JP2016160469A - Method for producing sintered compact, and sintered compact obtained by the production method - Google Patents

Method for producing sintered compact, and sintered compact obtained by the production method Download PDF

Info

Publication number
JP2016160469A
JP2016160469A JP2015039002A JP2015039002A JP2016160469A JP 2016160469 A JP2016160469 A JP 2016160469A JP 2015039002 A JP2015039002 A JP 2015039002A JP 2015039002 A JP2015039002 A JP 2015039002A JP 2016160469 A JP2016160469 A JP 2016160469A
Authority
JP
Japan
Prior art keywords
sintered body
raw material
iron powder
material powder
reduced iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015039002A
Other languages
Japanese (ja)
Inventor
雄貴 鴨
Yuki Kamo
雄貴 鴨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015039002A priority Critical patent/JP2016160469A/en
Publication of JP2016160469A publication Critical patent/JP2016160469A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a production method capable of obtaining a sintered compact having higher mechanical strength from raw material powder including atomized iron powder and reduced iron powder, and a sintered compact obtained by the production method.SOLUTION: Provided is a method for producing a ferrous sintered compact having improved mechanical strength characterized in that, in a method for producing a sintered compact by sintering a molded body obtained by subjecting raw material powder including atomized iron powder, reduced iron powder and graphite to compressive molding, the content of the reduced iron powder in the raw material powder is controlled to the range of 23 to 35 mass%, the content of the graphite is controlled to 0.2 to 1.2 mass%, the facial pressure upon the compressive molding is controlled to 6 t/cmor higher, and sintering temperature is controlled to 1,150°C or higher.SELECTED DRAWING: Figure 1

Description

本発明は、焼結体の製造方法及び同製造方法によって得られた焼結体に関する。   The present invention relates to a sintered body manufacturing method and a sintered body obtained by the manufacturing method.

当該技術分野においては、鉄系原料粉末を圧縮成形及び焼結して得られる粉末冶金製品としての焼結体が様々な用途において使用されている。更に、このような焼結体の機械的強度を高めることを目的として、良好な圧縮性を有するアトマイズ鉄粉と良好な焼結性を有する還元鉄粉とを含む原料粉末を使用することが知られている(例えば、特許文献1を参照。)。   In this technical field, sintered bodies as powder metallurgy products obtained by compression molding and sintering iron-based raw material powders are used in various applications. Furthermore, it is known to use raw material powder containing atomized iron powder having good compressibility and reduced iron powder having good sinterability for the purpose of increasing the mechanical strength of such a sintered body. (For example, see Patent Document 1).

特開昭57−200501号公報Japanese Patent Laid-Open No. 57-200501

しかしながら、上記のような焼結体に対しては、より高い機械的強度(例えば、ヤング率及び剛性等)が要求されている。本発明は、このような課題に対処すべく為されたものである。即ち、本発明は、アトマイズ鉄粉と還元鉄粉とを含む原料粉末から、より高い機械的強度を有する焼結体を得ることができる製造方法及び同製造方法によって得られた焼結体を提供することを1つの目的とする。   However, higher mechanical strength (for example, Young's modulus and rigidity) is required for the sintered body as described above. The present invention has been made to deal with such problems. That is, the present invention provides a production method capable of obtaining a sintered body having higher mechanical strength from a raw material powder containing atomized iron powder and reduced iron powder, and a sintered body obtained by the production method. One purpose is to do.

そこで、本発明者は、鋭意研究の結果、所定の含有率にてアトマイズ鉄粉と還元鉄粉と黒鉛とを含む原料粉末を、所定の面圧にて圧縮成形し、得られた成形体を焼結することにより、上記目的を達成することができることを見出した。   Therefore, as a result of earnest research, the present inventor compression molded a raw material powder containing atomized iron powder, reduced iron powder and graphite at a predetermined content rate at a predetermined surface pressure, and obtained the molded body. It has been found that the above object can be achieved by sintering.

より具体的に述べると、本発明者は、アトマイズ鉄粉と還元鉄粉と黒鉛とを含む原料粉末を圧縮成形して得られた成形体を焼結することにより焼結体を得る製造方法において、原料粉末における還元鉄粉の含有率を特定の範囲とし且つ圧縮成形時の面圧を所定値以上とすることにより、焼結体の機械的強度を特異的に向上させることができることを見出したのである。   More specifically, the present inventor is a manufacturing method for obtaining a sintered body by sintering a molded body obtained by compression molding a raw material powder containing atomized iron powder, reduced iron powder and graphite. It was found that the mechanical strength of the sintered body can be specifically improved by setting the content ratio of the reduced iron powder in the raw material powder to a specific range and the surface pressure during compression molding to a predetermined value or more. It is.

上記のような点に鑑み、本発明に係る焼結体の製造方法は、アトマイズ鉄粉と還元鉄粉と黒鉛とを含む原料粉末から焼結体を得る製造方法である。この製造方法は、原料粉末を調製する原料調製工程と、原料粉末を圧縮成形して所望の形状を有する成形体を得る成形工程と、得られた成形体を所定の焼結温度にて焼結することにより焼結体を得る焼結工程と、を含む。   In view of the above points, the method for manufacturing a sintered body according to the present invention is a method for obtaining a sintered body from a raw material powder containing atomized iron powder, reduced iron powder and graphite. This manufacturing method includes a raw material preparation step for preparing raw material powder, a molding step for compression molding the raw material powder to obtain a molded body having a desired shape, and sintering the obtained molded body at a predetermined sintering temperature. And a sintering step of obtaining a sintered body.

原料調製工程においては、23質量%以上且つ35質量%以下の還元鉄粉を含有する原料粉末が調製される。原料粉末はアトマイズ鉄粉と還元鉄粉と黒鉛とを主成分として含む。しかしながら、原料粉末は、これらの主成分に加えて、少量の副成分を含むことができる。成形工程においては、6t/cm以上の面圧にて原料粉末が圧縮成形され、所望の形状を有する成形体が得られる。焼結工程においては、成形工程において得られた成形体が所定の焼結温度にて焼結され、焼結体が得られる。 In the raw material preparation process, a raw material powder containing 23% by mass or more and 35% by mass or less of reduced iron powder is prepared. The raw material powder contains atomized iron powder, reduced iron powder and graphite as main components. However, the raw material powder can contain a small amount of subcomponents in addition to these main components. In the molding step, the raw material powder is compression molded at a surface pressure of 6 t / cm 2 or more, and a molded body having a desired shape is obtained. In the sintering process, the molded body obtained in the molding process is sintered at a predetermined sintering temperature to obtain a sintered body.

