、高温放置時や吸湿時に接着強度が劣化する問題に対して、銅箔の表面を物理的に粗化してRzを0.1〜5.0μmとする多層配線基板の製造方法が記載されている。特許文献6には、苛酷なヒートサイクル試験における絶縁層のクラック発生、剥離、膨れを防止するため、導体層の粗化により形成された凹凸の平均深さが配線金属厚みの10%以上とした多層回路基板が記載されている。
フレキシブル配線板の屈曲特性に関する文献としては、特許文献7、8がある。特許文献7には、金属箔とカバーレイとの接着力および屈曲性を改善するため、電解メッキ法によりベースフイルム上の金属箔層表面を粗化処理したフレキシブルプリント基板が記載されている。特許文献8には、フレキシブルプリント配線板材料の一部分に硬質プリント配線板材料を積層して形成した多層部に良好なスルーホールを形成するため、多層部となる部分の銅箔に粗化処理を施してプリプレグに対する密着性を高め、かつフィルムカバーレイを介在させること無く硬質プリント配線板材料を積層する、プリント配線板の製造方法が記載されている。
特開2001−58203号公報 特開2001−270036号公報 特開2003−86936号公報 特開2003−133666号公報 特開2003−332485号公報 特開平11−330695号公報 特開2003−209351号公報 特許第3155565号公報
Patent Documents 1 and 2 are documents relating to the surface roughness of the copper foil surface on the side bonded to the insulating substrate. Patent Document 1 describes a rolled copper foil having a surface oil pit depth of 2.0 μm or less formed by cold rolling. Patent Document 2 describes a flexible metal foil laminate in which polyimide as a substrate material is laminated on the surface of a metal foil with a small surface roughness Ra of about 0.2 μm or less.
In addition, there are Patent Documents 3 to 6 as documents relating to the surface roughness of the copper foil. In Patent Document 3, in order to facilitate the formation of a fine circuit, the Rz of the surface in contact with the thermosetting adhesive or the electrically insulating resin is 3 μm or less, and the nickel content in the surface treatment layer is 0.2 g / A flexible printed wiring board using a copper foil of m 2 or less is described. Patent Document 4 describes a laminated board for a flexible printed circuit board in which Rz of a surface (M surface) on which a copper foil is bonded is 0.5 to 3.0 μm in order to improve migration resistance. Patent Document 5 discloses a method of manufacturing a multilayer wiring board in which Rz is 0.1 to 5.0 μm by physically roughening the surface of a copper foil for the problem that the adhesive strength deteriorates when left at high temperature or when moisture is absorbed. Is described. In Patent Document 6, in order to prevent the occurrence of cracking, peeling, and swelling of the insulating layer in a severe heat cycle test, the average depth of the irregularities formed by the roughening of the conductor layer is set to 10% or more of the wiring metal thickness. A multilayer circuit board is described.
Patent Documents 7 and 8 are documents relating to the bending characteristics of flexible wiring boards. Patent Document 7 describes a flexible printed circuit board in which the surface of a metal foil layer on a base film is roughened by an electrolytic plating method in order to improve the adhesive force and flexibility between the metal foil and the coverlay. In Patent Document 8, in order to form a good through hole in a multilayer part formed by laminating a hard printed wiring board material on a part of a flexible printed wiring board material, a roughening treatment is applied to the copper foil in the part that becomes the multilayer part. A method for manufacturing a printed wiring board is described, in which a hard printed wiring board material is laminated without interposing a film cover lay to improve adhesion to a prepreg.
JP 2001-58203 A JP 2001-270036 A JP 2003-86936 A JP 2003-133666 A JP 2003-332485 A Japanese Patent Laid-Open No. 11-330695 JP 2003-209351 A Japanese Patent No. 3155565

従来、導体回路面の密着性を向上するため表面を凹凸形状に粗化することは知られている。また、表面の粗化により微小なクラックが生じやすくなり、さらに繰り返しの屈曲により、このクラックがより大きなクラック(マクロクラック)に成長して回路の断線に至るため、粗化処理によって屈曲特性は著しく低下することが知られている。従って、回路の密着力と屈曲特性を両立させる粗化手法が望まれていた。   Conventionally, it has been known to roughen the surface into a concavo-convex shape in order to improve the adhesion of the conductor circuit surface. In addition, micro-cracks are likely to occur due to surface roughening, and the cracks grow into larger cracks (macro cracks) due to repeated bending, leading to circuit disconnection. It is known to decline. Therefore, a roughening technique that achieves both circuit adhesion and bending characteristics has been desired.

本発明は、上記事情に鑑みてなされたものであり、回路の密着力と屈曲特性を両立できるプリント配線板およびその製造方法を提供することを課題とする。   This invention is made | formed in view of the said situation, and makes it a subject to provide the printed wiring board which can make the contact | adhesion power and bending characteristic of a circuit compatible, and its manufacturing method.

