JP2016151086A - ショベル支援装置 - Google Patents

ショベル支援装置 Download PDF

Info

Publication number
JP2016151086A
JP2016151086A JP2015027105A JP2015027105A JP2016151086A JP 2016151086 A JP2016151086 A JP 2016151086A JP 2015027105 A JP2015027105 A JP 2015027105A JP 2015027105 A JP2015027105 A JP 2015027105A JP 2016151086 A JP2016151086 A JP 2016151086A
Authority
JP
Japan
Prior art keywords
series data
excavator
time series
shovel
diagnosis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015027105A
Other languages
English (en)
Other versions
JP6508963B2 (ja
Inventor
理仁 楠見
Michihito Kusumi
理仁 楠見
方土 古賀
Masato Koga
方土 古賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2015027105A priority Critical patent/JP6508963B2/ja
Publication of JP2016151086A publication Critical patent/JP2016151086A/ja
Application granted granted Critical
Publication of JP6508963B2 publication Critical patent/JP6508963B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Operation Control Of Excavators (AREA)

Abstract

【課題】ショベルのメンテナンスの必要性について理解を得やすいショベル支援装置を提供する。【解決手段】ショベル支援装置が、表示装置と、通信装置と、処理装置とを有する。処理装置は、診断対象ショベルから、通信装置を介して、診断対象ショベルの稼働状態を示す時系列データを取得する。診断対象ショベルの診断結果とショベルの稼働状態を示す典型的時系列データとが関連付けられて記憶されたデータベースから、診断対象ショベルの診断結果に基づいて抽出された典型的時系列データが取得される。診断対象ショベルの時系列データと、データベースから取得された典型的時系列データとが対比されて、表示装置に表示される。【選択図】図5

