JP2016160321A - 光増感剤および光電変換素子 - Google Patents

光増感剤および光電変換素子 Download PDF

Info

Publication number
JP2016160321A
JP2016160321A JP2015039110A JP2015039110A JP2016160321A JP 2016160321 A JP2016160321 A JP 2016160321A JP 2015039110 A JP2015039110 A JP 2015039110A JP 2015039110 A JP2015039110 A JP 2015039110A JP 2016160321 A JP2016160321 A JP 2016160321A
Authority
JP
Japan
Prior art keywords
dye
group
photosensitizer
examples
photoelectric conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015039110A
Other languages
English (en)
Inventor
由紀子 井上
Yukiko Inoue
由紀子 井上
伸治 東嶋
Shinji Tojima
伸治 東嶋
真吾 楮山
Shingo Kajiyama
真吾 楮山
優太 鈴木
Yuta Suzuki
優太 鈴木
三浦 偉俊
Taketoshi Miura
偉俊 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chemicrea Inc
Original Assignee
Chemicrea Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chemicrea Inc filed Critical Chemicrea Inc
Priority to JP2015039110A priority Critical patent/JP2016160321A/ja
Priority to PCT/JP2016/000664 priority patent/WO2016136164A1/ja
Priority to TW105105058A priority patent/TW201636397A/zh
Publication of JP2016160321A publication Critical patent/JP2016160321A/ja
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B23/00Methine or polymethine dyes, e.g. cyanine dyes
    • C09B23/02Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain containing an odd number of >CH- or >C[alkyl]- groups
    • C09B23/04Methine or polymethine dyes, e.g. cyanine dyes the polymethine chain containing an odd number of >CH- or >C[alkyl]- groups one >CH- group, e.g. cyanines, isocyanines, pseudocyanines
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B69/00Dyes not provided for by a single group of this subclass
    • C09B69/02Dyestuff salts, e.g. salts of acid dyes with basic dyes
    • C09B69/04Dyestuff salts, e.g. salts of acid dyes with basic dyes of anionic dyes with nitrogen containing compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/652Cyanine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Hybrid Cells (AREA)

Abstract

【課題】含水アルコール等の溶剤に対して高い溶解度を有し、変換効率と耐久性が優れた光増感剤を提供する。
【解決手段】下記一般式(1)で示される色素の塩である光増感剤。

(式(I)において、nは1または2の整数を示す。R1、R2、R3は同じでも異なっていてもよく、それぞれ、水素原子、炭素数2から8のアルキル基、アラルキル基を示し、R1、R2、R3のうち水素原子は多くとも1個である。R1からR3は互いに結合して環状構造を形成してもよい。Dyeは希少遷移金属を含まない有機色素である。)
【選択図】なし