前記課題を解決するため、マイクロエッチングにより表面粗化された銅箔回路面の粗度Rzが5.0μm以下であり、前記銅箔回路面の上にカバーレイもしくは層間接着剤が積層されていることを特徴とするプリント配線板を提供する。前記粗度Rzは銅箔の厚さの28%以下であることが好ましい。
また本発明は、マイクロエッチングにより表面粗化された銅箔回路面の表面粗さRaが0.5μm以下であり、前記銅箔回路面の上にカバーレイもしくは層間接着剤が積層されていることを特徴とするプリント配線板を提供する。
In order to solve the above problems, the roughness Rz of the copper foil circuit surface roughened by microetching is 5.0 μm or less, and a coverlay or an interlayer adhesive is laminated on the copper foil circuit surface. A printed wiring board characterized by the above is provided. The roughness Rz is preferably 28% or less of the thickness of the copper foil.
In the present invention, the surface roughness Ra of the copper foil circuit surface roughened by microetching is 0.5 μm or less, and a coverlay or an interlayer adhesive is laminated on the copper foil circuit surface. A printed wiring board characterized by the above is provided.

また本発明は、マイクロエッチングにより粗度Rzが5.0μm以下となるように銅箔回路面を表面粗化したのち、前記銅箔回路面の上にカバーレイもしくは層間接着剤を積層することを特徴とするプリント配線板の製造方法を提供する。前記マイクロエッチングによる粗度Rzは、銅箔の厚さの28%以下とすることが好ましい。
また本発明は、マイクロエッチングにより表面粗さRaが0.5μm以下となるように銅箔回路面を表面粗化したのち、前記銅箔回路面の上にカバーレイもしくは層間接着剤を積層することを特徴とするプリント配線板の製造方法を提供する。
In the present invention, the copper foil circuit surface is roughened by microetching so that the roughness Rz is 5.0 μm or less, and then a coverlay or an interlayer adhesive is laminated on the copper foil circuit surface. A method for manufacturing a printed wiring board is provided. The roughness Rz by the microetching is preferably 28% or less of the thickness of the copper foil.
In the present invention, the copper foil circuit surface is roughened by microetching so that the surface roughness Ra is 0.5 μm or less, and then a coverlay or an interlayer adhesive is laminated on the copper foil circuit surface. A printed wiring board manufacturing method characterized by the above.

本発明によれば、屈曲特性と密着性及び耐熱性を両立したプリント配線板を製造することが可能になる。   According to the present invention, it is possible to manufacture a printed wiring board having both bending characteristics, adhesion, and heat resistance.

以下、最良の形態に基づいて本発明を説明する。
本発明が適用されるプリント配線板は、屈曲に用いられるフレキシブル部を有するものである。このようなプリント配線板としては、単層のフレキシブル基板(FPC)、FPCのみを2層以上積層してなるフレキシブル多層基板、内層基板となるFPCの片面または両面における一部の領域にリジッド基板(RPC)等の他の基板を積層したリジッドフレックス多層基板(RF)などが挙げられる。
The present invention will be described below based on the best mode.
A printed wiring board to which the present invention is applied has a flexible portion used for bending. As such a printed wiring board, a single layer flexible substrate (FPC), a flexible multilayer substrate in which only two layers of FPC are laminated, a rigid substrate (on one side or both sides of an FPC serving as an inner layer substrate) Examples thereof include a rigid flex multilayer substrate (RF) in which other substrates such as RPC) are stacked.

一般にフレキシブル部は、フレキシブルな絶縁性基材(ベースフィルム)の片面または両面に導体層として銅箔を積層した銅張積層板(CCL)と、この銅張積層板の銅箔に形成した回路を保護するため回路上に積層されたカバーレイとから構成される。また、多層基板の場合には、銅箔回路面の上にカバーレイもしくは層間接着剤が貼着されることもある。
銅箔としては、圧延銅箔、電解銅箔のいずれを用いても良い。銅箔の厚さは特に限定されないが、例えば9〜36μmである。
カバーレイとしては、例えばポリイミド(PI)等の絶縁性樹脂のフィルムの片面に接着剤層を設けたものを用いることができる。カバーレイの貼着に用いる接着剤としては、特に限定されるものではなく、例えばエポキシ系、ゴム系、アクリル系、ポリイミド系の接着剤が挙げられる。
In general, the flexible part includes a copper clad laminate (CCL) in which a copper foil is laminated as a conductor layer on one or both sides of a flexible insulating substrate (base film), and a circuit formed on the copper foil of the copper clad laminate. It consists of a coverlay laminated on the circuit for protection. In the case of a multilayer substrate, a coverlay or an interlayer adhesive may be stuck on the copper foil circuit surface.
As the copper foil, either a rolled copper foil or an electrolytic copper foil may be used. Although the thickness of copper foil is not specifically limited, For example, it is 9-36 micrometers.
As a coverlay, what provided the adhesive bond layer on the single side | surface of films of insulating resin, such as a polyimide (PI), can be used, for example. The adhesive used for attaching the coverlay is not particularly limited, and examples thereof include epoxy-based, rubber-based, acrylic-based, and polyimide-based adhesives.