Description

本発明は、ショベルの整備を支援するショベル支援装置に関する。
下記の特許文献1に、ショベルの異常検出方法が開示されている。この異常検出方法では、ショベルの稼動状態に依存する種々の変数が収集され、正常時の値と比較される。収集された変数の値が異常か否かの判定に、例えばマハラノビスタグチ法等が適用される。
特開2014−15746号公報
マハラノビスタグチ法等の複雑な手法を用いてショベルが異常と判定された場合、異常と判定された根拠、異常の度合等を直感的に理解することが困難である。このため、ショベルの整備業者がショベルの所有者に、これらの異常を示唆する情報を提示しても、メンテナンスの必要性についての理解を得ることが困難である。
本発明の目的は、ショベルのメンテナンスの必要性について理解を得やすいショベル支援装置を提供することである。
本発明の一観点によると、
表示装置と、
通信装置と、
処理装置と
を有し、
前記処理装置は、
診断対象ショベルから、前記通信装置を介して、前記診断対象ショベルの稼働状態を示す時系列データを取得し、
前記診断対象ショベルの診断結果とショベルの稼働状態を示す典型的時系列データとが関連付けられて記憶されたデータベースから、前記診断対象ショベルの診断結果に基づいて抽出された前記典型的時系列データを取得し、
前記診断対象ショベルの前記時系列データと、前記データベースから取得された前記典型的時系列データとを対比させて、前記表示装置に表示するショベル支援装置が提供される。
診断対象ショベルの時系列データと、データベースから取得された典型的時系列データとを対比させることができるため、診断対象ショベルに異常が発生している場合に、異常を直感的に確認することができる。これにより、メンテナンスの必要性について、ショベルの所有者の理解が得やすくなる。
図1は、ショベル、ショベル管理装置、及び実施例によるショベル支援装置の概略図である。 図2は、ショベル管理装置に構築されたデータベースのデータ構造図である。 図3は、実施例によるショベル支援装置のブロック図である。 図4Aは、診断対象ショベル、ショベル管理装置、及びショベル支援装置の処理及び通信シーケンスの一例を示す図であり、図4Bは、診断対象ショベル及びショベル管理装置の処理及び通信シーケンスの他の例を示す図である。 図5A〜図5Cは、ショベル支援装置の表示装置に表示された画像の例を示す平面図である。 図6は、ショベル支援装置の表示装置に表示された画像の他の例を示す平面図である。 図7は、他の実施例による診断対象ショベル30、ショベル管理装置60、及びショベル支援装置50の処理及び通信シーケンスを示す図である。 図8Aは、ショベルとショベル管理装置との処理及びデータ転送シーケンスの一例を示す図であり、図8Bは、ショベルとショベル管理装置との処理及びデータ転送シーケンスの他の例を示す図である。 図9Aは、図8AのステップS10のフローチャートであり、図9Bは、図8AのステップS13のフローチャートである。 図10は、時系列データの時間波形の一部分を例示するグラフである。 図11は、規格化評価ベクトルを元(エレメント)とするベクトル空間の一例を示すグラフである。 図12は、図4AのステップS03のフローチャートである。
図1に、複数のショベル30、ショベル管理装置60、及び実施例によるショベル支援装置50の概略図を示す。ショベル30、ショベル管理装置60、及びショベル支援装置50が、ネットワーク40を介して相互に通信を行う。ショベル30とショベル支援装置50とは、ネットワークを介さず直接通信することも可能である。
ショベル30に、車両コントローラ31、電子制御ユニット(ECU)32、種々のセンサ33、及び通信装置34が搭載されている。
センサ33は、ショベル30の稼働状態を示す種々の物理量を測定する。センサ33の測定値が車両コントローラ31に入力される。稼働状態を示す物理量には、例えば、エンジン回転数、油圧ポンプ圧力、油圧負荷等が含まれる。車両コントローラ31は、センサ33により測定された測定値を、ある時間刻み幅で取得する。物理量をある時間刻み幅で取得することにより、物理量の時間変動を示す時系列データが得られる。
車両コントローラ31は、ショベル30の機体識別情報、センサ33によって取得された時系列データを、通信装置34から、ネットワーク40を介してショベル管理装置60に送信する。ECU32は、車両コントローラ31からの指令に基づき、エンジンを制御する。通信装置34は、近距離無線通信装置を含む。近距離無線通信装置は、近距離に位置するショベル支援装置50との通信を行う。近距離無線通信規格として、例えばBluetoothが用いられる。
ショベル支援装置50は、表示装置54を含む。表示装置54に、ショベルの整備の支援を行うための情報が表示される。ショベル支援装置50には、例えばタブレット端末が用いられる。
ショベル管理装置60に、ショベル30の状態の診断結果と、ショベル30の稼働状態を示す典型的時系列データとが関連付けられたデータベース70が構築されている。
図2に、データベース70のデータ構造を示す。ショベル30の既定動作ごとに、ショベル30の診断結果と、典型的時系列データとが関連付けられている。既定動作として、例えばアイドリング動作、油圧負荷動作等が採用される。診断結果には、「正常」及び「異常」が含まれ、「異常」には、異常の種別及び異常の程度が含まれる。一例として、診断結果は、時系列データで示された波形の形状を表す複数の特徴量を要素とする評価ベクトルを含む。評価ベクトルの方向が異常の種別を表し、評価ベクトルの長さが異常の程度を表す。時系列データから評価ベクトルを求める方法については後に説明する。
以下、図2に示した例について説明する。既定動作Aはアイドリング動作を表し、既定動作Bは油圧負荷動作を表す。診断結果の「異常Xn」(n=1、2、3・・・)は、異常の種別が「X」であり、異常の程度が「n」であることを示している。典型的時系列データは、エンジン回転数の時間変化を表している。