Description

本発明は、光増感剤およびこの光増感剤を用いた光電変換素子に関するものである。
昨今、環境への配慮や原子力に対する不安もあり、再生可能な太陽光、太陽熱、風力など自然の力を利用したクリーンエネルギーへの注目がさらに高まっている。太陽光発電において現在の主流はシリコンを利用した無機系太陽電池であるが、これらは高い変換効率を有する反面、製造過程において高温条件や真空条件を必要とするためコストが高く、クリアしなければならない課題も多い。
一方、次世代型太陽電池として注目を集めている有機系太陽電池には大別して有機薄膜型と色素増感型がある。有機薄膜太陽電池は有機材料を組み合わせて作られたp−n接合を利用するものであり、上述のシリコンに代表される無機系太陽電池と作動メカニズムはまったく同じである。
これに対して、色素増感太陽電池(Dye Sensitized Solar Cell:以下、DSC)は有機色素を光増感剤とし、酸化チタンや酸化亜鉛等の無機半導体に組み合わせた修飾電極を用いる点に特徴があり、光合成に似た発電システムである。この無機・有機ハイブリッド型の分子素子ともいうべきDSCは実用化もされている(非特許文献1)。
DSCの作用電極は導電性基板上に酸化チタンや酸化亜鉛等の無機半導体を焼結積層したものに増感色素を吸着した単純な構造であり、この作用電極と白金等の対極間にヨウ素系電解液やコバルト系電解液を満たし封止することでセルが完成する。このようにDSCは構造が単純であるために製造が容易である。真空ライン等の特殊な設備も不要であり、従来型太陽電池と比べてコストダウンが一層容易である。
その中でも特にグレッツエル方式DSCと呼ばれるものは電極等の材料が安いことに加え、特殊な設備投資も不要であり、高度な低コスト化が実現できる可能性が高い。その電極にはナノ粒子の高温焼結で作製したラフネス・ファクターの高い多孔質の酸化チタンが使われており、これに光増感剤としてルテニウム色素を組み合わせることで現在では12%以上の高変換効率が達成されている。
しかしながら、このグレッツエル型DSCにも克服すべき課題は残っている。まず、現在実用化レベルにある高変換効率色素のほとんどはルテニウム錯体であるが(例えば特許文献1)、ルテニウムは埋蔵量の少ない希少金属であり資源的、コスト的な問題だけでなく、金属特有の毒性の問題も抱えている。これを克服すべくメタルフリー有機色素の開発が世界中で盛んに行われているが、いまだ変換効率と耐久性の点で実用レベルに達していないのが現状である(例えば特許文献2)。
特許第3731752号公報 特許第4080288号公報
Nature,353,p737−740(1991)
また、金属を含む、含まないにかかわらず一般的な色素(光増感剤)は溶剤への溶解度が低く、溶解度の高い限られた溶剤(例えばアセトニトリル等)しか使えないという問題がある。溶解度の低い溶剤を用いると半導体上において良好な吸着状態にならず、高変換効率は望めない。このため、種々のDSC作製において高変換効率を達成するためには幅広い溶剤に溶解性が高い色素、とりわけ含水アルコール等の汎用性が高く安価な溶剤に溶解性が高い色素の開発が強く望まれている。
また、DSCの軽量化にはガラス基板ではなくプラスチック基板の利用が必須であり、低温焼結で作製可能な無機電極材料とそれに組み合わせる高性能な新規有機色素の開発が必要である。しかし、プラスチックDSCの良好な電極材料である酸化亜鉛の増感は、上記の酸化チタンに比べ格段に難しいことが知られている。酸化チタンで高性能な色素、とりわけルテニウム錯体のほとんどすべてが酸化亜鉛電極に転用しても、充分な性能を発揮しないのみならず、電極の耐久性も劣悪である。このように酸化チタン以外の電極材料、とりわけ酸化亜鉛や酸化スズの増感に利用できる高性能な新規有機色素の開発が熱望されている。
本発明は上記の課題に鑑みなされたものであり、含水アルコール等の溶剤に対して高い溶解度を有し、酸化チタンあるいは酸化亜鉛等の電極への吸着力が高く、高変換効率で、耐久性が高く、安価な光増感剤(新規有機色素)を提供することを目的とするものである。
また、本発明はこの光増感剤を含む光吸収層を有する光電変換素子を提供することを目的とするものである。
本発明者らが鋭意検討した結果、有機色素のカルボキシル基に有機アミン塩を有する下記一般式(I)で示される色素が含水アルコール等の溶剤に対して高い溶解度を持ち、さらに酸化チタンおよび酸化亜鉛等の電極へ吸着力が高く、かつ変換効率を向上させることができることを見出し、発明を完成するに至った。
すなわち、本発明の光増感剤は、下記一般式(I)で示される色素の塩であり、より詳細には有機色素のカルボン酸部位にアミン塩を有するものである。
(式(I)において、nは1または2の整数を示す。R1、R2、R3は同じでも異なっていてもよく、それぞれ、水素原子、炭素数2から8のアルキル基、アラルキル基を示し、R1、R2、R3のうち水素原子は多くとも1個である。R1からR3は互いに結合して環状構造を形成してもよい。Dyeは希少遷移金属を含まない有機色素である。)
本発明の光電変換素子は、上記一般式(I)で示される光増感剤を含む光吸収層を有することを特徴とするものである。