本発明の1つの態様に係る焼結体の製造方法は、
前記原料粉末が0.2質量%以上且つ1.2質量%以下の黒鉛を含有する、
製造方法である。
A method for producing a sintered body according to one aspect of the present invention includes:
The raw material powder contains 0.2% by mass or more and 1.2% by mass or less of graphite,
It is a manufacturing method.

本発明のもう1つの態様に係る焼結体の製造方法は、
前記焼結工程における焼結温度が1150℃以上である、
製造方法である。
A method for producing a sintered body according to another aspect of the present invention includes:
The sintering temperature in the sintering step is 1150 ° C. or higher,
It is a manufacturing method.

更に、本発明に係る焼結体は、上述した本発明に係る焼結体の製造方法を始めとする各種製造方法によって得られた焼結体である。   Furthermore, the sintered body according to the present invention is a sintered body obtained by various manufacturing methods including the above-described method for manufacturing a sintered body according to the present invention.

本発明の1つの態様に係る焼結体は、
前記焼結体の断面における前記気孔の面積及び周囲長をそれぞれS及びLとした場合に下式(1)によって表される円形度Rの平均値が0.61以上である、焼結体である。
The sintered body according to one aspect of the present invention is:
In the sintered body, the average value of the circularity R represented by the following formula (1) is 0.61 or more when the area and the perimeter of the pores in the cross section of the sintered body are S and L, respectively. is there.

Figure 2016160469
Figure 2016160469

本発明のもう1つの態様に係る焼結体は、
前記焼結体の断面における前記気孔の数が2300個/mm以下である、
焼結体である。
The sintered body according to another aspect of the present invention is:
The number of pores in the cross section of the sintered body is 2300 / mm 2 or less,
It is a sintered body.

本発明の更にもう1つの態様に係る焼結体は、
前記焼結体の密度が6.98g/cm以上である、
焼結体である。
The sintered body according to yet another aspect of the present invention is:
The sintered body has a density of 6.98 g / cm 3 or more.
It is a sintered body.

上記のように、本発明によれば、アトマイズ鉄粉と還元鉄粉と黒鉛とを含む原料粉末を圧縮成形して得られた成形体を焼結することにより焼結体を得る製造方法において、原料粉末における還元鉄粉の含有率を特定の範囲とし且つ圧縮成形時の面圧を所定の値以上とする。これにより、アトマイズ鉄粉と還元鉄粉と黒鉛とを含む原料粉末を圧縮成形及び焼結して得られる焼結体において、より高い機械的強度を達成することができる。   As described above, according to the present invention, in the manufacturing method of obtaining a sintered body by sintering a molded body obtained by compression molding a raw material powder containing atomized iron powder, reduced iron powder and graphite, The content rate of the reduced iron powder in the raw material powder is set to a specific range, and the surface pressure during compression molding is set to a predetermined value or more. Thereby, in the sintered compact obtained by compression-molding and sintering the raw material powder containing atomized iron powder, reduced iron powder, and graphite, higher mechanical strength can be achieved.

本発明の他の目的、他の特徴及び付随する利点は、以下の図面を参照しつつ記述される本発明の各実施形態についての説明から容易に理解されるであろう。   Other objects, other features, and attendant advantages of the present invention will be readily understood from the description of each embodiment of the present invention described with reference to the following drawings.

アトマイズ鉄粉と還元鉄粉と黒鉛とを含む原料粉末の圧縮成形体を焼結して得られた焼結体のヤング率と原料粉末における還元鉄粉の含有率との関係を示すグラフである。It is a graph which shows the relationship between the Young's modulus of the sintered compact obtained by sintering the compression molding of the raw material powder containing atomized iron powder, reduced iron powder, and graphite, and the content of the reduced iron powder in the raw material powder . 原料粉末における還元鉄粉の有無、圧縮成形時の面圧及び焼結温度の違いによる焼結体内部の気孔の断面の円形度の違いを示すグラフである。It is a graph which shows the difference in the circularity of the cross section of the pore inside a sintered compact by the presence or absence of the reduced iron powder in raw material powder, the surface pressure at the time of compression molding, and the difference in sintering temperature. アトマイズ鉄粉と還元鉄粉と黒鉛とを含む原料粉末の圧縮成形体を焼結して得られた焼結体の密度と原料粉末における還元鉄粉の含有率との関係を示すグラフである。It is a graph which shows the relationship between the density of the sintered compact obtained by sintering the compression molding of the raw material powder containing atomized iron powder, reduced iron powder, and graphite, and the content rate of the reduced iron powder in raw material powder.

《第1実施形態》
以下、本発明の第1実施形態に係る製造方法(以下、「本発明方法」と称される場合がある。)につき、必要に応じて添付図面を参照しながら詳しく説明する。
<< First Embodiment >>
Hereinafter, the manufacturing method according to the first embodiment of the present invention (hereinafter sometimes referred to as “the method of the present invention”) will be described in detail with reference to the accompanying drawings as necessary.

(構成)
本発明方法は、
アトマイズ鉄粉と還元鉄粉と黒鉛とを含む原料粉末から焼結体を得る製造方法であって、
23質量%以上且つ35質量%以下の前記還元鉄粉を含有する前記原料粉末を調製する原料調製工程と、
6t/cm以上の面圧にて前記原料粉末を圧縮成形して所望の形状を有する成形体を得る成形工程と、
前記成形工程において得られた前記成形体を所定の焼結温度にて焼結することにより前記焼結体を得る焼結工程と、
を含む、製造方法である。
(Constitution)
The method of the present invention
A manufacturing method for obtaining a sintered body from a raw material powder containing atomized iron powder, reduced iron powder and graphite,
A raw material preparation step of preparing the raw material powder containing 23% by mass or more and 35% by mass or less of the reduced iron powder;
A molding step of compression molding the raw material powder at a surface pressure of 6 t / cm 2 or more to obtain a molded body having a desired shape;
A sintering step of obtaining the sintered body by sintering the molded body obtained in the molding step at a predetermined sintering temperature;
Is a manufacturing method.