ショベル30に異常種別Xの異常が発生すると、既定動作A(アイドリング動作)を行っているときのエンジン回転数の時間変化の振幅が、正常時の振幅に比べて大きくなっている。さらに、異常の程度が大きくなるに従って、エンジン回転数の時間変化の振幅も大きくなる。ショベル30に異常種別Yの異常が発生すると、エンジン回転数の時間変化にうねりが発生する。異常の程度が大きくなるにしたがって、うねりの振幅が大きくなる。
既定動作B(油圧負荷動作)を行うと、エンジン回転数が一時的に低下した後、定常回転数に戻る。ショベル30に異常Zが発生すると、正常時に比べて、エンジン回転数の低下幅が大きくなり、エンジン回転数が定常回転数に復帰するまでの時間が長くなる。
図3に、実施例によるショベル支援装置50のブロック図を示す。ショベル支援装置50は、処理装置51、通信装置52、入力装置53、及び表示装置54を含む。入力装置53及び表示装置54に、例えばタッチパネルが用いられる。通信装置52は、ネットワーク40(図1)を介してショベル管理装置60(図1)とデータ通信を行うとともに、ショベル30(図1)と、ネットワークを介することなくデータ通信を行う。
処理装置51は、時系列データ取得部511、典型的時系列データ取得部512、入力処理部513、及び表示処理部514を含む。これらの機能は、例えば中央処理ユニット(CPU)がコンピュータプログラムを実行することにより実現される。
次に、ショベル支援装置50の機能について、図3〜図6を参照しながら説明する。
図4Aに、診断対象ショベル30、ショベル管理装置60、及びショベル支援装置50の処理及び通信シーケンスを示す。整備要員がショベル支援装置50の入力装置53を操作すると、入力処理部513(図3)が診断対象ショベル30に対して、通信装置52を介して診断開始信号を送信する。診断対象ショベル30は、診断開始信号を受信すると、ショベルの状態の診断を行う(ステップS01)。診断処理において、診断対象ショベル30で既定動作が実行され、時系列データが収集される。診断の具体的な方法については、後に図9Bを参照して説明する。
診断対象ショベル30は、診断処理において実行した既定動作の種別、診断結果及び時系列データをショベル管理装置60に送信するとともに、時系列データをショベル支援装置50に送信する。ショベル支援装置50の時系列データ取得部511(図3)が、通信装置52を介して受信した時系列データを取得する。
ショベル管理装置60は、診断結果及び時系列データを受信すると、受信した診断結果と時系列データとを関連付けて、データベース70(図1、図2)に追加する(ステップS02)。さらに、受信した診断結果に基づいて、診断処理で実行した既定動作に対応するデータベース70から、典型的時系列データを抽出する(ステップS03)。一例として、診断結果の異常の種別が一致し、異常の程度が最も大きな状態(故障に至った状態)における典型的時系列データが抽出される。ここで、「故障に至った状態」は、部品の交換、修理等の何らかの対応が必要な状態を意味する。ショベル管理装置60は、抽出された典型的時系列データをショベル支援装置50に送信する。
ショベル支援装置50の典型的時系列データ取得部512(図3)が、通信装置52を介して受信した典型的時系列データを取得する。ショベル支援装置50の表示処理部514(図3)が、時系列データ取得部511で取得された時系列データと、典型的時系列データ取得部512で取得された典型的時系列データとを対比させて、表示装置54(図3)に表示する(ステップS04)。
図4Bに示すように、診断対象ショベル30の状態の診断を、診断対象ショベル30の代わりにショベル管理装置60が行うようにしてもよい。この場合には、診断対象ショベル30から診断結果は送信されず、時系列データが送信される。ショベル管理装置60は、診断対象ショベル30から受信した時系列データに基づいて、診断対象ショベル30の状態の診断を行う(ステップS01)。
図5Aに、ショベル支援装置50の表示装置54に表示された画像の一例を示す。診断対象ショベル30から受信した時系列データと、ショベル管理装置60から受信した典型的時系列データとが、グラフ形式で表示されている。横軸は経過時間を表し、縦軸は、エンジン回転数を表す。
図5Aにおいて、診断対象ショベル30から受信した時系列データが実線で示され、ショベル管理装置60から受信した典型的時系列データが破線で示されている。破線で示された典型的時系列データは、異常の程度が進み、故障に至った状態のエンジン回転数の時間変化を表している。図5Aに示した時系列データ及び典型的時系列データは、既定動作として油圧負荷動作が選択されたときのものである。故障に至った状態では、油圧負荷動作時にエンジン回転数が大きく低下している。この状態は、異常種別として、例えば燃料系異常または吸気系異常が発生している状態に相当する。
診断対象ショベル30の時系列データが、故障に至った状態の典型的時系列データに類似する場合には、診断対象ショベル30の異常の程度も進んでいると推定される。このように、図5Aに示したグラフから、診断対象ショベル30の異常の程度を直感的に把握することができる。このため、ショベル30の所有者がメンテナンスの必要性を容易に理解することができる。
図5Bに、ショベル支援装置50の表示装置54に表示された画像の他の例を示す。図5Bに示した例では、診断対象ショベル30の時系列データ、故障に至った状態の典型的時系列データに加えて、正常時の典型的時系列データが細い実線で示されている。正常時の典型的時系列データは、ショベル管理装置60からショベル支援装置50に送信される。正常時には、油圧負荷が印加されたときのエンジン回転数の一時的な低下幅が、故障時のそれより少なく、エンジン回転数が定常状態に回復するまでの時間が、故障時のそれより短い。