本発明の光増感剤は、従来の色素に比べて幅広い溶剤に対して溶解度が高く、また変換効率を向上させるとともに、色素の吸着安定性を向上させることが可能である。その作用機序は必ずしも明らかではないが、アンカーであるカルボン酸部位に脂溶性の高い有機アミンが適当な強さの塩を形成しているため、従来の色素と比較して以下に示す三点において有利な特性を示すものと考えられる。
第一に、アンカーとしてフリーのカルボン酸を有する従来の有機色素は一般的に非常に結晶性が高く、吸着工程において溶解力の大きい溶剤を用いる必要がある。しかし、本発明の色素のカルボキシル基の有機アミン塩(以下、単に有機アミン塩色素ともいう)では、対アニオンであるアミンの脂溶性の高い置換基のために各種溶媒への溶解度が格段に上昇するため、含水アルコール類等の幅広い溶剤に対する溶解度が高くなると考えられる。
第二に、電極への吸着工程において、従来の色素はその分子親和力の高さゆえしばしば吸着した半導体上において低分子会合体を形成し、電子注入効率を下げるため、変換効率の低下を引き起こすことが知られているが、上述のように溶解度が向上したことにより結晶性が低下し、低分子会合体の抑制も可能になると考えられる。
第三に、一般式(I)で示される色素の塩は、準安定状態の適度に不安定な塩であるため、吸着工程でのケミカルポテンシャルが下がり、電極上で吸着状態にあるほうがより安定になると考えられる。そのため、色素の吸着力が向上し電極表面の被覆率が高くなり、さらに高脂溶性の置換基の影響により吸着配向性も向上しその結果として耐久性が向上したと考えられる。
本発明の光電変換素子の一実施の形態を示す概略模式図である。
以下、本発明の光増感剤について詳細に説明する。本発明の光増感剤の上記一般式(I)におけるR1、R2、R3は水素原子、炭素数2から8のアルキル基、アラルキル基を示し、アルキル基としては、例えばエチル基、プロピル基等の直鎖アルキル基、イソプロピル基、イソブチル基等の分岐鎖アルキル基、シクロペンチル基、シクロヘキシル基等の環状アルキル基が挙げられ、これらのアルキル基は後述の置換基でさらに置換されていてもよい。アラルキル基としては、例えばベンジル基、メトキシベンジル基、ナフチルメチル基等が挙げられ、これらは後述の置換基でさらに置換されていてもよい。
置換基としてはシアノ基、イソシアノ基、チオシアナト基、イソチオシアナト基、ニトロ基、ニトロシル基、スルホニル基や、ハロゲン原子、ヒドロキシル基、リン酸エステル基、置換若しくは無置換メルカプト基、置換若しくは無置換アミノ基、置換若しくは無置換アミド基、アルコキシ基、アルコキシアルキル基、アルコキシカルボニル基、アルキル基、アリール基、アラルキル基、アシル基またはヘテロ環残基等を例として挙げるが特に限定されるものではない。
詳細には、ハロゲン原子としては塩素、臭素、ヨウ素等の原子を、リン酸エステル基としては例えば、リン酸アルキル(炭素数1から4)エステル基等が挙げられる。置換メルカプト基としては例えば、メチルチオ、エチルチオ等のアルキルチオ基等が挙げられる。置換アミノ基としては、モノまたはジアルキルアミノ基、モノまたはジアリ−ルアミノ基等が挙げられ、モノまたはジメチルアミノ基、モノまたはジエチルアミノ基、モノまたはジプロピルアミノ基、モノフェニルアミノ基またはベンジルアミノ基等が挙げられる。置換アミド基としては例えば、アルキルアミド基、芳香族アミド基等が挙げられる。
アルコキシ基としては例えば、アルコキシ(炭素数1から10)基等が挙げられる。アルコキシアルキル基としては例えばエトキシエチル基等の(炭素数1から10)アルコキシ(炭素数1から4)アルキル基等を挙げることができる。アルコキシカルボニル基としては例えばエトキシカルボニル基等のアルコキシ(炭素数1から10)カルボニル基等が挙げられる。アルキル基は上記と同様のものが挙げられる。
アリール基としては、例えばフェニル基、ナフチル基、アントラニル基、フェナントレニル基、ピレニル基、インデニル基、アズレニル基、フルオレニル基等が挙げられ、これらは前述の置換基でさらに置換されていてもよい。アシル基としては、例えば炭素数1から10のアルキルカルボニル基、アリールカルボニル基が好ましい。アラルキル基は上記と同様のものが挙げられる。ヘテロ環残基とは、ヘテロ環式化合物から水素原子を1つ取り除いた基を意味し、例えばピリジル、ピラジル、ピペリジル、ピラゾリル、モルホリル、インドリニル、チオフェニル、フリル、オキサゾリル、チアゾリル、インドリル、ベンゾチアゾリル、ベンゾオキサゾリル、キノリル、ロダニル等が挙げられ、それらはさらに置換基を有していてもよい。
1からR3は互いに結合して複素環を形成してもよく、その際に形成する環状構造としては例えば、ピロリジン、ピペリジン、モルホリン、チオモルホリン、ピペラジン、キヌクリジン等が挙げられ、それらはさらに置換基を有してもよいし、置換基としてさらに環状構造を有していてもよい。
Dyeは希少遷移金属を含まない有機色素であれば構造に関して特に制限はない。ここで希少遷移金属とはルテニウム、オスミウム、ロジウム、イリジウム、レニウムなどの金属を意味し、希少遷移金属ではない亜鉛、マグネシウム、鉄、コバルト、ニッケル等はキレート金属として含んでいてもよい。