原料調製工程において調製される原料粉末は、アトマイズ鉄粉と還元鉄粉と炭素とを主成分として含む。炭素は、焼結体の機械的強度を向上させる。このような炭素の具体例としては、例えば黒鉛(グラファイト)等を挙げることができる。原料粉末は、上記主成分に加えて、少量の副成分を含むことができる。このような副成分の具体例としては、例えば、成形工程における成形型に対する潤滑性を発現させるための潤滑剤等を挙げることができる。このような潤滑剤の具体例としては、例えばステアリン酸亜鉛等を挙げることができる。   The raw material powder prepared in the raw material preparation step includes atomized iron powder, reduced iron powder, and carbon as main components. Carbon improves the mechanical strength of the sintered body. Specific examples of such carbon include graphite (graphite) and the like. The raw material powder can contain a small amount of subcomponents in addition to the main component. Specific examples of such subcomponents include a lubricant for developing lubricity with respect to a mold in the molding process. Specific examples of such a lubricant include zinc stearate.

原料粉末における還元鉄粉の含有率は、23質量%以上且つ35質量%以下である。原料粉末における還元鉄粉の含有率を当該範囲に収めることにより、従来技術に係る焼結体と比べて、より高い機械的強度(例えば、ヤング率及び剛性等)を達成することができる。一方、原料粉末における還元鉄粉の含有率が当該範囲から逸脱すると、たとえ成形工程において原料粉末を圧縮成形して成形体とするときの面圧を所定の値以上としても、当該成形体を焼結して得られる焼結体の機械的強度を向上させることが困難となる。   The content rate of the reduced iron powder in raw material powder is 23 mass% or more and 35 mass% or less. By keeping the content of the reduced iron powder in the raw material powder within the range, higher mechanical strength (for example, Young's modulus and rigidity) can be achieved as compared with the sintered body according to the prior art. On the other hand, if the content of the reduced iron powder in the raw material powder deviates from the range, the green body is sintered even if the surface pressure when the raw material powder is compression-molded into a green body in the molding process is a predetermined value or more. It becomes difficult to improve the mechanical strength of the sintered body obtained by bonding.

成形工程において原料粉末を圧縮成形して成形体とするときの面圧は、6t/cm以上である。当該面圧を6t/cm以上とすることにより、上記含有率にて還元鉄粉を含有する原料粉末から得られる焼結体において、特異的に高い機械的強度を達成することができる。一方、当該面圧が6t/cm未満であると、たとえ原料粉末が上記含有率にて還元鉄粉を含有していても、当該原料粉末から得られる焼結体において、特異的に高い機械的強度を達成することが困難となる。一方、面圧の上限は、例えば、成形工程において使用される成形型の強度、焼結体に要求される機械的強度及び密度等に応じて、適宜設定することができる。 The surface pressure when the raw material powder is compression-molded into a molded body in the molding step is 6 t / cm 2 or more. By setting the surface pressure to 6 t / cm 2 or more, specifically high mechanical strength can be achieved in the sintered body obtained from the raw material powder containing the reduced iron powder at the above content. On the other hand, if the surface pressure is less than 6 t / cm 2 , even if the raw material powder contains the reduced iron powder at the above-mentioned content rate, in the sintered body obtained from the raw material powder, a specifically high machine It is difficult to achieve the desired strength. On the other hand, the upper limit of the surface pressure can be appropriately set according to, for example, the strength of the mold used in the molding process, the mechanical strength and density required for the sintered body, and the like.

焼結工程においては、成形工程において得られた成形体が所定の焼結温度にて焼結され、焼結体が得られる。焼結温度は、一般的に鋼の融点(1083℃)以上の温度に設定されるが、焼結温度が高いほど好ましい。好ましくは、焼結温度は1150℃以上である。   In the sintering process, the molded body obtained in the molding process is sintered at a predetermined sintering temperature to obtain a sintered body. The sintering temperature is generally set to a temperature equal to or higher than the melting point of steel (1083 ° C.), but the higher the sintering temperature, the better. Preferably, the sintering temperature is 1150 ° C. or higher.

(原料粉末における還元鉄粉の含有率と焼結体の強度との関係)
ここで、アトマイズ鉄粉と還元鉄粉と黒鉛とを含む原料粉末の圧縮成形体を焼結して得られた焼結体の機械的強度と原料粉末における還元鉄粉の含有率との関係につき、以下に詳しく説明する。先ず、以下の表1に列挙した含有率にて還元鉄粉を含む各種原料粉末A01乃至A16を調製した。原料粉末A04乃至A09は23質量%以上且つ35質量%以下の含有率にて還元鉄粉を含有しており、本発明の実施例に該当する原料粉末である。一方、原料粉末A01乃至A03における還元鉄粉の含有率は23質量%未満であり、原料粉末A10乃至A16における還元鉄粉の含有率は35質量%を超えている。即ち、これらの原料粉末は、本発明の実施例ではなく、比較例に該当する原料粉末である。尚、何れの試料についても、原料粉末における黒鉛及び潤滑剤(ステアリン酸亜鉛)の含有率を何れも0.8質量%とし、残りをアトマイズ鉄粉とした。
(Relationship between content of reduced iron powder in raw material powder and strength of sintered body)
Here, regarding the relationship between the mechanical strength of the sintered body obtained by sintering a compression molded body of raw material powder containing atomized iron powder, reduced iron powder and graphite, and the content of reduced iron powder in the raw material powder This will be described in detail below. First, various raw material powders A01 to A16 containing reduced iron powder were prepared at the contents listed in Table 1 below. The raw material powders A04 to A09 contain reduced iron powder at a content of 23% by mass or more and 35% by mass or less, and are raw material powders corresponding to the examples of the present invention. On the other hand, the content of the reduced iron powder in the raw material powders A01 to A03 is less than 23% by mass, and the content of the reduced iron powder in the raw material powders A10 to A16 exceeds 35% by mass. That is, these raw material powders are raw material powders corresponding to comparative examples, not examples of the present invention. In any sample, the graphite and lubricant (zinc stearate) content in the raw material powder was 0.8% by mass, and the rest was atomized iron powder.

