JP2016142419A - 空気調和機及び空気調和方法 - Google Patents

空気調和機及び空気調和方法 Download PDF

Info

Publication number
JP2016142419A
JP2016142419A JP2015016534A JP2015016534A JP2016142419A JP 2016142419 A JP2016142419 A JP 2016142419A JP 2015016534 A JP2015016534 A JP 2015016534A JP 2015016534 A JP2015016534 A JP 2015016534A JP 2016142419 A JP2016142419 A JP 2016142419A
Authority
JP
Japan
Prior art keywords
refrigerant
flow rate
unit
supercooling
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015016534A
Other languages
English (en)
Inventor
和彦 谷
Kazuhiko Tani
和彦 谷
正圭 渡邉
Masakei Watanabe
正圭 渡邉
浦田 和幹
Kazumiki Urata
和幹 浦田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johnson Controls Hitachi Air Conditioning Technology Hong Kong Ltd
Original Assignee
Johnson Controls Hitachi Air Conditioning Technology Hong Kong Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johnson Controls Hitachi Air Conditioning Technology Hong Kong Ltd filed Critical Johnson Controls Hitachi Air Conditioning Technology Hong Kong Ltd
Priority to JP2015016534A priority Critical patent/JP2016142419A/ja
Publication of JP2016142419A publication Critical patent/JP2016142419A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

【課題】圧縮機が排出する冷媒量が少ないときでも安定した制御を可能とすることを課題とする。
【解決手段】冷媒を、アキュムレータ103へ送られる第1の冷媒、及び、膨張弁へ送られる第2の冷媒に分流する分岐部115と、第2の冷媒の流量を調整する過冷却用膨張弁110と、第1の冷媒と、第2の冷媒との間で熱交換を行うことにより、第2の冷媒を過冷却する過冷却熱交換器109と、過冷却熱交換器109の出口における冷媒の温度と、圧縮機104から吐出された冷媒の圧力とを基に、過冷却熱交換器109出口における冷媒の過冷却度を算出し、該算出した冷媒の過冷却度を基に、過冷却用膨張弁110を制御することにより、第1の冷媒の流量を調整する制御装置300と、を有することを特徴とする
【選択図】図1