Dyeとしては下記式(II)で示されるインドリン骨格を有するインドリン系色素、下記式(III)で示されるカルバゾール骨格を有するカルバゾール系色素、シアニン・メロシアニン系色素、ポルフィリン系色素などの周知の有機色素が有効である。下記式(II)のRはアルキル基、アリール基、アラルキル基を示す。アルキル基としては、例えばメチル基、エチル基等の直鎖アルキル基や前述の分岐鎖アルキル基、環状アルキル基が挙げられ、これらのアルキル基は前述の置換基でさらに置換されていてもよい。アリール基、アラルキル基としては、上記と同様のものが挙げられる。下記式(III)のRはアルキル基、アリール基、アラルキル基を示し、それらの例としては前述の場合と同様である。下記式(II)および(III)で示される骨格には、その他の部分に置換基を有していてもよい。置換基としては、アルキル基、アラルキル基、ハロゲン原子が挙げられ、2つの置換基で結合して芳香環を形成していてもよく、その際に形成する環状構造としては例えば、ベンゼン、ナフタレン等が挙げられ、それらはさらに置換基を有していてもよいし、置換基としてさらに環状構造を有していてもよい。アルキル基、アラルキル基、ハロゲン原子としては上記と同様のものが挙げられる。
以下に一般式(I)の化合物の例を具体的に示すが、もちろん本発明はこれらの例に限定されるものではない。
続いて、本発明の光電変換素子を図面を用いて説明する。図1は本発明の光電変換素子の一実施の形態を示す概略模式図である。光電変換素子1は、表面に導電性を有する基板2上に、酸化物半導体層に色素(本発明の光増感剤)を吸着させて形成した光吸収層を有する半導体層3、電解質層4および対極5がこの順に積層されたものである。
導電性の基板としては、金属のように支持体そのものに導電性があるもの、あるいは表面に導電性を有する場合にはガラス、あるいはプラスチックを支持体として用いることができる。この場合、導電層の材料としては、スズドープ酸化インジウム(ITO)、フッ素ドープ酸化スズ(FTO)、金、白金等やこれらを複数組み合わせたものを用いることができ、これを基板へ真空蒸着法、スパッタ蒸着法、イオンプレーティング法、化学気相成長法(CVD)などの方法によって直接形成させたり、これらが形成されたフィルムを基板へ貼着させたりすることによって導電層を形成し、表面に導電性を有する基板を形成することができる。
酸化物半導体の具体例としてはチタン、スズ、亜鉛、タングステン、ジルコニウム、ガリウム、インジウム、イットリウム、ニオブ、タンタル、バナジウムなどの酸化物が挙げられる。これらのうちチタン、スズ、亜鉛、ニオブ、タングステン等の酸化物が好ましく、これらのうち(1)安価であること、(2)多孔質体を容易に形成すること、(3)電極としての導電性、耐久性、安定性および安全性、(4)本発明で合成した光増感剤とのエネルギー準位の適合性などの観点から、チタン、亜鉛の酸化物が好ましい。これらの酸化物半導体は単一で使用してもよいし、2種類以上を適宜併用してもよい。
酸化物半導体は、これらの酸化物半導体の微粒子を基板上に塗布し、電気炉やマイクロ波等によって加熱処理、あるいは電析によって、基板上に多孔質を形成させることができる。
酸化物半導体層に色素を吸着させる方法としては、色素溶液中あるいは色素分散液中にこの酸化物半導体層を形成させた基板を浸漬するなどの方法を用いることができ、これによって、半導体層を形成することができる。溶液の濃度は色素によって適宜決めることができ、色素を溶解させるのに使用しうる溶媒の具体例としては、例えば、メタノール、エタノール、含水メタノールや含水エタノールなどの含水アルコール、酢酸エチル、酢酸メチル、テトラヒドロフラン(THF)、クロロホルム、アセトニトリル、ジメチルスルホキシド、ジメチルホルムアミド(DMF)、アセトン、t−ブタノール等が好ましく挙げられる。
なお、酸化物半導体微粒子の薄膜に色素を吸着する際に、共吸着剤を色素溶液に添加してもよい。共吸着剤としては、コール酸等のステロイド系化合物、クラウンエーテル、シクロデキストリン、カリックスアレン、ポリエチレンオキサイドなどが挙げられるが、デオキシコール酸、デヒドロコール酸、コール酸メチルエステル、コール酸ナトリウム等がより好ましい。
電解質層は、アセトニトリルとエチレンカーボネートの混合液や、メトキシプロピオニトリルなどを溶媒として、金属ヨウ素やヨウ化リチウムなどのヨウ化物からなる電解質等を加えた液体電解質や、高分子ゲル電解液などの凝固体化電解質、p型半導体、ホール輸送剤などの固体電解質を用いて形成することができる。
対極は透明性が必要な場合は上記導電性を有する基板と同様に作製してもよいし、透明性を必要としない場合は、カーボンや導電性ポリマー、一般的な金属などを用いて作製することができる。
本発明の有機アミン塩色素は合成の最終段階の縮合反応の際に、過剰の有機塩基を用いて塩を単離し精製する方法、もしくはいったん色素を合成単離した後に適切な塩基を作用させて塩を形成する方法によって容易に得ることができる。
本発明の光増感剤は有機薄膜太陽電池の光吸収層として使用することも可能である。
以下に本発明を実施例を用いてさらに詳細に説明する。
[色素の合成]
本実施例における中間体(A−01)、(A−02)、中間体アルデヒド(B−01)、中間体(C−01)、(C−02)の構造は下記の化学式で表されるものである。