次いで、各原料粉末をそれぞれ5t/cm、6t/cm及び7t/cmの面圧にて所定の成形型を用いて圧縮成形し、1150℃の温度にて焼結し、それぞれの還元鉄粉含有率及び面圧に対応した各種焼結体試料を製造した。これらの焼結体試料のそれぞれにつき、機械的強度を示す物性値としてヤング率を2回ずつ測定し、それらの平均値を求めた。更に、各種焼結体試料の密度もそれぞれ測定したが、密度については後述する。 Next, each raw material powder is compression-molded using a predetermined mold at a surface pressure of 5 t / cm 2 , 6 t / cm 2 and 7 t / cm 2 , sintered at a temperature of 1150 ° C., and then reduced. Various sintered compact samples corresponding to the iron powder content and the surface pressure were manufactured. For each of these sintered body samples, Young's modulus was measured twice as a physical property value indicating mechanical strength, and an average value thereof was obtained. Further, the density of each sintered body sample was also measured, and the density will be described later.

上記各種焼結体試料の原料粉末における還元鉄粉の含有率及びヤング率は図1に示したグラフ及び表1に示されている。尚、グラフには原料粉末の圧縮成形時の面圧をそれぞれ5t/cm(点線の曲線)、6t/cm(破線の曲線)及び7t/cm(実線の曲線)とした3つの場合について示したが、表1には面圧をそれぞれ6t/cm及び7t/cmとした2つの場合についてのみ列挙した。 The content and Young's modulus of the reduced iron powder in the raw material powders of the various sintered body samples are shown in the graph shown in FIG. The graph shows three cases where the surface pressure during compression molding of the raw material powder is 5 t / cm 2 (dotted curve), 6 t / cm 2 (dashed curve) and 7 t / cm 2 (solid curve), respectively. It is shown for, but listed only two cases in which the surface pressure respectively 6t / cm 2 and 7t / cm 2 in Table 1.

Figure 2016160469
Figure 2016160469

図1のグラフからも明らかであるように、圧縮成形時の面圧を5t/cmとした場合(グラフ中の点線)、原料粉末への還元鉄粉の添加による焼結体の機械的強度の向上効果は殆ど認められなかった。それどころか、原料粉末における還元鉄粉の含有率が約30質量%以上の領域において、原料粉末における還元鉄粉の含有率の増大に伴う機械的強度の低下が認められた。 As is clear from the graph of FIG. 1, when the surface pressure during compression molding is 5 t / cm 2 (dotted line in the graph), the mechanical strength of the sintered body due to the addition of reduced iron powder to the raw material powder Almost no improvement effect was observed. On the contrary, in the region where the content of reduced iron powder in the raw material powder is about 30% by mass or more, a decrease in mechanical strength accompanying an increase in the content of reduced iron powder in the raw material powder was observed.

一方、圧縮成形時の面圧を6t/cmとした場合(グラフ中の破線)、表1及び図1のグラフからも明らかであるように、原料粉末における還元鉄粉の含有率が約50質量%未満の領域において、原料粉末への還元鉄粉の添加による焼結体の機械的強度の向上効果が認められた。加えて、還元鉄粉の含有率が23質量%以上且つ35質量%以下の領域においては、機械的強度の顕著な向上効果が認められた。 On the other hand, when the surface pressure at the time of compression molding is 6 t / cm 2 (broken line in the graph), as is apparent from the graphs of Table 1 and FIG. In the region of less than mass%, an effect of improving the mechanical strength of the sintered body by adding reduced iron powder to the raw material powder was recognized. In addition, in the region where the content of the reduced iron powder is 23% by mass or more and 35% by mass or less, a remarkable improvement effect of the mechanical strength is recognized.

更に、圧縮成形時の面圧を7t/cmとした場合(グラフ中の実線)、原料粉末における還元鉄粉の含有率が約75質量%未満の領域において、原料粉末への還元鉄粉の添加による焼結体の機械的強度の向上効果が認められた。加えて、還元鉄粉の含有率が23質量%以上且つ35質量%以下の領域においては、機械的強度の顕著な向上効果が認められた。 Furthermore, when the surface pressure at the time of compression molding is 7 t / cm 2 (solid line in the graph), the reduced iron powder content in the raw material powder is within a region where the content of the reduced iron powder in the raw material powder is less than about 75 mass% The improvement effect of the mechanical strength of the sintered compact by addition was recognized. In addition, in the region where the content of the reduced iron powder is 23% by mass or more and 35% by mass or less, a remarkable improvement effect of the mechanical strength is recognized.

上記のように、アトマイズ鉄粉と還元鉄粉とを含む原料粉末を圧縮成形して得られた成形体を焼結することにより焼結体を得る製造方法において、原料粉末における還元鉄粉の含有率を特定の範囲(23質量%以上且つ35質量%以下)とし且つ圧縮成形時の面圧を所定値(6t/cm)以上とすることにより、焼結体の機械的強度を特異的に向上させることができる。 As described above, in the production method of obtaining a sintered body by sintering a molded body obtained by compression molding a raw material powder containing atomized iron powder and reduced iron powder, inclusion of reduced iron powder in the raw material powder The mechanical strength of the sintered body is specifically set to a specific range (23 mass% or more and 35 mass% or less) and the surface pressure during compression molding is set to a predetermined value (6 t / cm 2 ) or more. Can be improved.

<本発明方法の変形例1>
ところで、上述したように、当該技術分野においては、鉄系原料粉末に例えば黒鉛等の炭素を添加することにより、当該原料粉末から得られる焼結体の機械的強度を向上させることが知られている。このような観点から、本発明方法において使用される原料粉末もまた黒鉛等の炭素を含む。但し、原料粉末における黒鉛の含有率が0.2質量%未満である場合、原料粉末への黒鉛の添加による焼結体の機械的強度の向上効果が十分に得られない。一方、原料粉末における黒鉛の含有率が1.2質量%以下を超える場合、焼結体の靱性が低下し、脆くなる。
<Variation 1 of the method of the present invention>
Incidentally, as described above, it is known in the technical field that the mechanical strength of a sintered body obtained from the raw material powder is improved by adding carbon such as graphite to the iron-based raw material powder. Yes. From such a viewpoint, the raw material powder used in the method of the present invention also contains carbon such as graphite. However, when the content of graphite in the raw material powder is less than 0.2% by mass, the effect of improving the mechanical strength of the sintered body due to the addition of graphite to the raw material powder cannot be sufficiently obtained. On the other hand, when the content of graphite in the raw material powder exceeds 1.2% by mass or less, the toughness of the sintered body decreases and becomes brittle.