Description

本発明は、過冷却熱交換器を有する空気調和機及び空気調和方法の技術に関する。
室内機と室外機とを接続する接続ガス配管が長くなる空気調和システム(以下、空調システムと称する)での冷房運転時において、蒸発器に流れる冷媒と、蒸発器に流れずアキュムレータ上流に直接流れる冷媒とに分け、各冷媒を過冷却熱交換器に通すことが知られている。過冷却熱交換器は、蒸発器に流れる冷媒と、蒸発器に流れずアキュムレータ上流に直接流れる冷媒との間で熱交換を行う。具体的には、蒸発器へ流れる冷媒は過冷却され、アキュムレータ上流に直接流れる冷媒は熱を与えられ、飽和蒸気となる。過冷却熱交換器を使用することにより、接続ガス配管に流れる、すなわち、蒸発器に流れる冷媒が過冷却されることで、冷媒循環量を少なくしても、所望の冷房能力が得られる。また、アキュムレータ上流に直接流れる冷媒が、飽和蒸気となることで、アキュムレータに冷媒を流しても液冷媒がアキュムレータにたまりにくくすることができる。このように、接続ガス配管に流れる冷媒循環量を少なくすることで、接続ガス配管における圧力損失を低減し、冷房能力の向上及び冷房消費電力の低減を図ることが知られている。
また、暖房運転時において、前記した過冷却熱交換器を用いることで、蒸発器に流れる冷媒循環量を少なくしても、所望の暖房能力を得、蒸発器の圧力損失を低減することで、暖房能力の向上及び暖房消費電力の低減を図ることが知られている。また、室外熱交換器の主膨張弁の小容量化によるコスト低減のために、過冷却熱交換器が用いられていることも広く知られている。
このような、蒸発器に流れる冷媒と、蒸発器に流れずアキュムレータ上流に直接流れる冷媒との流量調整は、圧縮機の吸入口側における冷媒の過熱度により行うのが一般的である(例えば、特許文献1参照)。
特開2005−345069号公報
ここで、圧縮機が排出する冷媒循環量が少なくなるほど、膨張弁前後の差圧が小さくなり、蒸発機出口の過熱度が不安定になる。ここで、過熱度が不安定になるとは、冷媒の過熱度の値が上下にぶれることをいう。特許文献1に記載の技術のように、過熱度によって蒸発器に流れる冷媒と、蒸発器に流れずアキュムレータ上流に流れる冷媒との流量調整が行われると、過熱度の不安定性により、各流量も不安定となってしまう。このようになると、過冷却熱交換器から、アキュムレータ上流に過度に冷媒が流れてしまい、アキュムレータがオーバーフローを起こしてしまうおそれがある。アキュムレータのオーバーフローが生じると、圧縮機の吸入口に液冷媒を戻すことになり、圧縮機の故障の原因となる。特に暖房運転においては、過冷却熱交換器に流れる冷媒量も少なくなることが多いため、圧縮機の吸入口における過熱度が不安定になりやすい傾向にある。
このような背景に鑑みて本発明がなされたのであり、本発明は、圧縮機が排出する冷媒量が少ないときでも安定した制御を可能とすることを課題とする。
前記した課題を解決するため、本発明は、冷凍サイクルにおいて、凝縮器から膨張弁及び蒸発器へと向かう第2の冷媒を膨張弁の手前で分流して、第1の冷媒とし、過冷却熱交換器の出口における冷媒の過冷却度を基に、第1の冷媒の流量を調整することを特徴とする。
本発明によれば、圧縮機が排出する冷媒量が少ないときでも安定した制御を可能とすることができる。
第1実施形態に係る空気調和機の冷媒回路図である。 本実施形態に係る制御装置の構成例を示す図である。 第1実施形態に係る制御動作を示すフローチャートである。 第2実施形態に係る空気調和機の冷媒回路図である。 第2実施形態に係る制御動作を示すフローチャート(その1)である。 第2実施形態に係る制御動作を示すフローチャート(その2)である。
次に、本発明を実施するための形態(「実施形態」という)について、適宜図面を参照しながら詳細に説明する。
《第1実施形態》
[空気調和機の構成]
図1は、第1実施形態に係る空気調和機の冷媒回路図である。
なお、図1において、一点鎖線の矢印は情報の流れを示している。
図1の空気調和機Zにおいて、室外ユニット(室外機)100は、アキュムレータ103、圧縮機104、圧力センサ105、四方弁106、室外側ガス阻止弁107、室外側液阻止弁108、過冷却熱交換器(熱交換部)109、過冷却用膨張弁(流量調整部、流量調整弁)110、室外膨張弁(膨張弁)111、室外熱交換器112を、冷媒配管によって順次接続した冷凍サイクルを有する。
また、室外ユニット100は、室外ユニット送風機113、冷房時用サーミスタ(温度計測部)101、暖房時用サーミスタ(温度計測部)102が設けられている。また、空気調和機Zは、冷房時用サーミスタ101、暖房時用サーミスタ102、圧力センサ105から取得した値を基に、過冷却熱交換器109に流れる流量を過冷却用膨張弁110により調整する制御装置(制御部)300を有している。
なお、冷房時用サーミスタ101は、冷房運転時における過冷却熱交換器109の出口における冷媒の温度(冷媒温度)を計測する。そして、暖房時用サーミスタ102は、暖房運転時における過冷却熱交換器109の出口における冷媒温度を計測する。
また、室内側ガス阻止弁201、室内熱交換器202、室内膨張弁(膨張弁)203、室内側液阻止弁204は、室内ユニット200に配設される。また、この室内ユニット200は、並列に複数台接続されてもよい。
四方弁106は、冷媒の流れの方向を切換えるための弁である。
暖房運転時において、この四方弁106は、圧縮機104の吐出側と室内熱交換器202とを接続し、圧縮機104の吸入側と室外熱交換器112とを接続するように、冷媒回路を切換える。
また、冷房運転時において、四方弁106は、圧縮機104の吐出側と室外熱交換器112とを接続し、圧縮機104の吸入側と室内熱交換器202とを接続するように、冷媒流路を切換える。
室内熱交換器202は、伝熱管と多数のフィンとにより構成されるクロスフィン式のフィン・アンド・チューブ型熱交換器等である。この室内熱交換器202は、冷房運転時では冷媒の蒸発器として機能し、室内の空気を冷却する。また、室内熱交換器202は、暖房運転時では冷媒の凝縮器として機能し、室内の空気を加熱する。