回路とカバーレイもしくは層間接着剤との密着性を向上するために回路の表面を粗化処理すると、表面の凹凸からクラックが成長して回路の断線に至るので、粗化処理により屈曲特性が低下する。そこで本発明では、銅箔の回路面に粗化処理を施す際、粗度Rzまたは表面粗さRaに最適な範囲を規定する。これにより、屈曲特性と密着性および耐熱性を両立したプリント配線板を製造することが可能となる。   When the surface of the circuit is roughened to improve the adhesion between the circuit and the coverlay or interlayer adhesive, cracks grow from the irregularities on the surface, leading to disconnection of the circuit. To do. Therefore, in the present invention, when the roughening process is performed on the circuit surface of the copper foil, an optimum range is defined for the roughness Rz or the surface roughness Ra. Thereby, it is possible to manufacture a printed wiring board having both bending characteristics, adhesion and heat resistance.

そこで第1の発明では、マイクロエッチングにより銅箔回路面を表面粗化して、銅箔回路面の粗度Rzを5.0μm以下、より好ましくは4.0μm以下とする。ここで、粗度Rzとは10点平均粗さであり、具体的には、山頂から高い順に5点、谷底から低い順に5点を選び、その山高さおよび谷深さの平均を算出したものである。さらに、粗度Rzは銅箔の厚さの28%以下、より好ましくは22%以下が好ましい。
銅箔回路面の粗度Rzが前記上限を超えると、屈曲特性が低下するため好ましくない。また、密着性および耐熱性(剥離防止)のためには、銅箔回路面の粗度Rzは1.0μm以上が好ましい。
Therefore, in the first invention, the surface of the copper foil circuit is roughened by microetching, and the roughness Rz of the copper foil circuit surface is set to 5.0 μm or less, more preferably 4.0 μm or less. Here, the roughness Rz is an average roughness of 10 points, and specifically, 5 points are selected in descending order from the top of the mountain, and 5 points are selected in order from the bottom of the valley, and the average of the peak height and valley depth is calculated. It is. Further, the roughness Rz is preferably 28% or less, more preferably 22% or less of the thickness of the copper foil.
If the roughness Rz of the copper foil circuit surface exceeds the above upper limit, the bending characteristics deteriorate, which is not preferable. In addition, the roughness Rz of the copper foil circuit surface is preferably 1.0 μm or more for adhesion and heat resistance (prevention of peeling).

また第2の発明では、マイクロエッチングにより銅箔回路面を表面粗化して、銅箔回路面の表面粗さRaを0.5μm以下、より好ましくは0.4μm以下とする。ここで、表面粗さRaは、算術平均粗さであり、粗さ曲線からその平均線の方向に基準長さlだけ抜き取り、この抜き取り部分の平均線から粗さ曲線までの絶対値を合計し、平均した値である。銅箔回路面の表面粗さRaが前記上限を超えると、屈曲特性が低下するため好ましくない。また、密着性および耐熱性(剥離防止)のためには、銅箔回路面の表面粗さRaは0.1μm以上が好ましい。   In the second invention, the copper foil circuit surface is roughened by micro-etching so that the surface roughness Ra of the copper foil circuit surface is 0.5 μm or less, more preferably 0.4 μm or less. Here, the surface roughness Ra is an arithmetic average roughness, and the reference length l is extracted from the roughness curve in the direction of the average line, and the absolute values from the average line of the extracted portion to the roughness curve are summed. The average value. If the surface roughness Ra of the copper foil circuit surface exceeds the upper limit, the bending characteristics are deteriorated, which is not preferable. Further, for the adhesion and heat resistance (prevention of peeling), the surface roughness Ra of the copper foil circuit surface is preferably 0.1 μm or more.

本発明では、銅箔回路面の表面粗化をマイクロエッチングにより行い、粗度Rzまたは表面粗さRaが上述の範囲内となるように条件を調整する。そして、表面粗化された銅箔回路面の上にカバーレイもしくは層間接着剤を積層する。これにより、屈曲特性と密着性及び耐熱性を両立したプリント配線板を製造することが可能になる。マイクロエッチングは、例えば硫酸・過酸化水素系の黒化処理代替法によって行うことができる。マイクロエッチングは、粗化めっき法や電解めっき法、黒化処理等と比べて、低コストに実施でき、生産性が高いので好ましい。   In the present invention, the surface of the copper foil circuit surface is roughened by microetching, and the conditions are adjusted so that the roughness Rz or the surface roughness Ra is within the above-mentioned range. Then, a coverlay or an interlayer adhesive is laminated on the roughened copper foil circuit surface. This makes it possible to manufacture a printed wiring board that has both bending characteristics, adhesion, and heat resistance. The microetching can be performed, for example, by a sulfuric acid / hydrogen peroxide blackening alternative method. Micro-etching is preferable because it can be performed at a lower cost and has higher productivity than roughening plating, electrolytic plating, and blackening treatment.