従って、本発明方法の変形例1に係る製造方法においては、前記原料粉末が0.2質量%以上且つ1.2質量%以下の黒鉛を含有する。これにより、本発明方法によって得られる焼結体の機械的強度(例えば、ヤング率、剛性及び靱性等)を、更に向上させることができる。   Therefore, in the manufacturing method according to Modification 1 of the method of the present invention, the raw material powder contains 0.2% by mass or more and 1.2% by mass or less of graphite. Thereby, the mechanical strength (for example, Young's modulus, rigidity, toughness, etc.) of the sintered body obtained by the method of the present invention can be further improved.

<本発明方法の変形例2>
更に、当該技術分野においては、鉄系原料粉末から得られる焼結体の焼結温度を高くすることにより、焼結体の機械的強度を向上させることが知られている。しかしながら、焼結温度を高くするほど、焼結体を得る製造工程におけるエネルギー消費が増大する。
<Modification 2 of the method of the present invention>
Furthermore, in this technical field, it is known to increase the mechanical strength of the sintered body by increasing the sintering temperature of the sintered body obtained from the iron-based raw material powder. However, the higher the sintering temperature, the higher the energy consumption in the manufacturing process for obtaining a sintered body.

ところが、本発明方法によれば、従来技術に係る製造方法によって得られる焼結体と比べて、より高い機械的強度を達成することができる。換言すれば、本発明方法によれば、同等程度の機械的強度を有する焼結体を、従来技術に係る製造方法よりも低い焼結温度にて得ることができる。   However, according to the method of the present invention, higher mechanical strength can be achieved as compared with the sintered body obtained by the manufacturing method according to the prior art. In other words, according to the method of the present invention, a sintered body having an equivalent mechanical strength can be obtained at a sintering temperature lower than that of the manufacturing method according to the prior art.

具体的には、本発明方法の変形例2に係る製造方法においては、前記焼結工程における焼結温度が1150℃以上である。このように、この変形例2に係る製造方法によれば、従来技術に係る製造方法によって得られる焼結体と同等程度の機械的強度を有する焼結体を、より低い焼結温度にて得ることができる。従って、この変形例2に係る製造方法によれば、鉄系原料粉末から焼結体を得る製造工程におけるエネルギー消費を低減することができる。   Specifically, in the manufacturing method according to Modification 2 of the method of the present invention, the sintering temperature in the sintering step is 1150 ° C. or higher. Thus, according to the manufacturing method according to the modified example 2, a sintered body having mechanical strength equivalent to that of the sintered body obtained by the manufacturing method according to the prior art is obtained at a lower sintering temperature. be able to. Therefore, according to the manufacturing method which concerns on this modification 2, the energy consumption in the manufacturing process which obtains a sintered compact from iron-type raw material powder can be reduced.

《第2実施形態》
前述したように、本発明は、焼結体の製造方法のみならず、同製造方法によって得られた焼結体にも関する。本発明の第2実施形態は、上述した本発明の第1実施形態及びその変形例を始めとする本発明の種々の態様に係る製造方法によって得られた焼結体(以下、「本発明焼結体」と称される場合がある。)である。本発明方法及びその変形例に関する上記説明から明らかであるように、本発明焼結体は、従来技術に係る焼結体と比べて、より高い機械的強度を有する。
<< Second Embodiment >>
As described above, the present invention relates not only to a method for producing a sintered body, but also to a sintered body obtained by the production method. The second embodiment of the present invention is a sintered body (hereinafter referred to as “invention of the present invention”) obtained by the manufacturing method according to various aspects of the present invention including the first embodiment of the present invention and its modifications. It may be referred to as a “combination”). As is clear from the above description regarding the method of the present invention and its modifications, the sintered body of the present invention has higher mechanical strength than the sintered body according to the prior art.

<本発明焼結体の変形例1>
ところで、上述したように、当該技術分野においては、鉄系原料粉末から得られる焼結体の焼結温度を高くすることにより、当該原料粉末から得られる焼結体の機械的強度を向上させることが知られている。これは、焼結温度の上昇に伴い、原料粉末を構成する粒子間の接触面積が増大し、焼結が促進されるためであると考えられる。このように焼結温度の上昇に伴って焼結が促進されると、焼結体が内部に有する気孔の形状が真球に近付く。即ち、焼結体が内部に有する気孔の形状が真球に近いほど、より高い機械的強度を達成することができる。
<Variation 1 of the sintered body of the present invention>
Incidentally, as described above, in the technical field, by increasing the sintering temperature of the sintered body obtained from the iron-based raw material powder, the mechanical strength of the sintered body obtained from the raw material powder is improved. It has been known. This is considered to be because as the sintering temperature rises, the contact area between the particles constituting the raw material powder increases and the sintering is promoted. Thus, when sintering is promoted as the sintering temperature rises, the shape of the pores inside the sintered body approaches a true sphere. That is, the closer the shape of the pores in the sintered body is to a true sphere, the higher the mechanical strength can be achieved.

ここで、上記につき、以下に詳しく説明する。先ず、以下の表2に列挙した含有率にて還元鉄粉を含む各種原料粉末、圧縮成形時の面圧及び焼結温度を使用して、各種焼結体試料B1乃至B4を製造した。但し、何れの試料についても、原料粉末における黒鉛及び潤滑剤(ステアリン酸亜鉛)の含有率を何れも0.8質量%とし、残りをアトマイズ鉄粉とした。   Here, the above will be described in detail below. First, various sintered body samples B1 to B4 were manufactured using various raw material powders containing reduced iron powder at the contents listed in Table 2 below, the surface pressure at the time of compression molding, and the sintering temperature. However, for any sample, the content of graphite and lubricant (zinc stearate) in the raw material powder was 0.8 mass%, and the rest was atomized iron powder.