室内膨張弁203及び室外膨張弁111は、室内熱交換器202と室外熱交換器112の間の冷媒配管に接続配置されている。この室内膨張弁203及び室外膨張弁111は、絞り開度が可変であり、冷房回路内に流れる冷媒の流量の調整等を行う。
室外熱交換器112は、伝熱管と多数のフィンとにより構成されるクロスフィン式のフィン・アンド・チューブ型熱交換器等である。この室外熱交換器112は、そのガス側が四方弁106に接続され、液側が室外膨張弁111に接続される。室外熱交換器112は、冷房運転時では冷媒の凝縮器として機能し、暖房運転時では冷媒の蒸発器として機能する。
分岐部115は、冷媒を分流する。
過冷却熱交換器112は冷媒間で熱交換を行わせる。
分岐部115及び過冷却熱交換器112については後記する。
図1に示される空気調和機Zでは、冷房運転時には実線の矢印の方向に冷媒が循環し、暖房運転時には破線の矢印の方向に冷媒が循環する。
(冷房運転時の冷媒循環)
冷房運転時において、圧縮機104から吐出された高温高圧の冷媒は、冷房側に切り替えられた四方弁106を経由し、室外熱交換器112へ流入する。ここで、冷媒は室外ユニット100が吸入する空気と熱交換する。これにより、冷媒は凝縮し液冷媒となる。この際、冷媒から空気に放熱がなされる。
室外熱交換器112から流出した液冷媒は、室外膨張弁111及び室内膨張弁203で膨張することにより、低温低圧の状態で室内熱交換器202へ流入する。室内熱交換器202は蒸発器として機能し、ここで室内ユニット200が吸入する空気と熱交換することにより冷媒は蒸発し、ガス冷媒となる。この際、空気から冷媒に吸熱されることにより室内が冷房される。
なお、室外膨張弁111で膨張した冷媒は分岐部115で分流される。分流され、配管117に流入する冷媒(第1の冷媒)は、過冷却用膨張弁110を通過し、さらに、過冷却用膨張弁110で膨張することによる低圧低温の状態で、過冷却熱交換器109に流入する。この低圧低温の第1の冷媒と、分岐部115で分流されなかった冷媒(第2の冷媒)とが熱交換される。この熱交換の結果、第1の冷媒は飽和蒸気となる。
また、過冷却用膨張弁110は、第1の冷媒の流量を調整することで、第1の冷媒及び
第2の冷媒の流量を調整する。
また、熱交換の結果、第1の冷媒によって第2の冷媒は過冷却され、温度が低下する。また、第1の冷媒は、過冷却熱交換器109で吸熱し、蒸発した後、圧縮機104の入口側(ここでは、アキュムレータ103の入口側)で四方弁106からの第2の冷媒と合流する。アキュムレータ103が備えられていない場合、圧縮機104の入口側で、第1の冷媒と、第2の冷媒とが合流する。
(暖房運転時の冷媒循環)
暖房運転時では、四方弁106が切り替えられることにより、冷媒の流れの一部は、冷房運転時とは逆の流れとなる。すなわち、室内ユニット200において冷媒が凝縮することで、冷媒から室内空気に放熱がなされることにより、室内の暖房がなされる。暖房運転の場合、過冷却熱交換器109から流出した冷媒(液)は分岐部115で分流される。そして、分流され、配管117に流入する冷媒(第3の冷媒:第1の冷媒に相当)が、過冷却用膨張弁110を通過した後、過冷却熱交換器109を通過する。そして、冷房運転時と同様に、第3の冷媒は、過冷却熱交換器109において、分流される前の冷媒との間で熱交換することで、吸熱し、蒸発することで気化する。
また、過冷却熱交換器109において、第3の冷媒と、分流される前の冷媒とが熱交換されることで、分流される前の冷媒は過冷却される。従って、分岐部115で分流されなかった冷媒である第4の冷媒(第2の冷媒に相当)は過冷却された状態である。
その後、第3の冷媒と、室外熱交換器112と四方弁106とを通過した第4の冷媒とは圧縮機104の入口側(ここでは、アキュムレータ103の入口側)で合流する。アキュムレータ103が備えられていない場合、圧縮機104の入口側で、第3の冷媒と、第4の冷媒とが合流する。
また、過冷却用膨張弁110は、第1の冷媒の流量を調整することで、第1の冷媒(第3の冷媒)及び第2の冷媒(第4の冷媒)の流量を調整する。
なお、本実施形態は、分岐部115は過冷却熱交換器112に対し室外熱交換器112側に備えられているが、過冷却熱交換器112に対し室内熱交換器202側に備えられてもよい。
[制御装置の構成]
図2は、本実施形態に係る制御装置の構成例を示す図である。適宜、図1を参照する。
制御装置300は、メモリ301、CPU(Central Processing Unit)等の演算装置302、データ入力装置303及びデータ出力装置304を有する。
データ入力装置303は、冷房時用サーミスタ101、暖房時用サーミスタ102等から送られたデータを取得する。
データ出力装置304は、過冷却用膨張弁110等に開度データを送る。
メモリ301に格納されているプログラムが演算装置302によって実行されることにより、メモリ301には、処理部310、処理部310を構成する温度取得部311、圧力値取得部312、飽和温度算出部313、過冷却度算出部314、判定部315、弁制御部316、モード判定部317が具現化している。
温度取得部311は、冷房時用サーミスタ101、暖房時用サーミスタ102等から冷媒温度に関するデータを取得する。
圧力値取得部312は、圧縮機104から吐出した冷媒の圧力値に関するデータを圧力センサ105から取得する。
飽和温度算出部313は、圧力値取得部312が取得した圧力値を基に、冷媒液の飽和温度(冷媒液飽和温度)を算出する。
過冷却度算出部314は、飽和温度算出部313が算出した冷媒液飽和温度と、温度取得部311が取得した冷媒温度とを基に、冷媒の過冷却度を算出する。
判定部315は、過冷却度と、予め設定されている第1の設定値及び第2の設定値との大小関係を判定する。