診断対象ショベル30の時系列データと、正常時の典型的時系列データとの相違から、診断対象ショベル30に何らかの異常が発生していることを直感的に把握することができる。
図5Cに、ショベル支援装置50の表示装置54に表示された画像のさらに他の例を示す。図5Cに示した例では、診断対象ショベル30の時系列データ、正常時及び故障に至った状態の典型的時系列データに加えて、正常状態から故障に至るまでの異常の程度が異なる複数の中間段階の典型的時系列データが、太さの異なる複数の破線で示されている。中間段階の典型的時系列データは、ショベル管理装置60からショベル支援装置50に送信される。
正常状態から故障に至るまでの中間段階の典型的時系列データと、診断対象ショベル30の時系列データとを比較することにより、診断対象ショベル30に発生している異常の程度を、より正確に把握することができる。このまま修理しないで運転を続けたら、いずれは故障に至る可能性が高いことを、直感的に把握することができる。
図6に、ショベル支援装置50の表示装置54に表示された画像のさらに他の例を示す。図6では、ショベル30の既定動作として、アイドリング動作が選択されている。時系列データ及び典型的時系列データは、エンジン回転数の時間変化を表している。表示画面の上段に、正常時の典型的時系列データが表示され、中段に、診断対象ショベル30の時系列データが表示され、下段に、故障に至った状態の典型的時系列データが表示されている。
診断対象ショベル30のアイドリング時のエンジン回転数の時間変化の振幅は、正常時の振幅よりも大きいが、故障に至った状態における振幅よりも小さいことがわかる。このことから、診断対象ショベル30に何らかの異常が発生しているが、異常の程度は、故障に至るまで進んでいないことが直感的に理解できる。ただし、このまま修理しないで運転を続けたら、いずれは故障に至る可能性が高いことを、直感的に把握することができる。
次に、図7を参照して、他の実施例によるショベル支援装置50について説明する。以下、図1〜図6に示した実施例との相違点について説明し、共通の構成については説明を省略する。図1〜図6に示した実施例では、図4Aに示したように、ショベル管理装置60が、診断結果に基づいて典型的時系列データを抽出した(ステップS03)。図7に示した実施例では、この抽出処理がショベル支援装置50で実行される。
図7は、診断対象ショベル30、ショベル管理装置60、及びショベル支援装置50の処理及び通信シーケンスを示す。ショベル管理装置60に構築されているデータベース70(図1、図2)の内容がショベル支援装置50に転送されている。ショベル支援装置50は、ショベル管理装置60から転送されたデータベース70の内容を記憶装置に格納する(ステップS05)。
診断対象ショベル30からショベル支援装置50に、診断結果及び時系列データが送信される。ショベル支援装置50は、受信した診断結果に基づいて、記憶装置に格納されているデータベースから典型的時系列データを抽出する(ステップS03)。この処理は、図4Aに示したショベル管理装置60で行われる抽出処理(ステップS03)と同一である。その後、診断対象ショベル30から受信した時系列データと、抽出された典型的時系列データとを対比させて、表示装置54(図3)に表示する(ステップS04)。このように、典型的時系列データの抽出をショベル支援装置50が実行することも可能である。
次に、図8A、図8B〜図11を参照して、ショベル30の状態の診断方法の一例について説明する。
図8Aに、複数のショベル30とショベル管理装置60との処理及びデータ転送シーケンスを示す。複数の正常なショベル30が既定動作を実行しているときに収集された時系列データが、ショベル管理装置60に送信される。ショベル管理装置60は、受信した複数の時系列データに基づいて、正常時の典型的時系列データを、該当の既定動作に対応するデータベース70(図1、図2)に追加する(ステップS10)。
図9Aに、ステップS10(図8A)のフローチャートを示す。まず、ステップS101において、正常時の複数の時系列データの各々の複数の特徴量を算出する。特徴量は、時系列データで特定された時間波形の形状を表す統計量である。特徴量として、平均値、標準偏差、最大波高値、ピークの数、信号非存在時間の最大値等を採用することができる。
図10を参照して、ピークの数及び信号非存在時間の最大値について説明する。図10に、時系列データで規定される時間波形の一部分を例示する。「ピークの数」は、例えば、波形が閾値Pth0を横切る箇所の数と定義される。図10に示した期間においては、交差箇所H1〜H4で、波形が閾値Pth0を横切っている。このため、ピークの数は4と算出される。
波形が閾値Pth1よりも低い区間を信号非存在区間と定義する。図10に示した例では、信号非存在区間T1〜T4が現れている。「信号非存在時間の最大値」は、複数の信号非存在区間の時間幅のうち最大の時間幅を意味する。図10に示した例では、信号非存在区間T3の時間幅が、信号非存在時間の最大値として採用される。一般的に、図2に示した既定動作が「A」であり、診断結果が「異常Y3」である状態における典型的時系列データのように、波形に周期の長いうねりがあると、信号非存在時間の最大値が大きくなる。時系列データの各々が、各特徴量を要素とする評価ベクトルで表される。
ステップS102(図9A)において、特徴量の各々の平均値及び標準偏差を用いて、平均値が0、標準偏差が1になるように、各特徴量を規格化する。規格化された特徴量を要素とする規格化評価ベクトルが得られる。
図11に、規格化評価ベクトルを元(エレメント)とするベクトル空間の一例を示す。ベクトル空間の次元数は、特徴量の個数に一致するが、図11では、ベクトル空間を、特徴量a及び特徴量bを要素とする2次元で表している。正常状態のショベル30から収集された時系列データに対応する規格化評価ベクトル80のほとんどは、原点を中心とした半径3(3σに相当)の球体90内に含まれる。