次に、上記各種試料を切断し、各試料の断面の画像を100倍の倍率にて光学顕微鏡を用いて撮影した。得られた画像を画像解析ソフト(三谷商事株式会社製:Win−ROOF(登録商標))によって解析することにより、後述する式(1)によって規定される気孔の円形度Rを測定した。円形度Rは、その値が1に近いほど、形状が真円に近いことを意味する。図2に示したグラフは、表2に示した各種焼結体試料B1乃至B4の円形度Rを示す棒グラフである。   Next, the various samples were cut, and an image of a cross section of each sample was taken using an optical microscope at a magnification of 100 times. By analyzing the obtained image with image analysis software (Mitani Corporation, Win-ROOF (registered trademark)), the circularity R of the pores defined by the formula (1) described later was measured. The roundness R means that the closer the value is to 1, the closer the shape is to a perfect circle. The graph shown in FIG. 2 is a bar graph showing the circularity R of the various sintered body samples B1 to B4 shown in Table 2.

Figure 2016160469
Figure 2016160469

上記表2及び図2に示したように、原料粉末が還元鉄粉を含まない比較例に係る焼結体試料B1及びB2については、焼結温度は等しい(1150℃)が、圧縮成形時の面圧が異なる(それぞれ7t/cm及び8t/cm)。しかしながら、これら焼結体試料B1及びB2は等しい円形度R(0.58)を呈した。 As shown in Table 2 and FIG. 2, the sintered body samples B1 and B2 according to the comparative examples in which the raw material powder does not contain reduced iron powder have the same sintering temperature (1150 ° C.) surface pressure is different (respectively 7t / cm 2 and 8t / cm 2). However, these sintered body samples B1 and B2 exhibited equal circularity R (0.58).

原料粉末が還元鉄粉を含まない比較例に係る焼結体試料B3の圧縮成形時の面圧は焼結体試料B1の圧縮成形時の面圧と等しい(7t/cm)。しかしながら、焼結体試料B3の焼結温度は焼結体試料B1の焼結温度よりも高い(1250℃)。その結果、焼結体試料B3は、焼結体試料B1よりも大きい円形度Rを呈した(0.62)。 The surface pressure during compression molding of the sintered body sample B3 according to the comparative example in which the raw material powder does not include reduced iron powder is equal to the surface pressure during compression molding of the sintered body sample B1 (7 t / cm 2 ). However, the sintering temperature of the sintered body sample B3 is higher than the sintering temperature of the sintered body sample B1 (1250 ° C.). As a result, the sintered body sample B3 exhibited a greater circularity R than the sintered body sample B1 (0.62).

ところが、原料粉末が30質量%の還元鉄粉を含有する本発明の実施例に係る焼結体試料B4は、比較例に係る焼結体試料B1と等しい圧縮成形時の面圧(7t/cm)及び焼結温度(1150℃)にて製造されたにも拘わらず、焼結体試料B1よりも顕著に大きい円形度R(0.65)を呈した。この焼結体試料B4の円形度Rは、より高い焼結温度(1250℃)にて製造された比較例に係る焼結体試料B3の円形度Rをも凌駕する。その結果、焼結体試料B4は、焼結体試料B1のヤング率(154GPa)よりも顕著に大きいヤング率(161GPa)を達成した。 However, the sintered body sample B4 according to the example of the present invention in which the raw material powder contains 30% by mass of reduced iron powder has a surface pressure (7 t / cm) during compression molding equal to the sintered body sample B1 according to the comparative example. 2 ) and a sintering temperature (1150 ° C.), the circularity R (0.65) was significantly higher than that of the sintered body sample B1. The circularity R of the sintered body sample B4 exceeds the circularity R of the sintered body sample B3 according to the comparative example manufactured at a higher sintering temperature (1250 ° C.). As a result, the sintered body sample B4 achieved a Young's modulus (161 GPa) significantly higher than the Young's modulus (154 GPa) of the sintered body sample B1.

本発明者は、上記のような知見に基づく検討の結果、本発明焼結体が従来技術に係る焼結体よりも大きい機械的強度を達成するには、その断面における気孔の円形度Rが所定の下限値以上であることが望ましいことを見出した。   As a result of the study based on the above knowledge, the present inventor has found that the sintered body of the present invention achieves higher mechanical strength than the sintered body according to the prior art, the circularity R of the pores in the cross section is It has been found that it is desirable to be at least a predetermined lower limit.

具体的には、本発明焼結体の変形例1に係る焼結体においては、
前記焼結体の断面における前記気孔の面積及び周囲長をそれぞれS及びLとした場合に下式(1)によって表される円形度Rの平均値が0.61以上である。
Specifically, in the sintered body according to Modification 1 of the sintered body of the present invention,
The average value of the circularity R represented by the following formula (1) is 0.61 or more when the area and perimeter of the pores in the cross section of the sintered body are S and L, respectively.

Figure 2016160469
Figure 2016160469

上記のように、本発明焼結体の変形例1に係る焼結体は、その断面における気孔の円形度Rの平均値が0.61以上である。これにより、この変形例1に係る焼結体は、より高い機械的強度を達成することができる。尚、円形度Rの平均値を正確に求めるためには、例えば上述した画像解析における測定精度及び/又は焼結体の断面における気孔の形状のばらつき等に応じて、光学顕微鏡観察の対象とする焼結体の断面の面積及び/又は円形度Rを算出する気孔の個数等を適宜定めることが望ましい。   As described above, in the sintered body according to Modification 1 of the sintered body of the present invention, the average value of the circularity R of the pores in the cross section is 0.61 or more. Thereby, the sintered compact concerning this modification 1 can achieve higher mechanical strength. In order to accurately determine the average value of the circularity R, for example, depending on the measurement accuracy in the above-described image analysis and / or the variation in the shape of the pores in the cross section of the sintered body, etc. It is desirable to appropriately determine the cross-sectional area and / or the number of pores for calculating the circularity R of the sintered body.

<本発明焼結体の変形例2>
更に、焼結体の断面における単位面積当たりの気孔数(気孔の存在頻度)もまた焼結体の機械的強度に影響を及ぼす。本発明者は、鋭意研究の結果、本発明焼結体が従来技術に係る焼結体よりも大きい機械的強度を達成するには、その断面における気孔の存在頻度が所定の上限値以下であることが望ましいことを見出した。
<Modification 2 of the sintered body of the present invention>
Furthermore, the number of pores per unit area (the frequency of pores) in the cross section of the sintered body also affects the mechanical strength of the sintered body. As a result of diligent research, the inventor has found that the sintered body of the present invention achieves a mechanical strength greater than that of the sintered body according to the prior art, the presence frequency of pores in the cross section is below a predetermined upper limit value. I found it desirable.