弁制御部316は、判定部315による判定結果を基に、過冷却用膨張弁110の開度制御を行う。
モード判定部317は、現在の空気調和機Zの運転モードが冷房運転か、暖房運転かを判定する。
[フローチャート]
図3は、第1実施形態に係る制御動作を示すフローチャートである。適宜図1及び図2を参照する。
まず、ユーザが空気調和機ZのスイッチをONすることにより、冷房運転又は暖房運転(運転)が開始される(S101)。
次に、温度取得部311は、過冷却熱交換器109の出口の冷媒温度(過冷却熱交換器出口温度)を取得する(S102)。ステップS102において、温度取得部311は、冷房運転時では、冷房時用サーミスタ101から過冷却熱交換器109の出口の冷媒温度を取得する。また、ステップS102において、暖房運転時では、温度取得部311は暖房時用サーミスタ102から過冷却熱交換器109の出口の冷媒温度を取得する。
さらに、圧力値取得部312は、圧縮機104から吐出した冷媒の圧力値を圧力センサ105から取得する(S103)。
次に、飽和温度算出部313は、ステップS103で取得した圧力値と、冷媒の物性とを基に、高圧側(圧縮機104の吐出側)における冷媒液飽和温度を算出する(S104)。
続いて、過冷却度算出部314は、過冷却熱交換器109の出口(冷房運転時と暖房運転時とでは異なる)における過冷却度Vを算出する(S105)。冷房運転時では、ステップS102で冷房時用サーミスタ101により取得した過冷却熱交換器109の出口の冷媒温度から、ステップS104で算出した冷媒液飽和温度を差し引くことにより過冷却度Vを算出する。また、暖房運転時では、過冷却熱交換器109の入口と出口とが逆になり、ステップS102で取得した暖房時用サーミスタ102により取得した過冷却熱交換器109の出口の冷媒温度から、ステップS104で算出した冷媒液飽和温度を差し引くことにより過冷却度Vを算出する。
なお、ステップS102や、ステップS105において、現在の運転モードが冷房運転か、暖房運転かの判定は、モード判定部317により行われる。
次に、判定部315は、ステップS105で算出した過冷却度Vが予め定められている第1の設定値V1(所定の下限値)未満であるか否かを判定する(S111)。第1の設定値V1は、例えば、冷房運転時では15℃であり、暖房運転時では5℃である。
ステップS111の結果、過冷却度Vが第1の設定値V1未満である場合(S111→Yes)、弁制御部316は、過冷却用膨張弁110を開く方向に調整し(過冷却用膨張弁110:開、S112)、処理部310は、ステップS102へ処理を戻す。すなわち、ステップS112において、弁制御部316は、過冷却用膨張弁110の開度を、現在の開度より大きくする。なお、既に、過冷却用膨張弁110の開度が最大である場合、弁制御部316は、過冷却用膨張弁110の開度を、現在の開度で維持する。
ステップS111の結果、過冷却度Vが予め定められている第1の設定値V1以上である場合(S111→No)は、判定部315は、ステップS105で算出した過冷却度Vが予め定められている第2の設定値V2(所定の上限値)より大きいか否かを判定する(S121)。第2の設定値V2は、例えば、冷房運転時では20℃であり、暖房運転時では10℃である。ちなみに、第1の設定値V1≦第2の設定値V2である(第1の設定値V1と、第2の設定値V2とが同じ値でもよい)。
ステップS121の結果、過冷却度Vが第2の設定値V2より大きい場合(S121→Yes)、弁制御部316は、過冷却用膨張弁110を絞る方向に調整し(過冷却用膨張弁110:閉、S122)、処理部310はステップS102に処理を戻す。すなわち、ステップS122において、弁制御部316は、過冷却用膨張弁110の開度を、現在の開度より小さくする。なお、既に、過冷却用膨張弁110の開度が最小である場合、弁制御部316は、過冷却用膨張弁110の開度を、現在の開度で維持する。
ステップS121の結果、過冷却度Vが第2の設定値V2以下である場合(S121→No)、弁制御部316は、過冷却用膨張弁110を動かさないで保持し(過冷却用膨張弁110:保持、S123)、処理部310はステップS102に処理を戻す。すなわち、ステップS123において、弁制御部316は、過冷却用膨張弁110の開度を、現在の開度で維持する。
本実施形態によれば、過熱度ではなく過冷却度を基に、過冷却用膨張弁110を制御することで、冷媒循環量が小さい場合でも安定した過冷却用膨張弁110の制御を行うことができる。
従って、図3に示す一連の処理を繰り返すことにより、空気調和機Zは冷房運転でも暖房運転でも効率よく過冷却熱交換器109における流量調整が可能となる。
また、本実施形態では、過冷却熱交換器109の両側に冷房時用サーミスタ101、暖房時用サーミスタ102が設置され、冷房運転時、暖房運転時で、どちらのサーミスタから取得した冷媒の温度を使用するかを切り替えている。このようにすることで、冷房運転時においても、暖房運転時においても、過冷却熱交換器109出口における冷媒温度を取得することができる。これにより、ヒートポンプ式の空気調和機Zでも、過冷却熱交換器109における流量調整が可能となる。
《第2実施形態》
[空気調和機の構成]
図4は、第2実施形態に係る空気調和機の冷媒回路図である。
図4に示される空気調和機Zaは、図1で示される空気調和機Zと比較し、過冷却熱交換器109と室外膨張弁111と間にサブクーラ熱交換器121が追加されている。また、暖房時用サーミスタ102(図1)が省略され、代わりに、室外熱交換器112近傍の空気温度(外気温度)を計測する外気温サーミスタ(外気温度計測部)114が備えられている。その他の回路構成は、図1で示される空気調和機Zと同様であるので、同一の符号を付して説明を省略する。
このサブクーラ熱交換器121は、実線矢印の方向に冷媒が流れる冷房運転時には、凝縮器(室外熱交換器112)のサブクールを助長する効果がある。