最も短い規格化評価ベクトルに対応する時系列データが、正常時における典型的時系列データとして、該当の既定動作のデータベース(図1、図2)に追加される。さらに、各特徴量を規格化するときに用いた平均値及び標準偏差が、既定動作ごとにデータベース70に追加される。この平均値及び標準偏差は、診断対象ショベル30から取得された時系列データの特徴量を規格化するときに用いられる。
図8に示すように、あるショベル30で異常が発生すると(ステップS12)、異常が発生したショベル30の状態の診断を行う(ステップS13)。診断は、例えば整備要員がショベル30を操作することにより実行される。
図9Bに、ステップS13(図8A)のフローチャートを示す。図4AのステップS01、図4BのステップS01、及び図7のステップS01の状態診断の処理も、ステップS13の処理と同一である。
ステップS131において、異常が発生したショベル30の既定動作中に、車両コントローラ31(図1)が、センサ33を通して時系列データを取得する。ステップS132において、取得された時系列データの特徴量を算出する。この算出処理は、ステップS101(図9A)の特徴量の算出処理と同一である。ステップS133において、特徴量を要素とする評価ベクトルを規格化する。この規格化処理は、ステップS102(図9A)の規格化処理と同一である。規格化処理で用いられる各特徴量の平均値と標準偏差は、ショベル管理装置60からショベル30に予め送信されている。規格化評価ベクトルの各要素、または規格化評価ベクトルの方向と長さによって、診断結果が表される。
同一の異常が発生している複数のショベル30から取得された時系列データの時間変動は類似する。このため、これらの時系列データに対応する規格化評価ベクトルは、ほぼ同一の方向を向く。異常種別が異なれば、規格化評価ベクトル80の方向も異なる。例えば、図11に示した例において、異常種別Xに対応する複数の規格化評価ベクトル80Xは、方向85Xに近い方向を向き、異常種別Yに対応する複数の規格化評価ベクトル80Yは、方向85Xとは異なる方向85Yに近い方向を向く。
図8Aに示すように、ショベル30が、診断結果(規格化評価ベクトル)、及び時系列データをショベル管理装置60に送信する。ショベル管理装置60は、受信した診断結果と時系列データとを関連付けて、データベース70(図1、図2)に追加する(ステップS14)。
図8Bに示すように、異常が発生したショベル30の診断を、ショベル30に代えてショベル管理装置60が行ってもよい。この場合には、ショベル30から時系列データがショベル管理装置60に送信される。ショベル管理装置60は、受信した時系列データに基づいて、ショベル30の診断をおこなう(ステップS13)。
次に、図12を参照して、図4Aに示した典型的時系列データの抽出方法(ステップS03)について説明する。
図12に、ステップS03(図4A)のフローチャートを示す。診断対象ショベル30から受信した診断結果(規格化評価ベクトル81(図11))から異常種別を推定する(ステップS031)。異常種別は、時系列データの複数の特徴量、より具体的には規格化評価ベクトル81の方向から推定することができる。診断対象ショベル30から受信した規格化評価ベクトル81が、方向85Xに近い方向を向く場合、診断対象ショベル30に、異常種別がXの異常が発生していると推定される。
ショベル管理装置60は、診断結果で示された異常種別と同一の異常種別に関連付けられた複数の典型的時系列データを、診断対象ショベル30が実行した既定動作に対応するデータベース70(図1、図2)から抽出する(ステップS032)。例えば、既定動作がAであり、異常種別がXである場合、診断結果が「異常X1」、「異常X2」、「異常X3」・・・に関連付けられた典型的時系列データが抽出される。
ステップS033(図12)において、抽出された複数の典型的時系列データから、表示すべき典型的時系列データを、さらに抽出する。一例として、異常の程度が最も大きい診断結果に対応付けられた典型的時系列データが抽出される。ステップS033で抽出された典型的時系列データが、図5Bに破線で示された故障時の典型的時系列データに相当する。ステップS033で、異常の程度が異なる複数の典型的時系列データを抽出することにより、図5Cに示した異常時1、異常時2、及び故障時に対応する複数の典型的時系列データを表示することができる。
図5A〜図5Cでは、ショベル支援装置50に表示される「稼動状態を示す物理量」として、エンジン回転数が選択された例が示されている。エンジン回転数の他に、他の物理量、例えば油圧ポンプ圧力が表示されるようにしてもよい。さらに、複数の物理量から、異常の発生を最も直感的に認識し易い時間変化を示す物理量を選択して表示するようにしてもよい。
複数の物理量について異常診断を行なう場合、評価対象の物理量ごとに、図11に示した規格化評価ベクトル81を求めることができる。最も長い規格化評価ベクトル81に対応する物理量が、時系列データの波形の異常を最も特徴的に表していると考えられる。従って、最も長い規格化評価ベクトル81に対応する物理量を、ショベル支援装置50に表示される「稼動状態を示す物理量」として選択することが好ましい。
以上実施例に沿って本発明を説明したが、本発明はこれらに制限されるものではない。例えば、種々の変更、改良、組み合わせ等が可能なことは当業者に自明であろう。
30 ショベル
31 車両コントローラ
32 電子制御ユニット(ECU)
33 センサ
34 通信装置
40 ネットワーク
50 ショベル支援装置
51 処理装置
511 時系列データ取得部
512 典型的時系列データ取得部
513 入力処理部
514 表示処理部
52 通信装置
53 入力装置
54 表示装置
60 ショベル管理装置
70 データベース
80 正常時の規格化評価ベクトル
81 規格化評価ベクトル
85X 異常種別Xの規格化評価ベクトルの方向
85Y 異常種別Yの規格化評価ベクトルの方向
90 半径3の球体