具体的には、本発明焼結体の変形例2に係る焼結体においては、前記焼結体の断面における前記気孔の数が2300個/mm以下である。これにより、この変形例2に係る焼結体は、より高い機械的強度を達成することができる。 Specifically, in the sintered body according to Modification 2 of the sintered body of the present invention, the number of pores in the cross section of the sintered body is 2300 / mm 2 or less. Thereby, the sintered compact concerning this modification 2 can achieve higher mechanical strength.

<本発明焼結体の変形例3>
加えて、焼結体の密度もまた焼結体の機械的強度に影響を及ぼす。本発明者は、鋭意研究の結果、本発明焼結体が従来技術に係る焼結体よりも大きい機械的強度を達成するには、焼結体の密度が所定の下限値以上であることが望ましいことを見出した。
<Modification 3 of the sintered body of the present invention>
In addition, the density of the sintered body also affects the mechanical strength of the sintered body. As a result of intensive studies, the inventor has found that the sintered body has a density equal to or higher than a predetermined lower limit in order to achieve greater mechanical strength than the sintered body according to the prior art. I found it desirable.

ここで、上記につき、前述した表1及び図3に示したグラフを参照しながら以下に詳しく説明する。図3は、アトマイズ鉄粉と還元鉄粉と黒鉛とを含む原料粉末の圧縮成形体を焼結して得られた焼結体の密度と原料粉末における還元鉄粉の含有率との関係を示すグラフである。先ず、図3のグラフに示した組成を有する各種原料粉末及び圧縮成形時の面圧にて、各種焼結体試料を製造した。但し、何れの試料についても、原料粉末における黒鉛及び潤滑剤(ステアリン酸亜鉛)の含有率を何れも0.8質量%とし、残りをアトマイズ鉄粉とした。焼結温度は何れも1150℃とした。   Here, the above will be described in detail below with reference to Table 1 and the graph shown in FIG. FIG. 3 shows the relationship between the density of the sintered body obtained by sintering a compression molded body of raw material powder containing atomized iron powder, reduced iron powder and graphite, and the content of reduced iron powder in the raw material powder. It is a graph. First, various sintered body samples were manufactured with various raw material powders having the composition shown in the graph of FIG. 3 and the surface pressure at the time of compression molding. However, for any sample, the content of graphite and lubricant (zinc stearate) in the raw material powder was 0.8 mass%, and the rest was atomized iron powder. The sintering temperature was 1150 ° C. for all.

グラフ中、一点鎖線の曲線、点線の曲線、破線の曲線及び実線の曲線は、それぞれ、圧縮成形時の面圧を4t/cm、5t/cm、6t/cm及び7t/cmとした試料についての密度測定結果であることを示す。次に、これら各種試料の密度を、アルキメデス法によって測定した。但し、前述したように、表1には面圧をそれぞれ6t/cm及び7t/cmとした2つの場合における密度のみ列挙した。 In the graph, the alternate long and short dash line curve, the dotted line curve, the broken line curve, and the solid line curve indicate that the surface pressure during compression molding is 4 t / cm 2 , 5 t / cm 2 , 6 t / cm 2, and 7 t / cm 2 , respectively. It shows that it is a density measurement result about the obtained sample. Next, the density of these various samples was measured by the Archimedes method. However, as mentioned above, in Table 1 listed only density in the two cases was the surface pressure respectively 6t / cm 2 and 7t / cm 2.

グラフ中の丸印によって示したように、焼結体における機械的強度の向上効果が認められる原料粉末における還元鉄粉の含有率及び圧縮成形時の面圧を満足する本発明方法によって製造された焼結体の密度が特異的に増大している。具体的には、図3のグラフ及び表1からも明らかであるように、23質量%以上且つ35質量%以下の還元鉄粉を含有する原料粉末を6t/cm以上の面圧にて圧縮成形し且つ焼結して得られた焼結体の密度は6.98g/cm以上となっている。上述したように、このような条件にて製造された焼結体は、従来技術に係る焼結体と比べて、より高い機械的強度(例えば、ヤング率及び剛性等)を達成することができる。 As shown by the circles in the graph, it was produced by the method of the present invention satisfying the content ratio of reduced iron powder in the raw material powder and the surface pressure at the time of compression molding in which the effect of improving the mechanical strength in the sintered body was recognized. The density of the sintered body is specifically increased. Specifically, as is clear from the graph of FIG. 3 and Table 1, raw material powder containing reduced iron powder of 23% by mass to 35% by mass is compressed at a surface pressure of 6 t / cm 2 or more. The density of the sintered body obtained by molding and sintering is 6.98 g / cm 3 or more. As described above, the sintered body manufactured under such conditions can achieve higher mechanical strength (for example, Young's modulus and rigidity) than the sintered body according to the prior art. .

従って、本発明焼結体の変形例3に係る焼結体においては、前記焼結体の密度が6.98g/cm以上である。これにより、この変形例3に係る焼結体は、より高い機械的強度を達成することができる。 Therefore, in the sintered body according to Modification 3 of the sintered body of the present invention, the density of the sintered body is 6.98 g / cm 3 or more. Thereby, the sintered compact concerning this modification 3 can achieve higher mechanical strength.

《第3実施形態》
上記知見に基づけば、アトマイズ鉄粉と還元鉄粉と黒鉛とを含み且つ還元鉄粉の含有率が23質量%以上且つ35質量%以下である原料粉末から得られる焼結体を6.98g/cm以上の密度となるように圧縮成形及び焼結することにより、より高い機械的強度(例えば、ヤング率及び剛性等)を達成することができる。
<< Third Embodiment >>
Based on the above knowledge, a sintered body obtained from a raw material powder containing atomized iron powder, reduced iron powder, and graphite and having a reduced iron powder content of 23% by mass to 35% by mass is 6.98 g / Higher mechanical strength (for example, Young's modulus and rigidity) can be achieved by compression molding and sintering to a density of cm 3 or more.

即ち、本発明の第3実施形態に係る焼結体は、アトマイズ鉄粉と還元鉄粉と黒鉛とを含む原料粉末からなる焼結体であって、前記原料粉末は、23質量%以上且つ35質量%以下の前記還元鉄粉を含有し、前記焼結体の密度が6.98g/cm以上である、焼結体である。 That is, the sintered body according to the third embodiment of the present invention is a sintered body made of a raw material powder containing atomized iron powder, reduced iron powder, and graphite, and the raw material powder is 23% by mass or more and 35 It is a sintered body containing the reduced iron powder in an amount of mass% or less and having a density of the sintered body of 6.98 g / cm 3 or more.