以下、本発明を試験例に基づいて具体的に説明する。
本試験例では、内層FPCの銅箔回路面の粗度Rzまたは表面粗さRaが異なるプリント配線板のサンプルを複数製造し、プリント配線板に対して、屈曲試験、ピール試験、およびリフロー耐熱試験を行った。
サンプルとなるプリント配線板60の構造および製造プロセスを図1に示す。このプリント配線板60は、図1(e)に示すように、FPCのみからなるケーブル部61を有するケーブル付きリジッドフレックス多層基板である。
Hereinafter, the present invention will be specifically described based on test examples.
In this test example, a plurality of printed wiring board samples having different roughness Rz or surface roughness Ra of the copper foil circuit surface of the inner layer FPC are manufactured, and a bending test, a peel test, and a reflow heat test are performed on the printed wiring board. Went.
FIG. 1 shows the structure and manufacturing process of a printed wiring board 60 as a sample. As shown in FIG. 1E, the printed wiring board 60 is a rigid flex multilayer board with a cable having a cable portion 61 made of only FPC.

(使用材料)
銅張積層板10(CCL)としては、フレキシブル基材11の両面に銅箔12、13を積層し、フレキシブル基材11と銅箔12、13を接着剤を介せずに直接一体化したフレキシブルな2層材を用いた。ここで、フレキシブル基材11は厚さ25μmのポリイミド(PI)、銅箔12、13は厚さ18μmの圧延銅箔とした。
カバーレイ20(CL)としては、フレキシブル基材21の片面に接着剤22が設けられたものを用いた。ここで、フレキシブル基材21は厚さ25μmのポリイミド(PI)、接着剤22は厚さ25μmのエポキシ系とした。
層間接着剤40(ADH)としては、厚さ40μmの接着シートを用いた。
外層基板50としては、リジッド基材51の片面に銅箔52を積層したRPCを用いた。ここで、リジッド基材51は厚さ150μmのガラスエポキシ樹脂(ガラス繊維を編み込み、エポキシ樹脂で固めたもの)、銅箔52は厚さ18μmの電解銅箔とした。
(Materials used)
As the copper clad laminate 10 (CCL), a flexible structure in which copper foils 12 and 13 are laminated on both sides of a flexible base material 11 and the flexible base material 11 and the copper foils 12 and 13 are directly integrated without using an adhesive. A two-layer material was used. Here, the flexible substrate 11 was polyimide (PI) with a thickness of 25 μm, and the copper foils 12 and 13 were rolled copper foil with a thickness of 18 μm.
As the coverlay 20 (CL), a flexible substrate 21 provided with an adhesive 22 on one side thereof was used. Here, the flexible substrate 21 was made of polyimide (PI) having a thickness of 25 μm, and the adhesive 22 was made of an epoxy system having a thickness of 25 μm.
As the interlayer adhesive 40 (ADH), an adhesive sheet having a thickness of 40 μm was used.
As the outer layer substrate 50, RPC in which a copper foil 52 was laminated on one side of a rigid base material 51 was used. Here, the rigid base 51 was made of 150 μm thick glass epoxy resin (glass fiber braided and hardened with epoxy resin), and the copper foil 52 was made of 18 μm thick electrolytic copper foil.

(製造プロセス)
まず、図1(a)に示すように、銅張積層板10の両面の銅箔12、13に不図示の回路を形成する。さらに、銅箔12、13の回路面12a、13aにマイクロエッチングを行い、硫酸・過酸化水素系の黒化処理代替法を用いて粗化処理を施す。なお、粗化処理を未処理とした比較例のサンプルを作製する場合、この粗化処理の実施は省略する。
(Manufacturing process)
First, as shown in FIG. 1A, circuits (not shown) are formed on the copper foils 12 and 13 on both sides of the copper clad laminate 10. Further, the circuit surfaces 12a and 13a of the copper foils 12 and 13 are micro-etched and roughened by using a sulfuric acid / hydrogen peroxide blackening alternative method. In addition, when producing the sample of the comparative example which did not process the roughening process, implementation of this roughening process is abbreviate | omitted.

次に、図1(b)に示すように、銅張積層板10の銅箔12、13の回路面12a、13a上にそれぞれカバーレイ20、20を積層し、接着剤22側を銅張積層板10の銅箔12、13側に重ね合わせ、熱プレス等によって貼り合わせる(CLキュア)。
以上により、プリント配線板60の内層基板30となるフレキシブル基板(内層FPC)を形成する。
Next, as shown in FIG.1 (b), the coverlays 20 and 20 are each laminated | stacked on the circuit surfaces 12a and 13a of the copper foils 12 and 13 of the copper clad laminated board 10, and the adhesive agent 22 side is copper clad laminated. It superposes on the copper foils 12 and 13 side of the board 10 and bonds them together by hot pressing or the like (CL cure).
By the above, the flexible substrate (inner layer FPC) used as the inner layer board | substrate 30 of the printed wiring board 60 is formed.

次に、図1(c)に示すように、層間接着剤40を介して内層基板30の両面に外層基板(RPC)50、50を積層する。さらに外層基板50の表面の銅箔52に不図示の回路を形成する。   Next, as shown in FIG. 1C, outer layer substrates (RPC) 50 and 50 are laminated on both surfaces of the inner layer substrate 30 with an interlayer adhesive 40 interposed therebetween. Further, a circuit (not shown) is formed on the copper foil 52 on the surface of the outer layer substrate 50.