[中間体アルデヒドの合成]
(アルデヒド(B−01)の合成)
中間体(A−02)(5.2g)、中間体(A−01)(11.7g)、カリウムt−ブトキシド(5.5g)、酢酸パラジウム(74mg)、トリt−ブチルホスフィン(0.3g)をm−キシレン(40mL)に溶解し、系内を窒素置換した後、120℃で8時間加熱攪拌した。反応混合物を室温まで冷却後、不溶物をろ過し、ろ液を水洗、無水硫酸ナトリウムで乾燥させた後、減圧濃縮し、褐色オイルを得た(15.0g)。次に氷冷下でDMF(25mL)に塩化ホスホリル(10.0g)を滴下し調整したVilsmeier試薬にこの褐色オイル(15.0g)を滴下し室温で3時間攪拌した。反応液に水(100mL)を加え、ついで25%水酸化ナトリウム水溶液を加えpH11とした。この反応液をクロロホルムで抽出、有機層を無水硫酸ナトリウムで乾燥後、減圧濃縮し、残渣をカラムクロマトグラフィー(シリカゲル、展開溶媒:CHCl3)で分離精製することによりアルデヒド(B−01)の黄土色固体を11.6g得た(収率80%)。
(中間体(C−01、02)の合成)
中間体(C−01)および(C−02)は特開平8−269345号公報に記載の方法に従って合成したものを用いた。
[実施例1]
(I−01)の合成
中間体(B−01)(4.41g)、シアノ酢酸(東京化成工業株式会社製)(1.70g)、アセトニトリル(60mL)を加え、窒素気流下85℃で加熱攪拌した。完溶したのを確認した後、ピペリジン(2mL)を滴下し、さらに4時間加熱撹拌した。加熱を停止し、室温まで冷却すると固体が析出した。結晶をろ過後、アセトニトリル(50mL)で洗浄、乾燥して化合物(I−01)を黄土色固体として得た。5.60g。収率94%。λmax=445nm(クロロホルム)。
得られた化合物(I−01)についてNMR分析により構造を同定した。
H NMR(400MHz,CDCl3
δ(ppm)=8.00(1H,s),7.91(1H、s),7.52(1H,dd,J=8.6,1.5Hz),7.24−7.41(10H,m),7.05(2H,d,J=8.8Hz), 7.01(2H,d,J=8.8Hz),6.94(1H,s),6.89(1H,d,J=8.6Hz),4.80−4.83(1H,m),3.79−3.83(1H,m),3.20−3.22(4H,m),1.99−2.09(1H,m),1.62−1.91(10H,m),1.40−1.52(1H,m)
[実施例2]
(I−02)の合成
実施例1と同様の手法を用い、アミンとしてピロリジンを用いることにより化合物(I−02)を得た。λmax=451nm(クロロホルム)。
得られた化合物(I−02)についてNMR分析により構造を同定した。
H NMR(400MHz,CDCl3
δ(ppm)=7.98(1H,s),7.88(1H、s),7.50(1H,dd,J=8.8,1.6Hz),7.24−7.41(10H,m),7.05(2H,d,J=8.8Hz), 7.00(2H,d,J=8.8Hz),6.94(1H,s),6.88(1H,d,J=8.8Hz),4.80−4.84(1H,m),3.79−3.83(1H,m),3.37(4H,t,J=6.8Hz),2.06(4H,dt,J=6.4,3.2Hz),1.99−2.10(1H,m),1.83−1.93(2H,m),1.71−1.81(1H,m),1.61−1.69(1H,m),1.40−1.51(1H,m)
[実施例3]
(I−03)の合成
実施例1と同様の手法を用い、アミンとしてピペラジンを用いることにより化合物(I−03)を得た。λmax=462nm(クロロホルム)。
得られた化合物(I−03)についてNMR分析により構造を同定した。
H NMR(400MHz,CDCl3
δ(ppm)=7.99(1H,s),7.89(1H、s),7.52(1H,dd,J=8.4,2.0Hz),7.24−7.40(10H,m),7.03(2H,d,J=8.8Hz), 7.00(2H,d,J=8.8Hz),6.93(1H,s),6.87(1H,d,J=8.4Hz),4.79−4.82(1H,m),3.77−3.81(1H,m),3.20−3.27(8H,m),1.98−2.07(1H,m),1.82−1.91(2H,m),1.70−1.80(1H,m),1.60−1.69(1H,m),1.40−1.50(1H,m)
[実施例4]
(I−04)の合成
実施例1と同様の手法を用い、アミンとしてモルホリンを用いることにより化合物(I−04)を得た。λmax=471nm(クロロホルム)。
得られた化合物(I−04)についてNMR分析により構造を同定した。
H NMR(400MHz,CDCl3
δ(ppm)=7.99(1H,s),7.90(1H、s),7.52(1H,dd,J=8.8,1.6Hz),7.25−7.40(10H,m),7.05(2H,d,J=8.8Hz), 7.01(2H,d,J=8.8Hz),6.94(1H,s),6.88(1H,d,J=8.8Hz),4.81−4.85(1H,m),3.97−4.00(4H,m),3.79−4.00(1H,m),3.26−3.29(4H,m),2.00−2.09(1H,m),1.83−1.93(2H,m),1.71−1.81(1H,m),1.62−1.70(1H,m),1.40−1.52(1H,m)