以上、本発明を説明することを目的として、特定の構成を有する幾つかの実施形態及び変形例につき、時に添付図面を参照しながら説明してきたが、本発明の範囲は、これらの例示的な実施形態及び変形例に限定されると解釈されるべきではなく、特許請求の範囲及び明細書に記載された事項の範囲内で、適宜修正を加えることが可能であることは言うまでも無い。   In the above, for the purpose of explaining the present invention, several embodiments and modifications having specific configurations have been described with reference to the accompanying drawings. However, the scope of the present invention is not limited to these illustrative examples. It should be understood that the present invention should not be construed as being limited to the embodiments and the modifications, and that appropriate modifications can be made within the scope of the matters described in the claims and the specification.

Claims (5)

アトマイズ鉄粉と還元鉄粉と黒鉛とを含む原料粉末から焼結体を得る製造方法であって、
23質量%以上且つ35質量%以下の前記還元鉄粉を含有する前記原料粉末を調製する原料調製工程と、
6t/cm以上の面圧にて前記原料粉末を圧縮成形して所望の形状を有する成形体を得る成形工程と、
前記成形工程において得られた前記成形体を所定の焼結温度にて焼結することにより前記焼結体を得る焼結工程と、
を含む、製造方法。
A manufacturing method for obtaining a sintered body from a raw material powder containing atomized iron powder, reduced iron powder and graphite,
A raw material preparation step of preparing the raw material powder containing 23% by mass or more and 35% by mass or less of the reduced iron powder;
A molding step of compression molding the raw material powder at a surface pressure of 6 t / cm 2 or more to obtain a molded body having a desired shape;
A sintering step of obtaining the sintered body by sintering the molded body obtained in the molding step at a predetermined sintering temperature;
Manufacturing method.
請求項1に記載の製造方法であって、
前記原料粉末が0.2質量%以上且つ1.2質量%以下の黒鉛を含有する、
製造方法。
The manufacturing method according to claim 1,
The raw material powder contains 0.2% by mass or more and 1.2% by mass or less of graphite,
Production method.
請求項1又は2に記載の製造方法であって、
前記焼結工程における焼結温度が1150℃以上である、
製造方法。
The manufacturing method according to claim 1 or 2,
The sintering temperature in the sintering step is 1150 ° C. or higher,
Production method.
請求項1乃至3の何れか1項に記載の製造方法によって得られた焼結体。   The sintered compact obtained by the manufacturing method of any one of Claims 1 thru | or 3. アトマイズ鉄粉と還元鉄粉と黒鉛とを含む原料粉末からなる焼結体であって、
前記原料粉末は、23質量%以上且つ35質量%以下の前記還元鉄粉を含有し、
前記焼結体の密度が6.98g/cm以上である、
焼結体。
A sintered body made of a raw material powder containing atomized iron powder, reduced iron powder and graphite,
The raw material powder contains 23% by mass or more and 35% by mass or less of the reduced iron powder,
The sintered body has a density of 6.98 g / cm 3 or more.
Sintered body.
JP2015039002A 2015-02-27 2015-02-27 Method for producing sintered compact, and sintered compact obtained by the production method Pending JP2016160469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015039002A JP2016160469A (en) 2015-02-27 2015-02-27 Method for producing sintered compact, and sintered compact obtained by the production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015039002A JP2016160469A (en) 2015-02-27 2015-02-27 Method for producing sintered compact, and sintered compact obtained by the production method

Publications (1)

Publication Number Publication Date
JP2016160469A true JP2016160469A (en) 2016-09-05

Family

ID=56844560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015039002A Pending JP2016160469A (en) 2015-02-27 2015-02-27 Method for producing sintered compact, and sintered compact obtained by the production method

Country Status (1)

Country Link
JP (1) JP2016160469A (en)

Similar Documents

Publication Publication Date Title
JP6106323B1 (en) Sintered tungsten-based alloy and method for producing the same
Meshalkin et al. Methods used for the compaction and molding of ceramic matrix composites reinforced with carbon nanotubes
KR102205940B1 (en) Method for producing liquid phase sintered aluminum alloy member, and liquid phase sintered aluminum alloy member
Zarebski et al. Iron powder-based graded products sintered by conventional method and by SPS
US10107376B2 (en) Sintered machine part and method of manufacturing the same
US20160327144A1 (en) Sintered machine part and manufacturing method thereof
JP6155894B2 (en) Iron-based sintered material and method for producing the same
WO2018216461A1 (en) Sintered member and method for producing same
JP6523778B2 (en) Dust core and manufacturing method of dust core
JP2016160469A (en) Method for producing sintered compact, and sintered compact obtained by the production method
BR112018069230B1 (en) IRON-BASED POWDERS, PRODUCTION PROCESS, IRON-BASED POWDER COMPOSITION, SINTERED COMPONENT AND ITS PRODUCTION PROCESS
KR102448644B1 (en) Iron-based sintered alloy and method for producing the same
JP7114817B2 (en) Sintered material and method for producing sintered material
JP2009270149A (en) Aluminum porous body and manufacturing method therefor
JP6942434B2 (en) Manufacturing method of high-density iron-based sintered material
KR20170057590A (en) The method of producing the diamond-SiC composites by HIP sintering
JP4870116B2 (en) Method for producing Fe-Co-V alloy material
WO2018097188A1 (en) Method for metal powder injection molding
JP2017011073A (en) Powder-compact magnetic core and method of manufacturing power-compact magnetic core
CN104876620B (en) A kind of method preparing poromeric material
KR102647464B1 (en) Iron alloy sintered body and iron mixed powder for powder metallurgy
KR20160015851A (en) The method of producing the diamond-SiC composite under low pressure
KR20140013484A (en) Hardmetal compositions with improved wear-resistance, and manufacturing method thereof
JP6197718B2 (en) Iron-based powder mixture, iron-based sintered body obtained from the same iron-based powder mixture, and iron-based parts obtained from the same iron-based sintered body
JP2017128764A (en) Iron-based sintered slide material and manufacturing method therefor