次に、図1(d)に示すように、外層基板50の外形加工により、ケーブル部61となる部分の外層基板50を剥がし、内層基板30を露出させる。図1(e)に示すように、露出した内層基板30がケーブル部61となり、ケーブル部61の両側において外層基板50が残された部分は、内層基板30および外層基板50、50の3層の基板が積層一体化された多層部62、62となる。   Next, as shown in FIG. 1 (d), the outer layer substrate 50 is peeled off by the outer shape processing of the outer layer substrate 50 to expose the inner layer substrate 30. As shown in FIG. 1 (e), the exposed inner layer substrate 30 becomes the cable portion 61, and the portions where the outer layer substrate 50 is left on both sides of the cable portion 61 are the three layers of the inner layer substrate 30 and the outer layer substrates 50 and 50. The multilayer portions 62 and 62 are formed by stacking and integrating the substrates.

(試験条件)
屈曲試験では、JIS C 5016 8.6に準拠して、屈曲試験機にサンプルを取り付け、サンプルの導体パターンに電流を流して抵抗値を測定しながらサンプルを一定の速度で往復運動させて繰り返し屈曲させ、抵抗値が上昇して回路が破断したと認められるた時点の屈曲回数を測定した。屈曲回数は、同等の粗度または表面粗さを有するサンプル10枚の平均値を測定値とした。また、サンプルを繰り返し屈曲させるときの屈曲半径は2.5mmとした。
(Test conditions)
In the bending test, in accordance with JIS C 5016 8.6, a sample is attached to a bending tester, and the sample is reciprocated at a constant speed while current is passed through the conductor pattern of the sample to measure the resistance value. The number of bendings was measured when it was recognized that the resistance value increased and the circuit was broken. For the number of bendings, an average value of 10 samples having the same roughness or surface roughness was used as a measurement value. The bending radius when the sample was bent repeatedly was 2.5 mm.

ピール試験では、JIS C 6471 8.1に準拠して、常温環境下、引っ張り速度を50mm/minとしてサンプルの銅箔を銅箔除去面に対して90°方向に引き剥がし、得られた引き剥がし荷重より、JIS C 5016 8.1.6に基づいて引き剥がし強さ(N/cm)を算出した。   In the peel test, in accordance with JIS C 6471 8.1, the copper foil of the sample was peeled in the direction of 90 ° with respect to the copper foil removal surface at a pulling speed of 50 mm / min in a normal temperature environment, and the obtained peeling was performed. From the load, the peel strength (N / cm) was calculated based on JIS C 5016 8.1.6.

リフロー耐熱試験では、前処理をJEDEC(Joint Electron Device Engineering Council;米国電気工業会(NEMA)と米国電子機械工業会(EIA)の合同委員会) レベル1規格(温度85℃、相対湿度85%RHの環境下で168時間の吸湿処理)で行ったのち、230℃以上の加熱(ピーク温度は250℃)を30秒継続し、この加熱を3回繰り返した。加熱後の剥離の有無(○:剥離なし、×:剥離発生)を試験した。   In the reflow heat resistance test, pretreatment is performed using JEDEC (Joint Electron Engineering Engineering Council; a joint committee of the National Electrical Manufacturers Association (NEMA) and the Electronic Industries Association of Japan (EIA)) Level 1 standard (temperature 85 ° C., relative humidity 85% RH). In this environment, a heat absorption treatment of 168 hours was performed, and then heating at 230 ° C. or higher (peak temperature was 250 ° C.) was continued for 30 seconds, and this heating was repeated three times. The presence or absence of peeling after heating (O: no peeling, x: occurrence of peeling) was tested.

(試験例1)
上記製造プロセスにおいて、銅箔12、13の回路面12a、13aの粗度Rzが1.0μm(6%)、2.0μm(11%)、3.0μm(17%)、4.0μm(22%)、5.0μm(28%)、6.0μm(33%)、7.0μm(39%)、8.0μm(44%)となるように粗化処理を行い、それぞれの粗度Rzを有するプリント配線板60のサンプルを作製した。なお、粗度Rzはレーザ顕微鏡によって回路面を観察して計測した値であり、粗度Rzの後に記した括弧内の百分率は、銅箔の厚さに対する粗度Rzの割合を%で示した値である。また、粗化処理を省略することにより、未処理のサンプル(Rz=0μm)を作製した。
(Test Example 1)
In the above manufacturing process, the roughness Rz of the circuit surfaces 12a and 13a of the copper foils 12 and 13 is 1.0 μm (6%), 2.0 μm (11%), 3.0 μm (17%), 4.0 μm (22 %), 5.0 μm (28%), 6.0 μm (33%), 7.0 μm (39%), and 8.0 μm (44%). A sample of the printed wiring board 60 was prepared. The roughness Rz is a value measured by observing the circuit surface with a laser microscope, and the percentage in parentheses after the roughness Rz indicates the ratio of the roughness Rz to the thickness of the copper foil in%. Value. Further, an untreated sample (Rz = 0 μm) was produced by omitting the roughening treatment.