また、サブクーラ熱交換器121は、破線矢印の方向に冷媒が流れる暖房運転時には、室外熱交換器112のドレンパン内の水の凍結を防止する効果がある。その一方で、暖房運転時において、このサブクーラ熱交換器121を通過する冷媒温度が外気温度を超える場合、サブクーラ熱交換器121で放熱が行われてしまい熱ロスが発生してしまうデメリットがある。
[制御装置の構成]
なお、制御装置300の構成は、以下の点以外は第1実施形態と同様であるので、ここでは図示及び説明を省略する。
(1)温度取得部311が、冷房時用サーミスタ101から冷媒の温度に関するデータを取得するとともに、外気温サーミスタ114から外気温に関するデータを取得する。
(2)判定部315が、冷房運転時では、過冷却度と、予め設定されている第1の設定値及び第2の設定値との大小関係を判定するとともに、暖房運転時では、外気温と、冷房時用サーミスタ101から得られた冷媒温度との大小関係を判定する。
[フローチャート]
図5及び図6は、第2実施形態に係る制御動作を示すフローチャートである。適宜、図4及び図5を参照する。
前記したように、図4に示される空気調和機Zaは、暖房運転時に、サブクーラ熱交換器121で熱ロスを発生するおそれがある。そこで、図4に示す制御を実行することにより、暖房運転時により効率よく過冷却熱交換器109の流量を調整することが可能となる。
まず、ユーザが空気調和機ZaのスイッチをONすることにより、冷房運転又は暖房運転(運転)が開始される(図5のS201)。
次に、モード判定部317は、運転モードが冷房運転か否かを判定する(S202)。
(冷房運転の場合)
ステップS202の結果、運転モードが冷房運転の場合(S202→Yes)、温度取得部311は、過冷却熱交換器109の出口の冷媒温度(過冷却熱交換器出口温度)を取得する(S211)。ステップS211において、温度取得部311は、冷房時用サーミスタ101から過冷却熱交換器109の出口の冷媒温度を取得する。
また、圧力値取得部312は、圧縮機104から吐出した冷媒の圧力値を圧力センサ105から取得する(S212)。
次に、飽和温度算出部313は、ステップS212で取得した圧力値から冷媒の物性により、過冷却熱交換器109の出口における冷媒液飽和温度を算出する(S213)。
続いて、過冷却度算出部314は、ステップS211で取得した過冷却熱交換器109の出口の冷媒温度から、ステップS213で算出した冷媒液飽和温度を差し引くことにより過冷却度Vを算出する(S214)。具体的には、過冷却度算出部314は、ステップS211において、冷房時用サーミスタ101から取得した過冷却熱交換器109の出口の冷媒温度から、ステップS213で算出した冷媒液飽和温度を差し引くことにより過冷却度Vを算出する。
次に、判定部315は、ステップS214において算出した過冷却度Vが予め定められている第1の設定値V1未満であるか否かを判定する(S221)。第1の設定値V1は、例えば15℃である。
ステップS221の結果、過冷却度Vが第1の設定値V1未満である場合(S221→Yes)、弁制御部316は、過冷却用膨張弁110を開く方向に調整し(過冷却用膨張弁110:開、S222)、処理部310は、ステップS102へ処理を戻す。すなわち、ステップS222において、弁制御部316は、過冷却用膨張弁110の開度を、現在の開度より大きくする。なお、既に、過冷却用膨張弁110の開度が最大である場合、弁制御部316は、過冷却用膨張弁110の開度を、現在の開度で維持する。
ステップS221の結果、過冷却度Vが第1の設定値V1以上である場合(S221→No)、判定部315は、ステップS214で算出した過冷却度Vが予め定められている第2設定値V2より大きいか否かを判定する(S231)。第2の設定値V2は、例えば20℃である。ちなみに、第1の設定値V1≦第2の設定値V2である(第1の設定値V1と、第2の設定値V2とが同じ値でもよい)。
ステップS231の結果、過冷却度Vが第2の設定値V2より大きい場合(S231→Yes)、弁制御部316は過冷却用膨張弁110を絞る方向に調整し(過冷却用膨張弁110:閉、S232)、処理部310はステップS102へ処理を戻す。すなわち、ステップS232において、弁制御部316は、過冷却用膨張弁110の開度を、現在の開度より小さくする。なお、既に、過冷却用膨張弁110の開度が最小である場合、弁制御部316は、過冷却用膨張弁110の開度を、現在の開度で維持する。
ステップS231の結果、過冷却度Vが第2の設定値V2以下の場合(S231→No)、弁制御部316は、過冷却用膨張弁110を動かさないで保持し(過冷却用膨張弁110:保持、S233)、処理部310はステップS102に処理を戻す。すなわち、ステップS122において、弁制御部316は、過冷却用膨張弁110の開度を、現在の開度で維持する。
ステップS211〜S233の処理を行うことで、空気調和機Zaは、第1実施形態における空気調和機Zと同じ効果を得ることができる。
(暖房運転の場合)
ステップS102の結果、運転モードが冷房運転ではない場合、すなわち、暖房運転である場合(S102→No)、温度取得部311は、室外ユニット100に取り付けられた外気温サーミスタ114から外気温度E1を取得する(図6のS241)。
また、温度取得部311は、過冷却熱交換器109の出口の冷媒温度(過冷却熱交換器出口温度)E2を取得する(S242)。具体的には、温度取得部311は、暖房時用サーミスタ102から過冷却熱交換器109の出口の冷媒温度E2を取得する。
次に、判定部315は、ステップS241で取得した過冷却熱交換器109の出口の冷媒温度E2が外気温度E1+αより大きいか否かを判定する(S251)。ここで、αは、制御上の補正値であり、例えば、α=0〜3℃である。