Claims (4)

  1. 表示装置と、
    通信装置と、
    処理装置と
    を有し、
    前記処理装置は、
    診断対象ショベルから、前記通信装置を介して、前記診断対象ショベルの稼働状態を示す時系列データを取得し、
    前記診断対象ショベルの診断結果とショベルの稼働状態を示す典型的時系列データとが関連付けられて記憶されたデータベースから、前記診断対象ショベルの診断結果に基づいて抽出された前記典型的時系列データを取得し、
    前記診断対象ショベルの前記時系列データと、前記データベースから取得された前記典型的時系列データとを対比させて、前記表示装置に表示するショベル支援装置。
  2. 前記診断結果は、前記時系列データの時間波形の形状を表す複数の特徴量を含み、
    前記データベースから、複数の前記特徴量に基づいて前記典型的時系列データが抽出される請求項1に記載のショベル支援装置。
  3. 前記処理装置は、
    正常なショベルから取得された稼働状態を示す正常時の前記時系列データを、前記診断対象ショベルの前記時系列データ、及び前記データベースから取得された前記典型的時系列データとともに、前記表示装置に表示する請求項1または2に記載のショベル支援装置。
  4. 前記データベースに、ショベルに発生している異常の程度に応じた複数の前記典型的時系列データが格納されており、
    前記データベースから、前記診断対象ショベルの診断結果に基づいて、異常の程度が異なる複数の前記典型的時系列データが抽出され、
    前記処理装置は、
    抽出された複数の前記典型的時系列データを取得し、
    前記診断対象ショベルの前記時系列データと、前記データベースから取得された複数の前記典型的時系列データとを対比させて、前記表示装置に表示する請求項1乃至3のいずれか1項に記載のショベル支援装置。
JP2015027105A 2015-02-16 2015-02-16 ショベル支援装置 Active JP6508963B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015027105A JP6508963B2 (ja) 2015-02-16 2015-02-16 ショベル支援装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015027105A JP6508963B2 (ja) 2015-02-16 2015-02-16 ショベル支援装置