製造したプリント配線板の各サンプルのケーブル部に対して、屈曲試験(ケーブル部の屈曲回数の測定)、ピール試験(銅箔回路面とカバーレイとの間の引き剥がし強さの測定)、およびリフロー耐熱試験(銅箔回路面とカバーレイとの間の剥離の有無の検査)を行った。その結果を表1および図2に示す。   Bending test (measurement of the number of bendings of the cable part), peel test (measurement of the peel strength between the copper foil circuit surface and the coverlay), and the cable part of each sample of the manufactured printed wiring board, and A reflow heat resistance test (inspection for peeling between the copper foil circuit surface and the coverlay) was performed. The results are shown in Table 1 and FIG.

Figure 2007036098
Figure 2007036098

表1および図2の結果から、屈曲用のケーブル部を有するプリント配線板においてFPCの回路面に粗化処理を施す場合、粗度Rzが5.0μm以下(導体厚さの28%以下)、より好ましくは、粗度Rzが4.0μm以下(導体厚さの22%以下)であれば、良好な屈曲特性を維持することが分かった。また、粗化処理により、粗度Rzを1.0μm以上(導体厚さの6%以下)とすることにより、未処理品(粗度Rz=0μm)よりも高いピール強度を持ち、かつリフロー耐熱試験でもカバーレイの剥離が生じていないことから、屈曲特性と密着性および耐熱性を両立する優れたプリント配線板ということができる。   From the results of Table 1 and FIG. 2, when a roughening process is performed on the circuit surface of the FPC in a printed wiring board having a bending cable portion, the roughness Rz is 5.0 μm or less (28% or less of the conductor thickness), More preferably, it was found that when the roughness Rz is 4.0 μm or less (22% or less of the conductor thickness), good bending characteristics are maintained. Also, by making the roughness Rz 1.0 μm or more (6% or less of the conductor thickness) by the roughening treatment, it has a higher peel strength than the untreated product (roughness Rz = 0 μm) and is reflow heat resistant. Since the coverlay is not peeled even in the test, it can be said to be an excellent printed wiring board having both bending characteristics, adhesion and heat resistance.

(試験例2)
上記製造プロセスにおいて、銅箔12、13の回路面12a、13aの表面粗さRaが0.1μm、0.2μm、0.3μm、0.4μm、0.5μm、0.6μm、0.7μm、0.8μmとなるように粗化処理を行い、それぞれの表面粗さRaを有するプリント配線板60のサンプルを作製した。なお、表面粗さRaはレーザ顕微鏡によって回路面を観察して計測した値である。また、粗化処理を省略することにより、未処理のサンプル(Ra=0μm)を作製した。
(Test Example 2)
In the above manufacturing process, the surface roughness Ra of the circuit surfaces 12a and 13a of the copper foils 12 and 13 is 0.1 μm, 0.2 μm, 0.3 μm, 0.4 μm, 0.5 μm, 0.6 μm, 0.7 μm, A roughening process was performed so as to be 0.8 μm, and samples of the printed wiring board 60 having respective surface roughness Ra were produced. The surface roughness Ra is a value measured by observing the circuit surface with a laser microscope. Further, an untreated sample (Ra = 0 μm) was produced by omitting the roughening treatment.

製造したプリント配線板の各サンプルのケーブル部に対して、屈曲試験(ケーブル部の屈曲回数の測定)、ピール試験(銅箔回路面とカバーレイとの間の引き剥がし強さの測定)、およびリフロー耐熱試験(銅箔回路面とカバーレイとの間の剥離の有無の検査)を行った。その結果を表2および図3に示す。   Bending test (measurement of the number of bendings of the cable part), peel test (measurement of the peel strength between the copper foil circuit surface and the coverlay), and the cable part of each sample of the manufactured printed wiring board, and A reflow heat resistance test (inspection for peeling between the copper foil circuit surface and the coverlay) was performed. The results are shown in Table 2 and FIG.

Figure 2007036098
Figure 2007036098

表2および図3の結果から、屈曲用のケーブル部を有するプリント配線板においてFPCの回路面に粗化処理を施す場合、表面粗さRaが0.5μm以下、より好ましくは、表面粗さRaが0.4μm以下であれば、良好な屈曲特性を維持することが分かった。また、粗化処理により、表面粗さRaを0.1μm以上とすることにより、未処理品(表面粗さRa=0μm)よりも高いピール強度を持ち、かつリフロー耐熱試験でもカバーレイの剥離が生じていないことから、屈曲特性と密着性および耐熱性を両立する優れたプリント配線板ということができる。   From the results of Table 2 and FIG. 3, when a roughening process is performed on the circuit surface of the FPC in a printed wiring board having a bending cable portion, the surface roughness Ra is 0.5 μm or less, more preferably the surface roughness Ra. It was found that when the thickness was 0.4 μm or less, good bending characteristics were maintained. In addition, by making the surface roughness Ra 0.1 μm or more by roughening treatment, it has a higher peel strength than an untreated product (surface roughness Ra = 0 μm), and the coverlay can be peeled off even in a reflow heat test. Since it does not occur, it can be said that it is an excellent printed wiring board having both bending characteristics, adhesion and heat resistance.