[実施例5]
(I−23)の合成
実施例1と同様の手法を用い、さらに活性メチレン中間体(C−01)を用いることにより化合物(I−23)を得た。λmax=547nm(クロロホルム)。
得られた化合物(I−23)についてNMR分析により構造を同定した。
H NMR(400MHz,CDCl3
δ(ppm)=9.22(1H,br.s),7.68(1H、s),7.23−7.42(12H,m),7.05(2H,d,J=8.8Hz), 7.01(2H,d,J=9.2Hz),6.95(1H,s),6.93(1H,d,J=8.0Hz),4.82−4.86(1H,m),4.67(2H,s),4.09(2H,dd,J=7.6,6.8Hz),3.82−3.86(1H,m),3.00(4H,dd,J=5.6,4.8Hz),2.26(2H,t,J=7.2Hz),2.03−2.12(1H,m),1.84−1.92(2H,m),1.63−1.82(8H,m),1.53−1.61(4H,m),1.39−1.51(1H,m),1.18−1.37(12H,m)
[実施例6]
(I−24)の合成
実施例1と同様の手法を用い、さらに活性メチレン中間体(C−01)およびアミンとしてピロリジンを用いることにより化合物(I−24)を得た。λmax=548nm(クロロホルム)。
得られた化合物(I−24)についてNMR分析により構造を同定した。
H NMR(400MHz,CDCl3
δ(ppm)=9.71(1H,br.s),7.66(1H、s),7.23−7.42(12H,m),7.05(2H,d,J=8.8Hz), 7.01(2H,d,J=9.2Hz),6.94(1H,s),6.93(1H,d,J=9.6Hz),4.82−4.86(1H,m),4.64(2H,s),4.08(2H,dd,J=7.6,6.8Hz),3.81−3.85(1H,m),3.09−3.18(4H,m),2.26(2H,dd,J=7.6,6.8Hz),2.02−2.12(1H,m),1.83−1.92(6H,m),1.74−1.82(1H,m),1.63−1.74(3H,m),1.53−1.61(2H,m),1.40−1.50(1H,m),1.19−1.37(12H,m)
[実施例7]
(I−26)の合成
実施例1と同様の手法を用い、さらに活性メチレン中間体(C−01)およびアミンとしてモルホリンを用いることにより化合物(I−26)を得た。λmax=551nm(クロロホルム)。
得られた化合物(I−26)についてNMR分析により構造を同定した。
H NMR(400MHz,CDCl3
δ(ppm)=7.70(1H、s),7.23−7.40(12H,m),7.06(2H,d,J=8.8Hz), 7.02(2H,d,J=8.8Hz),6.95(1H,s),6.93(1H,d,J=8.0Hz),4.83−4.87(1H,m),4.68(2H,s),4.11(2H,t,J=6.8Hz),3.81−3.87(5H,m),3.07−3.12(4H,m),2.26(2H,dd,J=7.6,6.8Hz),2.03−2.13(1H,m),1.85−1.92(2H,m),1.64−1.81(4H,m),1.54−1.61(2H,m),1.41−1.50(1H,m),1.21−1.35(12H,m)
[実施例8]
(I−27)の合成
実施例1と同様の手法を用い、さらに活性メチレン中間体(C−02)を用いることにより化合物(I−27)を得た。λmax=553nm(クロロホルム)。
得られた化合物(I−27)についてNMR分析により構造を同定した。
H NMR(400MHz,CDCl3
δ(ppm)=7.68(1H、s),7.25−7.42(12H,m),7.05(2H,d,J=8.8Hz), 7.01(2H,d,J=9.2Hz),6.94(1H,s),6.93(1H,d,J=8.4Hz),4.82−4.86(1H,m),4.66(2H,s),4.08(2H,dd,J=8.0,6.8Hz),3.81−3.86(1H,m),2.96−3.04(4H,m),2.27(2H,dd,J=7.6,7.2Hz),2.02−2.12(1H,m),1.84−1.92(2H,m),1.63−1.83(7H,m),1.53−1.61(4H,m),1.41−1.49(1H,m),1.21−1.38(15H,m)
[色素の溶解度の測定]
上記実施例1〜8で合成した化合物と下記に記載した比較用色素(比較例1〜3)を用いて、次のようにして飽和濃度を求めた。
20mLサンプル瓶に下記の溶媒10mLを加えてから、実施例1〜8および比較例1〜3に示した各色素を添加し、密栓状態で室温中撹拌した。色素が完全に溶解した場合、追加の色素を添加した。色素を添加して10分間経過した段階で固体が残存していた時の色素添加量から、飽和濃度を下記計算式から求めた。なお、色素添加による全体容積の変化は無視できるほど少ないと仮定した。結果を表1に示す。
≪溶媒≫
A: メタノール
B: エタノール/水=95/5(w/w)
C: クロロホルム
D: アセトニトリル/t−ブタノール=1/1(w/w)
結果を表1に示す。なお、表1の飽和濃度は下記の基準で評価した。