ステップ251の結果、過冷却熱交換器109の出口の冷媒温度E2が外気温度E1+αより大きい場合(S251→Yes)、弁制御部316は、過冷却用膨張弁110を開く方向で調整し(過冷却用膨張弁110:開、S252)、処理部310は、図6のステップ102へ処理を戻す。すなわち、ステップS252において、弁制御部316は、過冷却用膨張弁110の開度を、現在の開度より大きくする。なお、既に、過冷却用膨張弁110の開度が最大である場合、弁制御部316は、過冷却用膨張弁110の開度を、現在の開度で維持する。
ステップ251の結果、過冷却熱交換器109の出口の冷媒温度E2が外気温度E1+α以下である場合(S251→No)、判定部315は過冷却熱交換器109の出口の冷媒温度E2が外気温度E1−α未満であるか判定する(S261)。
ステップS261の結果、過冷却熱交換器109の出口の冷媒温度E2が外気温度E1−α未満の場合(S261→Yes)、弁制御部316は、過冷却用膨張弁110を絞る方向で調整し(過冷却用膨張弁110:閉、S262)、処理部310は、図6のステップ102へ処理を戻す。すなわち、ステップS262において、弁制御部316は、過冷却用膨張弁110の開度を、現在の開度より小さくする。なお、既に、過冷却用膨張弁110の開度が最小である場合、弁制御部316は、過冷却用膨張弁110の開度を、現在の開度で維持する。
ステップ261の結果、過冷却熱交換器109の出口の冷媒温度E2が外気温度E1−α以上である場合(S261→No)、弁制御部316は、過冷却用膨張弁110を動かさないで保持し(過冷却用膨張弁110:保持、S263)、処理部310は、図6のステップ102へ処理を戻す。すなわち、ステップS263において、弁制御部316は、過冷却用膨張弁110の開度を、現在の開度で維持する。
本実施形態によれば、暖房運転時において、冷媒の温度を外気温度+αより低くすることで、サブクーラ熱交換器121での放熱を防止することができ、暖房運転時におけるサブクーラ熱交換器121での熱ロスを防ぐことができる。
また、暖房運転時において、冷媒の温度を外気温度−αより高くすることで、アキュムレータ103もしくは圧縮機104へ過度に冷媒が流れることを防止することができる。
つまり、第2実施形態によれば、図6における一連の処理を繰り返すことにより、図4のサブクーラ熱交換器121を有する回路においても、冷房運転時に効率よく過冷却熱交換器109の流量調整が可能となり、かつ、暖房運転時に熱ロスを生じることなく過冷却熱交換器109の流量調整が可能となる。
なお、第1実施形態における空気調和機Z及び第2実施形態における空気調和機Zaにおいて、冷房時用サーミスタ101、暖房時用サーミスタ102、過冷却熱交換器109、過冷却用膨張弁110、外気温サーミスタ114及び分岐部115は、図1や、図4に示すように、室外ユニット100に備えられることが望ましい。このようにすることで、室内ユニット200の構成を少なくすることができ、室内ユニット200の小型化を実現することができる。
また、本実施形態では、空気調和機Z,Zaがヒートポンプ式であることを前提していているが、ヒートポンプ式でなくてもよい。この場合、図1における冷房時用サーミスタ101、暖房時用サーミスタ102の双方が備えられる必要はない。つまり、図1における冷房時用サーミスタ101、暖房時用サーミスタ102のうち、過冷却熱交換器109の出口側に相当するものが1つ備えられていればよい。そして、図4における冷房時用サーミスタ101、外気温サーミスタ114の双方が備えられる必要もない。空気調和機Zaが冷房機であれば、冷房時用サーミスタ101のみが備えられ、図5のステップS202及び図6の処理が省略されてもよい。同様に、空気調和機Zaが暖房機であれば、外気温サーミスタ1114のみが備えられ、図5のステップS202〜S233の処理が省略されてもよい。
本発明は前記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、前記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明したすべての構成を有するものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
また、前記した各構成、機能、各部310〜317等は、それらの一部又はすべてを、例えば集積回路で設計すること等によりハードウェアで実現してもよい。また、図2に示すように、前記した各構成、機能等は、CPU等の演算装置302がそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、HD(Hard Disk)に格納すること以外に、メモリや、SSD(Solid State Drive)等の記録装置、又は、IC(Integrated Circuit)カードや、SD(Secure Digital)カード、DVD(Digital Versatile Disc)等の記録媒体に格納することができる。
また、各実施形態において、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしもすべての制御線や情報線を示しているとは限らない。実際には、ほとんどすべての構成が相互に接続されていると考えてよい。
100 室外ユニット(室外機)
101 冷房時用サーミスタ(温度計測部)
102 暖房時用サーミスタ(温度計測部)
103 アキュムレータ
104 圧縮機
105 圧力センサ
106 四方弁
109 過冷却熱交換器(熱交換部)
110 過冷却用膨張弁(流量調整部、流量調整弁)
111 室外膨張弁(膨張弁)
112 室外熱交換器(凝縮器、蒸発器)
114 外気温サーミスタ(外気温度計測部)
115 分岐部
200 室内ユニット
202 室内熱交換器(凝縮器、蒸発器)
203 室内膨張弁(膨張弁)
300 制御装置(制御部)
303 データ入力装置
304 データ出力装置
310 処理部
311 温度取得部
312 圧力値取得部
313 飽和温度算出部
314 過冷却度算出部
315 判定部
316 弁制御部
317 モード判定部
Z,Za 空気調和機