本発明は、種々の電子機器などに組み込まれるプリント配線板の製造に利用することができる。   The present invention can be used for manufacturing a printed wiring board to be incorporated in various electronic devices.

(a)〜(e)プリント配線板の製造手順の一例を示す断面工程図である。It is sectional process drawing which shows an example of the manufacture procedure of (a)-(e) printed wiring boards. 銅箔回路面の粗度Rzと屈曲回数およびピール強度との関係を示す一例を示すグラフである。It is a graph which shows an example which shows the relationship between the roughness Rz of a copper foil circuit surface, the frequency | count of bending, and peel strength. 銅箔回路面の表面粗さRaと屈曲回数およびピール強度との関係を示す一例を示すグラフである。It is a graph which shows an example which shows the relationship between surface roughness Ra, the frequency | count of bending, and peel strength of a copper foil circuit surface.

符号の説明Explanation of symbols

12、13…銅箔、12a、13a…回路面、20…カバーレイ、60…プリント配線板。 12, 13 ... Copper foil, 12a, 13a ... Circuit surface, 20 ... Coverlay, 60 ... Printed wiring board.

Claims (6)

マイクロエッチングにより表面粗化された銅箔回路面の粗度Rzが5.0μm以下であり、前記銅箔回路面の上にカバーレイもしくは層間接着剤が積層されていることを特徴とするプリント配線板。   Printed wiring characterized in that the roughness Rz of the copper foil circuit surface roughened by microetching is 5.0 μm or less, and a coverlay or an interlayer adhesive is laminated on the copper foil circuit surface Board. 前記粗度Rzが銅箔の厚さの28%以下であることを特徴とする請求項1に記載のプリント配線板。   The printed wiring board according to claim 1, wherein the roughness Rz is 28% or less of a thickness of the copper foil. マイクロエッチングにより表面粗化された銅箔回路面の表面粗さRaが0.5μm以下であり、前記銅箔回路面の上にカバーレイもしくは層間接着剤が積層されていることを特徴とするプリント配線板。   The surface roughness Ra of the copper foil circuit surface roughened by microetching is 0.5 μm or less, and a coverlay or an interlayer adhesive is laminated on the copper foil circuit surface. Wiring board. マイクロエッチングにより粗度Rzが5.0μm以下となるように銅箔回路面を表面粗化したのち、前記銅箔回路面の上にカバーレイもしくは層間接着剤を積層することを特徴とするプリント配線板の製造方法。   Printed wiring characterized in that the copper foil circuit surface is roughened by micro-etching so that the roughness Rz is 5.0 μm or less, and then a coverlay or an interlayer adhesive is laminated on the copper foil circuit surface. A manufacturing method of a board. 前記マイクロエッチングにおいて前記粗度Rzを銅箔の厚さの28%以下とすることを特徴とする請求項4に記載のプリント配線板の製造方法。   The method for manufacturing a printed wiring board according to claim 4, wherein the roughness Rz is set to 28% or less of the thickness of the copper foil in the microetching. マイクロエッチングにより表面粗さRaが0.5μm以下となるように銅箔回路面を表面粗化したのち、前記銅箔回路面の上にカバーレイもしくは層間接着剤を積層することを特徴とするプリント配線板の製造方法。   The copper foil circuit surface is roughened by micro-etching so that the surface roughness Ra is 0.5 μm or less, and then a coverlay or an interlayer adhesive is laminated on the copper foil circuit surface. A method for manufacturing a wiring board.
JP2005220481A 2005-07-29 2005-07-29 Printed wiring board and manufacturing method therefor Pending JP2007036098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005220481A JP2007036098A (en) 2005-07-29 2005-07-29 Printed wiring board and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005220481A JP2007036098A (en) 2005-07-29 2005-07-29 Printed wiring board and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2007036098A true JP2007036098A (en) 2007-02-08