◎: 飽和濃度5000(μM)以上
○: 飽和濃度500以上5000未満
△: 飽和濃度50以上500未満
×: 飽和濃度50未満
表1に示すように、アンカーとしてフリーのカルボン酸を有する既存の有機色素と比較して、本発明の有機アミン塩色素を用いた場合、クロロホルム等のような高溶解性溶剤だけでなく、含水アルコール等の低溶解性の溶剤への溶解度が向上した。その作用機序は必ずしも明らかではないが、対アニオンであるアミンの高脂溶性を有する置換基による効果であると考えられる。色素溶液の濃度もDSC作製時における吸着溶剤として使用可能なレベルであり、本発明の有機アミン塩色素は非常に有用である。
[光電変換素子の作製]
(酸化亜鉛電極−ヨウ素電解液セルの作製)
電極基材として片面にFTO電極皮膜が形成されたFTOガラスを用いて、このFTOガラスの電極面に、塗布により厚さ12μmの酸化亜鉛膜を形成した。実施例1〜8で得られた化合物および上記溶解度の測定で用いた比較例1〜3の各色素を濃度が500μMになるようアセトニトリル/t−ブチルアルコール=1/1またはエタノール/水=95/5に溶解または懸濁させ、ここに上記の酸化亜鉛膜が形成されたFTOガラスを90分間浸漬させることで光電変換層を作製した。なお、添加剤としてこの色素溶液にコール酸濃度が1.0mMになるようにコール酸を加えた。
アセトニトリルとエチレンカーボネートとを体積比でアセトニトリル:エチレンカーボネート=1:4の割合で混合した溶液に、ヨウ化テトラプロピルアンモニウムとヨウ素とをヨウ化テトラプロピルアンモニウム1.0M、ヨウ素0.1Mとなるように混合し、電解質液とした。この電解質液を上記電極基材と同じFTOガラスを用いた対向基板と先述の光電極層との間に配し電解質層を形成した。
(酸化チタン電極−コバルト電解液セルの作製)
電極基材として片面にFTO電極皮膜が形成されたFTOガラスを用いて、このFTOガラスの電極面に、塗布により厚さ10μmの酸化チタン膜を形成した。この酸化チタン膜が形成されたFTOガラスを、実施例1〜8で得られた化合物および比較例1〜3で得られた各色素を濃度が500μMになるようにエタノール/水=95/5に溶解させ、この溶液に90分間浸漬し光電変換層を作製した。なお、添加剤としてこの色素溶液にコール酸濃度が1.0mMになるようにコール酸を加えた。
アセトニトリルに対して、トリス−(2,2’−ビピリジン)コバルト(II)ジ(テトラシアノボレート)を200mM、トリス−(2,2’−ビピリジン)コバルト(III)トリ(テトラシアノボレート)を40mM、リチウムテトラフルオロボレートを20mM、N−ブチルベンゾイミダゾールを150mMとなるよう加えて溶解させたものを電解質液とした。この電解質液を上記電極基材と同じFTOガラスを用いた対向基板と先述の光電極層との間に配し電解質層を形成した。
(評価)
上記で作製した各光電変換素子(受光面積0.20cm2)に分光計器株式会社製「CEP−2000」を用いて100mW/cm2の照射強度で光を当てて、光電変換素子の短絡電流(mA)と開放電圧(V)を測定し、短絡電流と受光面積より短絡電流密度(mA/cm2)を求めた。次いで、光電変換素子の電極間に接続する抵抗値を変化させて最大電力Wmax(mW)を観測し、形状因子FFと光電変換効率(%)を下記計算式により求めた。結果を表2(酸化亜鉛電極−ヨウ素電解液セル、色素吸着溶媒:アセトニトリル/t−ブタノール=1/1(w/w))、表3(酸化亜鉛電極−ヨウ素電解液セル、色素吸着溶媒:エタノール/水=95/5(w/w))、および表4(酸化チタン電極−コバルト電解液セル、色素吸着溶媒:エタノール/水=95/5(w/w))に示す。
表2に示すように電極材料を酸化亜鉛、色素吸着溶媒として従来のアセトニトリル/t−ブタノールを使用した場合、本発明の有機アミン塩色素を光増感剤として使用すると対応するフリーのカルボン酸を有する既存色素と比較して、2〜7%程度の光電変換効率の向上が見られた。また、表3に示すように含水エタノールを色素吸着溶媒として用いた場合、本発明の有機アミン塩色素を光増感剤として使用すると対応するフリーのカルボン酸を有する既存色素と比較して、11〜26%程度とさらに大幅な光電変換効率の向上が見られた。
また、表4に示すように電極材料として酸化チタン、色素吸着溶媒として含水エタノールを用いた場合においても、11〜24%程度の光電変換効率の向上が見られた。その作用機構は必ずしも明らかではないが、色素の溶解度が向上したことにより結晶性が低下し、変換効率の低下を招く低分子会合体の抑制が可能となったためと推定される。
以上の実施例から明らかなように、本発明の有機アミン塩色素は含水アルコール等の溶剤に対して高い溶解度を有し、光増感剤として使用すると光電変換効率を向上させるとともに、色素の吸着安定性を向上させることが可能である。また、本発明の有機アミン塩色素はカラムクロマトグラフィーによる精製をせずに結晶を取り出すことが可能であり、合成の面からも非常に有用であると言える。さらに、今回合成で用いたアミンはごく一般的で安価であり、コスト面においても非常に有用である。
1 光電変換素子
2 基板
3 光吸収層を有する半導体層
4 電解質層
5 対極