Publications (2)

Publication Number Publication Date
JP2016151086A true JP2016151086A (ja) 2016-08-22
JP6508963B2 JP6508963B2 (ja) 2019-05-08

Family

ID=56696245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015027105A Active JP6508963B2 (ja) 2015-02-16 2015-02-16 ショベル支援装置

Country Status (1)

Country Link
JP (1) JP6508963B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112022000586T5 (de) 2021-03-17 2023-11-02 Komatsu Ltd. Fehlerdiagnosesystem und Fehlerdiagnoseverfahren für Arbeitsmaschinen
JP7514163B2 (ja) 2020-10-22 2024-07-10 日立建機株式会社 建設機械のエンジン診断装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002173954A (ja) * 2000-09-14 2002-06-21 Komatsu Ltd 建設機械の管理装置
JP2005063385A (ja) * 2003-08-20 2005-03-10 Kobe Steel Ltd 監視方法及び監視装置、並びにプログラム
JP2007186289A (ja) * 2006-01-12 2007-07-26 Kobelco Cranes Co Ltd 作業機械診断装置、診断方法及び作業機械
JP2010156152A (ja) * 2008-12-26 2010-07-15 Hitachi Constr Mach Co Ltd 建設機械の診断情報提供装置
WO2014013911A1 (ja) * 2012-07-19 2014-01-23 住友建機株式会社 ショベルの管理装置及び管理方法
JP2014021627A (ja) * 2012-07-13 2014-02-03 Hitachi Constr Mach Co Ltd 稼働機械の保守管理装置
WO2014119110A1 (ja) * 2013-01-30 2014-08-07 住友重機械工業株式会社 ショベルの異常判定方法、管理装置、及びショベル