Family

ID=37794950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005220481A Pending JP2007036098A (en) 2005-07-29 2005-07-29 Printed wiring board and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2007036098A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010245098A (en) * 2009-04-01 2010-10-28 Mitsubishi Shindoh Co Ltd Metal core substrate, conductive member for metal plate, and manufacturing method thereof
WO2011158825A1 (en) * 2010-06-15 2011-12-22 古河電気工業株式会社 Surface-roughened copper foil and copper-clad laminated substrate
WO2016063799A1 (en) * 2014-10-24 2016-04-28 住友電工プリントサーキット株式会社 Flexible printed wiring board and method for manufacturing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0456754A (en) * 1990-06-22 1992-02-24 Hitachi Cable Ltd Flexible oxygen-free copper rolled foil and flexible printed board and tab tape carrier using the foil
JP2000282265A (en) * 1999-03-31 2000-10-10 Mec Kk Microetching agent for copper or copper alloy and surface treating method using the same
JP2003209351A (en) * 2002-01-11 2003-07-25 Fujikura Ltd Flexible printed board and its manufacturing method
JP2004241427A (en) * 2003-02-03 2004-08-26 Kyocera Corp Method of manufacturing wiring board
JP2005158974A (en) * 2003-11-25 2005-06-16 Matsushita Electric Works Ltd Method for manufacturing multi-layer printed wiring board and sheet material for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0456754A (en) * 1990-06-22 1992-02-24 Hitachi Cable Ltd Flexible oxygen-free copper rolled foil and flexible printed board and tab tape carrier using the foil
JP2000282265A (en) * 1999-03-31 2000-10-10 Mec Kk Microetching agent for copper or copper alloy and surface treating method using the same
JP2003209351A (en) * 2002-01-11 2003-07-25 Fujikura Ltd Flexible printed board and its manufacturing method
JP2004241427A (en) * 2003-02-03 2004-08-26 Kyocera Corp Method of manufacturing wiring board
JP2005158974A (en) * 2003-11-25 2005-06-16 Matsushita Electric Works Ltd Method for manufacturing multi-layer printed wiring board and sheet material for manufacturing the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010245098A (en) * 2009-04-01 2010-10-28 Mitsubishi Shindoh Co Ltd Metal core substrate, conductive member for metal plate, and manufacturing method thereof
WO2011158825A1 (en) * 2010-06-15 2011-12-22 古河電気工業株式会社 Surface-roughened copper foil and copper-clad laminated substrate
JP2012004221A (en) * 2010-06-15 2012-01-05 Furukawa Electric Co Ltd:The Surface roughened copper foil and copper clad multilayer substrate
CN102939800A (en) * 2010-06-15 2013-02-20 古河电气工业株式会社 Surface-roughened copper foil and copper-clad laminated substrate
KR101512572B1 (en) 2010-06-15 2015-04-15 후루카와 덴키 고교 가부시키가이샤 Surface-roughened copper foil and copper-clad laminated substrate
WO2016063799A1 (en) * 2014-10-24 2016-04-28 住友電工プリントサーキット株式会社 Flexible printed wiring board and method for manufacturing same
JP2016086075A (en) * 2014-10-24 2016-05-19 住友電工プリントサーキット株式会社 Flexible printed wiring board and method for manufacturing the same
CN107079590A (en) * 2014-10-24 2017-08-18 住友电工印刷电路株式会社 Flexible printed circuit board and the method for manufacturing flexible printed circuit board
CN107079590B (en) * 2014-10-24 2019-05-28 住友电工印刷电路株式会社 Flexible printed circuit board and method for manufacturing flexible printed circuit board
US10426031B2 (en) 2014-10-24 2019-09-24 Sumitomo Electric Printed Circuits, Inc. Flexible printed circuit board and method for producing the same

Similar Documents

Publication Publication Date Title
JP5181618B2 (en) Metal foil laminated polyimide resin substrate
KR101078234B1 (en) Copper-clad laminate
JP4162659B2 (en) Flexible printed wiring board, multilayer flexible printed wiring board, and mobile phone terminal using the multilayer flexible printed wiring board
TWI646207B (en) Copper foil for flexible printed circuit board, copper-clad laminate using the same, flexible printed circuit board, and electronic device
KR100727716B1 (en) Flexible metal clad laminate and manufacturing method thereof
JP6781562B2 (en) Copper foil for flexible printed circuit boards, copper-clad laminates using it, flexible printed circuit boards, and electronic devices
JP2008091463A (en) Manufacturing method for both-side flexible-copper-laminated board and carrier-attached both-side flexible-copper-laminated board
JP2007036098A (en) Printed wiring board and manufacturing method therefor
JP2007055165A (en) Flexible copper-clad laminated sheet and its manufacturing method
JP2000196206A (en) Manufacture of double face flexible printed board
JP4954111B2 (en) Flexible printed wiring board, metal-clad laminate, and coverlay used for flexible printed wiring board
JP4430020B2 (en) Copper foil for flexible printed wiring board, manufacturing method thereof and flexible printed wiring board
JP5223325B2 (en) Metal-coated polyethylene naphthalate substrate and manufacturing method thereof
JP2000340948A (en) Method of improving adhesion between copper and resin, and multilayered wiring board manufactured using the same
JP2008205302A (en) Printed wiring board and its manufacturing method
TW201436682A (en) Printed wiring board production method and printed wiring board
JP2012057231A (en) Rolled copper foil for printed circuit board, and manufacturing method therefor
TWI559825B (en) Printed wiring board and manufacturing method thereof
JP2007080938A (en) Multilayer printed wiring board
JP2000049440A (en) Manufacture of printed wiring multilayer board
JP2011202222A (en) Laminate and method for producing the laminate
JP2016187893A (en) Method for producing metal foil laminated film and circuit board having metal foil laminated film produced by the same
TW202041721A (en) Copper foil for flexible printed board, copper-clad laminate using the same, flexible printed board and electronic machine having excellent flexibility after formation of a fine circuit
JP5255496B2 (en) Metal-clad laminate and method for producing metal-clad laminate
KR20200038410A (en) Copper foil for flexible printed substrate, copper-clad laminate using the same, flexible printed substrate, and electronic equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080528

A131 Notification of reasons for refusal

Effective date: 20100831

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101101

A02 Decision of refusal

Effective date: 20110222

Free format text: JAPANESE INTERMEDIATE CODE: A02