Claims (9)

  1. 凝縮器と、圧縮機と、蒸発器と、膨張弁とを備える冷凍サイクルと、
    前記冷凍サイクルにおいて、前記凝縮器から前記膨張弁及び前記蒸発器へと向かう第2の冷媒を前記膨張弁の手前で分流して、第1の冷媒とする分岐部と、
    前記第1の冷媒の流量を調整する流量調整部と、
    前記流量調整部での流量調整によって減圧された第1の冷媒と、前記第2の冷媒とを熱交換して、前記第2の冷媒を冷却する熱交換部と、
    前記熱交換部の出口における冷媒の温度と、前記圧縮機から吐出された冷媒の圧力とを基に、前記熱交換部の出口における冷媒の過冷却度を算出し、該算出した冷媒の過冷却度を基に、前記流量調整部を制御することにより、前記第1の冷媒の流量を調整する制御部と、
    を有することを特徴とする空気調和機。
  2. 前記熱交換部の両側に温度計測部が備えられ、冷房運転時及び暖房運転時において、前記温度計測部が切り替えられることで、冷房運転時及び暖房運転時それぞれにおける前記熱交換部の出口における冷媒の温度が計測される
    ことを特徴とする請求項1に記載の空気調和機。
  3. 前記流量調整部は、開度を変化させることによって前記第1の冷媒の流量を調整する流量調整弁であり、
    前記制御部は、
    前記算出された冷媒の過冷却度が、所定の上限値及び所定の下限値の間に入っている場合、前記流量調整弁の開度を維持し、
    前記算出された冷媒の過冷却度が、前記所定の下限値より小さい場合、前記流量調整弁の開度を現在の開度より大きくし、
    前記算出された冷媒の過冷却度が、前記所定の上限値より大きい場合、前記流量調整弁の開度を現在の開度より小さくする
    ことを特徴とする請求項1又は請求項2に記載の空気調和機。
  4. 前記制御部は、
    冷房運転時において、
    前記熱交換部の出口における冷媒の温度と、前記圧縮機から吐出された冷媒の圧力とを基に、前記熱交換部の出口における冷媒の過冷却度を算出し、該算出した冷媒の過冷却度を基に、前記流量調整部を制御することにより、前記第1の冷媒の流量を調整する
    ことを特徴とする請求項1に記載の空気調和機。
  5. 前記流量調整部は、開度を変化させることによって前記第1の冷媒の流量を調整する流量調整弁であり、
    前記制御部は、
    冷房運転時において、
    前記算出された冷媒の過冷却度が、上限値及び所定の下限値の間に入っている場合、前記流量調整弁の開度を維持し、
    前記算出された冷媒の過冷却度が、前記所定の下限値より小さい場合、前記流量調整弁の開度を現在の開度より大きくし、
    前記算出された冷媒の過冷却度が、前記所定の上限値より大きい場合、前記流量調整弁の開度を現在の開度より小さくする
    ことを特徴とする請求項4に記載の空気調和機。
  6. 前記蒸発器の前段にサブクーラ熱交換器が備えられるとともに、外気の温度を計測する外気温度計測部が備えられ、
    前記制御部は、
    暖房運転時において、
    前記熱交換部の出口における冷媒の温度と、前記外気温度計測部によって計測された外気の温度と、を基に、前記流量調整部を制御することにより、前記第1の冷媒の流量を調整する
    ことを特徴とする請求項4又は請求項5に記載の空気調和機。
  7. 前記流量調整部は、開度を変化させることによって前記第1の冷媒の流量を調整する流量調整弁であり、
    前記制御部は、
    前記暖房運転時において、
    前記熱交換部の出口における冷媒の温度が、前記外気の温度を中心とした所定の範囲に入っている場合、前記流量調整弁の開度を維持し、
    前記熱交換部の出口における冷媒の温度が、外気の温度を中心とした所定の範囲における下限値より小さい場合、前記流量調整弁の開度を現在の開度より大きくし、
    前記熱交換部の出口における冷媒の温度が、外気の温度を中心とした所定の範囲における上限値より大きい場合、前記流量調整弁の開度を現在の開度より小さくする
    ことを特徴とする請求項6に記載の空気調和機。
  8. 前記温度計測部、前記分岐部、前記流量調整部及び前記熱交換部は、室外機に備えられる
    ことを特徴とする請求項1から請求項7のいずれか一項に記載の空気調和機。
  9. 凝縮器と、圧縮機と、蒸発器と、膨張弁とを備える冷凍サイクルと、
    前記冷凍サイクルにおいて、前記凝縮器から前記膨張弁及び前記蒸発器へと向かう第2の冷媒を前記膨張弁の手前で分流して、第1の冷媒とする分岐部と、
    前記第1の冷媒の流量を調整する流量調整部と、
    前記流量調整部での流量調整によって減圧された第1の冷媒と、前記第2の冷媒とを熱交換して、前記第2の冷媒を冷却する熱交換部と、
    を有する空気調和機の制御部が
    前記熱交換部の出口における冷媒の温度と、前記圧縮機から吐出された冷媒の圧力とを基に、前記熱交換部の出口における冷媒の過冷却度を算出し、
    該算出した冷媒の過冷却度を基に、前記流量調整部を制御することにより、前記第1の冷媒の流量を調整する
    ことを特徴とする空気調和方法。
JP2015016534A 2015-01-30 2015-01-30 空気調和機及び空気調和方法 Pending JP2016142419A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015016534A JP2016142419A (ja) 2015-01-30 2015-01-30 空気調和機及び空気調和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015016534A JP2016142419A (ja) 2015-01-30 2015-01-30 空気調和機及び空気調和方法