Claims (2)

  1. 下記一般式(1)で示される色素の塩であることを特徴とする光増感剤。
    (式(I)において、nは1または2の整数を示す。R1、R2、R3は同じでも異なっていてもよく、それぞれ、水素原子、炭素数2から8のアルキル基、アラルキル基を示し、R1、R2、R3のうち水素原子は多くとも1個である。R1からR3は互いに結合して環状構造を形成してもよい。Dyeは希少遷移金属を含まない有機色素である。)
  2. 請求項1記載の光増感剤を含む光吸収層を有することを特徴とする光電変換素子。
JP2015039110A 2015-02-27 2015-02-27 光増感剤および光電変換素子 Pending JP2016160321A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015039110A JP2016160321A (ja) 2015-02-27 2015-02-27 光増感剤および光電変換素子
PCT/JP2016/000664 WO2016136164A1 (ja) 2015-02-27 2016-02-09 光増感剤および光電変換素子
TW105105058A TW201636397A (zh) 2015-02-27 2016-02-22 光增感劑及光電轉換元件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015039110A JP2016160321A (ja) 2015-02-27 2015-02-27 光増感剤および光電変換素子

Publications (1)

Publication Number Publication Date
JP2016160321A true JP2016160321A (ja) 2016-09-05

Family

ID=56789153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015039110A Pending JP2016160321A (ja) 2015-02-27 2015-02-27 光増感剤および光電変換素子

Country Status (3)

Country Link
JP (1) JP2016160321A (ja)
TW (1) TW201636397A (ja)
WO (1) WO2016136164A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7341946B2 (ja) 2019-12-11 2023-09-11 三菱製紙株式会社 蛍光変換媒体

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4963343B2 (ja) * 2004-09-08 2012-06-27 日本化薬株式会社 色素増感光電変換素子
WO2007100033A1 (ja) * 2006-03-02 2007-09-07 Nippon Kayaku Kabushiki Kaisha 色素増感光電変換素子
JP5378725B2 (ja) * 2008-07-31 2013-12-25 株式会社ケミクレア 光増感剤および光電変換素子
JP2012114035A (ja) * 2010-11-26 2012-06-14 Mitsubishi Paper Mills Ltd 光電変換材料、半導体電極およびそれを用いた光電変換素子
JP2013035936A (ja) * 2011-08-08 2013-02-21 Kemikurea:Kk 光増感剤および光電変換素子

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7341946B2 (ja) 2019-12-11 2023-09-11 三菱製紙株式会社 蛍光変換媒体

Also Published As

Publication number Publication date
TW201636397A (zh) 2016-10-16
WO2016136164A1 (ja) 2016-09-01

Similar Documents

Publication Publication Date Title
Naik et al. New di-anchoring A-π-D-π-A configured organic chromophores for DSSC application: sensitization and co-sensitization studies
Yang et al. Structure–property relationship of naphthalene based donor–π–acceptor organic dyes for dye-sensitized solar cells: remarkable improvement of open-circuit photovoltage
JPWO2007100033A1 (ja) 色素増感光電変換素子
Bolisetty et al. Benzothiadiazole-based organic dyes with pyridine anchors for dye-sensitized solar cells: effect of donor on optical properties
JP5086807B2 (ja) 新規アミノ基含有複素環誘導体および該複素環誘導体を含有する光電変換用増感色素
WO2006126538A1 (ja) 色素増感光電変換素子
JP6278504B2 (ja) 新規化合物及びそれを用いた光電変換素子
TWI632427B (zh) Light sensitizer and photoelectric conversion element
JP2009051999A (ja) 色素及びそれを用いた色素増感太陽電池
Maglione et al. Tuning optical absorption in pyran derivatives for DSSC
JP2013035936A (ja) 光増感剤および光電変換素子
Michaleviciute et al. Star-shaped carbazole derivative based efficient solid-state dye sensitized solar cell
Tomkeviciene et al. Diphenylamino-substituted derivatives of 9-phenylcarbazole as glass-forming hole-transporting materials for solid state dye sensitized solar cells
JP5757609B2 (ja) ドナー―π―アクセプター型化合物、蛍光色素化合物及び色素増感太陽電池用蛍光色素化合物
Manoharan et al. Synthesis of cyanovinyl thiophene with different acceptor containing organic dyes towards high efficient dye sensitized solar cells
Qian et al. Phenothiazine-functionalized push–pull Zn porphyrin photosensitizers for efficient dye-sensitized solar cells
JP2016216663A (ja) 光増感剤および光電変換素子
JP5378725B2 (ja) 光増感剤および光電変換素子
Kong et al. A new class of organic dyes based on acenaphthopyrazine for dye-sensitized solar cells
WO2016136164A1 (ja) 光増感剤および光電変換素子
AU2013241012A1 (en) Dye-sensitized photoelectric conversion element
JP6276626B2 (ja) 光電変換用増感色素およびそれを用いた光電変換素子ならびに色素増感太陽電池
WO2015037676A1 (ja) メチン系色素及びそれを用いた色素増感光電変換素子
Decavoli et al. Economical and Environmentally Friendly Organic hydrazone Derivatives Characterized by a Heteroaromatic Core as Potential Hole Transporting Materials in Perovskite Solar Cells
JP2015151505A (ja) 光電変換用増感色素およびそれを用いた光電変換素子ならびに色素増感太陽電池