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002173954A (ja) * 2000-09-14 2002-06-21 Komatsu Ltd 建設機械の管理装置
JP2005063385A (ja) * 2003-08-20 2005-03-10 Kobe Steel Ltd 監視方法及び監視装置、並びにプログラム
JP2007186289A (ja) * 2006-01-12 2007-07-26 Kobelco Cranes Co Ltd 作業機械診断装置、診断方法及び作業機械
JP2010156152A (ja) * 2008-12-26 2010-07-15 Hitachi Constr Mach Co Ltd 建設機械の診断情報提供装置
JP2014021627A (ja) * 2012-07-13 2014-02-03 Hitachi Constr Mach Co Ltd 稼働機械の保守管理装置
WO2014013911A1 (ja) * 2012-07-19 2014-01-23 住友建機株式会社 ショベルの管理装置及び管理方法
WO2014119110A1 (ja) * 2013-01-30 2014-08-07 住友重機械工業株式会社 ショベルの異常判定方法、管理装置、及びショベル

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7514163B2 (ja) 2020-10-22 2024-07-10 日立建機株式会社 建設機械のエンジン診断装置
DE112022000586T5 (de) 2021-03-17 2023-11-02 Komatsu Ltd. Fehlerdiagnosesystem und Fehlerdiagnoseverfahren für Arbeitsmaschinen

Also Published As

Publication number Publication date
JP6508963B2 (ja) 2019-05-08

Similar Documents

Publication Publication Date Title
US11541899B2 (en) Vehicle diagnosis apparatus, vehicle diagnosis system, and vehicle diagnosis program
WO2014207789A1 (ja) 状態監視装置
US9678845B2 (en) Abnormality diagnostic system and industrial machinery
JP2012094044A5 (ja)
WO2017090515A1 (ja) 機器診断装置及びシステム及び方法
KR101318168B1 (ko) 농기계의 고장을 진단하는 장치 및 방법
JP2019079356A (ja) 異常検出システムおよび異常検出方法
CN112947356A (zh) 控制方法、控制装置、机械装备和记录介质
JP4922265B2 (ja) プラント監視装置およびプラント監視方法
EP3327528A1 (en) Information processing apparatus, information processing system, information processing method, and information processing program
WO2023190234A1 (ja) 高炉の異常判定装置、高炉の異常判定方法、高炉の操業方法、高炉の操業システム、高炉の異常判定サーバ装置、高炉の異常判定サーバ装置のプログラム、及び表示端末装置
US20060136175A1 (en) Utility diagnosing equipment, operational program therefor, and utility diagnosing method
JP5949135B2 (ja) 異常診断方法及び異常診断装置
JP2009134470A (ja) 故障原因推測方法、故障原因推測プログラム、及び故障原因推測装置
EP2135144A1 (en) Machine condition monitoring using pattern rules
JP5565357B2 (ja) 設備診断装置、設備診断方法、設備診断プログラムおよびこれを記録したコンピュータ読み取り可能な記録媒体
JP6508963B2 (ja) ショベル支援装置
JP5948998B2 (ja) 異常診断装置
JP6347771B2 (ja) 異常診断装置、異常診断方法及び異常診断プログラム
US20200143004A1 (en) Visualization of machine structure damage from machine sensor data using machine learning
JP7467982B2 (ja) 異常判定装置及び異常判定方法
JP2013050759A (ja) 異常診断装置
WO2022118507A1 (ja) 異常診断システム及び異常診断方法
CN114391093A (zh) 异常判定装置以及异常判定方法
JP2020091669A (ja) 状態変化検出システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190402

R150 Certificate of patent or registration of utility model

Ref document number: 6508963

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150