Publications (1)

Publication Number Publication Date
JP2016142419A true JP2016142419A (ja) 2016-08-08

Family

ID=56568520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015016534A Pending JP2016142419A (ja) 2015-01-30 2015-01-30 空気調和機及び空気調和方法

Country Status (1)

Country Link
JP (1) JP2016142419A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108397825A (zh) * 2017-02-06 2018-08-14 松下知识产权经营株式会社 空气调节装置
WO2023142498A1 (zh) * 2022-01-26 2023-08-03 广东美的制冷设备有限公司 空调器及其控制器、控制方法及计算机可读存储介质

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108397825A (zh) * 2017-02-06 2018-08-14 松下知识产权经营株式会社 空气调节装置
WO2023142498A1 (zh) * 2022-01-26 2023-08-03 广东美的制冷设备有限公司 空调器及其控制器、控制方法及计算机可读存储介质

Similar Documents

Publication Publication Date Title
US20220381525A1 (en) Systems and methods for controlling free cooling and integrated free cooling
EP3228951B1 (en) Refrigeration cycle apparatus
JP6021955B2 (ja) 冷凍サイクル装置、及び、冷凍サイクル装置の制御方法
JP5818979B2 (ja) 空気調和装置
JPWO2016208042A1 (ja) 空気調和装置
JP6180165B2 (ja) 空気調和装置
JP6422590B2 (ja) 熱源システム
JP2009243832A (ja) 空気調和装置
JP5927670B2 (ja) 空気調和装置
JP4503630B2 (ja) 空気調和システム及びその制御方法
JP2019060544A (ja) 空気調和機
JP2016142419A (ja) 空気調和機及び空気調和方法
JP5889347B2 (ja) 冷凍サイクル装置及び冷凍サイクル制御方法
JP5496161B2 (ja) 冷凍サイクルシステム
CN114383263A (zh) 冷媒散热控制方法、装置和多联式空调
JP5627564B2 (ja) 冷凍サイクルシステム
US10168060B2 (en) Air-conditioning apparatus
JP5479625B2 (ja) 冷凍サイクル装置及び冷凍サイクル制御方法
JP7309075B2 (ja) 空気調和装置
JP6844663B2 (ja) 水量調整装置
WO2019008742A1 (ja) 冷凍サイクル装置
JP6989788B2 (ja) 冷凍サイクル装置
JP2014134321A (ja) 複合型空調システム
JP2020094781A (ja) 冷凍装置
JP6791235B2 (ja) 冷凍装置